JP2003146966A - Metal complex for catalyst precursor for dehydrogenation reaction of organic compound taking advantage of oxidative activation of water molecule - Google Patents

Metal complex for catalyst precursor for dehydrogenation reaction of organic compound taking advantage of oxidative activation of water molecule

Info

Publication number
JP2003146966A
JP2003146966A JP2001344047A JP2001344047A JP2003146966A JP 2003146966 A JP2003146966 A JP 2003146966A JP 2001344047 A JP2001344047 A JP 2001344047A JP 2001344047 A JP2001344047 A JP 2001344047A JP 2003146966 A JP2003146966 A JP 2003146966A
Authority
JP
Japan
Prior art keywords
general formula
complex
organic compound
catalyst precursor
dehydrogenation reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001344047A
Other languages
Japanese (ja)
Inventor
Koji Tanaka
晃二 田中
Toru Wada
亨 和田
Hideki Sugimoto
秀樹 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001344047A priority Critical patent/JP2003146966A/en
Publication of JP2003146966A publication Critical patent/JP2003146966A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new catalyst precursor complex accelerating the progress of an oxidative dehydrogenation reaction of an organic substrate by the oxidative activation of water molecule. SOLUTION: The catalyst precursor complex for the dehydrogenation reaction from a carbon-hydrogen bond containing water as a ligand is expressed by general formula A (L1 is a tridentate ligand; R1 and R2 are each an alkyl, an aryl or an aralkyl or together form a (substituted)monocyclic or condensed ring group; M is a metal selected from the metals of the groups 6-9 of the periodic table; and Y<-> is an anion). The precursor complex forms a complex having a function of catalyzing the dehydrogenation from an organic compound by deprotonation and oxidation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電極酸化あるいは
AgClO4などの穏和な酸化剤との組み合わせにより
有機化合物の炭素−水素結合からのラジカル的な水素原
子引き抜き反応を触媒する機能を有する前記一般式Aで
表される構造を特徴とする有機化合物の脱水素化反応用
触媒前駆体錯体および一般式Aで表される錯体に関する
技術である。
TECHNICAL FIELD The present invention relates to the above-mentioned general functions having a function of catalyzing a radical hydrogen atom abstraction reaction from a carbon-hydrogen bond of an organic compound by electrode oxidation or in combination with a mild oxidizing agent such as AgClO 4. It is a technique relating to a catalyst precursor complex for a dehydrogenation reaction of an organic compound having a structure represented by the formula A and a complex represented by the general formula A.

【0002】[0002]

【従来の技術】従来、炭化水素化合物を酸化的に脱水素
化してより不飽和度の進んだ炭化水素を製造する技術、
及びアルコール類を酸化してアルデヒド類またはケトン
類を製造する技術は公知である。該反応は、酸化剤とし
て重クロム酸、過マンガン酸等の劇物の金属酸化物を用
いるか、あるいは爆発性の過酸化物に触媒を加えて行わ
れるのが普通である。該反応は酸化剤の毒性と爆発性が
問題となることが多かった。また、近年の化学反応の研
究は、環境に優しい手法による目的化合物の製造技術を
確立することである。そして環境に優しい手法とは、究
極的には無溶媒または水を主体とする溶媒を用いた無毒
な触媒を用いた反応系を確立することである。
2. Description of the Related Art Conventionally, a technique for producing a hydrocarbon having a higher degree of unsaturation by dehydrogenating a hydrocarbon compound,
Also, a technique for producing aldehydes or ketones by oxidizing alcohols is known. The reaction is usually carried out using a deleterious metal oxide such as dichromic acid or permanganic acid as an oxidizing agent, or adding a catalyst to explosive peroxide. The reaction often suffered from toxicity and explosiveness of the oxidizing agent. Further, recent research on chemical reactions is to establish a technique for producing a target compound by an environmentally friendly method. And the environmentally friendly method is to finally establish a reaction system using a non-toxic catalyst using no solvent or a solvent mainly composed of water.

