JP2003147118A - Method for manufacturing polyimide porous film - Google Patents

Method for manufacturing polyimide porous film

Info

Publication number
JP2003147118A
JP2003147118A JP2001320374A JP2001320374A JP2003147118A JP 2003147118 A JP2003147118 A JP 2003147118A JP 2001320374 A JP2001320374 A JP 2001320374A JP 2001320374 A JP2001320374 A JP 2001320374A JP 2003147118 A JP2003147118 A JP 2003147118A
Authority
JP
Japan
Prior art keywords
solvent
polyimide
film
weight
polyimide precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001320374A
Other languages
Japanese (ja)
Inventor
Kimio Nakayama
喜美男 中山
Yukihiko Asano
之彦 浅野
Shigeru Yao
滋 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2001320374A priority Critical patent/JP2003147118A/en
Priority to US10/201,351 priority patent/US6565962B2/en
Publication of JP2003147118A publication Critical patent/JP2003147118A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a porous polyimide film having a uniform pore size and a uniform distance between pores. SOLUTION: The method for manufacturing a polyimide porous film having a uniform pore size and a uniform distance between pores comprises casting polyimide precursor dope on a substrate, subsequently forming on the thus- obtained liquid film a protective layer comprising a solvent and a non-solvent, particularly a protective layer of a composition comprising 100 wt.% of the total of 30-70 wt.% of a non-solvent for the polyimide precursor and 70-30 wt.% of a polar solyent, followed by dipping in coagulation liquid to form a film-like precursor, and heating and drying the precursor to give a polyimide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、表裏の空孔径の差
が小さいポリイミド多孔質膜の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polyimide porous membrane having a small difference in pore diameter between front and back.

【0002】[0002]

【従来の技術】ポリイミド多孔質膜の製造方法として
は、T.Takeichi et.al.High P
erformance Polymers 11巻,1
p(1999)に、ポリウレタン−イミドを合成して、
その後ウレタンセグメントを300〜400℃で熱処理
により分解して、ポリイミド多孔質膜を得る方法が開示
されている。
2. Description of the Related Art As a method for producing a polyimide porous film, T. K. Takeichi et. al. High P
erformance Polymers Vol. 11, 1
p- (1999) to synthesize polyurethane-imide,
After that, a method of decomposing the urethane segment by heat treatment at 300 to 400 ° C. to obtain a polyimide porous film is disclosed.

【0003】また、Polymer36,1325,1995,及び Polymer
37,5229,1996には、分解しやすいα−メチルスチレンセ
グメントをポリイミドからなるブロック共重合体やグラ
フト共重合体とし、ポリイミド以外のセグメントを熱処
理することにより分解する多孔性ポリイミドを得る方法
が開示されている。
Also, Polymer 36, 1325, 1995, and Polymer
37,5229,1996 discloses a method of obtaining a porous polyimide that decomposes by making a segment copolymer other than polyimide an α-methylstyrene segment that is easily decomposed into a block copolymer or a graft copolymer made of polyimide, and subjecting the segment other than the polyimide to heat treatment. Has been done.

【0004】また、本発明者らにより特開平11−31
0658号公報に、フィルム断面に、貫通孔を有し且つ
表面に緻密層の存在しないポリイミド多孔質膜およびそ
の製造法が開示されている。この製造法は、ポリイミド
前駆体溶液を基板上に流延し、溶媒置換速度調整材を介
して凝固溶媒に接触させることによって、上記貫通孔を
有したポリイミド前駆体の多孔質膜を析出させている。
In addition, the inventors of the present invention disclosed in Japanese Patent Laid-Open No. 11-31
Japanese Patent No. 0658 discloses a polyimide porous film having through holes in the film cross section and having no dense layer on the surface, and a method for producing the same. This production method is a method of casting a polyimide precursor solution on a substrate and bringing it into contact with a coagulating solvent via a solvent displacement rate adjusting material to deposit a porous film of the polyimide precursor having the through holes. There is.

【0005】また、本発明者らによる特開2001−1
45826号公報には、ポリイミド前駆体に良溶媒と非
溶媒の混合液をド−プとして用いることを特徴とするポ
リイミド多孔質膜の製造方法が開示されている。
In addition, Japanese Patent Laid-Open No. 2001-1 by the present inventors
Japanese Patent Laid-Open No. 45826 discloses a method for producing a polyimide porous membrane, which comprises using a mixed solution of a good solvent and a non-solvent as a polyimide precursor precursor.

【0006】ポリイミド多孔質膜の製造方法として、よ
り簡単で、溶媒置換速度調節材を用いず、安価に製造可
能な方法が望まれている。また、前記の方法において
は、ポリイミド前駆体ド−プを基板の上に流延する際
に、基板に接する基板側面とその反対側の大気側面と
で、流延した液膜の一方が固体、他方が凝固液に直接接
するという環境条件の差によって、凝固液に浸漬して多
孔膜が形成されるとき、両面の空孔径や空孔の位置が一
様でないことが多い。これらは電池セパレータや精密フ
ィルタ−に用いるとき透液あるいは透気性能に不具合を
生じることがある。このため、品質的に均質なポリイミ
ド多孔質膜の製造方法が望まれている。
As a method for producing a polyimide porous membrane, a simpler method that does not use a solvent substitution rate adjusting material and can be produced at low cost is desired. Further, in the above-mentioned method, when the polyimide precursor dope is cast on the substrate, one of the cast liquid film is solid, and the substrate side face in contact with the substrate and the atmospheric side face on the opposite side are solid, Due to the difference in environmental conditions in which the other directly contacts the coagulation liquid, when the porous film is formed by immersion in the coagulation liquid, the pore diameters and the positions of the pores on both surfaces are often not uniform. When they are used in battery separators or precision filters, they may cause problems in liquid permeability or air permeability. Therefore, there is a demand for a method for producing a polyimide porous film that is homogeneous in quality.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、ほぼ
均一な空孔径かつ空孔間距離のポリイミド多孔質膜の製
造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a polyimide porous membrane having a substantially uniform pore diameter and a distance between pores.

【0008】[0008]

【課題を解決するための手段】本発明は、ポリイミド前
駆体ド−プを基板の上に流延し、さらに該液膜上に溶媒
と非溶媒の混合液からなる保護層を設け、その後凝固液
に浸漬することを特徴とするポリイミド多孔質膜の製造
方法に関する。
According to the present invention, a polyimide precursor dope is cast on a substrate, and a protective layer made of a mixed solution of a solvent and a non-solvent is further provided on the liquid film, followed by solidification. The present invention relates to a method for producing a polyimide porous membrane, which comprises immersing in a liquid.

【0009】本発明のポリイミド前駆体ド−プ溶液とし
ては、ポリイミド前駆体溶液50〜90重量%とその非
溶媒50〜10重量%の合計100重量%からなるもの
が好ましい。そして、前記ポリイミド前駆体溶液として
は、ポリイミド前駆体0.2〜30重量%と極性有機溶
媒99.8〜70重量%の合計100重量%からなるも
のが好ましい。
The polyimide precursor dope solution of the present invention is preferably composed of 50 to 90% by weight of the polyimide precursor solution and 50 to 10% by weight of its non-solvent, which is a total of 100% by weight. The polyimide precursor solution is preferably composed of 0.2 to 30% by weight of the polyimide precursor and 99.8 to 70% by weight of the polar organic solvent, which is a total of 100% by weight.

【0010】本発明のポリイミド前駆体とは、テトラカ
ルボン酸成分とジアミン成分の好ましくは芳香族化合物
に属するモノマ−を重合して得られたポリアミック酸あ
るいはその部分的にイミド化したものであり、熱処理や
化学イミド化することで閉環してポリイミド樹脂とする
ことができるものである。ポリイミド樹脂とは、後述の
イミド化率が約50%以上の耐熱性ポリマーである。
The polyimide precursor of the present invention is a polyamic acid obtained by polymerizing a tetracarboxylic acid component and a diamine component, preferably monomers belonging to an aromatic compound, or a partially imidized polyamic acid thereof. By heat treatment or chemical imidization, the ring can be closed to give a polyimide resin. The polyimide resin is a heat resistant polymer having an imidization ratio of about 50% or more, which will be described later.

