JP2003146603A - Method for controlling hydrogen generation - Google Patents

Method for controlling hydrogen generation

Info

Publication number
JP2003146603A
JP2003146603A JP2001344067A JP2001344067A JP2003146603A JP 2003146603 A JP2003146603 A JP 2003146603A JP 2001344067 A JP2001344067 A JP 2001344067A JP 2001344067 A JP2001344067 A JP 2001344067A JP 2003146603 A JP2003146603 A JP 2003146603A
Authority
JP
Japan
Prior art keywords
hydrogen
aqueous solution
reaction zone
hydrogen gas
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001344067A
Other languages
Japanese (ja)
Other versions
JP4173303B2 (en
Inventor
Seijiro Suda
精二郎 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001344067A priority Critical patent/JP4173303B2/en
Publication of JP2003146603A publication Critical patent/JP2003146603A/en
Application granted granted Critical
Publication of JP4173303B2 publication Critical patent/JP4173303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling hydrogen generation with simple operation and with quick response by overcoming drawbacks such as complicated operation or defective response in a conventional method. SOLUTION: In a method for generating gaseous hydrogen by feeding an aqueous alkaline solution of a metal hydride complex compound into a reaction zone with a catalyst layer provided therein and bringing the solution into contact with the catalyst, hydrogen generation is controlled by increasing and deceasing a rate of gaseous hydrogen extraction from the reaction zone and also a feed rate into, or a discharge rate from, the reaction zone of the aqueous alkaline solution or both of them, thus changing pressure in the reaction zone, raising or lowering a water level of the aqueous alkaline solution and thus regulating a part of the catalyst layer in contact with the aqueous alkaline solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属水素錯化合物
のアルカリ水溶液を触媒と接触させて水素ガスを発生さ
せる方法において、水素ガスの発生量や取出量の調節又
は発生停止を迅速に行うための水素発生制御方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing hydrogen gas by bringing an alkaline aqueous solution of a metal-hydrogen complex compound into contact with a catalyst, in order to quickly adjust or stop the production amount or removal amount of hydrogen gas. The present invention relates to a method for controlling hydrogen generation.

【0002】[0002]

【従来の技術】金属水素錯化合物のアルカリ水溶液を水
素吸蔵合金のような触媒に接触させて水素を発生させる
方法は既に知られている(特開2001−19401号
公報)。このような方法において、発生水素ガスの量を
所望に応じ増減したり、緊急時に水素ガスの発生を停止
させるには、通常、回分式では機械的に触媒体を取出し
たり、浸漬する方法が、また連続式、循環式では金属水
素錯化合物のアルカリ水溶液の供給量を増減する方法が
行われている。
2. Description of the Related Art A method for generating hydrogen by contacting an alkaline aqueous solution of a metal-hydrogen complex compound with a catalyst such as a hydrogen storage alloy is already known (Japanese Patent Laid-Open No. 2001-19401). In such a method, the amount of generated hydrogen gas is increased or decreased as desired, or in order to stop the generation of hydrogen gas in an emergency, usually, in a batch system, a method of mechanically removing the catalyst body, or immersing the catalyst body, Further, in the continuous system and the circulation system, a method of increasing or decreasing the supply amount of the alkaline aqueous solution of the metal hydrogen complex compound is performed.

【0003】しかしながら、触媒体を取出したり、浸漬
する操作を繰り返し行うには、その都度煩雑な作業を必
要とするし、またアルカリ水溶液の供給量を増減するた
めにバルブの開閉を行う場合、触媒層の抵抗によりアル
カリ水溶液の流入、排出にタイムラグを生じ応答性が悪
く、特に緊急時の水素ガス発生の停止には対応できない
という問題があった。
However, in order to repeatedly carry out the operation of taking out and immersing the catalyst body, a complicated work is required each time, and when the valve is opened and closed to increase or decrease the supply amount of the alkaline aqueous solution, the catalyst is required. Due to the resistance of the layer, there was a time lag in the inflow and outflow of the alkaline aqueous solution, and the response was poor, and there was a problem that it was not possible to deal with the stop of hydrogen gas generation particularly in an emergency.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
事情のもとで、従来方法における煩雑な作業や応答性不
良という欠点を克服し、簡単な操作で、しかも迅速に応
答しうる水素発生制御方法を提供することを目的として
なされたものである。
Under the circumstances described above, the present invention overcomes the disadvantages of the conventional method, such as complicated work and poor response, and is a hydrogen which can be quickly responded by a simple operation. It is made for the purpose of providing a generation control method.

