JP2003146759A - METHOD OF MANUFACTURING MgB2 SUPERCONDUCTING MATERIAL - Google Patents

METHOD OF MANUFACTURING MgB2 SUPERCONDUCTING MATERIAL

Info

Publication number
JP2003146759A
JP2003146759A JP2001350292A JP2001350292A JP2003146759A JP 2003146759 A JP2003146759 A JP 2003146759A JP 2001350292 A JP2001350292 A JP 2001350292A JP 2001350292 A JP2001350292 A JP 2001350292A JP 2003146759 A JP2003146759 A JP 2003146759A
Authority
JP
Japan
Prior art keywords
mgb
powder
powder mixture
self
superconducting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001350292A
Other languages
Japanese (ja)
Other versions
JP3757270B2 (en
Inventor
Yoshiya Kaieda
義也 海江田
Nobutaka Oguro
信高 小黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2001350292A priority Critical patent/JP3757270B2/en
Publication of JP2003146759A publication Critical patent/JP2003146759A/en
Application granted granted Critical
Publication of JP3757270B2 publication Critical patent/JP3757270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an MgB2 superconducting material which facilitates the manufacturing of the MgB2 superconducting material by suppressing the oxidation and evaporation of Mg as far as possible, can improve superconducting performance and reduce a manufacturing cost. SOLUTION: The sintered MgB2 compact having the superconducting performance is manufactured by embedding a molding made by mixing Mg power and B powder at an atomic ratio of 1:2 and compacting the mixture to form a molding body and embedding the molding body into a powder mixture composed of Ti and C, then heating strongly one end of the powder mixture composed of the Ti and C by ignition to induce the reaction expressed by Ti+ C→TiC, synthesizing the entire part of powder mixture composed of the Ti and C to TiC by the self-propagation high-temperature synthesis of the chain reaction resulting from the successive propagation of the heat of the formation generated at this time, inducing the reaction expressed by Mg+2B→MgB2 by the heat of the formation released during this time and leading this reaction also to the self-propagation high-temperature synthesis over the entire part of the molding body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この出願の発明は、MgB2超電
導材料の製造方法に関するものである。さらに詳しく
は、この出願の発明は、Mgの酸化及び蒸発をできる限り
抑制してMgB2超電導材料の製造を容易化するとともに、
超電導性能の向上が望め、しかも、製造コストの低減を
図ることのできるMgB2超電導材料の製造方法に関するも
のである。
TECHNICAL FIELD The present invention relates to a method for producing a MgB 2 superconducting material. More specifically, the invention of this application facilitates the production of MgB 2 superconducting material by suppressing the oxidation and evaporation of Mg as much as possible,
The present invention relates to a method for producing a MgB 2 superconducting material which can be expected to have improved superconducting performance and can be produced at a reduced cost.

【0002】[0002]

【従来の技術】MgB2超電導材料は、粉末冶金技術では、
これまで次のようにして製造されている。
2. Description of the Related Art MgB 2 superconducting materials are
It has been manufactured as follows until now.

【0003】まず、マグネシウム(Mg)とボロン(B)の粉
末を原子比で1:2となるように調合、混合した後、圧粉
して成形体を作製する。Mgは、周知の通り、容易に酸化
して酸化マグネシウム(MgO)などの酸化物となる。この
酸化を防止するために、次いで成形体は、たとえば鉄(F
e)、タンタル(Ta)、タングステン(W)などから形成され
た金属カプセルに詰められる。そして、真空脱気後、ア
ルゴンガスを1/3〜1/2気圧程度封入し、長時間高温に保
持して焼結し、超電導性能を有するMgB2焼結体を得てい
る。
First, magnesium (Mg) and boron (B) powders are mixed and mixed in an atomic ratio of 1: 2, and then pressed to prepare a compact. As is well known, Mg easily oxidizes into an oxide such as magnesium oxide (MgO). In order to prevent this oxidation, the shaped body is then made of, for example, iron (F
e), tantalum (Ta), tungsten (W), etc. are filled in a metal capsule. Then, after vacuum deaeration, argon gas is sealed at about 1/3 to 1/2 atm, and the mixture is held at high temperature for a long time and sintered to obtain a MgB 2 sintered body having superconducting performance.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、以上の
製造方法には、次のような問題がある。
However, the above manufacturing method has the following problems.

【0005】第一に、原料のMg粉末には、保存中の酸化
を少しでも抑えるために、粗い粉末が用いられている
が、その結果として、MgB2焼結体を得るまでの熱処理時
間が長くなっている。これは、MgB2超電導材料の製造工
程及び製造コストに反映する。
First, as the raw material Mg powder, a coarse powder is used in order to suppress oxidation during storage as much as possible. As a result, the heat treatment time until obtaining the MgB 2 sintered body is increased. It's getting longer. This is reflected in the manufacturing process and manufacturing cost of the MgB 2 superconducting material.