【0011】テトラカルボン酸成分とジアミン成分は、
上記の有機溶媒中に大略等モル溶解、重合して、対数粘
度(30℃、濃度;0.5g/100mL NMP)が
0.3以上、特に0.5〜7であるポリイミド前駆体が
製造される。また、重合を約80℃以上の温度で行った
場合に、部分的に閉環してイミド化したポリイミド前駆
体が製造される。
The tetracarboxylic acid component and the diamine component are
A polyimide precursor having a logarithmic viscosity (30 ° C., concentration; 0.5 g / 100 mL NMP) of 0.3 or more, particularly 0.5 to 7 is produced by dissolving and polymerizing in approximately the same molar amount in the above organic solvent. It Also, when the polymerization is carried out at a temperature of about 80 ° C. or higher, a partially ring-closed imidized polyimide precursor is produced.

【0012】芳香族ジアミンとしては、例えば、一般式
(1) HN―Ar(R―[A―Ar(R−NH (1) (ただし、前記一般式において、Arは芳香環で、R
またはRは、水素、低級アルキル、低級アルコキシな
どの置換基であり、Aは、直接結合、O、S、CO、S
、SO、CH、C(CHなどの二価の基で
あり、mは0、1〜4の整数であ、nは0、1〜3の整
数である。)で示される芳香族ジアミン化合物が好まし
い。
As the aromatic diamine, for example, general formula (1) H 2 N—Ar (R 1 ) m — [A—Ar (R 1 ) m ] n —NH 2 (1) (wherein the general formula In, Ar is an aromatic ring and R 1
Alternatively, R 2 is a substituent such as hydrogen, lower alkyl, lower alkoxy, etc., A is a direct bond, O, S, CO, S
It is a divalent group such as O 2 , SO, CH 2 , C (CH 3 ) 2 , m is an integer of 0, 1 to 4, and n is an integer of 0, 1 to 3. An aromatic diamine compound represented by

【0013】具体的な化合物としては、4,4’−ジア
ミノジフェニルエ−テル(以下、DADEと略記するこ
ともある)、1,4−フェニレンジアミン、(以下、P
PDAと略記することもある)、3,3’−ジメチル
−4,4’−ジアミノジフェニルエ−テル、3,3’−
ジエトキシ−4,4’−ジアミノジフェニルエ−テルな
どが挙げられる。
Specific examples of the compound include 4,4'-diaminodiphenyl ether (hereinafter sometimes abbreviated as DADE), 1,4-phenylenediamine, (hereinafter, P
(Abbreviated as PDA), 3,3'-dimethyl
-4,4'-diaminodiphenyl ether, 3,3'-
Diethoxy-4,4′-diaminodiphenyl ether and the like can be mentioned.

【0014】またジアミン成分として、一般式(2) HN−(Py)−NH (2) で示されるジアミノピリジンであってもよく、具体的に
は、2,6−ジアミノピリジン、3,6−ジアミノピリ
ジン、2,5−ジアミノピリジン、3,4−ジアミノピ
リジンなどが挙げられる。
The diamine component may be diaminopyridine represented by the general formula (2) H 2 N- (Py) -NH 2 (2), specifically, 2,6-diaminopyridine, 3 , 6-diaminopyridine, 2,5-diaminopyridine, 3,4-diaminopyridine and the like.

【0015】テトラカルボン酸成分としては、3,
3’,4,4’− ビフェニルテトラカルボン酸二無水
物(以下、s−BPDAと略記することもある)、2,
3,3’,4’− ビフェニルテトラカルボン酸二無水
物(以下、a−BPDAと略記することもある)が好ま
しいが、2,3,3’,4’− 又は3,3’,4,
4’−ビフェニルテトラカルボン酸、あるいは2,3,
3’,4’− 又は3,3’,4,4’−ビフェニルテ
トラカルボン酸の塩またはそれらのエステル化誘導体で
あってもよい。ビフェニルテトラカルボン酸成分は、上
記の各ビフェニルテトラカルボン酸類の混合物であって
もよい。
The tetracarboxylic acid component is 3,
3 ', 4,4'-biphenyltetracarboxylic dianhydride (hereinafter sometimes abbreviated as s-BPDA), 2,
3,3 ′, 4′-biphenyltetracarboxylic dianhydride (hereinafter, sometimes abbreviated as a-BPDA) is preferable, but 2,3,3 ′, 4′− or 3,3 ′, 4
4'-biphenyltetracarboxylic acid or 2,3
It may be a salt of 3 ', 4'- or 3,3', 4,4'-biphenyltetracarboxylic acid or an esterified derivative thereof. The biphenyltetracarboxylic acid component may be a mixture of the above biphenyltetracarboxylic acids.

【0016】また、上記のテトラカルボン酸成分は、前
述のビフェニルテトラカルボン酸類のほかに、ピロメリ
ット酸、3,3’,4,4’−ベンゾフェノンテトラカ
ルボン酸、2,2−ビス(3,4−ジカルボキシフェニ
ル)プロパン、ビス(3,4−ジカルボキシフェニル)
スルホン、ビス(3,4−ジカルボキシフェニル)エ−
テル、ビス(3,4−ジカルボキシフェニル)チオエー
テル、ブタンテトラカルボン酸、あるいはそれらの酸無
水物、塩またはエステル化誘導体などのテトラカルボン
酸類を、全テトラカルボン酸成分に対して100モル%
以下、特に10モル%以下の割合で含有してもよい。
In addition to the above-mentioned biphenyltetracarboxylic acids, the above-mentioned tetracarboxylic acid component includes pyromellitic acid, 3,3 ', 4,4'-benzophenonetetracarboxylic acid, 2,2-bis (3,3). 4-dicarboxyphenyl) propane, bis (3,4-dicarboxyphenyl)
Sulfone, bis (3,4-dicarboxyphenyl)-
Tetra, bis (3,4-dicarboxyphenyl) thioether, butane tetracarboxylic acid, or tetracarboxylic acids such as their acid anhydrides, salts, or esterified derivatives are 100 mol% based on the total tetracarboxylic acid component.
It may be contained below, in particular, in a proportion of 10 mol% or less.

【0017】本発明のポリイミド前駆体溶液の溶媒とし
ては、極性有機溶媒であり、たとえば、N−メチルピロ
リドン(NMP)、p−クロロフェノール(PCP)、
ピリジン、N,N−ジメチルアセトアミド(DMA
c)、N,N−ジメチルフォルムアミド(DMF)、ジ
メチルスルホキシド(DMSO)、テトラメチル尿素、
フェノ−ル、クレゾ−ルなどが挙げられる。そのうち、
NMP、DMAc、DMSOが特に好ましい。
The solvent for the polyimide precursor solution of the present invention is a polar organic solvent such as N-methylpyrrolidone (NMP), p-chlorophenol (PCP),
Pyridine, N, N-dimethylacetamide (DMA
c), N, N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), tetramethylurea,
Examples thereof include phenol and cresol. Of which
NMP, DMAc and DMSO are particularly preferred.

【0018】また、本発明のポリイミド前駆体の非溶媒
としては、脂肪族アルコ−ル、ケトン、エ−テル、エス
テル、水等が挙げられるが、特に脂肪族アルコ−ルが好
ましい。さらに特に好ましくは、炭素数3〜8の脂肪族
アルコ−ルである。これらはポリイミド前駆体の極性有
機溶媒と相溶性が優れているから好ましい。具体的に
は、1−プロパノ−ル、2−プロパノ−ル、1−ブタノ
−ル、2−ブタノ−ル、2−メチル−1−プロパノ−
ル、tert―ブタノ−ルなどが好ましい。炭素数2以
下のアルコ−ル、例えばメタノ−ル、エタノ−ルの非溶
媒を用いると、ポリイミド前駆体溶液は直ちにポリマ−
を析出してしまい、均一な膜はできないことがあるから
不都合である。また、本発明のポリイミド前駆体の非溶
媒としては、多価アルコ−ルでもよく、特に脂肪族多価
アルコ−ルが好ましい。具体的には、アルキレングリコ
−ル、好適にはエチレングリコ−ル、グリセリン、およ
びポリアルキレングリコ−ルおよびその誘導体、好適に
は分子量600以下のポリエチレングリコ−ル、などが
挙げられる。
As the non-solvent for the polyimide precursor of the present invention, aliphatic alcohols, ketones, ethers, esters, water and the like can be mentioned, with aliphatic alcohols being particularly preferred. More preferably, it is an aliphatic alcohol having 3 to 8 carbon atoms. These are preferable because they have excellent compatibility with the polar organic solvent of the polyimide precursor. Specifically, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol
And tert-butanol are preferred. When a non-solvent such as an alcohol having a carbon number of 2 or less, for example, methanol or ethanol is used, the polyimide precursor solution is immediately polymerized.
Is deposited, and a uniform film may not be formed, which is inconvenient. The non-solvent for the polyimide precursor of the present invention may be polyvalent alcohol, and aliphatic polyvalent alcohol is particularly preferable. Specific examples include alkylene glycol, preferably ethylene glycol, glycerin, and polyalkylene glycol and its derivatives, preferably polyethylene glycol having a molecular weight of 600 or less.