【0005】[0005]

【課題を解決するための手段】本発明者は、金属水素錯
化合物のアルカリ水溶液を、触媒に接触し、水素ガスの
発生量を調節し、あるいは緊急時にその水素ガスの発生
を停止する方法について鋭意研究を重ねた結果、反応帯
域に滞留する水素ガスの圧力を利用することにより、水
素ガスの発生量の調節や停止を効率かつ応答性よく行い
うることを見出し、この知見に基づいて本発明をなすに
至った。
Means for Solving the Problems The present inventor has proposed a method of contacting a catalyst with an alkaline aqueous solution of a metal-hydrogen complex compound to adjust the amount of hydrogen gas generated, or to stop the generation of hydrogen gas in an emergency. As a result of intensive studies, it was found that by utilizing the pressure of hydrogen gas staying in the reaction zone, the amount of hydrogen gas generated can be controlled and stopped efficiently and responsively, and the present invention is based on this finding. Came to make.

【0006】すなわち、本発明は、触媒層を設けた反応
帯域に、金属水素錯化合物のアルカリ水溶液を供給し、
これを触媒と接触させて水素ガスを発生させる方法にお
いて、反応帯域からの水素ガスの取出量とともに、該ア
ルカリ水溶液の反応帯域への供給量又は反応帯域からの
排出量或いはその両方を増減して、反応帯域内の圧力を
変化させ、該アルカリ水溶液の水位を上昇又は下降させ
ることにより触媒層と該アルカリ水溶液との接触部分を
調節することを特徴とする水素発生制御方法を提供する
ものである。
That is, according to the present invention, an alkaline aqueous solution of a metal-hydrogen complex compound is supplied to a reaction zone provided with a catalyst layer,
In a method of contacting this with a catalyst to generate hydrogen gas, the amount of hydrogen gas taken out from the reaction zone, the amount of the alkaline aqueous solution supplied to the reaction zone or the amount discharged from the reaction zone, or both are increased or decreased. The present invention provides a method for controlling hydrogen generation, which comprises adjusting the contact portion between the catalyst layer and the alkaline aqueous solution by changing the pressure in the reaction zone and raising or lowering the water level of the alkaline aqueous solution. .

【0007】[0007]

【発明の実施の形態】次に添付図面に従って、本発明を
詳細に説明する。図1は、本発明の水素発生制御方法に
おいて用いられる水素発生装置の1例の正面図、図2は
その一部切欠した側面図であって、この水素発生装置
は、低温燃焼部分1及び水素発生部分2が直列に連結し
て構成されている。そして、金属水素錯化合物のアルカ
リ水溶液は、水溶液供給バルブ3を介して水溶液貯蔵部
4に導入され、水溶液量調節バルブ5及び管路6を経
て、連続的に水素発生部7に送られる。この反応帯域を
構成する水素発生部7には、水素発生用触媒ブロック8
が収納され、金属水素錯化合物のアルカリ水溶液は、こ
の水素発生用触媒と接触して水素ガスを発生する。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a front view of an example of a hydrogen generator used in the hydrogen generation control method of the present invention, and FIG. 2 is a partially cutaway side view of the hydrogen generator. The generation part 2 is configured by connecting in series. Then, the alkaline aqueous solution of the metal-hydrogen complex compound is introduced into the aqueous solution storage unit 4 via the aqueous solution supply valve 3, and continuously sent to the hydrogen generation unit 7 via the aqueous solution amount control valve 5 and the pipe 6. A hydrogen generating catalyst block 8 is provided in the hydrogen generating section 7 which constitutes this reaction zone.
And the alkaline aqueous solution of the metal-hydrogen complex compound comes into contact with the hydrogen generating catalyst to generate hydrogen gas.