【0006】第二に、Mgは高温で蒸発しやすくもあり、
したがって、あまり高温で長時間の熱処理により焼結体
中のMgとBの組成比率が変わってしまい、超電導性能に
影響を及ぼす。
Secondly, since Mg easily evaporates at high temperature,
Therefore, the composition ratio of Mg and B in the sintered body is changed by heat treatment at too high temperature for a long time, which affects the superconducting performance.

【0007】第三に、熱処理中の雰囲気が良好な非酸化
性雰囲気でなければ、Mgの酸化が起こりやすくなる一
方、この酸化を防止するために真空にすると、Mgの蒸発
を助長することになる。
Thirdly, if the atmosphere during the heat treatment is not a good non-oxidizing atmosphere, the oxidation of Mg is likely to occur. On the other hand, if a vacuum is applied to prevent this oxidation, evaporation of Mg is promoted. Become.

【0008】この出願の発明は、このような事情に鑑み
てなされたものであり、Mgの酸化及び蒸発をできる限り
抑制してMgB2超電導材料の製造を容易化するとともに、
超電導性能の向上が望め、しかも、製造コストの低減を
図ることのできるMgB2超電導材料の製造方法を提供する
ことを解決すべき課題としている。
The invention of this application has been made in view of the above circumstances, and facilitates the production of MgB 2 superconducting material while suppressing the oxidation and evaporation of Mg as much as possible.
It is an issue to be solved to provide a method for producing a MgB 2 superconducting material which can be expected to improve the superconducting performance and can reduce the production cost.

【0009】[0009]

【課題を解決するための手段】この出願の発明の発明者
らは、以上の課題を解決するため、すなわち、Mgの酸化
及び蒸発を極力防止するため、できるだけ短時間にMgと
Bを反応させてMgB2超電導材料を合成することを目指
し、研究を重ねた。
In order to solve the above problems, that is, to prevent the oxidation and evaporation of Mg as much as possible, the inventors of the present application
We have carried out research aiming at synthesizing MgB 2 superconducting material by reacting B.

【0010】この出願の発明の発明者の一人は、ホウ化
物をはじめとする種々の化合物の自己伝播高温合成の開
発に携わり、すでに成功している(たとえば、特許第18
16876号)。そこで、前述の課題の解決のために、MgB2
超電導材料についても上記自己伝播高温合成の適用を様
々に試みたが、成功には至らなかった。
One of the inventors of the invention of this application has been involved in the development of self-propagating high temperature synthesis of various compounds including borides and has already been successful (eg, Patent No. 18).
No. 16876). Therefore, in order to solve the above-mentioned problems, MgB 2
Various attempts have been made to apply the above-mentioned self-propagating high-temperature synthesis to superconducting materials, but have failed.

【0011】その原因を検討したところ、MgB2の生成熱
が他のホウ化物の生成熱に比べ1/3位にしかないことが
主因として考えられる。たとえば、TiB2の生成熱は-27
9.9kJ/mol、ZrB2の生成熱は-326.6kJ/mol、HfB2の生成
熱は-328.9kJ/molであるのに対し、MgB2の生成熱は-92.
0kJ/molしかない。したがって、Mg+2B→MgB2で示される
反応とその伝播は起こりにくいと結論される。
When the cause is examined, it is considered that the main reason is that the heat of formation of MgB 2 is only 1/3 of the heat of formation of other borides. For example, the heat of formation of TiB 2 is -27
The heat of formation of 9.9 kJ / mol, ZrB 2 is -326.6 kJ / mol, the heat of formation of HfB 2 is -328.9 kJ / mol, whereas the heat of formation of MgB 2 is -92.
There is only 0 kJ / mol. Therefore, it is concluded that the reaction shown by Mg + 2B → MgB 2 and its propagation are unlikely to occur.

【0012】他の要因としては、やはりMgが蒸発しやす
いことが考えられる。すなわち、初期反応を起こさせる
ために原料の粉末混合物の一端部を強熱して点火しよう
とすると、Mgが蒸発してしまい、この時の蒸発がMg+2B
→MgB2で示される反応に必要な熱を奪ってしまう。しか
も、Mgの蒸発によりMgとBの組成比率が変化し、その結
果、自己伝播高温合成が難しくなる。
Another factor is that Mg is likely to evaporate. That is, when one end of the raw material powder mixture is ignited by igniting it to cause the initial reaction, Mg evaporates, and the evaporation at this time is Mg + 2B.
→ It takes away the heat required for the reaction indicated by MgB 2 . Moreover, the composition ratio of Mg and B changes due to evaporation of Mg, and as a result, self-propagating high temperature synthesis becomes difficult.

【0013】これらの原因究明に基づき、この出願の発
明の発明者らは、鋭意検討を加えた結果、TiとCの自己
伝播高温合成を利用することにより以上の問題が解消さ
れ、MgB2超電導材料の自己伝播高温合成が実現されるこ
とを見出した。
Based on the investigation of these causes, the inventors of the invention of the present application have made earnest studies, and as a result, the above problems have been solved by utilizing the self-propagating high temperature synthesis of Ti and C, and the MgB 2 superconductivity has been solved. It was found that self-propagating high temperature synthesis of materials was realized.