【0003】高原子価の遷移金属-オキソ錯体は、種々
の有機基質の生物学的および化学的酸化において活性種
として機能し、幾つかのルテニウム-オキソ錯体は生体
内酵素反応のモデル化合物として報告されている。ルテ
ニウム-オキソ錯体は酸素分子、過酸化水素やtBuOOHの
ような過酸化物、及びピリジンNオキシドのような酸素
化剤の存在下で生成し、炭化水素をヒドロキシ化及びエ
ポキシ化することが証明されている。一方、ルテニウム
-オキソ錯体は、ルテニウム-アクアまたはヒドロキソ錯
体のプロトン解離によっても生成させることが可能であ
ると考えられる。この場合前述の酸素化剤を用いること
なく、化学的或いは電気化学的な酸化を行うことにより
水分子と触媒分子から酸化反応活性種を生成することが
でき、環境に優しい水中において穏和な反応条件(空気
中、室温、0V近傍の電位)で酸化反応を可能とする。
ところが通常そのような方法で形成されるルテニウム-
オキソ錯体は塩基性が大きく、錯体同士がオキソ架橋し
て二量化、さらにはポリマー化して触媒活性を失うこと
が知られている。
High valence transition metal-oxo complexes function as active species in biological and chemical oxidation of various organic substrates, and some ruthenium-oxo complexes have been reported as model compounds for in vivo enzymatic reactions. Has been done. Ruthenium-oxo complexes have been shown to form in the presence of molecular oxygen, peroxides such as hydrogen peroxide and t BuOOH, and oxygenating agents such as pyridine N oxide to hydroxylate and epoxidize hydrocarbons. Has been done. On the other hand, ruthenium
It is believed that -oxo complexes can also be formed by proton dissociation of ruthenium-aqua or hydroxo complexes. In this case, the oxidation reaction active species can be generated from the water molecule and the catalyst molecule by performing the chemical or electrochemical oxidation without using the above-mentioned oxygenating agent, and the reaction condition is mild in environment-friendly water. Allows oxidation reaction in (air, room temperature, potential near 0 V).
However, ruthenium-which is usually formed by such a method-
It is known that the oxo complex has a large basicity, and that the complexes are oxo-crosslinked to dimerize and further polymerize to lose the catalytic activity.

【0004】この様な状況で、本発明者らは〔Ru(O
2)(3,5−tBu2Q)(terpy)〕2+(3,
5−tBu2Q=3,5−ジ(tert−ブチル)−1,
2−ベンゾキノン、terpy=2,2’:6’,2”
−ターピリジン)が二量化することなく容易に二つのプ
ロトンを解離し、ルテニウム−オキソ錯体を形成するこ
とを明らかにした。さらに、このときオキソ配位子から
キノン配位子への分子内電子移動によりキノン配位子は
セミキノンへ還元され、オキソ配位子上には不対電子が
誘起されることを証明した。更に、不対電子を誘起した
オキソ配位子(オキシルラジカル配位子)を有する錯体
を穏和な酸化剤であるAg+で酸化することにより生じ
た錯体が有機化合物のC−H結合から水素原子をラジカ
ル的に切断する能力があることを示した。また、Ru
(OH)(3,6−tBuQ)部位(3,6−tBuQ=
3,6−(tert−ブチル)−1,2−ベンゾキノ
ン)がbtpyan(ビス(2,2’:6’,2”−タ
ーピリジル)アントラセン)配位子により架橋された二
核ルテニウム−ヒドロキソ錯体からプロトン解離と酸化
により生成する二核ルテニウム−オキソ錯体は水の四電
子酸化による酸素発生に対して優れた触媒機能を発揮す
ることを報告している。二核ルテニウム−オキソ錯体か
ら誘導される二核オキソ錯体は、水の酸化だけでなく、
穏やかな共酸化剤であるAg+存在下、芳香族水素化物
類のラジカル的な脱水素化反応を触媒し、不飽和度の進
んだ対応する芳香族化合物類が得られることを報告して
いる(文献1;Tohru Wada,Kiyoshi Tsuge and Koji Ta
naka,Chemistry Letters 2000,p910-911)。該酸化的脱
水素化反応はルテニウム上に配位した水分子をプロトン
解離と酸化という二重の活性化により進行しており、反
応が空気中、0V近傍の電位(Ag +の還元電位は本反
応条件下でおおよそ+0.4V vs SCE)と温和な
条件で進行していることは注目すべきである。
In such a situation, the present inventors [Ru (O
H2) (3,5-tBu2Q) (terpy)]2+(3,
5-tBu2Q = 3,5-di (tert-butyl) -1,
2-benzoquinone, terpy = 2,2 ': 6', 2 "
-Terpyridine) is easily dimerized without dimerization.
It can dissociate the roton and form a ruthenium-oxo complex.
And revealed. Furthermore, at this time, from the oxo ligand
The intramolecular electron transfer to the quinone ligand causes the quinone ligand to
It is reduced to semiquinone and unpaired electrons are left on the oxo ligand.
It was proved to be induced. Furthermore, induced unpaired electrons
Complex having oxo ligand (oxyl radical ligand)
Ag which is a mild oxidizer+Caused by oxidation at
The complex makes the hydrogen atom radical from the C--H bond of the organic compound.
It has been shown that it has the ability to cut like a ru. Also, Ru
(OH) (3,6-tBuQ) site (3,6-tBuQ =
3,6- (tert-butyl) -1,2-benzoquino
Is btpyan (bis (2,2 ': 6', 2 "-
-Pyridyl) anthracene) ligands bridged by
Proton dissociation and oxidation from nuclear ruthenium-hydroxo complexes
The dinuclear ruthenium-oxo complex formed by
Excellent catalytic function for oxygen generation by child oxidation
I am reporting that. Dinuclear ruthenium-oxo complex?
The binuclear oxo complex derived from not only the oxidation of water,
Ag, a mild co-oxidant+In the presence of an aromatic hydride
Catalyzes the radical dehydrogenation of compounds to promote the degree of unsaturation.
Reported that corresponding aromatic compounds were obtained.
(Reference 1; Tohru Wada, Kiyoshi Tsuge and Koji Ta
naka, Chemistry Letters 2000, p910-911). The oxidative desorption
In the hydrogenation reaction, the water molecule coordinated on ruthenium is protonated.
It is progressing due to the double activation of dissociation and oxidation,
In the air, potential near 0V (Ag +The reduction potential of is
Under moderate conditions, it is mildly + 0.4V vs SCE)
It should be noted that the condition is proceeding.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、前記
酸化的脱水素化反応の手法を進め、さらに活性と耐久性
の高い触媒を開発することである。
An object of the present invention is to develop a catalyst having high activity and durability by advancing the method of the oxidative dehydrogenation reaction.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
に、本発明者らは、新規金属錯体の開発を進め、前記一
般式Aの化合物を開発し、有機化合物の酸化的脱水素化
反応に関与する脱水素化反応触媒前駆体として有用であ
ることを確認し、前記課題を解決することに成功した。
本発明の第1は、前記一般式Aで表されるジチオレンを
配位子として含む周期表6〜9族の金属から選択される
金属の錯体である。好ましくは、前記一般式Aで表され
る化合物において、MがRu、CrまたはCoから選択
され、R1およびR2は両者が結合して形成する飽和また
は不飽和の環状の置換基である前記一般式Bの構造を特
徴とする前記金属の錯体であり、より好ましくは、3座
配位子が2,2’:6’,2”−ターピリジン誘導体、
または1,4,7−トリアザシクロノナン誘導体である
ことを特徴とする前記各金属の錯体である。
In order to solve the above problems, the present inventors have proceeded with the development of a novel metal complex, developed the compound of the above general formula A, and carried out the oxidative dehydrogenation reaction of an organic compound. It was confirmed that the compound was useful as a catalyst precursor for the dehydrogenation reaction involved in, and succeeded in solving the above problems.
The first aspect of the present invention is a complex of a metal selected from the metals of Groups 6 to 9 of the periodic table containing the dithiolene represented by the general formula A as a ligand. Preferably, in the compound represented by the general formula A, M is selected from Ru, Cr or Co, and R 1 and R 2 are saturated or unsaturated cyclic substituents formed by bonding of both. A complex of the above metal having the structure of the general formula B, more preferably a tridentate ligand having a 2,2 ′: 6 ′, 2 ″ -terpyridine derivative,
Alternatively, it is a complex of each metal, which is a 1,4,7-triazacyclononane derivative.