【0008】次に、発生した水素ガスは、水素ガス量調
節バルブ9を介して低温燃焼部分1に送られる。低温燃
焼部分1は、空気取入孔10及び水蒸気、空気排出孔1
1を備えた密閉容器からなり、この中には水素ガスヘッ
ダー12、触媒担持板13、逆火防止、断熱板14、水
素ガス供給板15及び加熱板16が収納され、低温燃焼
部分1に導入された水素ガスは、空気取入孔10から導
入される過剰量の空気と混合され、触媒担持板13と接
触し、同時に加熱板16により加熱された空気と低温燃
焼し、水を生成する。このようにして生成した水は、水
蒸気として未反応の空気と混合され、湿潤空気として、
水蒸気、空気排出孔11から外部に排出される。他方、
水素発生部分2の下方には、水溶液排出槽17が配置さ
れ、水溶液排出バルブ18を介して水素発生部分2と連
通している。
Next, the generated hydrogen gas is sent to the low temperature combustion section 1 through the hydrogen gas amount control valve 9. The low temperature combustion portion 1 includes an air intake hole 10 and steam / air discharge hole 1
It is composed of a closed container provided with 1, in which a hydrogen gas header 12, a catalyst supporting plate 13, a backfire prevention, a heat insulating plate 14, a hydrogen gas supply plate 15 and a heating plate 16 are housed and introduced into the low temperature combustion part 1. The generated hydrogen gas is mixed with an excess amount of air introduced from the air intake hole 10, contacts the catalyst supporting plate 13, and at the same time, is burned at low temperature with the air heated by the heating plate 16 to generate water. The water thus generated is mixed with unreacted air as water vapor, and as wet air,
The water vapor is discharged to the outside through the air discharge hole 11. On the other hand,
An aqueous solution discharge tank 17 is arranged below the hydrogen generation portion 2 and communicates with the hydrogen generation portion 2 via an aqueous solution discharge valve 18.

【0009】本発明方法による水素発生の制御は、水素
ガス量調節バルブ9を開閉して水素発生部7からの水素
ガスの取出量を増減するとともに、水素発生部7への水
溶液量調節バルブ5又は水素発生部7からの水溶液排出
バルブ18あるいはその両方を調節して、水素発生部7
の系内すなわち反応帯域で発生する水素ガス圧を変化さ
せ、水素発生用触媒ブロック8の、金属水素錯化合物の
アルカリ水溶液との接触面積を増減することにより、迅
速に行うことができる。
In the control of hydrogen generation by the method of the present invention, the hydrogen gas amount control valve 9 is opened and closed to increase or decrease the amount of hydrogen gas taken out from the hydrogen generation unit 7, and the aqueous solution amount control valve 5 to the hydrogen generation unit 7 is controlled. Alternatively, by adjusting the aqueous solution discharge valve 18 from the hydrogen generating unit 7 or both, the hydrogen generating unit 7 can be controlled.
By changing the hydrogen gas pressure generated in the system, that is, in the reaction zone, and increasing or decreasing the contact area of the hydrogen generating catalyst block 8 with the alkaline aqueous solution of the metal-hydrogen complex compound, it can be carried out rapidly.

【0010】そして、緊急時に水素ガスの発生を可及的
速やかに停止させる場合においても、水素ガス緊急放出
バルブ19を開放するとともに、前記と同様に水溶液量
調節バルブ5を閉じ、かつ水溶液排出バルブ18を開放
し、系内の圧力により水素発生用触媒ブロック8と金属
水素錯化合物のアルカリ水溶液との接触を遮断すること
によって迅速に行うことができる。
Even when the generation of hydrogen gas is stopped as quickly as possible in an emergency, the hydrogen gas emergency release valve 19 is opened, the aqueous solution amount control valve 5 is closed, and the aqueous solution discharge valve is opened as described above. By opening 18 and shutting off the contact between the hydrogen generating catalyst block 8 and the alkaline aqueous solution of the metal-hydrogen complex compound by the pressure in the system, it can be carried out rapidly.

【0011】この例においては、発生させた水素を過剰
の空気とともに酸化触媒と接触させて低温燃焼させ、湿
潤空気を生成させているが、本発明方法は、当然のこと
ながら単に水素発生を目的とする場合にも用いることが
できる。
In this example, the generated hydrogen is brought into contact with the oxidation catalyst together with an excess of air and burned at a low temperature to generate moist air. However, the method of the present invention is, of course, merely intended to generate hydrogen. Can also be used when

【0012】本発明方法において水素を発生する原料の
1つとして用いられる金属水素錯化合物としては、例え
ば一般式 MIIII4-nn (I) 又は MII(MIII4-nn2 (II) (式中のnは0又は1〜3の整数)で表わされる化合物
を挙げることができる。
The metal-hydrogen complex compound used as one of the raw materials for generating hydrogen in the method of the present invention is, for example, a compound represented by the general formula M I M III H 4-n R n (I) or M II (M III H 4- n R n) is 2 (II) (n in the formula can be mentioned compounds represented by 0 or an integer of 1 to 3).