【0014】TiCの生成熱は-184.1kJ/molであり、自己
伝播高温合成が容易に起こる。この時の断熱温度は2937
℃であり、Ti+C→TiCで示される反応及びその自己伝播
高温合成時の反応熱によりMgとBの自己伝播高温合成が
誘起される。すなわち、MgB2の生成熱は前述の通り小さ
いが、MgとBの自己伝播高温合成のために必要な熱がTiC
の生成熱により補われるのである。
The heat of formation of TiC is -184.1 kJ / mol, and self-propagating high temperature synthesis easily occurs. The adiabatic temperature at this time is 2937
The temperature is ℃, and the reaction shown by Ti + C → TiC and the heat of reaction during its self-propagating high-temperature synthesis induce self-propagating high-temperature synthesis of Mg and B. That is, the heat of formation of MgB 2 is small as described above, but the heat required for self-propagating high temperature synthesis of Mg and B is TiC.
It is compensated by the heat of formation of.

【0015】また、MgとBの自己伝播高温合成に要する
時間は、Mg粉末とB粉末を原子比で1:2の割合に混合し、
圧粉して作製した成形体が数〜数十グラム程度の時、1
秒以下の短時間であり、したがって、Mgの酸化及び蒸発
を最小限に抑えることができる。
The time required for self-propagating high-temperature synthesis of Mg and B is as follows: Mg powder and B powder are mixed at an atomic ratio of 1: 2,
When the compact produced by compaction is about several to several tens of grams, 1
It is a short time of less than a second, and therefore, the oxidation and evaporation of Mg can be minimized.

【0016】すなわち、この出願の発明は、Mg粉末とB
粉末を原子比で1:2の割合に混合し、圧粉して作製した
成形体をTiとCの粉末混合物中に埋設した後、TiとCの粉
末混合物の一端部を強熱して点火し、Ti+C→TiCで示さ
れる反応を生起させ、その時発生する生成熱が次々に伝
播して連鎖反応する自己伝播高温合成によりTiとCの粉
末混合物全体をTiCに合成し、その時放出される生成熱
によりMg+2B→MgB2で示される反応を誘起させ、この反
応もまた前記成形体の全体にわたって自己伝播高温合成
させて超電導性能を有するMgB2焼結体を製造することを
特徴とするMgB2超電導材料の製造方法(請求項1)を提
供する。
That is, the invention of this application is based on Mg powder and B
The powder was mixed in an atomic ratio of 1: 2, and the compacted body made by compaction was embedded in the powder mixture of Ti and C, and then one end of the powder mixture of Ti and C was ignited by heating. , Ti + C → TiC occurs, and the heat of formation generated at that time propagates one after another to cause a chain reaction. The entire powder mixture of Ti and C is synthesized into TiC by self-propagating high temperature synthesis, and then released. The heat of formation induces a reaction represented by Mg + 2B → MgB 2, which is also characterized by self-propagating high-temperature synthesis over the whole of the compact to produce a MgB 2 sintered body having superconducting performance. A method for manufacturing a MgB 2 superconducting material (claim 1) is provided.

【0017】またこの出願の発明は、MgB2の自己伝播高
温合成を真空中で、室温以上300℃以下の温度で起こさ
せること(請求項2)、その時の真空度は、5×10-1Tor
r以下とすること(請求項3)、また、TiとCの粉末混合
物をあらかじめ真空中で加熱し、粉末混合物中に含まれ
る水分及び揮発性不純物を除去しておくこと(請求項
4)、さらに、TiとCの粉末混合物は、TiとCの混合割合
が原子比で1:1であるとともに、0〜20質量%のTiCを含む
こと(請求項5)をそれぞれ一態様として提供する。
In the invention of this application, the self-propagating high-temperature synthesis of MgB 2 is carried out in vacuum at a temperature of room temperature or higher and 300 ° C. or lower (claim 2), and the degree of vacuum at that time is 5 × 10 -1. Tor
r or less (Claim 3), and heating the powder mixture of Ti and C in a vacuum in advance to remove water and volatile impurities contained in the powder mixture (Claim 4), Further, the powder mixture of Ti and C has a mixing ratio of Ti and C of 1: 1 in atomic ratio and contains 0 to 20 mass% of TiC (claim 5) as one embodiment.