【0007】本発明の第2は、プロトン解離と酸化的活
性化を受けて有機化合物の炭素−水素結合からラジカル
的な水素原子引き抜き反応を触媒する機能を持つ金属錯
体を生成する前記一般式Aで表される水を配位子として
含む有機化合物の脱水素化反応用触媒前駆体錯体であ
る。好ましくは、前記一般式Aで表される化合物におい
て、MがRu、CrままたはCoから選択され、R1
よびR2は両者が結合して形成する飽和または不飽和の
環状の置換基である一般式Bで表される構造を特徴とす
る前記有機化合物の脱水素化反応用触媒前駆体錯体であ
り、より好ましくは、3座配位子が2,2’:6’,
2”−ターピリジン誘導体、または1,4,7−トリア
ザシクロノナン誘導体であることを特徴とする前記各有
機化合物の脱水素化反応用触媒前駆体錯体である。
The second aspect of the present invention is to produce a metal complex having the function of catalyzing a radical hydrogen atom abstraction reaction from a carbon-hydrogen bond of an organic compound by receiving proton dissociation and oxidative activation. Is a catalyst precursor complex for an organic compound dehydrogenation reaction containing water as a ligand. Preferably, in the compound represented by the general formula A, M is selected from Ru, Cr or Co, and R 1 and R 2 are saturated or unsaturated cyclic substituents formed by bonding of both. A catalyst precursor complex for a dehydrogenation reaction of the organic compound, which is characterized by a structure represented by the general formula B, and more preferably a tridentate ligand having 2,2 ′: 6 ′,
A catalyst precursor complex for a dehydrogenation reaction of each of the above organic compounds, which is a 2 ″ -terpyridine derivative or a 1,4,7-triazacyclononane derivative.

【0008】[0008]