【0013】これらの式中のMIはアルカリ金属、例え
ばリチウム、ナトリウム、カリウム、ルビジウムなどで
あり、MIIはアルカリ土類金属、例えばマグネシウム、
カルシウム、ストロンチウム又は亜鉛であり、MIII
ホウ素、アルミニウム又はガリウムである。
In these formulas, M I is an alkali metal such as lithium, sodium, potassium and rubidium, and M II is an alkaline earth metal such as magnesium.
Calcium, strontium or zinc, M III is boron, aluminum or gallium.

【0014】また、Rは例えば、エチル基、ブチル基の
ようなアルキル基、メトキシ基、エトキシ基、n‐プロ
ポキシ基、iso‐プロポキシ基、n‐ブトキシ基、i
so‐ブトキシ基、sec‐ブトキシ基、tert‐ブ
トキシ基、2‐メトキシエトキシ基、2‐エトキシメト
キシ基などのようなアルコキシル基又はアセトキシ基、
プロピオニルオキシ基のようなアシルオキシ基である。
R is, for example, an alkyl group such as ethyl group or butyl group, methoxy group, ethoxy group, n-propoxy group, iso-propoxy group, n-butoxy group, i.
an alkoxyl group or an acetoxy group such as a so-butoxy group, a sec-butoxy group, a tert-butoxy group, a 2-methoxyethoxy group, a 2-ethoxymethoxy group,
An acyloxy group such as a propionyloxy group.

【0015】したがって、一般式(I)で表わされる金
属水素錯化合物の例としては、水素化ホウ素ナトリウム
(NaBH4)、水素化アルミニウムリチウム(LiA
lH4)、トリメトキシ水素化ホウ素ナトリウムNaB
H(OCH3)、トリアセトキシ水素化ホウ素ナトリウ
ムNaBH(OCOCH33、水素化トリエチルホウ素
リチウムLi(C253BH、水素化トリ‐s‐ブチ
ルホウ素リチウムLi(s‐C493BH、水素化ト
リブチルホウ素リチウムLi(n‐C493BH、水
素化トリ‐s‐ブチルホウ素カリウムK(s‐C49
3BH、トリメトキシ水素化アルミニウムリチウムLi
AlH(OCH33、モノエトキシ水素化アルミニウム
リチウムLiAlH3(OC25)、トリ‐tert‐
ブトキシ水素化アルミニウムリチウム、水素化ビス(2
‐メトキシエトキシ)アルミニウムナトリウムなどを挙
げることができる。また、一般式(II)で表わされる
金属水素錯化合物の例としては、水素化ホウ素亜鉛Zn
(BH42、水素化ホウ素カルシウムCa(BH42
テトラメトキシ水素化ホウ素亜鉛Zn[B(OCH32
22、ヘキサエトキシ水素化ホウ素カルシウムCa
[B(OC253H]2などを挙げることができる。こ
れらの金属水素錯化合物は公知であり、選択的水素化用
試薬として市販されている。
Therefore, examples of the metal-hydrogen complex compound represented by the general formula (I) include sodium borohydride (NaBH 4 ) and lithium aluminum hydride (LiA).
1H 4 ), sodium trimethoxyborohydride NaB
H (OCH 3), sodium triacetoxyborohydride NaBH (OCOCH 3) 3, lithium triethylborohydride Li (C 2 H 5) 3 BH, hydrogenated tri -s- butylborohydride lithium Li (s-C 4 H 9 ) 3 BH, lithium tributylborohydride Li (n-C 4 H 9 ) 3 BH, potassium tri-s-butylborohydride K (s-C 4 H 9 )
3 BH, Lithium trimethoxyaluminum hydride Li
AlH (OCH 3 ) 3 , lithium monoethoxy hydride LiAlH 3 (OC 2 H 5 ), tri-tert-
Butoxy lithium aluminum hydride, bis hydride (2
-Methoxyethoxy) aluminum sodium and the like can be mentioned. Further, examples of the metal-hydrogen complex compound represented by the general formula (II) include zinc borohydride Zn
(BH 4 ) 2 , calcium borohydride Ca (BH 4 ) 2 ,
Zinc tetramethoxyborohydride Zn [B (OCH 3 ) 2
H 2 ] 2 , hexaethoxy borohydride calcium Ca
[B (OC 2 H 5 ) 3 H] 2 and the like can be mentioned. These metal-hydrogen complex compounds are known and are commercially available as reagents for selective hydrogenation.

