JP2003147410A - Abrasive, sintered-compact block and its manufacturing method - Google Patents

Abrasive, sintered-compact block and its manufacturing method

Info

Publication number
JP2003147410A
JP2003147410A JP2001347167A JP2001347167A JP2003147410A JP 2003147410 A JP2003147410 A JP 2003147410A JP 2001347167 A JP2001347167 A JP 2001347167A JP 2001347167 A JP2001347167 A JP 2001347167A JP 2003147410 A JP2003147410 A JP 2003147410A
Authority
JP
Japan
Prior art keywords
pressure
sintered body
superabrasive
mold
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001347167A
Other languages
Japanese (ja)
Inventor
Shigeru Tanaka
繁 田中
Hiroshi Ishizuka
博 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIZUKA KENKYUSHO
Ishizuka Research Institute Ltd
Original Assignee
ISHIZUKA KENKYUSHO
Ishizuka Research Institute Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIZUKA KENKYUSHO, Ishizuka Research Institute Ltd filed Critical ISHIZUKA KENKYUSHO
Priority to JP2001347167A priority Critical patent/JP2003147410A/en
Publication of JP2003147410A publication Critical patent/JP2003147410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a diamond sintered compact block with high precision and in a high yield, used for anvils for research under an ultrahigh pressure, forming dies for hard materials and component materials of cutting tools such as a glass-fiber cutter and a scriber. SOLUTION: This method comprises; (1) preparing a forming die 11, 12 composed of a heat-resisting material and having, in its inside, a cavity of a solid form in which, between the maximum length (axial length) in a pressing direction and the maximum size (cross-sectional length) perpendicular to the pressing direction, the smaller dimension is >=10 mm and the larger dimension is >=20 mm; (2) constituting starting materials in the form of a powder mixture 17 containing super-abrasive powder and binder raw-material powder; (3) charging the starting materials into the above forming die, closing the opening of the die, and arranging heaters for electric heating around the die; (4) charging the whole into a uniaxial press and adjusting the central axis of the forming die to the pressing direction; (5) subjecting the starting materials to pressure/temperature conditions within a region where the super abrasives are thermodynamically stable to integrally sinter the starting materials; and (6) carrying out cooling and pressure release and then recovering the resultant sintered-compact block.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本発明は超砥粒焼結体ブロ
ック、特に各種の耐摩耗部品、超高圧研究用アンビル、
研削・研磨工具用の材料として好適な、立体的形状を有
するダイヤモンド焼結体、及びその効果的な製造法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superabrasive grain sintered body block, particularly various wear-resistant parts, an anvil for ultrahigh pressure research,
The present invention relates to a diamond sintered body having a three-dimensional shape suitable as a material for a grinding / polishing tool, and an effective manufacturing method thereof.

【0002】[0002]

【従来技術の説明】 各種の高硬度乃至耐摩耗部材が、
超砥粒、特にダイヤモンドの焼結体(PCD)で構成さ
れ、利用されている。これらは一般に、次のようにして
得られている。すなわち、ダイヤモンド粉末を金属質又
はセラミック質結合材粉末と混合し、支持体としての超
硬合金の板と共に、タンタル、ジルコニウム等の高融点
金属製カプセルに入れ、ダイヤモンドが熱力学的に安定
相となる超高圧高温条件下に供する。この際、超硬合金
から、鉄族金属を主成分とする溶融金属が供給され、こ
れが、混合粉末の粒子間に浸透し、ダイヤモンド層内の
焼結を行うと同時に、ダイヤモンド層と支持体との接合
を行う。このような方法は、例えば特公昭52-12126号公
報等において公知である。
Description of the Prior Art Various high hardness to wear resistant members
It is composed of superabrasive grains, especially a sintered body of diamond (PCD), and is used. These are generally obtained as follows. That is, diamond powder is mixed with a metallic or ceramic binder powder, and together with a cemented carbide plate as a support, it is placed in a high melting point metal capsule such as tantalum or zirconium, and diamond is thermodynamically stable. Under ultra high pressure and high temperature conditions. At this time, from the cemented carbide, a molten metal containing an iron group metal as a main component is supplied, which penetrates between the particles of the mixed powder and performs sintering in the diamond layer, and at the same time, the diamond layer and the support. Join. Such a method is known, for example, in Japanese Patent Publication No. 52-12126.

【0003】成形型、ダイス、或いはその他の耐摩耗性
の部品として、断面積の大きな焼結体、特に厚肉大断面
積の部品に適合した立体形状のダイヤモンドブロックの
開発が望まれる。装置的観点からは、超高圧装置の大型
化成功により、最近では断面の大きな焼結体が得られる
ようになっている。しかし従来の手法によっては、比較
的小容量の部品においては問題無く焼結できるが、大径
のものは形状に歪みが出易い上に、厚みが増すとクラッ
クも入りやすいので、完全なものが得られにくい。した
がって厚みの大きいものは直径が比較的小さいものに限
定され、結局、従来技術では、軸長及び軸長に垂直な断
面の長さが共に10mm程度より大きい焼結体を得ること
は困難であった。
As a mold, die, or other wear-resistant component, it is desired to develop a three-dimensionally shaped diamond block suitable for a sintered body having a large cross-sectional area, particularly a component having a large-thickness and large cross-sectional area. From the viewpoint of the equipment, the success of upsizing of the ultra-high pressure equipment has recently made it possible to obtain a sintered body having a large cross section. However, according to the conventional method, it is possible to sinter with relatively small capacity parts without problems, but with large diameters, the shape tends to be distorted, and cracks tend to occur as the thickness increases, so perfect Hard to get. Therefore, those with a large thickness are limited to those with a relatively small diameter, and in the end, it is difficult to obtain a sintered body having both the axial length and the length of the cross section perpendicular to the axial length of more than about 10 mm in the prior art. It was