【本発明の実施の態様】本発明をより詳細に説明する。 A.本発明のジチオレン配位子を含む金属錯体は前記一
般式Aで表される化合物であるが、好ましものとして、
L1が2,2’:6’,2”−ターピリジンであり、M
がRuIIであり、R1およびR2はアルキル基、フェニル
基、または両者が結合して3,4−tert−ブチルベ
ンゼン環、3−メチルベンゼン環、または、ハロゲン置
換ベンゼン環を形成する化合物を挙げることができ、よ
り好ましくは、〔Ru(trpy)(pdt)(O
2)〕(CF3SO32、〔Ru(trpy)(tb
t)(OH2)〕(CF3SO32、〔Ru(trpy)
(C68 2)(OH2)〕(CF3SO32、 (略号;
trpy=2,2’:6,2’’−ターピリジン、pd
t=1,2−ジフェニルジチオレン、tbt=4−メチ
ル−1,2−ジベンゾキノン、C682=シクロヘキ
シル−1,2−ジチン)を挙げることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail. A. The metal complex containing the dithiolene ligand of the present invention is
Although the compound represented by the general formula A is preferred,
L1 is 2,2 ': 6', 2 "-terpyridine, M
Is RuIIAnd R1And R2Is an alkyl group, phenyl
Group or both bound to 3,4-tert-butyl group
Ring, 3-methylbenzene ring, or halogen
A compound forming a substituted benzene ring may be mentioned.
More preferably, [Ru (trpy) (pdt) (O
H2)] (CF3SO3)2, [Ru (trpy) (tb
t) (OH2)] (CF3SO3)2, [Ru (trpy)
(C6H8S 2) (OH2)] (CF3SO3)2, (Abbreviation;
trpy = 2,2 ′: 6,2 ″ -terpyridine, pd
t = 1,2-diphenyldithiolene, tbt = 4-methyl
Ru-1,2-dibenzoquinone, C6H8S2= Cyclohex
Syl-1,2-ditin) can be mentioned.

【0009】B.前記錯体化合物、酸化剤AgClO4
および塩基tBuOKを用い、炭化水素化合物を酸化的
に脱水素化してより不飽和度の進行した対応する炭化水
素を製造する反応サイクルを図1に示す。反応はM(ル
テニウム)上に配位した水分子からプロトン解離により
ヒドロキソ錯体さらにオキソ錯体が形成される。このと
き、電子密度が増大したオキソ配位子からジチオレン配
位子へ分子内電子移動が起こり、その結果ジチオレン配
位子はジチオレンアニオンラジカル配位子へ、オキソ配
位子はオキシルラジカル配位子へ変換される。これら金
属錯体の変化は吸収スペクトル及びサイクリックボルタ
ンメトリーで確認した。ルテニウム-オキソ-ジチオレン
錯体及びルテニウム-オキシルラジカル-ジチオレン錯体
の吸収スペクトルの変化を図2に、サイクリックボルタ
ンメトリーを図3に示す。反応はルテニウム-オキソ錯
体のジチオレンアニオンラジカル配位子が酸化剤Ag+
によって酸化され形成されるルテニウム−オキシルラジ
カル−ジチオレン錯体が触媒活性種となり、有機化合物
から水素原子をラジカル的に引き抜くことにより進行す
る。即ち、反応はジチオレン配位子の酸化還元反応を駆
動力として進行していることが特徴である。
B. The complex compound and the oxidizing agent AgClO 4
A reaction cycle for the oxidative dehydrogenation of a hydrocarbon compound to produce the corresponding more highly unsaturated hydrocarbon using the base t BuOK is shown in FIG. In the reaction, a hydroxo complex and an oxo complex are formed by proton dissociation from water molecules coordinated on M (ruthenium). At this time, intramolecular electron transfer occurs from the oxo ligand with increased electron density to the dithiolene ligand, and as a result, the dithiolene ligand becomes a dithiolene anion radical ligand and the oxo ligand becomes an oxyl radical coordination. Converted to child. Changes in these metal complexes were confirmed by absorption spectrum and cyclic voltammetry. Changes in absorption spectra of the ruthenium-oxo-dithiolene complex and the ruthenium-oxyl radical-dithiolene complex are shown in FIG. 2, and cyclic voltammetry is shown in FIG. In the reaction, the dithiolene anion radical ligand of the ruthenium-oxo complex is the oxidizing agent Ag +
The ruthenium-oxyl radical-dithiolene complex formed by being oxidized by becomes a catalytically active species and proceeds by radically abstracting a hydrogen atom from the organic compound. That is, the reaction is characterized in that it proceeds using the redox reaction of the dithiolene ligand as a driving force.

【0010】C.酸化的脱水素化反応に組み合わせて用
いられる酸化剤としては、AgClO 4、(NH4)Ce
(IV)(NO36などを挙げることができる。また、
脱水素化反応を進行させるには塩基を用いてpHを9以
上とすれば良く、tBuOK、NaOHを好ましいもの
として挙げることができる。
C. For use in combination with oxidative dehydrogenation reaction
As the oxidant that can be used, AgClO Four, (NHFour) Ce
(IV) (NO3)6And so on. Also,
To proceed the dehydrogenation reaction, use a base to adjust the pH to 9 or more.
It should be above,tBuOK and NaOH are preferred
Can be mentioned as.