【0018】[0018]

【発明の実施の形態】以上の通り、この出願の発明のMg
B2超電導材料の製造方法においては、Mg粉末とB粉末を
原子比で1:2の割合に混合し、圧粉して作製した成形体
をTiとCの粉末混合物中に埋設した後、TiとCの粉末混合
物の一端部を強熱して点火し、Ti+C→TiCで示される反
応を生起させ、その時発生する生成熱が次々に伝播して
連鎖反応する自己伝播高温合成によりTiとCの粉末混合
物全体をTiCに合成し、その時放出される生成熱によりM
g+2B→MgB2で示される反応を誘起させ、この反応もまた
前記成形体の全体にわたって自己伝播高温合成させて超
電導性能を有するMgB2焼結体を製造する。その実施に当
たっては、たとえば図1に示される自己伝播高温合成装
置を用いることができる。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, Mg of the invention of this application
In the method for producing a B 2 superconducting material, Mg powder and B powder are mixed at an atomic ratio of 1: 2, and a compact produced by compaction is embedded in a powder mixture of Ti and C, and then Ti One end of the powder mixture of C and C is ignited by igniting to cause a reaction represented by Ti + C → TiC, and the heat of formation generated at that time is propagated one after another to cause a chain reaction. The entire powder mixture of was synthesized into TiC and the heat of formation released at that time caused M
A reaction represented by g + 2B → MgB 2 is induced, and this reaction is also self-propagating at high temperature over the entire compact to produce a MgB 2 sintered body having superconducting performance. In carrying out this, for example, the self-propagating high temperature synthesis apparatus shown in FIG. 1 can be used.

【0019】図1は、この出願の発明のMgB2超電導材料
の製造方法に適用可能な自己伝播高温合成装置の概要と
この装置を用いてMgB2超電導材料を製造する際の概要を
示した断面図である。
FIG. 1 is a cross-sectional view showing an outline of a self-propagating high-temperature synthesis apparatus applicable to the method for producing an MgB 2 superconducting material of the invention of this application and an outline of producing an MgB 2 superconducting material using this apparatus. It is a figure.

【0020】自己伝播高温合成装置は真空容器(1)を
備え、この真空容器(1)は、シーリング機構(2)に
よりシール可能とされるとともに、給排気系(3)に接
続され、内部の給排気が可能とされている。真空容器
(1)の内部には、ヒーター(4)を備えた電気炉
(5)が配設されている。電気炉(5)は、その内部
に、自己伝播高温合成させる粉末などを入れる耐火性る
つぼ(6)の装填が可能とされている。この電気炉
(5)には、耐火性るつぼ(6)の上端開口部付近に位
置し、自己伝播高温合成させる粉末の一端部に接触して
強熱し、点火させることのできる、タングステン線、ニ
クロム線などから形成されるコイル(7)が配設されて
いる。また、電気炉(5)には、温度制御用の熱電対
(8)が配設されてもいる。以上のヒーター(4)、コ
イル(7)、及び熱電対(8)は、気密状態が保持され
るようにして真空容器(1)から外部に引き出され、電
源、制御器などに電気的に接続され、外部から操作可能
とされている。
The self-propagating high temperature synthesis apparatus is provided with a vacuum container (1), which can be sealed by a sealing mechanism (2) and is connected to an air supply / exhaust system (3). Supply and exhaust is possible. Inside the vacuum vessel (1), an electric furnace (5) equipped with a heater (4) is arranged. The electric furnace (5) can be loaded with a refractory crucible (6) in which powder for self-propagating high temperature synthesis is put. This electric furnace (5) is located near the upper end opening of the refractory crucible (6) and is capable of igniting and igniting by contact with one end of the powder for self-propagating high temperature synthesis. A coil (7) formed of wires or the like is arranged. A thermocouple (8) for temperature control is also arranged in the electric furnace (5). The above heater (4), coil (7), and thermocouple (8) are pulled out from the vacuum container (1) so that the airtight state is maintained, and electrically connected to a power supply, a controller, etc. And can be operated from the outside.

【0021】この出願の発明のMgB2超電導材料の製造方
法を実施する際には、Mg粉末とB粉末を原子比で1:2の割
合に混合し、圧粉して作製した成形体(9)を、耐火性
るつぼ(6)内に入れたTiとCの粉末混合物(10)中
に埋設する。このTiとCの粉末混合物(10)は、あら
かじめ真空中で加熱し、粉末混合物(10)中に含まれ
る水分及び揮発性不純物を除去しておくことが好まし
い。より良質のMgB2超電導材料の製造が可能となるから
である。
When carrying out the method for producing a MgB 2 superconducting material according to the invention of this application, a compact (9) prepared by mixing Mg powder and B powder in an atomic ratio of 1: 2 and compacting the mixture. ) Is embedded in a powder mixture of Ti and C (10) placed in a refractory crucible (6). It is preferable to heat the powder mixture (10) of Ti and C in a vacuum in advance to remove water and volatile impurities contained in the powder mixture (10). This is because it is possible to manufacture a higher quality MgB 2 superconducting material.