【0004】[0004]

【発明が解決しようとする課題】 したがって本発明
は、従来の手法では達成できなかった大型の立体形状を
有するダイヤモンド焼結体における形状歪み及びクラッ
クの問題を本質的に解消することによって、超高圧下に
おける物性の研究用アンビル、硬質材料の成形型を始
め、グラスファイバーカッターやスクライバー等の工具
刃物構成材料として好適なダイヤモンド焼結体ブロック
を高精度・高歩留まりで製造可能な方法を提供すること
を、主な目的の一つとする。
SUMMARY OF THE INVENTION Therefore, the present invention essentially eliminates the problems of shape distortion and cracks in a diamond sintered body having a large three-dimensional shape, which has not been achieved by the conventional method, and thus the ultrahigh pressure To provide a method capable of manufacturing a diamond sintered body block suitable for a tool blade constituent material such as a glass fiber cutter and a scriber with high precision and high yield, including an anvil for researching physical properties below, a mold for hard materials Is one of the main purposes.

【0005】本発明者等は、プレスにて加圧する際の各
種の反応室構成、乃至加圧・加熱される出発混合粉末周
囲の形状構成を検討した結果、加圧開始から除圧までの
応力分布の不連続を解消する最適な構成を見出し、上記
課題に対する一解決策として本発明を達成するに至っ
た。
The present inventors have examined various reaction chamber configurations when pressurizing with a press, and the shape configuration around the starting mixed powder to be pressurized / heated, and as a result, stress from the start of pressurization to depressurization The present invention has been achieved as a solution to the above-mentioned problems by finding an optimum configuration for eliminating discontinuity in distribution.

【0006】[0006]

【課題を解決するための手段】 本発明において、上記
立体形状の超砥粒焼結ブロックは、次のようにして得る
ことができる。即ち、(1)耐熱性材料で構成され、かつ
開口部から底部に向かって断面積が減少する内面形状の
空隙部を有する成形型を用意し、この際、該空隙部は、
加圧方向の最大長さ(軸長)と加圧方向に垂直な最大寸法
(断面長さ)とにおいて、いずれか小さい方が10mm以
上、大きい方が20mm以上の立体形状を呈し、一方(2)
超砥粒粉末と結合材原料粉末とを含有する一様かつ密な
混合粉末として出発材料を構成し、(3)該出発材料を上
記成形型に入れ、開口部を耐熱耐圧性ブロックで封鎖
し、また周囲に通電加熱用のヒーターを配置した後、
(4)全体を一軸加圧プレスに装填し、成形型の中心軸と
加圧方向とを一致させ、(5)上記出発材料を超砥粒が熱
力学的に安定な領域内の圧力・温度条件下に供して焼結
一体化することにより焼結体ブロックとし、(6)冷却し
かつ圧力解放後、該焼結体ブロックを回収するものであ
る。
Means for Solving the Problems In the present invention, the three-dimensionally shaped superabrasive grain sintering block can be obtained as follows. That is, (1) prepare a mold having an inner surface-shaped void portion that is made of a heat-resistant material and has a cross-sectional area that decreases from the opening portion toward the bottom portion.
Maximum length in the pressing direction (axial length) and maximum dimension perpendicular to the pressing direction
(Cross-section length), the smaller one has a solid shape of 10 mm or more, and the larger one has a solid shape of 20 mm or more, while (2)
The starting material is constituted as a uniform and dense mixed powder containing the superabrasive powder and the binder raw material powder, (3) the starting material is put into the above mold, and the opening is closed with a heat and pressure resistant block. , Again after arranging the heater for electric heating around
(4) The whole is loaded into a uniaxial pressure press, the center axis of the mold is aligned with the pressing direction, and (5) the starting material is pressure and temperature within the region where the superabrasive grains are thermodynamically stable. A sintered body block is obtained by subjecting to a condition to sinter and integrate, and (6) after cooling and releasing the pressure, the sintered body block is recovered.

【0007】[0007]

【発明を実施するための形態】 本発明の上記空隙部
(キャビテイ)乃至焼結体ブロックの形状については、軸
対称の形状、例えば図1に示すような球、楕円球、円柱
乃至角無し円柱、円錐乃至円錐台状等において高い歩留
まりが得られ、特に球の場合には、最も加圧荷重減少時
に影響を受けにくく水平クラックの発生が少ない。成形
型を円錐形乃至円錐台状に形成する場合、先細り角度は
中心軸に対して30°〜80°とするのが適切である。この
範囲よりも小さいと折れやすく、反面、大き過ぎると水
平クラックが入りやすくなるので、好ましくない。
BEST MODE FOR CARRYING OUT THE INVENTION
Regarding the shape of the (cavity) to the sintered body block, a high yield can be obtained in an axially symmetric shape such as a sphere, an ellipsoidal sphere, a cylinder or a non-cornered cylinder, or a cone or a truncated cone, as shown in FIG. In the case of a sphere, it is most unlikely to be affected when the pressure load is reduced, and horizontal cracks are less likely to occur. When the forming die is formed into a conical shape or a truncated cone shape, it is appropriate that the taper angle is 30 ° to 80 ° with respect to the central axis. If it is smaller than this range, it is easily broken, whereas if it is too large, horizontal cracks are likely to occur, which is not preferable.