【0019】本発明におけるポリイミド前駆体ド−プ溶
液としては、ポリイミド前駆体が0.2〜30重量%と
その溶媒と非溶媒を混合した混合溶媒99.8〜70重
量%であることが好ましく、さらに好ましくはポリイミ
ド前駆体が1〜20重量%である。ポリイミド前駆体の
濃度が0.2重量%より小さくなると、膜強度が低下す
るので好ましくない。ポリイミド前駆体の濃度が30重
量%より大きくなると均一なポリマー溶液になりにくい
ので適当ではない。
The polyimide precursor dope solution in the present invention is preferably 0.2 to 30% by weight of the polyimide precursor and 99.8 to 70% by weight of a mixed solvent of the solvent and the non-solvent. , And more preferably, the polyimide precursor is 1 to 20% by weight. If the concentration of the polyimide precursor is less than 0.2% by weight, the film strength will be reduced, which is not preferable. When the concentration of the polyimide precursor is more than 30% by weight, it is difficult to form a uniform polymer solution, which is not suitable.

【0020】本発明におけるド−プ溶液としては、ポリ
イミド前駆体およびポリイミド前駆体の溶媒と非溶媒と
からなる混合溶媒からなり、混合溶媒100重量%のう
ち溶媒が50〜70重量%とその非溶媒が50〜30重
量%とからなり特に、好ましくは溶媒が50〜65重量
%とその非溶媒が50〜35重量%とからなるものであ
る。混合溶媒中の溶媒が50重量%より少なくなると、
ポリイミド前駆体が析出傾向となるし、溶媒が70重量
%より多くなると均一な多孔膜ができにくい。
The dope solution in the present invention comprises a polyimide precursor and a mixed solvent consisting of a solvent of the polyimide precursor and a non-solvent, and 50 to 70% by weight of the solvent and 100% by weight of the mixed solvent. The solvent comprises 50 to 30% by weight, particularly preferably the solvent comprises 50 to 65% by weight and the non-solvent comprises 50 to 35% by weight. When the solvent in the mixed solvent is less than 50% by weight,
The polyimide precursor tends to precipitate, and if the solvent content exceeds 70% by weight, it is difficult to form a uniform porous film.

【0021】前記のド−プ溶液は、溶媒に溶解したポリ
イミド前駆体に、ポリイミド前駆体の非溶媒を加えて、
ポリイミド前駆体が析出しないで溶液状態を保っている
組成とすることによって得られる。溶液は肉眼で透明ま
たは半透明になることを判別の基準とするものである。
ド−プの組成は、溶媒と非溶媒の割合が上記のような組
成で、長時間保存安定な溶液となる。
The above dope solution is prepared by adding the non-solvent of the polyimide precursor to the polyimide precursor dissolved in the solvent,
It can be obtained by a composition in which the polyimide precursor is not deposited and is kept in a solution state. The criterion for discrimination is that the solution becomes transparent or translucent to the naked eye.
The composition of the dope is such that the ratio of the solvent and the non-solvent is as described above, and the solution is a storage stable for a long time.

【0022】ポリイミド前駆体溶液を流延して流延膜で
ある液膜を得る方法としては、特に制限はないが、該ポ
リイミド前駆体溶液を基材となるガラス板、金属板など
の基板上あるいは可動式のベルト上にスプレ−法あるい
はドクタ−ブレ−ド法により流延する方法、該ポリイミ
ド前駆体溶液をT型ダイスから押し出す方法などの手法
を用いることができる。あるいは塗布、スピンキャスト
法でもよい。
The method for casting the polyimide precursor solution to obtain a liquid film that is a casting film is not particularly limited, but the polyimide precursor solution is used as a base material on a substrate such as a glass plate or a metal plate. Alternatively, a method of casting on a movable belt by a spray method or a doctor blade method, a method of extruding the polyimide precursor solution from a T-type die, and the like can be used. Alternatively, coating or spin casting may be used.

【0023】また前記流延用のド−プ溶液には、界面活
性剤、難燃剤、着色剤、あるいはガラス繊維、ケイ素繊
維、炭素繊維などの補強材が含まれてもよい。これらの
添加剤および補強材は上記ポリイミド前駆体重合溶液に
添加してもよく、あるいは流延用のド−プ溶液に添加し
てもよい。
Further, the casting dope solution may contain a surfactant, a flame retardant, a coloring agent, or a reinforcing material such as glass fiber, silicon fiber, carbon fiber or the like. These additives and reinforcing materials may be added to the above polyimide precursor polymerization solution, or may be added to the casting dope solution.

【0024】本発明においては、流延した液膜上に、さ
らに、極性溶媒と非溶媒の混合液からなる保護層を設
け、その後、凝固液に浸漬する。
In the present invention, a protective layer made of a mixed liquid of a polar solvent and a non-solvent is further provided on the cast liquid film, and then immersed in a coagulating liquid.

【0025】保護層の役割は、ポリイミド前駆体を溶解
もせず、析出もしないで、該液膜と凝固液の溶媒交換の
緩衝層の役割をし、相転換を緩慢にして、均一な多孔質
膜を形成するものである。
The role of the protective layer is to neither dissolve nor precipitate the polyimide precursor, but to act as a buffer layer for solvent exchange between the liquid film and the coagulating liquid, to slow the phase inversion, and to form a uniform porous layer. It forms a film.

【0026】本発明の保護層は、ポリイミド前駆体が析
出限界の混合液の組成を基準として、非溶媒の割合が−
40〜+10重量%となる量である。非溶媒の割合が析
出限界値から大きくないと、析出しようとする膜が再溶
解の傾向があるから好ましくない。また、析出限界組成
より非溶媒が10重量%より多ければ膜の表面孔が塞が
り均一な多孔膜にならないから好ましくない。該限界濃
度は、以下のようにして求められる。濃度の異なるポリ
イミド前駆体溶液に非溶媒を添加し、ポリイミド前駆体
が相分離するときの非溶媒の添加量をポリイミド前駆体
溶液濃度に対してに対するプロットし、その線から上の
領域が二相に分離する領域、その線から下が一相領域で
ある境界線が得られる。限界組成は、その境界線を、ポ
リイミド前駆体濃度0に外挿した切片の値より、溶媒と
非溶媒の組成が求められる。
In the protective layer of the present invention, the proportion of the non-solvent is − based on the composition of the mixed solution in which the polyimide precursor is the deposition limit.
The amount is 40 to + 10% by weight. If the proportion of the non-solvent is not higher than the precipitation limit value, the film to be deposited tends to be redissolved, which is not preferable. On the other hand, if the content of the non-solvent is more than 10% by weight based on the precipitation limit composition, the surface pores of the film will be closed and a uniform porous film will not be obtained, which is not preferable. The limiting concentration is determined as follows. A non-solvent is added to a polyimide precursor solution having different concentrations, and the amount of the non-solvent added when the polyimide precursor undergoes phase separation is plotted against the concentration of the polyimide precursor solution. A boundary line is obtained which is a region which is separated into two and which is a one-phase region below the line. As the critical composition, the composition of the solvent and the non-solvent is obtained from the intercept value obtained by extrapolating the boundary line to the polyimide precursor concentration of 0.