【0022】その後、耐火性るつぼ(6)を電気炉
(5)の内部に装填し、真空容器(1)をシーリング機
構(2)によりシールする。そして、真空容器(1)の
内部を給排気系(3)の作動により真空排気する。MgB2
の自己伝播高温合成に適当とされる真空度は5×10-1Tor
r以下であり、真空度を高めれば高めるほどMgOなどの酸
化物の生成を抑えることができる。
Then, the refractory crucible (6) is loaded into the electric furnace (5), and the vacuum container (1) is sealed by the sealing mechanism (2). Then, the inside of the vacuum container (1) is evacuated by the operation of the supply / exhaust system (3). MgB 2
The vacuum degree suitable for self-propagating high temperature synthesis of is 5 × 10 -1 Tor
It is r or less, and the higher the degree of vacuum, the more the generation of oxides such as MgO can be suppressed.

【0023】この後、TiとCの粉末混合物(10)の一
端部である上端部にコイル(7)を接触させ、通電して
強熱し、TiとCの粉末混合物(10)の上端部を点火す
る。着火後、Ti+C→TiCで示される反応が起こり、その
時発生する生成熱が次々に伝播して連鎖反応する自己伝
播高温合成が起こり、TiとCの粉末混合物(10)の全
体がTiCに合成される。また、この時の生成熱によりMg+
2B→MgB2で示される反応が誘起され、成形体(9)は、
自己伝播高温合成を起こし、その全体が、超電導性能を
有するMgB2焼結体となる。MgB2の自己伝播高温合成に要
する時間は、成形体(9)が数〜数十グラム程度であれ
ば、1秒以下である。
After that, the coil (7) is brought into contact with the upper end which is one end of the powder mixture (10) of Ti and C, and is energized to ignite to heat the upper end of the powder mixture (10) of Ti and C. Ignite. After ignition, the reaction represented by Ti + C → TiC occurs, and the heat of formation that is generated at that time propagates one after another, causing self-propagating high temperature synthesis in which a chain reaction occurs, and the entire powder mixture of Ti and C (10) becomes TiC. Is synthesized. Also, due to the heat of formation at this time, Mg +
The reaction represented by 2B → MgB 2 is induced, and the molded body (9) is
Self-propagating high-temperature synthesis occurs, and the whole becomes a MgB 2 sintered body having superconducting performance. The time required for the self-propagating high temperature synthesis of MgB 2 is 1 second or less if the molded body (9) is about several to several tens of grams.

【0024】なお、TiとCの粉末混合物(10)は、Ti
とCの混合割合が原子比で1:1であることが好ましいが、
発熱量の調整のために、TiCを0〜20質量%含有させるこ
ともできる。
The powder mixture of Ti and C (10) is Ti
It is preferable that the mixing ratio of C and C is 1: 1 by atomic ratio,
TiC may be contained in an amount of 0 to 20% by mass in order to adjust the calorific value.

【0025】また、MgB2の自己伝播高温合成時には、前
述の通り、真空容器(1)内の雰囲気を真空とすること
が好ましいことに加え、電気炉(5)内の温度をヒータ
ー(4)により室温以上300℃以下の温度に保持するこ
とも好ましい。このような条件下で得られるMgB2超電導
材料の収率は、約50〜100%となる。
During the self-propagating high-temperature synthesis of MgB 2 , it is preferable to make the atmosphere in the vacuum container (1) a vacuum as described above, and the temperature in the electric furnace (5) is set to the heater (4). Therefore, it is also preferable to maintain the temperature at room temperature or higher and 300 ° C. or lower. The yield of the MgB 2 superconducting material obtained under such conditions is about 50 to 100%.

【0026】たとえば以上に示されるように、この出願
の発明のMgB2超電導材料の製造方法により、MgB2超電導
材料を自己伝播高温合成により製造することができ、こ
れに要する時間は短時間であり、これまでの粉末冶金技
術による製造のような長時間の熱処理が解消される。こ
のため、Mgの酸化及び蒸発をできる限り抑制することが
でき、MgB2超電導材料の製造が容易化され、また、Mgと
Bの組成比率がほぼ安定化し、超電導性能の向上が望め
る。しかも、製造の容易化とともに、MgB2の自己伝播高
温合成を起こさせるために使用するTi粉末、 C粉末は、
いずれも特に高価なものではないことから、MgB2超電導
材料の製造コストの低減が図られる。
For example, as shown above, the MgB 2 superconducting material of the present invention can be produced by self-propagating high temperature synthesis by the method for producing an MgB 2 superconducting material, which requires a short time. , Long-time heat treatment such as the conventional manufacturing by powder metallurgy is eliminated. Therefore, the oxidation and evaporation of Mg can be suppressed as much as possible, the production of the MgB 2 superconducting material is facilitated, and Mg and
The composition ratio of B is almost stabilized, and it can be expected that the superconducting performance is improved. Moreover, as well as facilitating production, Ti powder and C powder used for causing the self-propagating high temperature synthesis of MgB 2 are
Since neither is particularly expensive, the manufacturing cost of the MgB 2 superconducting material can be reduced.

【0027】以下、実施例を示す。Examples will be shown below.

