JP2003148469A - Magnetic bearing device - Google Patents

Magnetic bearing device

Info

Publication number
JP2003148469A
JP2003148469A JP2001344788A JP2001344788A JP2003148469A JP 2003148469 A JP2003148469 A JP 2003148469A JP 2001344788 A JP2001344788 A JP 2001344788A JP 2001344788 A JP2001344788 A JP 2001344788A JP 2003148469 A JP2003148469 A JP 2003148469A
Authority
JP
Japan
Prior art keywords
electromagnets
electromagnet
bearing device
magnetic bearing
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001344788A
Other languages
Japanese (ja)
Inventor
Ryoichi Takahata
良一 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
International Superconductivity Technology Center
Original Assignee
Koyo Seiko Co Ltd
International Superconductivity Technology Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd, International Superconductivity Technology Center filed Critical Koyo Seiko Co Ltd
Priority to JP2001344788A priority Critical patent/JP2003148469A/en
Publication of JP2003148469A publication Critical patent/JP2003148469A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic bearing device capable of preventing an oscillation in a high frequency area. SOLUTION: Electromagnets X1, X1', Y1, and Y1' in radial direction are formed of the assembly of a plurality of small electromagnets (for example, 401, 402, 409, 410). Since a magnetic paths in the cores of the small electromagnets are rather short, the lowering of inductance in the high frequency area is suppressed, and an electromagnetic force is assured. Thus, the natural frequency of the rotating body 6 in bending mode can be prevented from being excited.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気軸受装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic bearing device.

【0002】[0002]

【従来の技術】図4は、従来の磁気軸受装置を、回転体
の軸方向端から見た概略図である。また、図5は、図4
におけるV−V線断面図である。図4及び図5におい
て、回転体101は、円筒状のステータハウジング10
2の内周に等配された4個の電磁石103により、磁気
浮上の状態で非接触支持される。電磁石103は、例え
ば図5に示すような馬蹄形のコア103aにコイル10
3bが巻装されたものである。制御型磁気軸受装置の場
合は、これらの電磁石103の磁力を制御して回転体1
01を所望の位置に浮上させる位置制御機能を有してい
る。ところが、浮上した回転体101の位置制御は元々
不安定な制御系であり、曲げモードの固有振動数が励振
されれば、発振してしまう。そこで従来は、当該固有振
動数を励振させないように制御系において最適な制御定
数を決定し、これにより回転体101の安定浮上を実現
させようとしていた。
2. Description of the Related Art FIG. 4 is a schematic view of a conventional magnetic bearing device as seen from an axial end of a rotating body. In addition, FIG.
5 is a sectional view taken along line VV in FIG. 4 and 5, the rotating body 101 is a cylindrical stator housing 10
The four electromagnets 103, which are equally arranged on the inner circumference of 2, are supported in a non-contact manner in a magnetically levitated state. The electromagnet 103 includes, for example, a horseshoe-shaped core 103a as shown in FIG.
3b is wound. In the case of a control type magnetic bearing device, the magnetic force of these electromagnets 103 is controlled to rotate the rotor 1.
01 has a position control function of levitating to a desired position. However, the position control of the levitated rotating body 101 is originally an unstable control system, and oscillates if the natural frequency of the bending mode is excited. Therefore, conventionally, an optimum control constant is determined in the control system so as not to excite the natural frequency, and thereby stable levitation of the rotating body 101 is realized.

【0003】[0003]

【発明が解決しようとする課題】上記のような従来の磁
気軸受装置が大型化すると、それに伴って回転体101
を吸引する電磁石103も大型化する。このような大型
化した電磁石103のコアを通過する磁束は、その磁路
が長くなり、そこで発生する鉄損が大きくなる。従っ
て、電磁石103のコイルに流す電流が高周波になるほ
どインダクタンスが低下し、電磁力が相対的に低下して
くる。このため高周波領域(例えば500Hz以上)に
おいては、所望の電磁力を生じさせるべくコイルに所定
の電流を流しても、所望の電磁力が得られないことにな
る。その結果、当該高周波領域に存在する曲げモードの
固有振動数が励振され、発振してしまうという問題点が
ある。
When the conventional magnetic bearing device as described above becomes large in size, the rotating body 101 is accompanied by it.
The electromagnet 103 that attracts is also upsized. The magnetic path of the magnetic flux passing through the core of the electromagnet 103 having such a large size has a long magnetic path, resulting in a large iron loss. Therefore, as the frequency of the current flowing through the coil of the electromagnet 103 becomes higher, the inductance decreases and the electromagnetic force relatively decreases. Therefore, in a high frequency region (for example, 500 Hz or more), even if a predetermined current is passed through the coil to generate a desired electromagnetic force, the desired electromagnetic force cannot be obtained. As a result, there is a problem that the natural frequency of the bending mode existing in the high frequency region is excited and oscillates.