【0027】例えば、BPDAとDPDAからなるポリ
イミド前駆体においては、非溶媒:1−プロパノ−ル、
2−プロパノ−ル、溶媒:NMPの析出限界組成は、プ
ロパノ−ル40重量%、NMP60重量%である。ま
た、同様に、溶媒がDMAcの場合はプロパノ−ル34
重量%、DMAc66重量%の組成である。また、同様
に、溶媒がDMAc、非溶媒がエチレングリコ−ルで
は、析出限界組成は非溶媒が64重量%、溶媒が36重
量%となる。
For example, in the polyimide precursor consisting of BPDA and DPDA, non-solvent: 1-propanol,
The precipitation limit composition of 2-propanol and solvent: NMP is 40% by weight of propanol and 60% by weight of NMP. Similarly, when the solvent is DMAc, propanol 34 is used.
It has a composition of wt% and DMAc 66 wt%. Similarly, when the solvent is DMAc and the non-solvent is ethylene glycol, the precipitation limit composition is 64 wt% for the non-solvent and 36 wt% for the solvent.

【0028】保護層の組成は、その析出限界の組成よ
り、非溶媒の割合が−40〜+10重量%が好ましい。
非溶媒30〜70重量%と極性溶媒70〜30重量%の
合計100重量%が好ましい。保護層の混合溶媒の非溶
媒の割合が70重量%より大きくなると、膜の表面孔が
塞がり均一な多孔膜にならない場合があり好ましくな
い。非溶媒の割合が30重量%より小さくなると、多孔
膜の表面が再溶解して、表面の孔が閉塞しまう場合があ
り好ましくない。
The composition of the protective layer is preferably such that the proportion of the non-solvent is -40 to + 10% by weight from the composition of the precipitation limit.
A total of 100% by weight of the non-solvent 30 to 70% by weight and the polar solvent 70 to 30% by weight is preferable. If the proportion of the non-solvent in the mixed solvent of the protective layer is more than 70% by weight, the surface pores of the membrane may be blocked and a uniform porous membrane may not be obtained, which is not preferable. If the proportion of the non-solvent is less than 30% by weight, the surface of the porous membrane may be redissolved and the pores on the surface may be clogged, which is not preferable.

【0029】保護層の膜厚は制限はないが、好ましくは
5〜300μmが好ましい。
The thickness of the protective layer is not limited, but preferably 5 to 300 μm.

【0030】保護層の流延方法は、塗布、噴霧、スピン
キャスト法などから選ぶことができる。流延装置として
はガラス棒、ドクタ−ブレ−ド、Tダイ押出機などから
選ぶことができる。
The method of casting the protective layer can be selected from coating, spraying, spin casting and the like. The casting device can be selected from a glass rod, a doctor blade, a T-die extruder and the like.

【0031】保護層を設けた該液膜を、できれば10秒
〜10分間放置してから凝固液に浸漬する。その時、保
護層を流延した液膜と凝固液を、温度−20〜約30℃
に保つことが好ましい。さらに好ましくは、−20〜5
℃が好ましい。約30以下の温度では、保護層は温度が
低いと溶液分子の溶媒交換速度が遅くなり、相転換が起
こるから緩衝層として効果が優れる。
The liquid film provided with the protective layer is left for 10 seconds to 10 minutes if possible, and then immersed in the coagulating liquid. At that time, the liquid film cast on the protective layer and the coagulating liquid are heated at a temperature of -20 to about 30 ° C.
It is preferable to keep More preferably, -20 to 5
C is preferred. At a temperature of about 30 or less, when the temperature of the protective layer is low, the solvent exchange rate of solution molecules becomes slow and phase conversion occurs, so that the protective layer is excellent as an effect.

【0032】本発明の凝固液は、ポリイミド前駆体の非
溶媒であればいずれでもいいが、たとえば水、アルコ−
ル、ケトンでもよいが、本発明の凝固液がポリイミド前
駆体の非溶媒50〜90重量%と溶媒50〜10重量
%、合計100重量%の混合溶液であることが好まし
い。さらに好ましくは非溶媒が55〜90重量%、溶媒
が45〜10重量%である。非溶媒が50重量%より少
ないと、固体膜が生成するのに長時間を要し、寸法安定
性の低い膜しかできない。非溶媒の割合が70重量%よ
り大きいと、保護層の溶液あるいは液膜の溶液と溶媒交
換により、膜形成が急激すぎて、均一な多孔質膜の形成
ができない。ただし、保護層の非溶媒の組成より凝固液
の非溶媒の組成が大きいことが好ましい。保護層の非溶
媒の組成より小さいとポリイミド前駆体は再溶解するか
ら好ましくない。上記の組成の凝固液は、ポリイミド前
駆体のド−プあるいは保護層溶液と組成が近いため、凝
固反応は緩慢で、非常に遅い速度で相分離がおこなわれ
るから、多孔質膜が表面だけでなく、表面から深い部分
にまで、ついには基板の表面まで均質な多孔質膜が形成
する。
The coagulating liquid of the present invention may be any solvent as long as it is a non-solvent for the polyimide precursor, such as water or alcohol.
However, the coagulation liquid of the present invention is preferably a mixed solution of 50 to 90% by weight of the non-solvent of the polyimide precursor and 50 to 10% by weight of the solvent, and a total of 100% by weight. More preferably, the non-solvent is 55 to 90% by weight, and the solvent is 45 to 10% by weight. When the amount of the non-solvent is less than 50% by weight, it takes a long time to form a solid film, and only a film having low dimensional stability can be obtained. If the proportion of the non-solvent is more than 70% by weight, the film formation is too rapid due to the solvent exchange with the solution of the protective layer or the solution of the liquid film, and a uniform porous film cannot be formed. However, it is preferable that the composition of the non-solvent of the coagulating liquid is larger than the composition of the non-solvent of the protective layer. If the composition is smaller than the composition of the non-solvent of the protective layer, the polyimide precursor is redissolved, which is not preferable. Since the coagulation liquid having the above composition has a composition close to that of the polyimide precursor dope or the protective layer solution, the coagulation reaction is slow, and the phase separation is performed at a very slow rate. Instead, a uniform porous film is formed from the surface to the deep part and finally to the surface of the substrate.

【0033】得られたポリイミド前駆体多孔質膜は、構
造を固定する目的で、非溶媒で洗浄することが好まし
い。膜に付着あるいは膨潤している部分をポリイミド前
駆体の非溶媒で洗浄し、形成された構造を固定する。用
いる非溶媒は、凝固液成分と同種の脂肪族アルコ−ル、
炭素数3以下の脂肪族アルコ−ル、脂肪族ケトンまたは
水などが挙げられる。
The obtained polyimide precursor porous film is preferably washed with a non-solvent for the purpose of fixing the structure. The portion adhered or swollen on the film is washed with a nonsolvent of the polyimide precursor to fix the formed structure. The non-solvent used is an aliphatic alcohol of the same type as the coagulation liquid component,
Examples thereof include aliphatic alcohols having 3 or less carbon atoms, aliphatic ketones and water.

【0034】本発明のポリイミド前駆体多孔膜の厚み
は、好ましくは5〜300μmであり、さらに好ましく
は、5〜200μmである。厚み5μmより薄いと、機
械的強度が劣るり、後の工程で取り扱いが困難になる。
厚みが300μmより厚いと、溶媒と非溶媒の浸透が十
分ではないうちに固体膜となってしまうから、孔が小さ
くなったり、孔は開かなかったりして、均一な孔径とな
らないことがある。
The thickness of the polyimide precursor porous film of the present invention is preferably 5 to 300 μm, more preferably 5 to 200 μm. If the thickness is less than 5 μm, the mechanical strength will be poor and handling will be difficult in the subsequent steps.
If the thickness is thicker than 300 μm, a solid film is formed before the solvent and the non-solvent permeate sufficiently, so that the pores may become small or the pores may not be opened, and the pore diameter may not be uniform.