【0008】本発明において形状を表す球、円錐、その
他の表現は厳密な幾何学的形状のみを指すものではな
く、凹凸、湾曲、曲がり、歪等、多少の変形を伴うもの
も含むものとする。
In the present invention, spheres, cones, and other expressions representing shapes do not refer only to strict geometric shapes, but also include those with some deformation such as unevenness, curvature, bending, and distortion.

【0009】上記成形型は、典型的には、ピッチ等をを
バインダーとして黒鉛粉を主成分とする原料粉末を型成
形して、或いは黒鉛ブロックを機械加工して作製する。
空隙部が上記形状を呈する成形型をかかる材質で構成す
る本発明においては、ブロック状の超砥粒、特にダイヤ
モンド焼結体を作製する際に、クラックによる歩留まり
低下の問題を本質的に解消することができた。
The above-mentioned molding die is typically manufactured by molding a raw material powder containing graphite powder as a main component using pitch or the like as a binder, or machining a graphite block.
In the present invention, in which the void has the above-described forming die having the above-described shape, in the case of producing block-shaped super abrasive grains, particularly a diamond sintered body, the problem of yield reduction due to cracks is essentially solved. I was able to.

【0010】成形型には目的とする部品の形状に応じた
空隙部乃至キャビティを設ける。利用しうる空隙部最大
寸法は本質的に、使用する超高圧装置の耐圧性に依存す
るが、本発明者等が使用した、高剛性アルミナを圧力減
衰材として使用する形式の一軸加圧装置では、軸と垂直
方向の断面について最大寸法100mmまでのものが作製
可能である。
The molding die is provided with voids or cavities corresponding to the shape of the intended component. The maximum size of the vacant space that can be utilized essentially depends on the pressure resistance of the ultrahigh pressure device used, but in the uniaxial pressurizing device of the type used by the present inventors, such as high rigidity alumina, as a pressure damping material. It is possible to fabricate a cross section perpendicular to the axis up to a maximum dimension of 100 mm.

【0011】成形型は、一端が開放した上記構成のほか
に、形成する空隙部の形状に応じて、水平な(即ち加圧
軸に垂直な)分離面を持つ上下の分割型(上型・下型)で
構成し、組み合せ状態において所定の空隙を呈するよう
に構成することができる。両型を組み合せ、周囲に例え
ばニッケル等の金属のシートを巻いて固定する。出発材
料である超砥粒含有混合粉末は、上型の頂部に設けた注
入口から注ぎ、注入口は充填後、型材と同一乃至類似の
材質の蓋で閉鎖する。
In addition to the above-described structure in which one end is open, the molding die has upper and lower split dies (upper die / upper die) having a horizontal (that is, vertical to the pressure axis) separation surface depending on the shape of the void to be formed. It can be configured to have a predetermined void in the combined state. Both molds are combined, and a sheet of metal such as nickel is wound around and fixed to the periphery. Superabrasive-grain-containing mixed powder, which is a starting material, is poured from an injection port provided at the top of the upper mold, and after the injection port is filled, it is closed with a lid made of the same or similar material as the mold material.

【0012】成形型を分割型として構成する場合には、
両型の対向部分に、型の外側部分を含むように深さ5m
m程度の円錐面を設けておくと、焼結品の形状を確保す
る上で効果的である。
When the mold is constructed as a split mold,
5m deep so that the outer part of the mold is included in the opposite part of both molds
Providing a conical surface of about m is effective in securing the shape of the sintered product.

【0013】上記において、空隙部の加工が可能な場合
には、分割型の代わりに一体型を用いることも可能であ
る。
In the above, if the void portion can be processed, an integral type can be used instead of the split type.

【0014】本発明の手法は、特に大型焼結体部品の製
作に適合されているので、大型になるほどその効果が顕
著であるが、経済性を重視しなければ小型の部品にも適
用できる。この観点における成形型の開口部径の下限は
約10mmである。
Since the method of the present invention is particularly suited to the production of large-sized sintered body parts, its effect is more remarkable as the size becomes larger, but it can also be applied to small-sized parts if economic efficiency is not emphasized. From this viewpoint, the lower limit of the diameter of the opening of the mold is about 10 mm.

【0015】上記出発材料中のダイヤモンド粉末は全体
の容積に対して95〜20容積%とし、残部を金属質及び/
またはセラミック質結合材で構成するのがよい。ダイヤ
含有量は、目的とする特性(加工性・硬度等)に応じて適
宜設定する。即ち加工性が必要な場合には、ダイヤモン
ドの含有量の少ない組成を選ぶ。
The diamond powder in the above starting material is 95 to 20% by volume with respect to the total volume, and the balance is metallic and / or
Alternatively, it is preferable to use a ceramic binder. The diamond content is appropriately set according to the desired characteristics (workability, hardness, etc.). That is, when workability is required, a composition containing a small amount of diamond is selected.