【0004】上記のような従来の問題点に鑑み、本発明
は、高周波領域での発振を防止する磁気軸受装置を提供
することを目的とする。
In view of the above-mentioned conventional problems, an object of the present invention is to provide a magnetic bearing device which prevents oscillation in a high frequency region.

【0005】[0005]

【課題を解決するための手段】本発明は、回転体を複数
組の電磁石によって磁気的に非接触支持する磁気軸受装
置において、複数組の電磁石のうち前記回転体を挟んで
ラジアル方向に配置される少なくとも一組の電磁石の各
々が、複数の小電磁石の集合体からなることを特徴とす
る。上記のように構成された磁気軸受装置では、電磁石
が小電磁石の集合体からなることにより、単一体からな
る相応な大きさの電磁石に比べて、当該小電磁石におけ
るコア内の磁路が短いため、高周波領域でもインダクタ
ンスの低下がほとんどない。このため、高周波領域での
電磁力の低下が抑制され、回転体における曲げモードの
固有振動数の励振が抑制される。
According to the present invention, in a magnetic bearing device for magnetically non-contact supporting a rotating body by a plurality of sets of electromagnets, the plurality of sets of electromagnets are arranged in the radial direction across the rotating body. Each of the at least one set of electromagnets is composed of an assembly of a plurality of small electromagnets. In the magnetic bearing device configured as described above, since the electromagnet is composed of an assembly of small electromagnets, the magnetic path in the core of the small electromagnet is shorter than that of an appropriately sized electromagnet composed of a single body. Also, there is almost no decrease in inductance even in the high frequency range. Therefore, the reduction of the electromagnetic force in the high frequency region is suppressed, and the excitation of the natural frequency of the bending mode in the rotating body is suppressed.

【0006】また、上記磁気軸受装置において、集合体
からなる電磁石に近接して変位センサが配置され、当該
変位センサの出力に基づいて、当該電磁石の電磁力が制
御されるよう構成されてもよい(請求項2)。この場
合、変位センサの出力に基づいて、複数の小電磁石の制
御を共通に若しくは個別に行うことができる。
Further, in the above magnetic bearing device, a displacement sensor may be arranged close to an electromagnet composed of an assembly, and the electromagnetic force of the electromagnet may be controlled based on the output of the displacement sensor. (Claim 2). In this case, the plurality of small electromagnets can be controlled in common or individually based on the output of the displacement sensor.

【0007】[0007]

【発明の実施の形態】図1は、本発明の一実施形態によ
る磁気軸受装置を、回転体の軸方向端から見た図である
(一部破断して示す。)。また、図2は、図1における
II−II線断面図である。図1及び図2において、円筒状
のステータハウジング1内には、軸方向に一対の環状部
材2が取り付けられている。図2において、軸方向にお
ける一対の環状部材2間には複数個の電磁石取付座3が
固定され、その各々に小電磁石が取り付けられている。
本実施形態では、周方向に8個の小電磁石が等配され、
かつ、これらが軸方向に2列に設けられる(1列:40
1〜408,2列:409〜416)ことにより、合計
16個の小電磁石401〜416が配置されている。小
電磁石401〜416は、例えば図2に示すような馬蹄
形のコア4aにコイル4bが巻装されたものである。ま
た、周方向に90度間隔で合計4個の変位センサ5が配
置されている。回転体6は、これらの小電磁石401〜
416によって磁気的に非接触支持される。
1 is a view of a magnetic bearing device according to an embodiment of the present invention as seen from an axial end of a rotating body (partially cut away and shown). In addition, FIG. 2 corresponds to FIG.
It is a II-II sectional view taken on the line. In FIGS. 1 and 2, a pair of annular members 2 is axially mounted in a cylindrical stator housing 1. In FIG. 2, a plurality of electromagnet mounting seats 3 are fixed between a pair of annular members 2 in the axial direction, and a small electromagnet is attached to each of them.
In this embodiment, eight small electromagnets are equally arranged in the circumferential direction,
In addition, these are provided in two rows in the axial direction (one row: 40
1 to 408, 2 rows: 409 to 416), a total of 16 small electromagnets 401 to 416 are arranged. The small electromagnets 401 to 416 are, for example, a horseshoe-shaped core 4a as shown in FIG. 2 and a coil 4b wound around the core 4a. Further, a total of four displacement sensors 5 are arranged at intervals of 90 degrees in the circumferential direction. The rotating body 6 has these small electromagnets 401 to
It is magnetically supported in a contactless manner by 416.