【0035】洗浄されたポリイミド前駆体膜は、ピンテ
ンタ−などに張り付ける。ポリイミド前駆体膜は、昇温
時に熱収縮により破断しないように、貼り具合を調節
し、直ちに乾燥、イミド化を行う。温度50〜100℃
で熱風乾燥機、熱風炉などで連続又は非連続で乾燥し、
その後さらに昇温して、イミド化を行うことができる。
イミド化は熱イミド化でも化学イミド化でも可能であ
る。化学イミド化は脂肪酸無水物、芳香族酸無水物を脱
水剤として用い、トリエチルアミンなどの第三級アミン
を触媒としてイミド化することによる。特開平4−33
9835号公報のように、イミダゾ−ル、ベンズイミダ
ゾ−ルもしくはそれらの置換誘導体を用いてもよい。
The cleaned polyimide precursor film is attached to a pin tenter or the like. The polyimide precursor film is dried and imidized immediately after adjusting the degree of attachment so that the polyimide precursor film does not break due to heat shrinkage when the temperature rises. Temperature 50-100 ℃
With a hot air dryer, hot air oven, etc. to dry continuously or discontinuously,
After that, the temperature can be further raised to perform imidization.
The imidization can be thermal imidization or chemical imidization. The chemical imidization is performed by using a fatty acid anhydride or an aromatic acid anhydride as a dehydrating agent and imidizing with a tertiary amine such as triethylamine as a catalyst. Japanese Patent Laid-Open No. 4-33
As disclosed in Japanese Patent No. 9835, imidazole, benzimidazole or a substituted derivative thereof may be used.

【0036】熱イミド化の場合、乾燥されたポリイミド
前駆体は、280〜500℃に昇温して熱イミド化を行
うことが好ましい。昇温は、段階的に昇温してもよい
し、一段で所定の温度に昇温されてもいい。大気中、好
ましくは、不活性雰囲気中で、280〜500℃で5〜
240分間保持すればよい。その後、室温にまで降温し
て、ポリイミド多孔質膜を得る。
In the case of thermal imidization, the dried polyimide precursor is preferably heated to 280 to 500 ° C. to perform thermal imidization. The temperature may be raised stepwise or may be raised to a predetermined temperature in one step. 5 at 280 to 500 ° C. in air, preferably in an inert atmosphere
Hold for 240 minutes. Then, the temperature is lowered to room temperature to obtain a polyimide porous film.

【0037】本発明によれば、該両面に空孔径の差が少
ないほぼ均一な多孔質膜が得られ、1)大気側面と基板
側面について、それぞれ面での平均孔径の差が、平均孔
径の平均値の小さい値を基準として200%より小さ
い。平均孔径とは、大気側面と基板側面それぞれの表面
から見て、空孔の直径の数平均値を指す。大気側面と基
板側面のそれぞれの空孔径の差が、空孔径の小さい方の
面の値を基準にして、両平均空孔値の差の割合が200
%より小さく、さらに好ましくは150%より小さい。
200%より大きいと、両面の空孔径が異なっていて、
電池用セパレ−タやフィルタ−などに用いた場合両側面
の空孔径の差が著しくて透液性能または透気性能が異な
るから不都合である。
According to the present invention, a substantially uniform porous film having a small difference in pore diameter on both sides can be obtained, and 1) the difference between the average pore diameters of the atmosphere side surface and the substrate side surface is the average pore diameter. It is smaller than 200% based on the small average value. The average pore diameter refers to the number average value of the diameters of the pores when viewed from the surfaces of the atmosphere side surface and the substrate side surface, respectively. The difference in hole diameter between the atmosphere side surface and the substrate side surface is 200% based on the value of the surface with the smaller hole diameter.
%, And more preferably less than 150%.
If it is more than 200%, the pore sizes on both sides are different,
When it is used for a battery separator or a filter, it is inconvenient because the difference in pore diameter between both sides is remarkable and the liquid permeation performance or air permeation performance is different.

【0038】さらに、本発明によれば、それぞれの面に
つき、空孔径がほぼ一様な均一な多孔質膜が得られ、
2)大気側面と基板側面について、それぞれ面での、空
孔径の変動係数が70%より小さい。空孔径の分布の変
動係数(CV)とは、前項と同じようにして測定した個
々の空孔値(Xi)から数平均値(Xn)に対する、そ
の標準偏差(σ)の割合で表すもので、次式で求められ
る。 CV(%)=(σ/Xn)×100 空孔径の分布の変動係数は空孔径の均一性の尺度とする
ことができ、好ましくは空孔径の変動係数が60%以下
である。空孔径の変動係数が70%より大きいと空孔径
のバラツキが大きくなるからフィルタ−などに用いた場
合、濾過性能に均一性が劣るから好ましくない。
Furthermore, according to the present invention, it is possible to obtain a uniform porous membrane having pores of substantially uniform diameter on each surface.
2) The variation coefficient of the hole diameter on each of the atmosphere side surface and the substrate side surface is smaller than 70%. The coefficient of variation (CV) of the distribution of pore diameters is expressed by the ratio of the standard deviation (σ) from the individual pore values (Xi) measured in the same manner as in the previous section to the number average value (Xn). , Is calculated by the following formula. CV (%) = (σ / Xn) × 100 The variation coefficient of the distribution of pore diameter can be used as a measure of the uniformity of pore diameter, and the variation coefficient of pore diameter is preferably 60% or less. If the coefficient of variation of the pore diameter is larger than 70%, the variation of the pore diameter becomes large, so that when it is used for a filter or the like, the uniformity of the filtration performance is deteriorated, which is not preferable.

【0039】さらに、本発明によれば、それぞれの面に
おいて、空孔間の距離が一様なほぼ均一な多孔質膜が得
られ、3)大気側面と基板側面それぞれについて、空孔
の重心間距離の変動係数が50%より小さい。空孔重心
間距離(li)とは、1つの空孔の重心に注目し、その空
孔から近接している空孔の重心までの距離であり、これ
は空孔の位置が均一である尺度とすることができる。空
孔重心間距離の変動係数が50%より大きいと空孔位置
がばらついているからフィルタ−やセパレ−タに用いる
場合、圧力の不均一の部分が起こり、場合によっては、
多孔膜がは破損することがあるから好ましくない。さら
に好ましくは、空孔重心間距離の変動係数が45%より
小さい。この値は、前記式において、空孔径値を重心間
距離値と置き換えることによって同様に求めることがで
きる。
Furthermore, according to the present invention, it is possible to obtain a substantially uniform porous film in which the distance between the pores is uniform on each surface, and 3) between the center of gravity of the pores on the atmosphere side surface and the substrate side surface, respectively. The coefficient of variation of distance is less than 50%. The distance between center of gravity (li) is the distance from the center of gravity of one hole to the center of gravity of the adjacent hole, which is a measure of uniform hole position. Can be If the coefficient of variation of the distance between the center of gravity of the holes is greater than 50%, the hole positions will vary, so when used in a filter or separator, non-uniform pressure will occur, and in some cases,
The porous film may be damaged, which is not preferable. More preferably, the coefficient of variation of the distance between the center of gravity of the holes is less than 45%. This value can be similarly obtained by replacing the hole diameter value with the center-of-gravity distance value in the above equation.

【0040】さらに、本発明によれば、それぞれの面に
おいて、微細な範囲の空孔径が得られる。すなわち、大
気側面(A面)と基板側面(B面)について、平均孔径が
0.05〜5μmである。さらに好ましくは、0.08
〜3μmである。平均孔径が余り小さいと、例えば、フ
ィルターに用いられた場合濾過速度が劣る。また5μm
より大きいと捕集性能が劣るから上記の範囲が好まし
い。
Furthermore, according to the present invention, a fine range of pore diameter can be obtained on each surface. That is, the average pore diameter is 0.05 to 5 μm on the atmosphere side surface (A surface) and the substrate side surface (B surface). More preferably, 0.08
Is about 3 μm. If the average pore size is too small, for example, the filtration rate will be poor when used in a filter. 5 μm
If it is larger, the collection performance is inferior, so the above range is preferable.

【0041】従って、本発明によって、前記製造条件に
より異なるが、空孔率20〜80%、平均空孔径0.0
5〜5μmであり、さらに、大気側面(A面)と基板側
面(B面)の平均空孔径の差が小さい方を基準として2
00%より小さく、またそれぞれの面において空孔径の
変動係数が70%より小さく、空孔重心間の距離の変動
係数が50%より小さいといった均一なポリイミド多孔
質膜を得ることができる。
Therefore, according to the present invention, the porosity is 20 to 80% and the average pore diameter is 0.0, although it varies depending on the manufacturing conditions.
5 to 5 μm, and further, based on the smaller difference in average pore diameter between the atmosphere side surface (A surface) and the substrate side surface (B surface), 2
It is possible to obtain a uniform polyimide porous membrane in which the coefficient of variation of the hole diameter is less than 70% and the coefficient of variation of the distance between the center of gravity of the holes is less than 50% in each surface.