【0016】一般に、これらの金属水素錯化合物のnが
1〜3のもの、すなわち水素原子の一部がアルキル基、
アルコキシル基又はアシルオキシ基で置換されたもの
は、置換されていないものに比べ反応性が低いので、水
素の発生量を減少させる方に制御する場合にこれを用い
ることができる。
Generally, these metal-hydrogen complex compounds having n of 1 to 3, that is, a part of hydrogen atoms are alkyl groups,
Since those substituted with an alkoxyl group or an acyloxy group have lower reactivity than those not substituted, they can be used when controlling to reduce the amount of hydrogen generation.

【0017】本発明方法においては、一般式(I)又は
(II)で表わされる金属水素錯化合物を単独で用いて
もよいし、2種以上組み合わせて用いてもよい。これら
の金属水素錯化合物は、水と接触すると、反応式 MIIII4-nn + 2H2O → (4−n)H2 + MI
III2 + nRH 又は MII(MIII4-nn)2 + 4H2O → 2(4−n)H2
+ MIIIII 24+ 2nRH (式中のMI、MII、MIII、R及びnは前記と同じ意味
をもつ)に従って反応し、水素を発生する。
In the method of the present invention, the metal-hydrogen complex compound represented by the general formula (I) or (II) may be used alone or in combination of two or more kinds. When these metal hydrogen complex compounds come into contact with water, the reaction formula M I M III H 4-n R n + 2H 2 O → (4-n) H 2 + M I
M III O 2 + nRH or M II (M III H 4-n R n ) 2 + 4H 2 O → 2 (4-n) H 2
+ M II M III 2 O 4 + 2nRH (wherein M I , M II , M III , R and n have the same meanings as described above) to generate hydrogen.

【0018】そして、この際の水素発生量は、金属水素
錯化合物自体が分解して発生する水素の量と水が分解し
て発生する水素の量との和になるので、水素の発生効率
は非常に高くなり、例えば水素化ホウ素ナトリウムを用
いた場合には10.9重量%に達する。しかも、このよ
うにして得られる水素は、不純分を含まない高純度のも
のであるというメリットがある。
Since the amount of hydrogen generated at this time is the sum of the amount of hydrogen generated by decomposition of the metal-hydrogen complex compound itself and the amount of hydrogen generated by decomposition of water, the hydrogen generation efficiency is Very high, for example 10.9% by weight when using sodium borohydride. Moreover, the hydrogen thus obtained has the advantage that it is of high purity and does not contain impurities.

【0019】本発明方法においては、これらの金属水素
錯化合物を安定な状態で取り扱うためにアルカリ水溶液
に溶解した溶液として用いることが必要である。このア
ルカリとしては、水酸化リチウム、水酸化ナトリウム、
水酸化カリウムのようなアルカリ金属水酸化物や、テト
ラメチルアンモニウムヒドロキシド、テトラエチルアン
モニウムヒドロキシドのような第四アルキルアンモニウ
ム化合物などが用いられる。
In the method of the present invention, in order to handle these metal-hydrogen complex compounds in a stable state, it is necessary to use them as a solution dissolved in an alkaline aqueous solution. As this alkali, lithium hydroxide, sodium hydroxide,
Alkali metal hydroxides such as potassium hydroxide and quaternary alkylammonium compounds such as tetramethylammonium hydroxide and tetraethylammonium hydroxide are used.