【0008】ここで、図1に示すように、上記回転体6
の軸方向をZ軸方向(アキシャル方向)とし、これに直
交するラジアル方向をX軸方向及びY軸方向とすると
(X軸とY軸とは互いに直交する。)、4個の小電磁石
401,402,409,410の集合体は、全体とし
て1つの電磁石X1を構成し、他方、4個の小電磁石4
05,406,413,414は、全体として1つの電
磁石X1’を構成する。そして、両電磁石X1,X1’
は、X軸方向に回転体6を挟んで互いに対向配置され、
共に回転体6を電磁力で吸引することにより、回転体6
をX軸上で浮上させる。同様に、4個の小電磁石40
7,408,415,416は、全体として1つの電磁
石Y1を構成し、他方、4個の小電磁石403,40
4,411,412は、全体として1つの電磁石Y1’
を構成する。そして、両電磁石Y1,Y1’は、Y軸方
向に回転体6を挟んで互いに対向配置され、共に回転体
6を電磁力で吸引することにより、回転体6をY軸上で
浮上させる。各電磁石X1,X1’,Y1,Y1’にお
ける周方向の中間位置には各電磁石に対応する変位セン
サ5が当該電磁石と近接して配置され、これらによっ
て、X軸及びY軸上の回転体6の変位が検出される。ま
た、変位センサ5は、各電磁石X1,X1’,Y1,Y
1’における軸方向にも中間位置に配置されることが好
ましい。
Here, as shown in FIG.
When the axial direction of is the Z-axis direction (axial direction), and the radial direction orthogonal to this is the X-axis direction and the Y-axis direction (the X-axis and the Y-axis are orthogonal to each other), four small electromagnets 401, The assembly of 402, 409, 410 constitutes one electromagnet X1 as a whole, while the other four electromagnets 4 are arranged.
05, 406, 413, 414 constitute one electromagnet X1 'as a whole. And both electromagnets X1, X1 '
Are arranged to face each other with the rotating body 6 interposed therebetween in the X-axis direction,
By attracting the rotating body 6 with an electromagnetic force, the rotating body 6
Is levitated on the X-axis. Similarly, four small electromagnets 40
7, 408, 415, and 416 constitute one electromagnet Y1 as a whole, while four small electromagnets 403 and 40 are provided.
4,411,412 are one electromagnet Y1 'as a whole
Make up. The two electromagnets Y1, Y1 'are arranged to face each other with the rotor 6 interposed therebetween in the Y-axis direction, and the rotor 6 is attracted by an electromagnetic force to levitate the rotor 6 on the Y-axis. A displacement sensor 5 corresponding to each electromagnet is disposed in the vicinity of an intermediate position in the circumferential direction of each electromagnet X1, X1 ', Y1, Y1' so as to be close to the electromagnet. Is detected. Further, the displacement sensor 5 includes the electromagnets X1, X1 ′, Y1, Y
It is preferable that the axial position of 1'is also arranged at an intermediate position.

【0009】上記のように構成された磁気軸受装置は回
転体6の軸方向における別の位置にもう1組設けられて
いる。各磁気軸受装置は、変位センサ5によって捉えら
れるX軸及びY軸の変位信号に基づいて、制御装置(図
示せず。)により電磁石X1,X1’,Y1,Y1’の
電磁力をコイル4bに与える電流により制御して、回転
体6を所望の位置に浮上させるよう制御される。なお、
電磁石X1,X1’,Y1,Y1’のそれぞれの小電磁
石のコイル4bに与える電流は、すべて共通に与えても
よいし、また、個々の小電磁石に応じて独立して与えて
もよい。
Another set of the magnetic bearing device configured as described above is provided at another position in the axial direction of the rotating body 6. Each magnetic bearing device applies an electromagnetic force of electromagnets X1, X1 ', Y1, Y1' to the coil 4b by a control device (not shown) based on the displacement signals of the X-axis and the Y-axis captured by the displacement sensor 5. The rotating body 6 is controlled to be levitated at a desired position by controlling the applied current. In addition,
The electric currents applied to the coils 4b of the small electromagnets of the electromagnets X1, X1 ′, Y1, Y1 ′ may all be commonly applied, or may be applied independently depending on the individual small electromagnets.