【0042】前記ポリイミド多孔質膜は、1層または2
層以上組み合わせて用いてもよい。2層以上組み合わせ
ることにより、用途によっては補強用として、あるい
は、厚物に用いることができる。また、他の材料、他の
ポリマ−フィルム、繊維、無機物と組み合わせて用いて
もよい。
The polyimide porous film has one layer or two layers.
You may use it combining two or more layers. By combining two or more layers, it can be used as a reinforcing material or a thick material depending on the application. Further, it may be used in combination with other materials, other polymer films, fibers and inorganic substances.

【0043】[0043]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。実施例、比較例における試験および評価方法は次に
示すとおりである。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited to these examples. The tests and evaluation methods in Examples and Comparative Examples are as follows.

【0044】空孔率 所定の大きさに切取った多孔質フィルムの膜厚及び重量
を測定し、目付重量から空孔率を次の式によって求め
た。次式のSは多孔質フィルムの面積、dは膜厚、Wは
測定した重量、Dはポリイミドの密度を意味し、ポリイ
ミドの密度は1.34g/cmとした。 空孔率(%)=100−100×(W/D)/(S×
d)
Porosity The thickness and weight of a porous film cut into a predetermined size were measured, and the porosity was calculated from the weight per unit area by the following formula. In the following equation, S means the area of the porous film, d means the film thickness, W means the measured weight, D means the density of the polyimide, and the density of the polyimide is 1.34 g / cm 3 . Porosity (%) = 100-100 × (W / D) / (S ×
d)

【0045】透気度 JIS P8117に準じて測定した。透気度をガ−レ
−値で表した。 平均空孔径および変動係数 膜表面の孔径を走査型電子顕微鏡で観測した。孔の長径
と短径を測定し、その面積を算出し、円の相当径を算出
した。100個以上の孔について数平均孔径を求め、変
動係数を求めた。大気側面(A面)と基板側面(B面)
の各々の面で測定した。
Air permeability Measured according to JIS P8117. The air permeability was expressed as a Galley value. The average pore diameter and the coefficient of variation of pores on the surface of the membrane were observed with a scanning electron microscope. The major axis and minor axis of the hole were measured, the area thereof was calculated, and the equivalent diameter of the circle was calculated. The number average pore size was determined for 100 or more holes, and the coefficient of variation was determined. Atmosphere side (A side) and substrate side (B side)
Was measured on each side.

【0046】平均重心間距離および変動係数 膜表面の空孔の最近接の空孔との重心間距離を走査型電
子顕微鏡写真から任意の100個を読みとった。平均重
心間距離とその変動係数を算出した。A面とB面の各々
の面で測定した。
Average Distance Between Centers of Gravity and Coefficient of Variation The distance between the centers of gravity of the pores on the surface of the film and the nearest pore was read from a scanning electron micrograph at an arbitrary 100 points. The average distance between center of gravity and its coefficient of variation were calculated. The measurement was performed on each of the A surface and the B surface.

【0047】突刺強度 試料を直径11.28mm、面積1cmの円孔ホルダ
−に固定し、先端形状が0.5R、直径1mmφのニ−
ドルを2mm/secの速度で下降させ突刺し、貫通荷
重を測定した。
The puncture strength sample was fixed to a circular hole holder having a diameter of 11.28 mm and an area of 1 cm 2 , and the tip shape was 0.5 R and the diameter was 1 mmφ.
The dollar was lowered at a speed of 2 mm / sec and pierced, and the penetration load was measured.

【0048】平滑性 多孔膜の平滑性を目視で定性的に評価した。 〇;表面が平滑であった。△;表面が少し凹凸があっ
た。×;かなり凸凹が見られた。
Smoothness The smoothness of the porous film was qualitatively evaluated visually. ◯: The surface was smooth. Δ: The surface was slightly uneven. X: Roughness was observed.

【0049】実施例1 テトラカルボン酸成分としてs−BPDAを、ジアミン
成分としてPPDAを用い、s−BPDAに対するPP
DAのモル比が0.994で且つ該モノマー成分の合計
重量が15重量%になるようにNMPに溶解し、温度4
0℃、6時間重合を行ってポリイミド前駆体溶液を得
た。ポリイミド前駆体溶液の一部に1−プロパノ−ルを
添加し、前記ポリイミド前駆体が9.7重量%、混合溶
媒が90.3重量%、混合溶液のうちNMPが59重量
%、1−プロパノ−ルが41重量%であるド−プ溶液を
調製し、ド−プ液をガラス板に厚みが約100μmとな
るように流延した。引き続いて温度−10℃に保った。
同温度に保った1−プロパノ−ル40重量%、NMP6
0重量%の混合溶液とする保護層をポリイミド前駆体液
膜上にガラス棒で厚み約20μm液膜の保護層を設け
た。その後、温度−10℃に保った1−プロパノ−ル6
6.7重量%とNMP33.3重量%からなる凝固液に
15分浸漬してポリイミド前駆体膜を得た。続いて、室
温にてポリイミド前駆体膜を水で洗浄し、ガラス板を剥
離した後、温度80℃で乾燥して、ポリイミド前駆体膜
を得た。直ちに、ピンテンタ−に、ポリイミド前駆体膜
を張り、温度400℃の熱風乾燥機に入れ、40分間熱
イミド化をおこなった。かくしてポリイミド膜を得た。
Example 1 Using s-BPDA as a tetracarboxylic acid component and PPDA as a diamine component, PP for s-BPDA was used.
It was dissolved in NMP so that the molar ratio of DA was 0.994 and the total weight of the monomer components was 15% by weight.
Polymerization was performed at 0 ° C. for 6 hours to obtain a polyimide precursor solution. 1-Propanol was added to a part of the polyimide precursor solution, the polyimide precursor was 9.7% by weight, the mixed solvent was 90.3% by weight, NMP in the mixed solution was 59% by weight, 1-propanol. Of the dope solution was prepared, and the dope solution was cast on a glass plate to a thickness of about 100 μm. Subsequently, the temperature was kept at -10 ° C.
40% by weight of 1-propanol kept at the same temperature, NMP6
A protective layer of a 0% by weight mixed solution was provided on the polyimide precursor liquid film with a glass rod to form a protective layer having a thickness of about 20 μm. Then, 1-propanol 6 kept at a temperature of -10 ° C
A polyimide precursor film was obtained by immersing the film in a coagulation liquid consisting of 6.7% by weight and 33.3% by weight NMP for 15 minutes. Subsequently, the polyimide precursor film was washed with water at room temperature, the glass plate was peeled off, and then dried at a temperature of 80 ° C. to obtain a polyimide precursor film. Immediately, the polyimide precursor film was put on a pin tenter, placed in a hot air dryer at a temperature of 400 ° C., and subjected to thermal imidization for 40 minutes. Thus, a polyimide film was obtained.

【0050】得られたポリイミド膜は膜厚は10μm、
空孔率は65%で、突刺強度は65gであった。走査型
顕微鏡で観察すると、大気面側は平均孔径0.32μ
m、変動係数は43.3%、基板側面は平均孔径0.2
2μm、変動係数は33.0%であった。大気側面の空
孔の平均重心間距離0.88μm、変動係数31.0
%、基板側面の空孔の平均重心間距離0.96μm、変
動係数は43.8%であった。大気側面と基板側面の平
均孔径の差の割合は基板側面の値を基準として45%で
あった。両側面とも平滑性:○で、均一な多孔膜を呈し
ていた。膜の大気側面および基板側面の走査型電子顕微
鏡の写真を図1、2に示す。
The thickness of the obtained polyimide film is 10 μm,
The porosity was 65% and the puncture strength was 65 g. When observed with a scanning microscope, the average pore size is 0.32μ on the atmosphere surface side.
m, the coefficient of variation is 43.3%, the side surface of the substrate has an average pore diameter of 0.2.
The coefficient of variation was 2 μm and the coefficient of variation was 33.0%. Average distance between centers of gravity of holes on the atmosphere side 0.88 μm, coefficient of variation 31.0
%, The average distance between the centers of gravity of the holes on the side surface of the substrate was 0.96 μm, and the coefficient of variation was 43.8%. The ratio of the difference between the average hole diameters of the atmosphere side surface and the substrate side surface was 45% based on the value of the substrate side surface. Both sides had a smoothness of ◯ and exhibited a uniform porous film. Scanning electron micrographs of the air side of the film and the side of the substrate are shown in FIGS.