【0011】[0011]

【実施例】以下、実施例を示して本発明を具体的に説明
するが、本発明は下記実施例に限定されるものではな
い。 実施例1 〔Ru(trpy)(pdt)(OH2)〕(CF3SO
32の合成。 〔Ru(dmso)(pdt)(trpy)〕(文献
2;Hideki Sugimoto, Kiyoshi Tsuge and Koji Tanak
a, J. C. S. Dalton Trans., 2001, p 57 63)50m
gをメタノール10mLに懸濁させ、HCF3SO314
μLを加え4時間撹拌する。不要物を濾過し、濾液を減
圧濃縮後、THFを加えることにより、52mgの収量
で得る。 NMR (ppm):9.02(2H,d),8.76 (3H,m),8.21 (2H,t),7.
78(2H,d),7.58(1H,t),7.2-7.55 (11H,m). ESI−MS:29
7.5 ([M]2+).
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples. Example 1 [Ru (trpy) (pdt) (OH 2 )] (CF 3 SO
3 ) Synthesis of 2 . [Ru (dmso) (pdt) (trpy)] (Reference 2: Hideki Sugimoto, Kiyoshi Tsuge and Koji Tanak
a, JCS Dalton Trans., 2001, p 57 63) 50m
g was suspended in 10 mL of methanol, and HCF 3 SO 3 14
Add μL and stir for 4 hours. Unnecessary substances are filtered, the filtrate is concentrated under reduced pressure, and THF is added to obtain 52 mg in yield. NMR (ppm): 9.02 (2H, d), 8.76 (3H, m), 8.21 (2H, t), 7.
78 (2H, d), 7.58 (1H, t), 7.2-7.55 (11H, m). ESI-MS: 29
7.5 ([M] 2+ ).

【0012】実施例2 〔Ru(trpy)(tdt)(OH2)〕(CF3SO
32の合成。 〔Ru(dmso)(tdt)(trpy)〕(文献
2:Hideki Sugimoto, Kiyoshi Tsuge and Koji Tanaka,
J. C. S. Dalton Trans., 2001, p 57 63)57mg
をメタノール10mLに懸濁させ、HCF3SO3100
μLを加え4時間撹拌する。不要物を濾過し、濾液を減
圧濃縮後し、真空乾燥することにより、15mgの収量
で得る。 NMR (ppm):9.08 (3H, t), 8.83 (2H, d), 8.73 (2H,
d), 8.56 (1H, t), 8.08 (4H, dt), 7.72 (2H, d), 7.
33 (1H, t), 6.83 (2H, m), 2.39, 2.35 (3H, s). ESI
−MS; 253 ([M]2+).
Example 2 [Ru (trpy) (tdt) (OH 2 )] (CF 3 SO
3 ) Synthesis of 2 . [Ru (dmso) (tdt) (trpy)] (Reference 2: Hideki Sugimoto, Kiyoshi Tsuge and Koji Tanaka,
JCS Dalton Trans., 2001, p 57 63) 57 mg
Is suspended in 10 mL of methanol, and HCF 3 SO 3 100 is added.
Add μL and stir for 4 hours. Unnecessary substances are filtered, the filtrate is concentrated under reduced pressure, and then dried in vacuum to obtain 15 mg in yield. NMR (ppm): 9.08 (3H, t), 8.83 (2H, d), 8.73 (2H,
d), 8.56 (1H, t), 8.08 (4H, dt), 7.72 (2H, d), 7.
33 (1H, t), 6.83 (2H, m), 2.39, 2.35 (3H, s). ESI
-MS; 253 ([M] 2+ ).

【0013】実施例3 〔Ru(trpy)(C682)(OH2)〕(CF3
SO32の合成。 4,5−シクロヘキサノ−1,3−ジチオール−2−オ
ン(4,5-cyclohexano-1,3-dithiol-2-one) (文献3: A
jit K. Bhattacharya and Alfred G. Hortmann,J. Org.
Chem., 39, p 95 −97, 1974) 83mgをメタノール
150mLに加え、その溶液にCsOH(162mg)
を加えた。10分間撹拌し、〔Ru(dmso)Cl2
(trpy)〕200mgを加え4時間加熱還流した。
放冷後、濾過し乾燥した。210mgの収量で得た。得
られた化合物83mgをメタノール10mLに溶かし、
HCF3SO335mLを滴下し、4時間撹拌した。不要
物を濾過後減圧濃縮し乾固した。28mgの収量で得
た。NMR(ppm):9.05 (2H,d), 8.78 (3H, t), 8.25 (2
H, t), 7.50 (4H, q), 3.62 (4H, m), 3.32 (4H, m). ESI−MS;628({M−H2O+CF3
3+).
Example 3 [Ru (trpy) (C 6 H 8 S 2 ) (OH 2 )] (CF 3
Synthesis of SO 3 ) 2 . 4,5-Cyclohexano-1,3-dithiol-2-one (Reference 3: A
jit K. Bhattacharya and Alfred G. Hortmann, J. Org.
Chem., 39, p95-97, 1974) 83 mg was added to 150 mL of methanol, and CsOH (162 mg) was added to the solution.
Was added. Stir for 10 minutes, then add [Ru (dmso) Cl 2
(Trpy)] 200 mg was added and the mixture was heated under reflux for 4 hours.
After allowing to cool, it was filtered and dried. Obtained in a yield of 210 mg. 83 mg of the obtained compound was dissolved in 10 mL of methanol,
35 mL of HCF 3 SO 3 was added dropwise and stirred for 4 hours. Unwanted substances were filtered and then concentrated under reduced pressure to dryness. Obtained in a yield of 28 mg. NMR (ppm): 9.05 (2H, d), 8.78 (3H, t), 8.25 (2
H, t), 7.50 (4H, q), 3.62 (4H, m), 3.32 (4H, m). ESI-MS; 628 ({M-H 2 O + CF 3 S
O 3 } + ).