【0010】図3は、上記電磁石X1,X1’,Y1,
Y1’における、インダクタンスの周波数特性を示すグ
ラフである。図中、実線は本実施形態における電磁石X
1,X1’,Y1,Y1’の特性を示し、破線は比較の
ために従来の電磁石103(図4)における特性を示
す。このグラフにより明らかなように、従来の電磁石の
場合には周波数が1Hzから増加すると、500Hzま
で緩やかにインダクタンスが減少し、500Hzを境に
急激に低下する。一方、本実施形態における電磁石X
1,X1’,Y1,Y1’の場合には、1Hzから10
00Hz程度までインダクタンスがほとんど低下せず、
その後さらに周波数が増大すると緩やかに低下する。
FIG. 3 shows the electromagnets X1, X1 ', Y1,
It is a graph which shows the frequency characteristic of an inductance in Y1 '. In the figure, the solid line indicates the electromagnet X in the present embodiment.
1, X1 ', Y1, Y1' are shown, and the broken line shows the characteristics of the conventional electromagnet 103 (FIG. 4) for comparison. As is clear from this graph, in the case of the conventional electromagnet, when the frequency increases from 1 Hz, the inductance gradually decreases up to 500 Hz, and sharply decreases at 500 Hz. On the other hand, the electromagnet X in the present embodiment
In the case of 1, X1 ', Y1, Y1', 1 Hz to 10
Inductance hardly decreases up to about 00Hz,
After that, when the frequency further increases, the frequency gradually decreases.

【0011】上記のような特性の差異が生じるのは、電
磁石X1,X1’,Y1,Y1’が小電磁石の集合体か
らなることにより、単一体からなる相応な大きさの電磁
石に比べて、当該小電磁石におけるコア内の磁路が短
く、鉄損が小さいためである。すなわち、このような小
電磁石は、周波数が増大してもインダクタンスの低下が
少ない。このため、本実施形態における電磁石X1,X
1’,Y1,Y1’は、制御帯域として1000Hz程
度まで使用可能である。従って、500〜1000Hz
程度までの高周波領域においても電磁石X1,X1’,
Y1,Y1’の電磁力はほとんど低下せず、当該高周波
領域に存在する回転体6の曲げモードの固有振動数の励
振を妨げ、発振を防止することができる。なお、本実施
形態の電磁石の特性は、DCレベル(例えば1Hz)に
おいて従来の電磁石の半分程度に相当する低いレベルで
あるが、これは励磁電流を増大することにより容易に補
償することができる。従って、この点は何ら問題となら
ない。
The difference in characteristics as described above occurs because the electromagnets X1, X1 ', Y1, Y1' are composed of an assembly of small electromagnets, as compared with an electromagnet of a proper size composed of a single body. This is because the magnetic path in the core of the small electromagnet is short and the iron loss is small. That is, such a small electromagnet has a small decrease in inductance even if the frequency increases. Therefore, the electromagnets X1, X in the present embodiment
1 ', Y1, Y1' can be used up to about 1000 Hz as a control band. Therefore, 500-1000Hz
Electromagnets X1, X1 ', even in high frequency range
The electromagnetic forces of Y1 and Y1 'are hardly reduced, and the excitation of the natural frequency of the bending mode of the rotating body 6 existing in the high frequency region can be hindered and the oscillation can be prevented. The characteristic of the electromagnet of the present embodiment is a low level corresponding to about half that of the conventional electromagnet at the DC level (for example, 1 Hz), but this can be easily compensated by increasing the exciting current. Therefore, this point does not pose any problem.