【0051】比較例1 凝固液を1−プロパ−ノ−ル100重量%とし、保護層
を設けなかったたほかは、実施例1と同様にしてポリイ
ミド膜を得た。膜厚は11μm、空孔率60%、大気側
面の平均空孔径は0.07μm、基板側面の平均空孔径
0.55μmであった。大気面側と基板側の空孔径が、
基板側面の空孔径を基準として657%と両面の差が大
きかった。
Comparative Example 1 A polyimide film was obtained in the same manner as in Example 1 except that the coagulating liquid was 100% by weight of 1-propanol and no protective layer was provided. The film thickness was 11 μm, the porosity was 60%, the average pore diameter on the atmosphere side was 0.07 μm, and the average pore diameter on the substrate side was 0.55 μm. The hole diameters on the atmosphere side and the substrate side are
The difference between the two surfaces was large at 657% based on the hole diameter on the side surface of the substrate.

【0052】実施例2 重合溶媒をDMAcに代え、ド−プ溶液、保護層溶液、
凝固液の溶媒をDMAcと非溶媒を2−プロパノ−ルに
代え、保護層を非溶媒34重量%、溶媒を66重量%と
した他は、実施例1と同様にしてポリイミド膜を得た。
Example 2 The polymerization solvent was changed to DMAc, and the dope solution, protective layer solution,
A polyimide film was obtained in the same manner as in Example 1 except that the solvent of the coagulation liquid was changed to DMAc and the non-solvent was changed to 2-propanol, and the protective layer was changed to 34 wt% of the non-solvent and 66 wt% of the solvent.

【0053】得られたポリイミド膜は膜厚は11μm、
空孔率は73%で、透気度は1000秒/100c
、突刺強度は71gであった。走査型顕微鏡で観察
すると、大気面側は平均空孔径0.54μm、変動係数
は33.4%、基板側面は平均孔径0.23μm、変動
係数は34.2%であった。大気側面の空孔の平均重心
間距離0.80μm、変動係数25.0%、基板側面の
空孔の平均重心間距離0.90μm、変動係数は45.
3%であった。大気側面と基板側面の平均孔径の差の割
合は大気側面の値を基準として135%であった。両側
面とも平滑性:○で、均一な多孔膜を呈していた。
The obtained polyimide film has a film thickness of 11 μm,
Porosity is 73% and air permeability is 1000 seconds / 100c
m 3 , and the puncture strength was 71 g. When observed with a scanning microscope, the average pore diameter was 0.54 μm and the coefficient of variation was 33.4% on the atmosphere side, and the average pore diameter was 0.23 μm and the coefficient of variation was 34.2% on the substrate side surface. The average distance between the centers of gravity of the holes on the side of the atmosphere is 0.80 μm, the coefficient of variation is 25.0%, the average distance between the centers of gravity of the holes on the side of the substrate is 0.90 μm, and the coefficient of variation is 45.
It was 3%. The ratio of the difference between the average hole diameters of the atmosphere side surface and the substrate side surface was 135% based on the value of the atmosphere side surface. Both sides had a smoothness of ◯ and exhibited a uniform porous film.

【0054】比較例2 保護層を設けなかった他は、実施例1と同様にしてポリ
イミド膜を得た。膜厚は11μm、空孔率69%、大気
面側平均空孔径は0.06μm、基板側平均空孔径は
0.58μmであった。大気面側と基板側の空孔径が、
大気側空孔径を基準として867%と両面の差が大きか
った。
Comparative Example 2 A polyimide film was obtained in the same manner as in Example 1 except that the protective layer was not provided. The film thickness was 11 μm, the porosity was 69%, the atmosphere side average pore diameter was 0.06 μm, and the substrate side average pore diameter was 0.58 μm. The hole diameters on the atmosphere side and the substrate side are
There was a large difference between both surfaces, which was 867% based on the air-side hole diameter.

【0055】実施例3 保護層にエチレングリコ−ル33重量%、DMAc67
重量%を用い、凝固液に水を用い、温度を0℃にし、液
膜の厚さを500μmとした他は実施例2と同様にして
ポリイミド膜を得た。得られたポリイミド膜は、膜厚は
49μm、空孔率は69%で、透気度は280秒/10
0cm、突刺強度は162gであった。走査型顕微鏡
で観察すると、大気面側は平均空孔径0.27μm、変
動係数は34.2%、基板側面は平均孔径0.24μ
m、変動係数は35.7%であった。大気側面の空孔の
平均重心間距離0.49μm、変動係数24.9%、基
板側面の空孔の平均重心間距離0.51μm、変動係数
は20.9%であった。大気側面と基板側面の平均孔径
の差の割合は基板側面の値を基準として13%であっ
た。両側面とも平滑性:○で、均一な多孔膜を呈してい
た。
Example 3 33% by weight of ethylene glycol in the protective layer, DMAc67
A polyimide film was obtained in the same manner as in Example 2 except that the weight% was used, the coagulating liquid was water, the temperature was 0 ° C., and the thickness of the liquid film was 500 μm. The obtained polyimide film had a film thickness of 49 μm, a porosity of 69%, and an air permeability of 280 seconds / 10.
The puncture strength was 0 cm 3 and 162 g. When observed with a scanning microscope, the average pore diameter is 0.27 μm on the atmosphere side, the coefficient of variation is 34.2%, and the average pore diameter is 0.24 μ on the substrate side surface.
m, the coefficient of variation was 35.7%. The average distance between centers of gravity of holes on the atmosphere side was 0.49 μm, the coefficient of variation was 24.9%, the average distance between centers of gravity of holes on the side of the substrate was 0.51 μm, and the coefficient of variation was 20.9%. The ratio of the difference between the average hole diameters of the atmosphere side surface and the substrate side surface was 13% based on the value of the substrate side surface. Both sides had a smoothness of ◯ and exhibited a uniform porous film.

【0056】比較例3 保護層を設けなかった他は実施例3と同様にしてポリイ
ミド膜を得た。得られたポリイミド膜は、膜厚は51μ
m、空孔率は65%で、大気面側の平均空孔径3.0μ
m、基板側面の平均孔径0.8μmであった。大気側面
と基板側面の空孔径が、大気側空孔径を基準として27
5%と両面の差が大きかった。
Comparative Example 3 A polyimide film was obtained in the same manner as in Example 3 except that the protective layer was not provided. The thickness of the obtained polyimide film is 51 μm.
m, the porosity is 65%, the average pore size on the atmosphere side is 3.0μ
The average pore size on the side surface of the substrate was 0.8 μm. The hole diameters on the atmosphere side and substrate side are 27
There was a large difference between the two surfaces, which was 5%.

【0057】実施例4 ド−プ溶液の溶媒をDMAc65重量%、グリセリン3
5重量%とし、保護層にエチレングリコ−ル55重量
%、DMAc45重量%とした他は実施例3と同様にし
てポリイミド膜を得た。得られたポリイミド膜は、膜厚
は53μm、空孔率は67%で、突刺強度は160gで
あった。走査型顕微鏡で観察すると、大気面側は平均空
孔径1.4μm、変動係数は38.1%、基板側面は平
均孔径1.03μm、変動係数は23.4%であった。
大気側面の空孔の平均重心間距離1.75μm、変動係
数3.0%、基板側面の空孔の平均重心間距離1.39
μm、変動係数は17.5%であった。大気側面と基板
側面の平均孔径の差の割合は基板側面の値を基準として
36%であった。両側面とも平滑性:○で、均一な多孔
膜を呈していた。
Example 4 The solvent of the dope solution was 65% by weight of DMAc and 3% of glycerin.
A polyimide film was obtained in the same manner as in Example 3, except that the protective layer was 5 wt%, ethylene glycol was 55 wt%, and DMAc was 45 wt%. The obtained polyimide film had a film thickness of 53 μm, a porosity of 67%, and a puncture strength of 160 g. When observed with a scanning microscope, the average pore size was 1.4 μm on the atmosphere side, the coefficient of variation was 38.1%, the average pore size was 1.03 μm on the substrate side, and the coefficient of variation was 23.4%.
Average distance between the centers of gravity of the holes on the atmosphere side is 1.75 μm, coefficient of variation is 3.0%, average distance between the centers of gravity of the holes on the substrate side is 1.39
μm, the coefficient of variation was 17.5%. The ratio of the difference between the average hole diameters of the atmosphere side surface and the substrate side surface was 36% based on the value of the substrate side surface. Both sides had a smoothness of ◯ and exhibited a uniform porous film.