【0028】[0028]

【実施例】平均粒径が約400μmの角状のMg粉末、平均粒
径が約1μmのアモルファスボロン粉末、平均粒径が30μ
mの角状のTi粉末、及び平均粒径が約15μmのグラファイ
ト粉末を使用した。
[Examples] Angular Mg powder having an average particle size of about 400 μm, amorphous boron powder having an average particle size of about 1 μm, and average particle size of 30 μ
Square m-shaped Ti powder and graphite powder having an average particle size of about 15 μm were used.

【0029】以上のMg粉末とB粉末を原子比で1:2の割合
に混合し、このMgとBの粉末混合物をポリウレタンゴム
型に詰め、冷間等方圧プレス(CIP)により300MPaに1分間
保ち、圧粉して成形体を作製した。TiとCの粉末混合物
は、200℃に12時間保持して乾燥させた。
The above Mg powder and B powder were mixed at an atomic ratio of 1: 2, the Mg and B powder mixture was packed into a polyurethane rubber mold, and cold isostatic pressing (CIP) was performed to obtain 1 MPa of 300 MPa. It was kept for a minute and pressed to prepare a molded body. The powder mixture of Ti and C was kept at 200 ° C. for 12 hours to be dried.

【0030】そして、図1に概略的に示される自己伝播
高温合成装置の耐火性るつぼ(6)内にTiとCの粉末混
合物(10)を入れ、この中にMgとBの成形体(9)を
埋設した。次いで、耐火性るつぼ(6)を電気炉(7)
の内部に装填し、TiとCの粉末混合物(10)の上端部
に、線径0.6mmのタングステン線から形成されたコイル
(7)を接触させて配置した。この状態において、真空
容器(1)をシーリング機構(2)によりシールした
後、真空容器(1)の内部を給排気系(3)により真空
排気し、真空度を1×10-3Pa以下に常時保った。そし
て、コイル(7)に20A程度の電流を通電し、TiとCの粉
末混合物(10)の上端部を強熱して点火した。
Then, a powder mixture of Ti and C (10) was placed in a refractory crucible (6) of a self-propagating high temperature synthesizer shown schematically in FIG. 1, and a compact of Mg and B (9) was placed therein. ) Was buried. Then, the refractory crucible (6) is placed in an electric furnace (7).
A coil (7) made of a tungsten wire having a wire diameter of 0.6 mm was placed in contact with the upper end of the powder mixture of Ti and C (10). In this state, after sealing the vacuum container (1) with the sealing mechanism (2), the inside of the vacuum container (1) is evacuated by the air supply / exhaust system (3) to reduce the degree of vacuum to 1 × 10 −3 Pa or less. I kept it all the time. Then, a current of about 20 A was applied to the coil (7) to ignite the upper end of the powder mixture (10) of Ti and C by igniting it.

【0031】着火後、Ti+C→TiCで示される反応が起こ
り、その時発生する生成熱が次々に伝播して連鎖反応す
る自己伝播高温合成が起こった。短時間の内にTiとCの
粉末混合物(10)の全体がTiCに合成され、この時放
出される生成熱により中に仕込んでおいたMgとBの成形
体(9)においてMg+2B→MgB2で示される反応が誘起さ
れ、また、自己伝播高温合成が起こり、成形体(9)の
全体がMgB2焼結体となった。
After ignition, the reaction represented by Ti + C → TiC occurred, and the heat of formation generated at that time was propagated one after another to cause self-propagating high temperature synthesis in which chain reaction occurred. The entire powder mixture of Ti and C (10) was synthesized into TiC within a short period of time, and Mg + 2B was added in the Mg and B compact (9) that had been charged by the heat of formation released at this time. The reaction represented by MgB 2 was induced, and self-propagating high temperature synthesis took place, and the entire compact (9) became a MgB 2 sintered compact.

【0032】図2は、電気炉内を室温に保持して製造し
たMgB2焼結体の帯磁率の温度変化をプロットした図であ
る。
FIG. 2 is a diagram in which the temperature change of the magnetic susceptibility of the MgB 2 sintered body produced by keeping the inside of the electric furnace at room temperature is plotted.

【0033】超電導遷移温度は39Kであり、帯磁率の変
化が大きく、したがって、良好な超電導性能を示してい
ることが確認される。
It is confirmed that the superconducting transition temperature is 39 K and the change in the magnetic susceptibility is large, and therefore the superconducting performance is excellent.

【0034】図3は、電気炉内を150℃に保持して製造
したMgB2焼結体の帯磁率の温度変化をプロットした図で
ある。
FIG. 3 is a diagram in which the temperature change of the magnetic susceptibility of the MgB 2 sintered body produced by keeping the inside of the electric furnace at 150 ° C. is plotted.

【0035】超電導遷移温度は39Kであり、帯磁率の変
化が大きく、したがって、良好な超電導性能を示してい
ることが確認される。
It is confirmed that the superconducting transition temperature is 39 K, and the change in the magnetic susceptibility is large, and therefore the superconducting performance is excellent.