【0014】実施例4 実施例1で合成した化合物を触媒に用いて、ベンジルア
ルコール酸化的脱水素化によりアルデヒドを合成する方
法を説明する。 〔Ru(trpy)(pdt)(OH2)〕(CF3SO
32(4.1mg、4.8μmol、用いたベンジルア
ルコールに対し1.0mol%)のアセトン/水混合溶
液(5/95、1.0 ml)にベンジルアルコール(25μL、
0.24mmol)、Ce(NH42(NO36(27
4mg、0.50mmol)の順で加え、室温、空気中
で1時間撹拌する。反応溶液から減圧下でアセトンを除
去後、エーテルで抽出した。ベンズアルデヒドを収率2
8%で生成する。触媒のターンオーバーは28回。
Example 4 A method for synthesizing an aldehyde by benzyl alcohol oxidative dehydrogenation using the compound synthesized in Example 1 as a catalyst will be described. [Ru (trpy) (pdt) (OH 2 )] (CF 3 SO
3 ) 2 (4.1 mg, 4.8 μmol, 1.0 mol% with respect to the used benzyl alcohol) in an acetone / water mixed solution (5/95, 1.0 ml) was added with benzyl alcohol (25 μL,
0.24 mmol), Ce (NH 4 ) 2 (NO 3 ) 6 (27
4 mg, 0.50 mmol) in this order, and stirred at room temperature in the air for 1 hour. Acetone was removed from the reaction solution under reduced pressure and then extracted with ether. Benzaldehyde yield 2
Produce at 8%. 28 catalyst turnovers.

【0015】実施例5 実施例1で合成した化合物を触媒に用いて、9,10−
ジヒドロアントラセンの酸化的脱水素化反応によりアン
トラセンを合成する方法を説明する。 〔Ru(trpy)(pdt)(OH2)〕(CF3SO
32 (5.0mg、6.0μmol)のアセトン溶液
(0.5mL)に9,10−ジヒドロアントラセン
(0.54mg、3.0μmol)、AgCF3SO
3(1.54mg、6.0μmol)を加える。この溶液
tBuOK(0.67mg、6.0mmol)を加え
る。反応はほぼ瞬時に完了し、アントラセンを収率40
%で生成する。
Example 5 Using the compound synthesized in Example 1 as a catalyst, 9,10-
A method for synthesizing anthracene by an oxidative dehydrogenation reaction of dihydroanthracene will be described. [Ru (trpy) (pdt) (OH 2 )] (CF 3 SO
3 ) 2 (5.0 mg, 6.0 μmol) in acetone solution (0.5 mL) with 9,10-dihydroanthracene (0.54 mg, 3.0 μmol) and AgCF 3 SO 3.
3 (1.54 mg, 6.0 μmol) is added. To this solution is added t BuOK (0.67 mg, 6.0 mmol). The reaction was completed almost instantly and yielded anthracene in a yield of 40
Generate in%.

【0016】[0016]

【発明の効果】以上述べたように、本発明のジチオレン
錯体を用いることにより比較的穏和な条件下、過酸化物
の様な酸素化剤を用いることなく水分子の酸化的活性化
を行い、環境に優しい水を主とする溶媒系で有機基質の
酸化的脱水素反応を進行させることができるという優れ
た効果がもたらされる。
As described above, by using the dithiolene complex of the present invention, oxidative activation of water molecules is carried out under relatively mild conditions without using an oxygenating agent such as peroxide, The excellent effect that the oxidative dehydrogenation reaction of an organic substrate can be advanced in a solvent system mainly composed of environment-friendly water is brought about.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の金属錯体を触媒前駆体とした有機化
合物の脱水素化反応の触媒サイクルを示す。
FIG. 1 shows a catalytic cycle of a dehydrogenation reaction of an organic compound using the metal complex of the present invention as a catalyst precursor.