【0012】なお、本実施形態では全ての電磁石X1,
X1’,Y1,Y1’について各々が小電磁石により構
成されるものとしたが、X軸及びY軸のいずれか一組の
電磁石のみ小電磁石の集合体で構成し、他の組は従来の
ように単一体の電磁石で構成しても、一定の発振防止効
果は得られる。また、本実施形態では、周方向に2個、
軸方向に2列、の計4個の小電磁石の集合体により電磁
石X1,X1’,Y1,Y1’を構成したが、必要に応
じて、電磁石を構成する集合体としての小電磁石の要素
数を、ラジアル方向に又はアキシャル方向に増減するこ
とができる。また、上記実施形態では変位センサ5は、
各電磁石X1,X1’,Y1,Y1’における周方向の
中間位置に配置され、また、各電磁石X1,X1’,Y
1,Y1’における軸方向にも中間位置に配置されるこ
とが好ましいとしたが、各電磁石X1,X1’,Y1,
Y1’の各々に近接して、これを周方向又は軸方向に挟
むように一対のセンサを設けて、演算により各電磁石に
対応する位置の回転体6の変位を得る構成としてもよ
い。
In this embodiment, all electromagnets X1,
Each of X1 ', Y1, and Y1' is configured by a small electromagnet, but only one set of the X-axis and Y-axis electromagnets is configured by an assembly of small electromagnets, and the other sets are the same as those of the conventional one. Even if the electromagnet is composed of a single body, a certain oscillation preventing effect can be obtained. Further, in the present embodiment, two in the circumferential direction,
The electromagnets X1, X1 ', Y1, Y1' were composed of a total of four small electromagnets in two rows in the axial direction, but if necessary, the number of elements of the small electromagnets as an assembly forming the electromagnets. Can be increased or decreased in the radial direction or in the axial direction. Further, in the above embodiment, the displacement sensor 5 is
The electromagnets X1, X1 ', Y1, Y1' are arranged at intermediate positions in the circumferential direction, and the electromagnets X1, X1 ', Y are arranged.
Although it is preferable that the electromagnets X1, X1 ′, Y1, and Y1 ′ are also arranged at intermediate positions in the axial direction,
A configuration may be employed in which a pair of sensors are provided so as to be close to each of Y1 ′ and sandwich the Y1 ′ in the circumferential direction or the axial direction, and the displacement of the rotating body 6 at the position corresponding to each electromagnet is obtained by calculation.

【0013】[0013]

【発明の効果】以上のように構成された本発明の磁気軸
受装置は、以下の効果を奏する。請求項1の磁気軸受装
置によれば、電磁石が小電磁石の集合体からなることに
より、単一体からなる相応な大きさの電磁石に比べて、
当該小電磁石におけるコア内の磁路が短いため、高周波
領域でもインダクタンスの低下がほとんどない。このた
め、高周波領域での電磁力の低下が抑制され、回転体に
おける曲げモードの固有振動数の励振が抑制されるの
で、高周波領域での発振を防止することができる。
The magnetic bearing device of the present invention constructed as described above has the following effects. According to the magnetic bearing device of claim 1, since the electromagnet is composed of an assembly of small electromagnets, as compared with an electromagnet of a corresponding size composed of a single body,
Since the magnetic path in the core of the small electromagnet is short, the inductance hardly decreases even in the high frequency region. For this reason, the reduction of the electromagnetic force in the high frequency region is suppressed, and the excitation of the natural frequency of the bending mode in the rotating body is suppressed, so that the oscillation in the high frequency region can be prevented.

【0014】請求項2の磁気軸受装置によれば、変位セ
ンサの出力に基づいて、複数の小電磁石の制御を、共通
に又は個別に行うことが容易である。
According to the magnetic bearing device of the second aspect, it is easy to control the plurality of small electromagnets in common or individually based on the output of the displacement sensor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態による磁気軸受装置を、回
転体の軸方向端から見た図である。
FIG. 1 is a view of a magnetic bearing device according to an embodiment of the present invention as seen from an axial end of a rotating body.

【図2】図1におけるII−II線断面図である。FIG. 2 is a sectional view taken along line II-II in FIG.

【図3】図1に示す電磁石X1,X1’,Y1,Y1’
における、インダクタンスの周波数特性を示すグラフで
ある。
FIG. 3 shows electromagnets X1, X1 ′, Y1, Y1 ′ shown in FIG.
3 is a graph showing frequency characteristics of inductance in FIG.