【0016】金属質の結合材としてはCoが好適であ
る。一方、セラミック質結合材は典型的には金属炭化物
を用いる。これはTiC、WCまたはSiCを単独或いは
組合せて、一方、金属材としてはTi、W、Si、Co、
Ni、またはCrを単独或いは組合せて用いることができ
る。WCとCoとの組合せはその典型的な例である。
Co is preferred as the metallic binder. On the other hand, the ceramic binder typically uses metal carbide. This is TiC, WC or SiC alone or in combination, while as the metal material, Ti, W, Si, Co,
Ni or Cr can be used alone or in combination. The combination of WC and Co is a typical example.

【0017】出発材料には、酸素やチッ素のゲッターと
して、微量のTiH2を添加しておくことも有効である。
It is also effective to add a slight amount of TiH 2 to the starting material as a getter of oxygen or nitrogen.

【0018】 本発明に使用するダイヤモンドの粒径は
特に制限はないが、以後の加工工程や最終的な面粗さを
考慮すると、一般に0.2乃至50μm程度のものが好まし
い。
The grain size of the diamond used in the present invention is not particularly limited, but in consideration of the subsequent processing steps and the final surface roughness, the grain size of 0.2 to 50 μm is generally preferable.

【0019】プレスへの装填に当っては通常、成形型を
上記のように構成して出発材料を充填し、周囲に通電加
熱用のヒーターと回路構成部品とを配置し、使用するプ
レスに適合された構成にフォルステライトや塩化ナトリ
ウム等の加圧媒体で囲った上で、超高圧・高温条件操作
に供する。
When loading into a press, the molding die is usually constructed as described above, the starting material is filled therein, and a heater for electric heating and circuit components are arranged around the die to suit the press to be used. The above composition is surrounded by a pressurized medium such as forsterite or sodium chloride, and then subjected to ultrahigh pressure and high temperature condition operation.

【0020】上記一端開放型の場合には、このような成
形型2個及び耐熱・耐圧性の仕切り板を用意し、上記各
成形型に出発材料の粉末を充填した後、それぞれの開口
部を対向させ、かつ該仕切り板を介して配置することに
より、同時に2個の成形型を超高圧・高温条件操作に供
して焼結体ブロックを2個得ることが可能である。
In the case of the one-end open type, two such molds and a heat-resistant and pressure-resistant partition plate are prepared, and after filling each of the molds with the powder of the starting material, each opening is opened. By arranging them so that they face each other and via the partition plate, it is possible to simultaneously subject the two molding dies to ultrahigh pressure / high temperature condition operation to obtain two sintered body blocks.

【0021】超高圧高温操作から回収された焼結体ブロ
ックは、必要に応じて更に、放電加工により最終的な形
状に加工する。
The sintered block recovered from the ultra-high pressure and high temperature operation is further processed into a final shape by electric discharge machining, if necessary.

【0022】本発明の上記各構成において、ダイヤモン
ドの代わりに他の超砥粒種、特に立方晶窒化ホウ素(c-
BN)も、公知の適切な結合材を用いることにより、同
様の操作にて、焼結体ブロックとすることができる。
In each of the above constructions of the present invention, other superabrasive grain species, in particular cubic boron nitride (c-
BN) can also be made into a sintered body block by the same operation by using a known suitable binder.

【0023】次に本発明を実施例に即して説明する。Next, the present invention will be described with reference to examples.

【0024】[0024]

【実施例1】 公称粒度20/30μmのIRM級合成ダイ
ヤモンド(トーメイダイヤ製)93gと粒度2μmのコバル
ト粉末と54g、6μmのTiH2をボールミルに入れ、充
分に混合して出発材料とした。この場合、ダイヤモンド
とコバルト等との容積比は80:20に相当する。
Example 1 93 g of an IRM grade synthetic diamond (manufactured by Tomei Diamond) having a nominal particle size of 20/30 μm, cobalt powder having a particle size of 2 μm, 54 g and TiH 2 having a particle size of 6 μm were put into a ball mill and sufficiently mixed to obtain a starting material. In this case, the volume ratio of diamond to cobalt corresponds to 80:20.

【0025】一方図2に示すように、それぞれが直径54
mm、長さ25mmの黒鉛円柱2本の端部を、直径30mm
の半球形にくりぬいて分割成形型11、12を作製し、
一方にはさらに、中央に10mmφの貫通孔13を明けて
注入口とした。両分割型11、12を、各空隙部14、
15を対向させて組み合わせ、周囲にニッケル箔16を
巻いて固定した。型頂部の孔13から出発材料混合粉末
17を充填した後、孔を黒鉛製の栓18で閉鎖した。
On the other hand, as shown in FIG.
mm, length of 25 mm, the ends of two graphite cylinders, diameter 30 mm
Hollow into a hemispherical shape to make split molds 11 and 12,
Further, a through hole 13 having a diameter of 10 mm was opened in one of the holes to form an injection port. Both split molds 11 and 12 are provided with respective voids 14,
15 were made to face each other and assembled, and a nickel foil 16 was wound around and fixed. After the starting material mixed powder 17 was filled from the hole 13 at the top of the mold, the hole was closed with a plug 18 made of graphite.