【図2】 本発明の金属錯体のアクア-ジチオレン錯
体、およびオキソ-ジチオレンアニオンラジカル錯体の
吸収スペクトル
FIG. 2 Absorption spectra of aqua-dithiolene complex of metal complex of the present invention and oxo-dithiolene anion radical complex

【図3】 本発明の金属錯体のアクア-ジチオレン錯体
(a)、およびオキソ-ジチオレンアニオンラジカル錯
体(b)のサイクリクボルタンメトリー測定値
FIG. 3 shows the cyclic voltammetry measurement values of the metal complex of the present invention, aqua-dithiolene complex (a) and oxo-dithiolene anion radical complex (b).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉本 秀樹 大阪府堺市東上野芝町2丁目438 大阪市 立大学公舎12 Fターム(参考) 4G069 AA06 BA27A BA27B BC58A BC67A BC70A BC70B BE21A BE21B BE33A BE34A BE34B BE36A BE36B CB07 CB72 4H006 AA01 AB40 TC10 4H050 AA01 AA03 AB40 WB14 WB15   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hideki Sugimoto             2-438 Higashi Ueno Shibamachi, Sakai City, Osaka Prefecture Osaka City             Tate University Public Building 12 F term (reference) 4G069 AA06 BA27A BA27B BC58A                       BC67A BC70A BC70B BE21A                       BE21B BE33A BE34A BE34B                       BE36A BE36B CB07 CB72                 4H006 AA01 AB40 TC10                 4H050 AA01 AA03 AB40 WB14 WB15

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 プロトン解離と酸化的活性化を受けるこ
とにより有機化合物の炭素−水素結合からラジカル的な
水素原子引き抜き反応を触媒する機能を持つ、一般式A
で表される水を配位子として含む有機化合物の脱水素化
反応用触媒前駆体錯体。 【化1】 但し、一般式A中、L1は3座配位子であり、R1およ
びR2はアルキル基、アリール基、または両者が結合し
て形成する置換基を有してもよい単環または縮合環であ
る。Mは周期表6〜9族の金属から選択される金属であ
る。Y-はアニオン。
1. A general formula A having a function of catalyzing a radical hydrogen atom abstraction reaction from a carbon-hydrogen bond of an organic compound by undergoing proton dissociation and oxidative activation.
A catalyst precursor complex for a dehydrogenation reaction of an organic compound containing water as a ligand represented by: [Chemical 1] However, in the general formula A, L1 is a tridentate ligand, R 1 and R 2 are an alkyl group, an aryl group, or a monocyclic or condensed ring which may have a substituent formed by bonding of both. Is. M is a metal selected from metals of Groups 6 to 9 of the periodic table. Y - is an anion.
【請求項2】 前記一般式Aで表される化合物におい
て、MがRu、CrまたはCoから選択され、R1およ
びR2は両者が結合して形成する飽和または不飽和の環
状の置換基であることを特徴とする一般式Bで示される
構造を有する請求項1に記載の有機化合物の脱水素化反
応用触媒前駆体錯体。 【化2】 (但し、MはRu、CrまたはCoから選択され、L
1、Y-は一般式Aと同じ。R3、R4、R5およびR6
アルキル基、ハロゲン、アリール基から独立に選択され
る。点線は結合がある場合とない場合を示す。)
2. In the compound represented by the general formula A, M is selected from Ru, Cr or Co, and R 1 and R 2 are saturated or unsaturated cyclic substituents formed by the bonding of both. The catalyst precursor complex for the dehydrogenation reaction of an organic compound according to claim 1, which has a structure represented by the general formula B, wherein: [Chemical 2] (However, M is selected from Ru, Cr or Co, and L
1, Y are the same as in the general formula A. R 3 , R 4 , R 5 and R 6 are independently selected from alkyl groups, halogens and aryl groups. Dotted lines show the case with and without binding. )
【請求項3】 3座配位子が2,2’:6’,2”−タ
ーピリジン誘導体、または1,4,7−トリアザシクロ
ノナン誘導体であることを特徴とする請求項1または2
に記載の有機化合物の脱水素化反応用触媒前駆体錯体。
3. The tridentate ligand is a 2,2 ′: 6 ′, 2 ″ -terpyridine derivative or a 1,4,7-triazacyclononane derivative, as claimed in claim 1 or 2.
A catalyst precursor complex for the dehydrogenation reaction of the organic compound described in 1.
【請求項4】 前記一般式Aで表されるジチオレンを配
位子として含む周期表6〜9族の金属から選択される金
属の錯体。
4. A complex of a metal selected from the metals of groups 6 to 9 of the periodic table containing the dithiolene represented by the general formula A as a ligand.
【請求項5】 前記一般式Aで表される化合物におい
て、MがRu、CrまたはCoから選択され、R1およ
びR2は両者が結合して形成する飽和または不飽和の環
状の置換基である前記一般式Bで表される構造を有する
化合物であることを特徴とする請求項4に記載の金属の
錯体。
5. In the compound represented by the general formula A, M is selected from Ru, Cr or Co, and R 1 and R 2 are saturated or unsaturated cyclic substituents formed by the bonding of both. The metal complex according to claim 4, which is a compound having a structure represented by the general formula B.
【請求項6】 3座配位子が2,2’:6’,2”−タ
ーピリジン誘導体、または1,4,7−トリアザシクロ
ノナン誘導体であることを特徴とする請求項4または5
記載の金属の錯体。
6. The tridentate ligand is a 2,2 ′: 6 ′, 2 ″ -terpyridine derivative or a 1,4,7-triazacyclononane derivative, as claimed in claim 4 or 5.
Complexes of the described metals.
JP2001344047A 2001-11-09 2001-11-09 Metal complex for catalyst precursor for dehydrogenation reaction of organic compound taking advantage of oxidative activation of water molecule Pending JP2003146966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001344047A JP2003146966A (en) 2001-11-09 2001-11-09 Metal complex for catalyst precursor for dehydrogenation reaction of organic compound taking advantage of oxidative activation of water molecule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001344047A JP2003146966A (en) 2001-11-09 2001-11-09 Metal complex for catalyst precursor for dehydrogenation reaction of organic compound taking advantage of oxidative activation of water molecule