【0036】図4は、電気炉内を200℃に保持して製造
したMgB2焼結体の帯磁率の温度変化をプロットした図で
ある。
FIG. 4 is a diagram in which the temperature change of the magnetic susceptibility of the MgB 2 sintered body produced by keeping the inside of the electric furnace at 200 ° C. is plotted.

【0037】超電導遷移温度は39Kであり、帯磁率の変
化が大きく、したがって、良好な超電導性能を示してい
ることが確認される。また、SQUID(超電導量子干渉
計)で測定したMgB2の収率は100%であった。
It is confirmed that the superconducting transition temperature is 39 K and the change in the magnetic susceptibility is large, and therefore the superconducting performance is excellent. The MgB 2 yield measured by SQUID (superconducting quantum interferometer) was 100%.

【0038】もちろん、この出願の発明は、以上の実施
形態及び実施例によって限定されるものではない。自己
伝播高温合成装置の細部の構成や構造、使用する粉末の
粒径や形状などについては様々な態様が可能であること
はいうまでもない。
Of course, the invention of this application is not limited to the above-described embodiments and examples. It goes without saying that various configurations are possible for the detailed configuration and structure of the self-propagating high-temperature synthesis apparatus, and the particle size and shape of the powder used.

【0039】[0039]

【発明の効果】以上詳しく説明した通り、この出願の発
明によって、Mgの酸化及び蒸発ができる限り抑制され、
MgB2超電導材料の製造が容易化するとともに、超電導性
能の向上が望め、しかも、製造コストの低減が図られ
る。
As described in detail above, according to the invention of this application, oxidation and evaporation of Mg are suppressed as much as possible,
In addition to facilitating the manufacture of MgB 2 superconducting materials, it is expected that the superconducting performance will be improved and the manufacturing cost will be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この出願の発明のMgB2超電導材料の製造方法に
適用可能な自己伝播高温合成装置の概要とこの装置を用
いてMgB2超電導材料を製造する際の概要を示した断面図
である。
FIG. 1 is a cross-sectional view showing an outline of a self-propagating high-temperature synthesis apparatus applicable to a method for producing an MgB 2 superconducting material of the invention of this application and an outline when producing an MgB 2 superconducting material using this apparatus. .

【図2】電気炉内を室温に保持して製造したMgB2焼結体
の帯磁率の温度変化をプロットした図である。
FIG. 2 is a diagram in which a change in magnetic susceptibility of a MgB 2 sintered body produced by keeping the inside of an electric furnace at room temperature with temperature is plotted.

【図3】電気炉内を150℃に保持して製造したMgB2焼結
体の帯磁率の温度変化をプロットした図である。
FIG. 3 is a diagram plotting temperature changes of magnetic susceptibility of a MgB 2 sintered body produced by keeping the inside of an electric furnace at 150 ° C.

【図4】電気炉内を200℃に保持して製造したMgB2焼結
体の帯磁率の温度変化をプロットした図である。
FIG. 4 is a diagram plotting temperature changes of magnetic susceptibility of a MgB 2 sintered body produced by keeping the inside of an electric furnace at 200 ° C.

【符号の説明】[Explanation of symbols]

1 真空容器 2 シーリング機構 3 給排気系 4 ヒーター 5 電気炉 6 耐火性るつぼ 7 コイル 8 熱電対 9 MgとBの成形体 10 TiとCの粉末混合物 1 vacuum container 2 sealing mechanism 3 air supply / exhaust system 4 heater 5 electric furnace 6 Fireproof crucible 7 coils 8 thermocouple Molded body of 9 Mg and B Powder mixture of 10 Ti and C