【0026】組合せた出発材料集合体Aを、10-5Torr
の減圧下にて3時間熱処理した後、図3に示すように、
塩(NaCl)製のスリーブ21に入れ、上下にセラミック
(フォルステライト系)円板22、23及び塩製円板2
4、25を配置した。全体を、金属リング26を介して
セラミックスリーブ27〜29に詰め、周囲にステンレ
ス鋼のスリーブから成るヒーター30、また回路構成の
ために鋼製のそれぞれリング31、32及び円板33、
34を配設し、さらに通電用の鋼製円筒体35、36及
び絶縁用のセラミックリング37、38を配置した。
The combined starting material aggregate A was mixed with 10 −5 Torr.
After heat treatment under reduced pressure for 3 hours, as shown in FIG.
Put it in a sleeve 21 made of salt (NaCl) and put ceramics on top and bottom
(Forsterite type) discs 22 and 23 and salt disc 2
4, 25 were arranged. The whole is packed in ceramic sleeves 27-29 via a metal ring 26, around the heater 30 consisting of a stainless steel sleeve, and also for the circuit construction steel rings 31, 32 and a disc 33, respectively.
34, and steel cylinders 35, 36 for energization and ceramic rings 37, 38 for insulation.

【0027】全体を超高圧装置に装填した。加圧軸を一
致させ、5GPa、1500℃の圧力・温度条件に供して焼結
を完成させた。
The whole was loaded into an ultra high pressure device. The pressurizing axes were aligned and subjected to pressure and temperature conditions of 5 GPa and 1500 ° C. to complete sintering.

【0028】冷却・除圧後、34mmφ×厚さ18mmの潰
れた楕円球状の、しかしクラックの認められない焼結体
ブロックを回収した。これはさらにWEDM加工により
切断・ラップし、一辺14mmの立方体に仕上げ、超高圧
発生アンビル用の材料とした。
After cooling and depressurization, a crushed elliptic spherical block having a diameter of 34 mm and a thickness of 18 mm, but no crack was observed, was recovered. This was further cut and lapped by WEDM processing and finished into a cube with a side of 14 mm, which was used as a material for an ultra-high pressure generating anvil.

【0029】[0029]

【実施例2】 上記実施例の黒鉛円柱を1本使用した。
図4に示すように、円柱中心軸部を端面から10mmの深
さまで20mmφの円筒状にくりぬき、孔の底を20mmφ
の半球状に削って成形型41とした。この成形型の空隙
部に、8/16μmのダイヤモンドと、炭化タングステンと
コバルトとの92:8(容積比)混合物(超硬粉)から成る出
発材料混合粉末42を充填し、上に直径20mm、厚さ10
mmの超硬製の円筒状支持体43を載せた。周囲にヒー
ターを配置し、加圧媒体で囲って実施例1と同様の操作
に供した。得られた焼結体ブロックは、超硬製支持体と
一体化した半楕円球状であった。
Example 2 One graphite cylinder of the above example was used.
As shown in Fig. 4, hollow the central axis of the cylinder to a depth of 10 mm from the end face into a cylindrical shape with a diameter of 20 mm and a bottom of the hole of 20 mmφ.
It was cut into a hemispherical shape to obtain a molding die 41. The void portion of this mold was filled with a starting material mixed powder 42 consisting of a diamond of 8/16 μm and a 92: 8 (volume ratio) mixture of tungsten carbide and cobalt (superhard powder), and a diameter of 20 mm on the top. Thickness 10
A cylindrical support body 43 made of carbide and having a thickness of mm was placed. A heater was placed in the surroundings, surrounded by a pressure medium, and subjected to the same operation as in Example 1. The obtained sintered body block had a semi-elliptical spherical shape integrated with a superhard support.

【0030】[0030]

【発明の効果】本発明によれば、従来に比して大幅に大
きな立体形状の超砥粒焼結体が高歩留まりにて得られる
ので、これまで実現が困難だった大型超高圧装置のアン
ビルや硬質材料の成形型等が、入手可能になる。また各
種の刃物工具、例えばグラスファイバーカッターやスク
ライバー等の構成材料としても適するので、これらの工
具寿命の大幅な向上が達成可能である。
According to the present invention, a three-dimensionally shaped superabrasive grain sintered body having a significantly larger size than the conventional one can be obtained with a high yield. Therefore, it has been difficult to realize an anvil for a large-sized ultrahigh pressure apparatus. Molds of hard materials and the like will be available. Further, since it is also suitable as a constituent material for various blade tools, for example, a glass fiber cutter, a scriber, etc., it is possible to greatly improve the tool life of these tools.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明が適用可能な立体形状の例を示す立面
図である。
FIG. 1 is an elevation view showing an example of a three-dimensional shape to which the present invention is applicable.

【図2】 実施例に用いた成形型の一構成例を示す断面
図である。
FIG. 2 is a cross-sectional view showing one structural example of a molding die used in Examples.

【図3】 実施例に用いた焼結操作用の組立体の例を示
す断面図である。
FIG. 3 is a sectional view showing an example of an assembly for a sintering operation used in Examples.