Publications (1)

Publication Number Publication Date
JP2003146966A true JP2003146966A (en) 2003-05-21

Family

ID=19157624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001344047A Pending JP2003146966A (en) 2001-11-09 2001-11-09 Metal complex for catalyst precursor for dehydrogenation reaction of organic compound taking advantage of oxidative activation of water molecule

Country Status (1)

Country Link
JP (1) JP2003146966A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045381B2 (en) 2010-10-19 2015-06-02 Yeda Research And Development Co. Ltd. Ruthenium complexes and their uses in processes for formation and/or hydrogenation of esters, amides and derivatives thereof
US10533028B2 (en) 2014-09-04 2020-01-14 Yeda Research And Development Co. Ltd. Ruthenium complexes and their uses as catalysts in processes for formation and/or hydrogenation of esters, amides and related reactions
US10562767B2 (en) 2014-09-04 2020-02-18 Yeda Research And Development Co. Ltd. Liquid-organic hydrogen carrier systems based on catalytic peptide formation and hydrogenation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045381B2 (en) 2010-10-19 2015-06-02 Yeda Research And Development Co. Ltd. Ruthenium complexes and their uses in processes for formation and/or hydrogenation of esters, amides and derivatives thereof
US10533028B2 (en) 2014-09-04 2020-01-14 Yeda Research And Development Co. Ltd. Ruthenium complexes and their uses as catalysts in processes for formation and/or hydrogenation of esters, amides and related reactions
US10562767B2 (en) 2014-09-04 2020-02-18 Yeda Research And Development Co. Ltd. Liquid-organic hydrogen carrier systems based on catalytic peptide formation and hydrogenation

Similar Documents

Publication Publication Date Title
Desnoyer et al. Recent advances in well-defined, late transition metal complexes that make and/or break C–N, C–O and C–S bonds
Larsen et al. Photoredox catalysis with metal complexes made from earth‐abundant elements
Darwish et al. Asymmetric catalysis using iron complexes–‘Ruthenium Lite’?
Kojima et al. Alkane functionalization at nonheme iron centers. Stoichiometric transfer of metal-bound ligands to alkane
Grützmacher Cooperating ligands in catalysis
Clapham et al. Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes
Hohloch et al. Catalytic oxygenation of sp 3 “C–H” bonds with Ir (III) complexes of chelating triazoles and mesoionic carbenes
Ikariya et al. Aerobic oxidation with bifunctional molecular catalysts
Dudkina et al. Ligand-directed electrochemical functionalization of C (sp 2)—H bonds in the presence of the palladium and nickel compounds
Nakada et al. Redox-active ligands for chemical, electrochemical, and photochemical molecular conversions
Cesari et al. Ruthenium hydroxycyclopentadienyl N-heterocyclic carbene complexes as transfer hydrogenation catalysts
Cadierno et al. Bis (allyl)-ruthenium (IV) complexes: Promising precursors for catalytic organic synthesis
Ishizuka et al. Recent progress in oxidation chemistry of high-valent ruthenium-oxo and osmium-oxo complexes and related species
Fanara et al. Planar-locked Ru-PNN catalysts in 1-phenylethanol dehydrogenation
Tse et al. cis-Oxoruthenium complexes supported by chiral tetradentate amine (N 4) ligands for hydrocarbon oxidations
Galassi et al. Copper (I) and copper (II) metallacycles as catalysts for microwave assisted selective oxidation of cyclohexane
JP2003146966A (en) Metal complex for catalyst precursor for dehydrogenation reaction of organic compound taking advantage of oxidative activation of water molecule
CN114478362A (en) Preparation method of chiral pyridinol derivative
Hao et al. Ruthenium carbonyl complexes with pyridine-alkoxide ligands: synthesis, characterization and catalytic application in dehydrogenative oxidation of alcohols
Ogoshi et al. Reaction of (η2-arylaldehyde) nickel (0) complexes with Me3SiX (X= OTf, Cl). Application to catalytic reductive homocoupling reaction of arylaldehyde
Kumar et al. Structures, preparation and catalytic activity of ruthenium cyclopentadienyl complexes based on pyridyl-phosphine ligand
Krittametaporn et al. Influence of catalyst nuclearity on copper-catalyzed aerobic alcohol oxidation
JP2009136807A (en) Oxidation catalyst and its use
JP5300239B2 (en) Method for oxygenating organic substrates
CA3024425A1 (en) Novel ionic half sandwich ruthenium complexes supported by n-heterocyclic carbene and/or phosphines, as efficient transfer hydrogenation catalysts

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311