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Mg粉末とB粉末を原子比で1:2の割合に混
合し、圧粉して作製した成形体をTiとCの粉末混合物中
に埋設した後、TiとCの粉末混合物の一端部を強熱して
点火し、Ti+C→TiCで示される反応を生起させ、その時
発生する生成熱が次々に伝播して連鎖反応する自己伝播
高温合成によりTiとCの粉末混合物全体をTiCに合成し、
その時放出される生成熱によりMg+2B→MgB2で示される
反応を誘起させ、この反応もまた前記成形体の全体にわ
たって自己伝播高温合成させて超電導性能を有するMgB2
焼結体を製造することを特徴とするMgB2超電導材料の製
造方法。
1. A powder mixture of Ti and C, which is obtained by mixing Mg powder and B powder at an atomic ratio of 1: 2 and squeezing the compacted body to be embedded in the powder mixture of Ti and C. One end of the powder is ignited and ignited to cause a reaction represented by Ti + C → TiC, and the generated heat generated at that time is propagated one after another, and the entire powder mixture of Ti and C is subjected to chain reaction by self-propagating high temperature synthesis. Synthesized to TiC,
The heat of formation released at that time induces a reaction represented by Mg + 2B → MgB 2 , and this reaction is also self-propagating at high temperature over the entire body of the compact, and MgB 2 having superconducting performance is obtained.
A method for producing a MgB 2 superconducting material, which comprises producing a sintered body.
【請求項2】 MgB2の自己伝播高温合成を真空中で、室
温以上300℃以下の温度で起こさせる請求項1記載のMgB
2超電導材料の製造方法。
2. The MgB 2 according to claim 1, wherein self-propagating high-temperature synthesis of MgB 2 is carried out in a vacuum at a temperature of room temperature or higher and 300 ° C. or lower.
2 Manufacturing method of superconducting material.
【請求項3】 真空度は、5×10-1Torr以下とする請求
項2記載のMgB2超電導材料の製造方法。
3. The method for producing a MgB 2 superconducting material according to claim 2, wherein the degree of vacuum is 5 × 10 −1 Torr or less.
【請求項4】 TiとCの粉末混合物をあらかじめ真空中
で加熱し、粉末混合物中に含まれる水分及び揮発性不純
物を除去しておく請求項1乃至3いずれかに記載のMgB2
超電導材料の製造方法。
4. The MgB 2 according to any one of claims 1 to 3, wherein the powder mixture of Ti and C is previously heated in vacuum to remove water and volatile impurities contained in the powder mixture.
Manufacturing method of superconducting material.
【請求項5】 TiとCの粉末混合物は、TiとCの混合割合
が原子比で1:1であるとともに、0〜20質量%のTiCを含む
請求項1乃至4いずれかに記載のMgB2超電導材料の製造
方法。
5. The MgB according to claim 1, wherein the powder mixture of Ti and C has a mixing ratio of Ti and C of 1: 1 in atomic ratio and contains 0 to 20 mass% of TiC. 2 Manufacturing method of superconducting material.
JP2001350292A 2001-11-15 2001-11-15 Manufacturing method of MgB2 superconducting material Expired - Lifetime JP3757270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001350292A JP3757270B2 (en) 2001-11-15 2001-11-15 Manufacturing method of MgB2 superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001350292A JP3757270B2 (en) 2001-11-15 2001-11-15 Manufacturing method of MgB2 superconducting material

Publications (2)

Publication Number Publication Date
JP2003146759A true JP2003146759A (en) 2003-05-21
JP3757270B2 JP3757270B2 (en) 2006-03-22

Family

ID=19162827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001350292A Expired - Lifetime JP3757270B2 (en) 2001-11-15 2001-11-15 Manufacturing method of MgB2 superconducting material

Country Status (1)

Country Link
JP (1) JP3757270B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159513A1 (en) * 2017-03-03 2018-09-07 株式会社日立製作所 Superconductor production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159513A1 (en) * 2017-03-03 2018-09-07 株式会社日立製作所 Superconductor production method
US11387017B2 (en) 2017-03-03 2022-07-12 Hitachi, Ltd. Method of producing superconductor

Also Published As

Publication number Publication date
JP3757270B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
JP4800540B2 (en) 312 phase material manufacturing method and sintering method thereof
Shon et al. Simultaneous synthesis and densification of MoSi2 by field‐activated combustion
Choi et al. Fabrication of metal matrix composites of
JPH0527454B2 (en)
JP5142208B2 (en) Method for producing metal silicide
Zhang et al. Effects of different types of sintering additives and post-heat treatment (PHT) on the mechanical properties of SHS-fabricated Si3N4 ceramics
JP3757273B2 (en) Manufacturing method of MgB2 superconducting material
JP2003146759A (en) METHOD OF MANUFACTURING MgB2 SUPERCONDUCTING MATERIAL
EP1812359A1 (en) PROCESS FOR THE PREPARATION OF A MgB2 BASED SUPERCONDUCTING PRODUCT ,AND PRODUCT OBTAINABLE BY THIS PROCESS
Tolendiuly et al. The effect of MWCNT addition on superconducting properties of MgB 2 fabricated by high-pressure combustion synthesis
JP3697510B2 (en) Manufacturing method of WC cemented carbide
JPH0556284B2 (en)
JP2004075467A (en) Boron suboxide powder and method for producing sintered compact thereof
JP3697509B2 (en) Method for sintering tungsten powder
KR101053955B1 (en) Manufacturing method of magnesium-based hydride and magnesium-based hydride prepared using the same
CN113087530A (en) ZrB-based2Nonequilibrium state alloying modified high oxygen resistant coating and preparation method thereof
Xue et al. Initiation of Self‐Propagating Combustion Waves in Dense Mo+ 2Si Reactants through Field‐Activation
JPH059009A (en) Production of intermetallic compound and ceramics
JPH0717373B2 (en) Method for producing oxide superconducting material
JPH04124007A (en) Combustion synthesis of high-purity tin
JPH0158131B2 (en)
JP2539857B2 (en) Method for synthesizing silicon carbide powder
JP4354566B2 (en) Process for producing inorganic compounds by combustion synthesis reaction
Ramdane Self-Propagating High-Temperature Synthesis of MgB2 superconductor: A Review
JP3771127B2 (en) Atmospheric pressure combustion synthesis method of high density TiAl intermetallic compound

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

R150 Certificate of patent or registration of utility model

Ref document number: 3757270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term