【図4】 実施例に用いた成形型の別の構成例を示す断
面図である。
FIG. 4 is a cross-sectional view showing another configuration example of the molding die used in the examples.

【符号の説明】[Explanation of symbols]

11、12 分割成形型 13 貫通孔 14、15 空隙部 16 ニッケル箔 17 出発材料混合粉末 18 黒鉛円板 21 塩スリーブ 22、23 セラミック円板 24、25 塩円板 26 金属リング 27〜29 セラミックスリーブ 30 ヒーター 31、32 鋼製リング 33、34 鋼製円板 35、36 鋼製円筒体 37、38 セラミックリング 41 成形型 42 出発材料混合粉末 43 超硬製支持体 11, 12 split mold 13 through holes 14, 15 void 16 Nickel foil 17 Starting material mixed powder 18 Graphite disk 21 salt sleeve 22,23 Ceramic disk 24, 25 salt discs 26 metal rings 27-29 Ceramic Sleeve 30 heater 31, 32 Steel ring 33,34 Steel disk 35, 36 Steel cylinder 37, 38 Ceramic ring 41 Mold 42 mixed powder of starting materials 43 Carbide support

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09K 3/14 550 C09K 3/14 550D 550F 550H C22C 1/05 C22C 1/05 D E G M P 19/07 19/07 Z 26/00 26/00 29/02 29/02 29/16 29/16 A ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C09K 3/14 550 C09K 3/14 550D 550F 550H C22C 1/05 C22C 1/05 D E G MP 19 / 07 19/07 Z 26/00 26/00 29/02 29/02 29/16 29/16 A

Claims (23)