【0020】これらのアルカリは少なくとも1質量%、
好ましくは少なくとも10質量%の濃度の水溶液として
用いられる。この濃度の上限は、アルカリの飽和濃度で
あるが、あまり高濃度にすると金属水素錯化合物が溶解
しにくくなるので、30質量%以下の範囲で選択するの
が好ましい。例えば、水酸化ナトリウムの場合は8〜3
0質量%、水酸化カリウムの場合は10〜25質量%の
範囲の濃度において金属水素錯化合物をよく溶解し、し
かも水素の発生が認められない。
These alkalis are at least 1% by mass,
It is preferably used as an aqueous solution having a concentration of at least 10% by mass. The upper limit of this concentration is the saturated concentration of alkali, but if the concentration is too high, the metal-hydrogen complex compound becomes difficult to dissolve, so it is preferable to select in the range of 30 mass% or less. For example, 8 to 3 for sodium hydroxide
In the case of 0% by mass and potassium hydroxide, the metal-hydrogen complex compound is well dissolved at a concentration in the range of 10 to 25% by mass, and generation of hydrogen is not recognized.

【0021】この際の金属水素錯化合物の濃度は高けれ
ば高いほどその体積当りの水素発生量が多くなるので有
利である。アルカリ性媒質に対する金属水素錯化合物の
溶解度は温度の関数として変化し、高温下と低温下とで
は著しい差があるため、飽和溶解度まで金属水素錯化合
物を溶解した溶液は、周囲温度の変化により晶析現象を
起こすが、このように金属水素錯化合物の一部が析出し
ている溶液であっても本発明方法においては、特に支障
はない。なお、10質量%水酸化ナトリウム水溶液10
0g中におけるNaBH4の溶解度は61g、10質量
%水酸化カリウム水溶液100g中におけるKBH4
溶解度は15gである。このようにして調製された金属
水素錯化合物含有アルカリ水溶液は非常に安定であって
長時間貯蔵しても水素を発生することがない。
At this time, the higher the concentration of the metal-hydrogen complex compound, the more the amount of hydrogen generated per volume, which is advantageous. Since the solubility of the metal-hydrogen complex compound in an alkaline medium changes as a function of temperature, and there is a significant difference between high temperature and low temperature, a solution in which the metal-hydrogen complex compound is dissolved up to the saturation solubility is crystallized by a change in ambient temperature. Although a phenomenon occurs, even a solution in which a part of the metal-hydrogen complex compound is precipitated does not cause any particular problem in the method of the present invention. In addition, 10 mass% sodium hydroxide aqueous solution 10
The solubility of NaBH 4 in 0 g is 61 g, and the solubility of KBH 4 in 100 g of a 10 mass% potassium hydroxide aqueous solution is 15 g. The metal-hydrogen complex-containing alkaline aqueous solution thus prepared is very stable and does not generate hydrogen even when stored for a long time.

【0022】この金属水素錯化合物含有アルカリ水溶液
には、所望に応じ、メチルアルコールやエチルアルコー
ルのようなアルコールやジメチルホルムアミド、ジメチ
ルアセトアミド、エチレングリコール、ジエチレングリ
コールのような水混和性溶剤を添加することもできる。
If desired, an alcohol such as methyl alcohol or ethyl alcohol, or a water-miscible solvent such as dimethylformamide, dimethylacetamide, ethylene glycol or diethylene glycol may be added to the aqueous alkali metal complex compound-containing alkali solution. it can.

【0023】次に、上記の金属水素錯化合物含有アルカ
リ水溶液と接触させて水素ガスを発生させるために用い
られる水素発生用触媒としては、例えばニッケル、コバ
ルト、ジルコニウム、ロジウム、白金、パラジウム、
銀、金など水素発生用触媒として公知のものが用いられ
る。
Next, as a hydrogen generating catalyst used to generate hydrogen gas by contacting with the above-mentioned aqueous metal hydrogen complex compound-containing alkali solution, for example, nickel, cobalt, zirconium, rhodium, platinum, palladium,
Known catalysts for hydrogen generation such as silver and gold are used.