【0058】比較例4 保護層を設けなかった他は実施例4と同様にしてポリイ
ミド膜を得た。得られたポリイミド膜は、大気面側の空
孔の数が極少なく、ほとんど緻密であった。
Comparative Example 4 A polyimide film was obtained in the same manner as in Example 4 except that the protective layer was not provided. The obtained polyimide film was almost dense with very few holes on the atmosphere side.

【0059】[0059]

【発明の効果】本発明は、大気面と基板面が空孔径の差
が小さく、空孔径および空孔重心間距離が均一なポリイ
ミド多孔膜の製造方法を提供することができる。本発明
によって得られるポリイミド多孔質膜は、両面が透液性
が均一であり、電池用セパレ−タ、精密フィルタ−、さ
らに燃料電池用炭化膜用原料などに提供することができ
る。
INDUSTRIAL APPLICABILITY The present invention can provide a method for producing a polyimide porous film having a small difference in pore diameter between the atmosphere surface and the substrate surface, and uniform pore diameter and distance between pore centroids. The polyimide porous membrane obtained by the present invention has uniform liquid permeability on both sides, and can be provided as a separator for batteries, a precision filter, and a raw material for carbonized membranes for fuel cells.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の一例である実施例1で得られ
たポリイミド多孔質膜の大気側面の電子顕微鏡写真であ
る。
FIG. 1 is an electron micrograph of an atmosphere side surface of a polyimide porous film obtained in Example 1, which is an example of the present invention.

【図2】図2は、実施例1で得られたポリイミド多孔質
膜の基板側面の電子顕微鏡写真である。
FIG. 2 is an electron micrograph of a substrate side surface of the polyimide porous film obtained in Example 1.

【図3】図3は、本発明の一例である実施例4で得られ
たポリイミド多孔質膜の大気側面の電子顕微鏡写真であ
る。
FIG. 3 is an electron micrograph of the atmosphere side surface of the polyimide porous film obtained in Example 4, which is an example of the present invention.

【図4】図4は、実施例4で得られたポリイミド多孔質
膜の基板側面の電子顕微鏡写真である。
FIG. 4 is an electron micrograph of a side surface of a substrate of a polyimide porous film obtained in Example 4.

フロントページの続き Fターム(参考) 4F074 AA74 BA72 BA73 CB33 CB37 CB45 CC28Y DA47 DA54Continued front page    F-term (reference) 4F074 AA74 BA72 BA73 CB33 CB37                       CB45 CC28Y DA47 DA54

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ポリイミド前駆体ド−プを基板の上に流延
し、さらに該液膜上に溶媒と非溶媒の混合液からなる保
護層を設け、その後凝固液に浸漬することを特徴とする
ポリイミド多孔質膜の製造方法。
1. A polyimide precursor dope is cast on a substrate, a protective layer made of a mixed liquid of a solvent and a non-solvent is further provided on the liquid film, and then immersed in a coagulating liquid. Method for producing a polyimide porous membrane.
【請求項2】保護層の組成が、ポリイミド前駆体の非溶
媒30〜70重量%と極性溶媒70〜30重量%の合計
100重量%である請求項1に記載のポリイミド多孔質
膜の製造方法。
2. The method for producing a polyimide porous film according to claim 1, wherein the composition of the protective layer is 100% by weight of 30 to 70% by weight of the non-solvent of the polyimide precursor and 70 to 30% by weight of the polar solvent. .
【請求項3】保護層の成分の非溶媒が、炭素数3〜5の
脂肪族一価アルコ−ルである請求項1あるいは2に記載
のポリイミド多孔質膜の製造方法。
3. The method for producing a polyimide porous membrane according to claim 1, wherein the non-solvent as a component of the protective layer is an aliphatic monovalent alcohol having 3 to 5 carbon atoms.
【請求項4】保護層の成分の非溶媒が、アルキレングリ
コ−ル、グリセリン、およびポリアルキレングリコ−ル
とその誘導体から選ばれた多価アルコ−ルである請求項
1あるいは2に記載のポリイミド多孔質膜の製造方法。
4. The polyimide according to claim 1 or 2, wherein the non-solvent of the component of the protective layer is a polyvalent alcohol selected from alkylene glycol, glycerin, and polyalkylene glycol and its derivatives. A method for manufacturing a porous membrane.
JP2001320374A 2001-07-23 2001-10-18 Method for manufacturing polyimide porous film Pending JP2003147118A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001320374A JP2003147118A (en) 2001-08-29 2001-10-18 Method for manufacturing polyimide porous film
US10/201,351 US6565962B2 (en) 2001-07-23 2002-07-22 Polyimide porous film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-260148 2001-08-29
JP2001260148 2001-08-29
JP2001320374A JP2003147118A (en) 2001-08-29 2001-10-18 Method for manufacturing polyimide porous film

Publications (1)

Publication Number Publication Date
JP2003147118A true JP2003147118A (en) 2003-05-21

Family

ID=26621250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001320374A Pending JP2003147118A (en) 2001-07-23 2001-10-18 Method for manufacturing polyimide porous film

Country Status (1)

Country Link
JP (1) JP2003147118A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001145826A (en) * 1999-11-19 2001-05-29 Ube Ind Ltd Porous membrane and method for preparing porous membrane
JP2002201305A (en) * 2001-01-05 2002-07-19 Teijin Ltd Polyimide porous film and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001145826A (en) * 1999-11-19 2001-05-29 Ube Ind Ltd Porous membrane and method for preparing porous membrane
JP2002201305A (en) * 2001-01-05 2002-07-19 Teijin Ltd Polyimide porous film and method for producing the same

Similar Documents

Publication Publication Date Title
TWI526480B (en) Porous polyimide film and method for producing the same
US4440643A (en) Process for producing aromatic polyimide composite separating membrane
JP5636960B2 (en) Porous polyimide membrane and method for producing the same
JP5577803B2 (en) Porous polyimide membrane and method for producing the same
JP5577804B2 (en) Porous polyimide membrane and method for producing the same
US6565962B2 (en) Polyimide porous film
JP5944613B1 (en) Porous polyimide film and method for producing the same
CN109563300B (en) Method for producing porous polyimide film and porous polyimide film produced by the method
JP3589125B2 (en) Porous membrane manufacturing method and porous membrane
JP3963765B2 (en) Porous film and method for producing the same
JP2007092078A (en) Preparation process for polyimide porous film
JP3687448B2 (en) Method for producing porous polyimide film and film
JP2004359860A (en) Polyimide porous membrane having microscale through paths, and method for manufacturing the same
JP2011001434A (en) Method for manufacturing porous polyimide body, and porous polyimide body
JP4302342B2 (en) Polyimide porous membrane and method for producing the same
JP2003026849A (en) Porous polyimide film
JP3687480B2 (en) Porous polyimide film and method for producing the same
JP7326785B2 (en) Porous polyimide membrane and its manufacturing method
JP2003147118A (en) Method for manufacturing polyimide porous film
JP2003165128A (en) Method and apparatus for continuously manufacturing porous film
JP3966654B2 (en) Method for producing porous membrane
JP2021181552A (en) Varnish composition, method of manufacturing precursor film of polyimide porous film, and method of manufacturing polyimide porous film
JP4530652B2 (en) Polyamideimide porous film with excellent chemical resistance and method for producing the same
JP6554760B2 (en) Method for producing polymer porous membrane, method for producing polyimide porous membrane, and polyimide porous membrane
JP2004168971A (en) Method for preserving polyamic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530