【特許請求の範囲】[Claims] 【請求項1】超砥粒が熱力学的に安定相となる圧力温度
条件下で一軸加圧圧力下で焼結された超砥粒焼結体から
成り、該焼結体は、加圧方向の最大長さ(軸長)と加圧方
向に垂直な最大寸法(断面長さ)とにおいて、いずれか小
さい方が10mm以上、大きい方が20mm以上の立体形状
を呈する、超砥粒焼結体ブロック。
1. A superabrasive grain sintered body which is sintered under a uniaxial pressure pressure under a pressure temperature condition in which the superabrasive grain is thermodynamically stable, and the sintered body has a pressure direction. Of the maximum length (axial length) and the maximum dimension (section length) perpendicular to the pressing direction, whichever is smaller, has a three-dimensional shape of 10 mm or more, and the larger one has a three-dimensional shape of 20 mm or more. block.
【請求項2】上記立体形状が加圧方向に平行な対称軸を
有する、請求項1に記載の超砥粒焼結体ブロック。
2. The superabrasive grain sintered body block according to claim 1, wherein the three-dimensional shape has an axis of symmetry parallel to the pressing direction.
【請求項3】上記立体形状が球、楕円球、円柱、角無し
円柱、円錐、円錐台、及びこれらの組み合わせから選ば
れる一つである、請求項2に記載の超砥粒焼結体ブロッ
ク。
3. The superabrasive grain sintered body block according to claim 2, wherein the three-dimensional shape is one selected from a sphere, an ellipsoidal sphere, a cylinder, a cornerless cylinder, a cone, a truncated cone, and a combination thereof. .
【請求項4】上記焼結体が、全体の容積に対して95乃至
20%の超砥粒粒子及び残部の結合材相を含有する、請求
項1に記載の超砥粒焼結体ブロック。
4. The sintered body has a volume of 95 to 95.
The superabrasive grain block of claim 1 containing 20% superabrasive grain particles and the balance binder phase.
【請求項5】上記結合材相がWCとCoとを含有する、
請求項3に記載の超砥粒焼結体ブロック。
5. The binder phase contains WC and Co,
The superabrasive grain sintered body block according to claim 3.
【請求項6】上記結合材相が、本質的に金属Coのみか
ら成る、請求項3に記載の超砥粒焼結体ブロック。
6. The superabrasive sintered body block of claim 3 wherein said binder phase consists essentially of metal Co.
【請求項7】 上記超砥粒がダイヤモンド又はc−BN
である、請求項1に記載の超砥粒焼結体ブロック。
7. The superabrasive grains are diamond or c-BN.
The superabrasive grain sintered body block according to claim 1, which is
【請求項8】上記超砥粒が平均粒径0.2乃至50μmのダ
イヤモンド粒子である、請求項1に記載の超砥粒焼結体
ブロック。
8. The superabrasive grain sintered body block according to claim 1, wherein the superabrasive grains are diamond grains having an average grain size of 0.2 to 50 μm.
【請求項9】(1) 耐熱性材料で構成され、かつ開口部か
ら底部に向かって断面積が減少する内面形状の空隙部を
有する成形型を用意し、この際、該空隙部は、加圧方向
の最大長さ(軸長)と加圧方向に垂直な最大寸法(断面長
さ)とにおいて、いずれか小さい方が10mm以上、大き
い方が20mm以上の立体形状を呈し、一方(2) 超砥粒粉
末と結合材原料粉末とを含有する一様かつ密な混合粉末
として出発材料を構成し、(3) 該出発材料を上記成形型
に入れ、開口部を耐熱耐圧性ブロックで封鎖し、また周
囲に通電加熱用のヒーターを配置した後、(4) 全体を一
軸加圧プレスに装填し、成形型の中心軸と加圧方向とを
一致させ、(5) 上記出発材料を超砥粒が熱力学的に安定
な領域内の圧力・温度条件下に供して焼結一体化するこ
とにより焼結体ブロックとし、(6) 冷却しかつ圧力解放
後、該焼結体ブロックを回収することを特徴とする、超
砥粒焼結体ブロックの製造法。
9. (1) A mold is prepared which is made of a heat-resistant material and has an inner surface-shaped void portion whose cross-sectional area decreases from the opening to the bottom portion. Of the maximum length in the pressure direction (axial length) and the maximum dimension perpendicular to the pressure direction (section length), the smaller one has a solid shape of 10 mm or more, and the larger one has a solid shape of 20 mm or more. The starting material is constituted as a uniform and dense mixed powder containing superabrasive powder and binder raw material powder, and (3) the starting material is put into the above-mentioned molding die, and the opening is closed with a heat and pressure resistant block. Also, after arranging a heater for electric heating around the periphery, (4) load the whole into a uniaxial pressure press, align the center axis of the mold with the pressure direction, and (5) superabrasive the above starting materials. The particles are subjected to pressure and temperature conditions in a thermodynamically stable region to be sintered and integrated to form a sintered block. (6) A method for producing a superabrasive grain sintered body block, which comprises recovering the sintered body block after cooling and releasing the pressure.
【請求項10】上記内面形状が、中心軸に対する傾斜角
度において30°〜80°の円錐乃至円錐台状である、請求
項9に記載の方法。
10. The method according to claim 9, wherein the inner surface shape is a cone or a truncated cone having an inclination angle of 30 ° to 80 ° with respect to the central axis.
【請求項11】上記内面形状が球面部分を含有する、請
求項9に記載の方法。
11. The method of claim 9, wherein the inner surface shape comprises a spherical portion.
【請求項12】上記内面形状が環状面部分を含有する、
請求項9に記載の方法。
12. The inner surface shape includes an annular surface portion,
The method according to claim 9.
【請求項13】上記耐熱耐圧性ブロックを超硬合金で構
成し、超砥粒焼結体ブロックを該耐熱耐圧性ブロックと
一体化して回収する、請求項9に記載の方法。
13. The method according to claim 9, wherein the heat and pressure resistant block is made of a cemented carbide, and the superabrasive grain sintered body block is integrated with the heat and pressure resistant block and recovered.
【請求項14】上記成形型の開口部が、直径10乃至100
mmの本質的に円形を呈する、請求項9に記載の方法。
14. The opening of the mold has a diameter of 10 to 100.
The method according to claim 9, which exhibits an essentially circular shape of mm.
【請求項15】(1) 耐熱性材料で構成され、かつ立体内
面形状の空隙部及び該空隙に連結した注入口を有する成
形型を用意し、この際、該空隙部は、加圧方向の最大長
さ(軸長)と加圧方向に垂直な最大寸法(断面長さ)とにお
いて、いずれか小さい方が10mm以上、大きい方が20m
m以上の立体形状を呈し、一方(2) 超砥粒粉末と結合材
原料粉末とを含有する一様かつ密な混合粉末として出発
材料を構成し、(3) 該出発材料を上記成形型に入れ、注
入口を耐熱性ブロックで封鎖し、また周囲に通電加熱用
のヒーターを配置した後、(4) 全体を一軸加圧プレスに
装填し、成形型の中心軸と加圧方向とを一致させ、(5)
上記出発材料を超砥粒が熱力学的に安定な領域内の圧力
・温度条件下に供して焼結一体化することにより焼結体
ブロックとし、(6) 冷却しかつ圧力解放後、該焼結体ブ
ロックを回収することを特徴とする、超砥粒焼結体ブロ
ックの製造法。
15. (1) A mold is prepared which is made of a heat-resistant material and has a three-dimensional inner surface-shaped void and an injection port connected to the void. Of the maximum length (axial length) and the maximum dimension (section length) perpendicular to the pressing direction, the smaller one is 10 mm or more, and the larger one is 20 m.
(3) the starting material is formed as a uniform and dense mixed powder containing a superabrasive powder and a binder raw material powder, and (3) the starting material is formed into the above-mentioned molding die. After putting in, closing the inlet with a heat resistant block and arranging a heater for electric heating around it, (4) load the whole into a uniaxial pressure press, and align the center axis of the mold with the pressure direction. Let (5)
The starting material is subjected to pressure and temperature conditions within a region where the superabrasive grains are thermodynamically stable to form a sintered body block by sintering and integration, and (6) after cooling and pressure release, the firing is performed. A method for producing a superabrasive grain sintered body block, which comprises collecting the bound block.
【請求項16】上記成形型が、水平に分離可能な耐熱性
材料製の上型と下型とで構成され、該上型と下型とを組
み合わせた状態において軸対称内面形状の空隙部を有す
る、請求項15に記載の方法。
16. The mold comprises a horizontally separable upper mold and a lower mold made of a heat-resistant material, and in the state where the upper mold and the lower mold are combined, a void portion having an axisymmetric inner surface shape is formed. 16. The method of claim 15 having.
【請求項17】上記成形型の空隙部が、軸対称な内面形
状を有する、請求項9及び15の各項に記載の方法。
17. The method according to claim 9, wherein the mold cavity has an axially symmetrical inner surface shape.
【請求項18】上記出発混合粉末が95〜20容積%の超砥
粒粉末を含有し、残部が金属炭化物及び/または金属で
構成される、請求項9及び15の各項に記載の方法。
18. The method according to claim 9, wherein the starting mixed powder contains 95 to 20% by volume of superabrasive powder and the balance is composed of metal carbide and / or metal.
【請求項19】上記金属がTiC、WC及びSiCから選
ばれる少なくとも1種であり、かつ上記金属材がTi、
W、Si、Co、Ni、及びCrから選ばれる少なくとも1
種である、請求項18に記載の方法。
19. The metal is at least one selected from TiC, WC and SiC, and the metal material is Ti,
At least 1 selected from W, Si, Co, Ni, and Cr
19. The method of claim 18, which is a seed.
【請求項20】上記成形型を構成する耐熱性材料が非ダ
イヤモンド炭素を主成分とする、請求項9及び15の各
項に記載の方法。
20. The method according to each of claims 9 and 15, wherein the heat-resistant material constituting the mold has non-diamond carbon as a main component.
【請求項21】上記回収された焼結体ブロックを更に、
放電加工により所定の形状にする、請求項9及び15の
各項に記載の方法。
21. The recovered sintered body block is further provided with:
The method according to each of claims 9 and 15, which is formed into a predetermined shape by electrical discharge machining.
【請求項22】上記超砥粒が粒径0.2乃至50μmのダイ
ヤモンド粒子である、請求項9及び15の各項に記載の
方法。
22. The method according to claim 9, wherein the superabrasive particles are diamond particles having a particle size of 0.2 to 50 μm.
【請求項23】上記出発材料が、微量のTiH2を含有す
る、請求項9及び15の各項に記載の方法。
23. The method according to claim 9, wherein the starting material contains a trace amount of TiH 2 .
JP2001347167A 2001-11-13 2001-11-13 Abrasive, sintered-compact block and its manufacturing method Pending JP2003147410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001347167A JP2003147410A (en) 2001-11-13 2001-11-13 Abrasive, sintered-compact block and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001347167A JP2003147410A (en) 2001-11-13 2001-11-13 Abrasive, sintered-compact block and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003147410A true JP2003147410A (en) 2003-05-21