【図4】従来の磁気軸受装置を、回転体の軸方向端から
見た概略図である。
FIG. 4 is a schematic view of a conventional magnetic bearing device as seen from an axial end of a rotating body.

【図5】図4におけるV−V線断面図である。5 is a sectional view taken along line VV in FIG.

【符号の説明】[Explanation of symbols]

5 変位センサ 6 回転体 401〜416 小電磁石 X1,X1’,Y1,Y1’ 電磁石 5 displacement sensor 6 rotating body 401-416 small electromagnet X1, X1 ', Y1, Y1' electromagnets

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J102 AA01 BA03 BA17 CA02 DA09 DB05 DB10    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 3J102 AA01 BA03 BA17 CA02 DA09                       DB05 DB10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】回転体を複数組の電磁石によって磁気的に
非接触支持する磁気軸受装置において、 複数組の電磁石のうち前記回転体を挟んでラジアル方向
に配置される少なくとも一組の電磁石の各々が、複数の
小電磁石の集合体からなることを特徴とする磁気軸受装
置。
1. A magnetic bearing device for magnetically non-contact supporting a rotating body by a plurality of sets of electromagnets, wherein each of at least one set of electromagnets among the plurality of sets of electromagnets is arranged in the radial direction with the rotating body interposed therebetween. The magnetic bearing device comprises an assembly of a plurality of small electromagnets.
【請求項2】前記集合体からなる電磁石に近接して変位
センサが配置され、当該変位センサの出力に基づいて、
当該電磁石の電磁力が制御される請求項1記載の磁気軸
受装置。
2. A displacement sensor is arranged in the vicinity of the electromagnet composed of the aggregate, and based on the output of the displacement sensor,
The magnetic bearing device according to claim 1, wherein the electromagnetic force of the electromagnet is controlled.
JP2001344788A 2001-11-09 2001-11-09 Magnetic bearing device Pending JP2003148469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001344788A JP2003148469A (en) 2001-11-09 2001-11-09 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001344788A JP2003148469A (en) 2001-11-09 2001-11-09 Magnetic bearing device

Publications (1)

Publication Number Publication Date
JP2003148469A true JP2003148469A (en) 2003-05-21

Family

ID=19158255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001344788A Pending JP2003148469A (en) 2001-11-09 2001-11-09 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JP2003148469A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107191484A (en) * 2017-04-27 2017-09-22 江苏大学 A kind of design method of the three freedom degree mixed magnetic bearing of radial direction sextupole

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107191484A (en) * 2017-04-27 2017-09-22 江苏大学 A kind of design method of the three freedom degree mixed magnetic bearing of radial direction sextupole

Similar Documents

Publication Publication Date Title
US20030001447A1 (en) Magnetic bearing system
US20090295244A1 (en) Apparatus for Magnetic Bearing of a Rotor Shaft With Radial Guidance and Axial Control
JP2007187317A (en) Device for magnetically levitating rotor
JP2003102145A (en) Magnetically levitated motor and magnet bearing device
JP2002354767A (en) Magnetic levitation motor
JP2000145773A (en) Magnetic bearing device
JPH07256503A (en) Spindle apparatus
JP2005061578A (en) Magnetic bearing
US8110955B2 (en) Magnetic bearing device of a rotor shaft against a stator with rotor disc elements, which engage inside one another, and stator disc elements
US20170335889A1 (en) Compensation windings for magnetic bearings
JP2001190045A (en) Magnetically levitated motor
JP7080318B2 (en) Compensation for magnetic flux in magnetic bearing equipment
JP2003148469A (en) Magnetic bearing device
JP2001074050A (en) Radial magnetic bearing
US6362549B1 (en) Magnetic bearing device
EP4038287B1 (en) A magnetic actuator for a magnetic suspension system
JP2002161918A (en) Magnetic bearing unit
EP1701050A1 (en) Power amplification device and magnetic bearing
JP4220859B2 (en) Magnetic bearing
JP2018021573A (en) Diskless thrust magnetic bearing and three-axis active control magnetic bearing
WO2006098500A1 (en) Magnetic device
JP2004316756A (en) Five-axis control magnetic bearing
US6404794B1 (en) Excimer laser apparatus
KR20050056753A (en) Active magnetic bearing with lorentz-type axial actuator
JP2003314550A (en) Magnetic bearing unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060704