Family

ID=19160214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001347167A Pending JP2003147410A (en) 2001-11-13 2001-11-13 Abrasive, sintered-compact block and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003147410A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005177889A (en) * 2003-12-17 2005-07-07 Kurenooton Kk Method of manufacturing metal bonded wheel, and die used for the same
KR100761820B1 (en) 2006-04-21 2007-09-28 다이섹(주) The manufacturing method of the polishing plate use slurry block and that polishing plate
WO2013049652A1 (en) * 2011-09-29 2013-04-04 Saint-Gobain Abrasives, Inc. Bonded abrasives formed by uniaxial hot pressing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005177889A (en) * 2003-12-17 2005-07-07 Kurenooton Kk Method of manufacturing metal bonded wheel, and die used for the same
KR100761820B1 (en) 2006-04-21 2007-09-28 다이섹(주) The manufacturing method of the polishing plate use slurry block and that polishing plate
WO2013049652A1 (en) * 2011-09-29 2013-04-04 Saint-Gobain Abrasives, Inc. Bonded abrasives formed by uniaxial hot pressing
CN103826801A (en) * 2011-09-29 2014-05-28 圣戈班磨料磨具有限公司 Bonded abrasives formed by uniaxial hot pressing

Similar Documents

Publication Publication Date Title
US11498873B2 (en) Superhard constructions and methods of making same
US6106957A (en) Metal-matrix diamond or cubic boron nitride composites
US4016736A (en) Lubricant packed wire drawing dies
JPH0848585A (en) Supported polycrystalline molding having improved physical property and its production
JP2011520031A (en) Super hard reinforced cemented carbide
JPH0475084B2 (en)
GB2527938A (en) Superhard constructions & methods of making same
JPH0456790B2 (en)
KR20090097867A (en) Abrasive compacts with improved machinability
JPH02160429A (en) Super-abrasive cutting element
JPH09165273A (en) Decrease of stress in polycrystalline abrasive material layer of composite molding with site bonded carbide/carbide substrate
US6090343A (en) Triphasic composite and method for making same
JP2594785B2 (en) Diamond crystal-sintered carbide composite polycrystal
JPH091227A (en) Drawing die having improved physical property
GB2504804A (en) Method of making super-hard constructions
EP1051240B1 (en) A cell and method for forming a composite hard material and composite hard materials formed thereby
JPH09194909A (en) Composite material and its production
JP7188726B2 (en) Diamond-based composite material using boron-based binder, method for producing the same, and tool element using the same
JPH0579735B2 (en)
JPH0260632B2 (en)
JP2001510236A (en) How to mold dense and complex molded products
JP2003147410A (en) Abrasive, sintered-compact block and its manufacturing method
JP3989715B2 (en) Manufacturing method of superabrasive sintered block
JP3095707B2 (en) Method of manufacturing beads for wire saws
JP2021137715A (en) Diamond base massive tool material and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017