【0024】また、この水素発生用触媒としては、いわ
ゆる水素吸蔵合金を用いることもできる。このような水
素吸蔵合金としては、例えばMg2Ni合金、Mg2Ni
とMgとの共晶合金のようなMg2Ni系合金やZrN
2系合金やTiNi2系合金などのラベス相系AB2
合金、TiFe系合金のようなAB型合金、LaNi5
系合金のようなAB5型合金、TiV2系合金のようなB
CC型合金の中から任意に選ぶことができるこれらは単
独で用いてもよいし、また2種以上を混合して用いても
よい。
A so-called hydrogen storage alloy can also be used as the hydrogen generating catalyst. As such a hydrogen storage alloy, for example, Mg 2 Ni alloy, Mg 2 Ni
Mg 2 Ni-based alloys and ZrN, such as a eutectic alloy of the Mg
Labes phase type AB 2 type alloys such as i 2 type alloys and TiNi 2 type alloys, AB type alloys such as TiFe type alloys, LaNi 5
AB 5 type alloys such as type alloys, B such as TiV 2 type alloys
These which can be arbitrarily selected from CC type alloys may be used alone or in combination of two or more.

【0025】また、この水素発生用触媒は、フッ化処理
することにより、その性能を著しく高めることができ
る。このフッ化処理は、例えば金属又は合金をフッ化剤
含有水溶液中に浸せきし、フッ化処理された表面をもつ
金属又は合金を形成させることによって行われる。
Further, the performance of this hydrogen generating catalyst can be remarkably enhanced by the fluorination treatment. This fluorination treatment is performed, for example, by immersing a metal or alloy in an aqueous solution containing a fluorinating agent to form a metal or alloy having a fluorinated surface.

【0026】上記フッ化剤含有水溶液としては、通常、
フッ素イオンとアルカリイオンを含む水溶液が用いら
れ、これは、例えばフッ化アルカリを0.2〜20質量
%程度の濃度で含有する水溶液に、フッ化水素を加え
て、pHを2.0〜6.5程度に調整することにより調
製することができる。この際用いるフッ化アルカリとし
ては特に制限はなく、フッ化ナトリウム、フッ化カリウ
ム、フッ化アンモニウムなどの水に対して易溶性のもの
が好ましく、特にフッ化カリウムが好適である。これら
のフッ化アルカリは単独で用いてもよいし、2種以上を
組み合わせて用いてもよい。
The above fluorinating agent-containing aqueous solution is usually
An aqueous solution containing fluorine ions and alkali ions is used. For example, hydrogen fluoride is added to an aqueous solution containing alkali fluoride at a concentration of about 0.2 to 20% by mass to adjust the pH to 2.0 to 6. It can be prepared by adjusting to about 0.5. The alkali fluoride used at this time is not particularly limited, and those which are easily soluble in water, such as sodium fluoride, potassium fluoride, and ammonium fluoride, are preferable, and potassium fluoride is particularly preferable. These alkali fluorides may be used alone or in combination of two or more.

【0027】フッ化剤含有水溶液中のフッ化アルカリの
好ましい濃度は、フッ化ナトリウムの場合0.3〜3質
量%、フッ化カリウムの場合0.5〜5質量%、フッ化
アンモニウムの場合0.5〜8質量%の範囲である。フ
ッ化アルカリの濃度が、上記範囲よりも低いとフッ化処
理表面の形成に長時間を要し、実用的でないし、上記範
囲より高いと十分な厚さのフッ化処理表面が形成されに
くいため、安定化効果が不十分となる。
The preferred concentration of alkali fluoride in the fluorinating agent-containing aqueous solution is 0.3 to 3 mass% for sodium fluoride, 0.5 to 5 mass% for potassium fluoride, and 0 for ammonium fluoride. It is in the range of 0.5 to 8 mass%. If the concentration of the alkali fluoride is lower than the above range, it takes a long time to form the fluorinated surface, which is not practical, and if it is higher than the above range, it is difficult to form a fluorinated surface having a sufficient thickness. , The stabilization effect becomes insufficient.

【0028】また、このフッ化剤含有水溶液のpHが
2.0未満では金属又は合金表面における金属フッ化反
応が急速に進行するため、均質なフッ化処理表面が形成
されにくいし、6.5を超えると金属フッ化反応速度が
遅くなり、十分な厚さのフッ化処理表面が形成されな
い。適度な金属フッ化反応速度を有し、均質で十分な厚
さでフッ化処理表面を形成させる点から、このpHの好
ましい範囲は4.5〜6.0の範囲である。上記pH範
囲に調整するのに必要なフッ化水素の量は、通常、フッ
化アルカリ1モルに対し、フッ化ナトリウムの場合1〜
3モル、フッ化カリウムの場合0.2〜3モル、フッ化
アンモニウムの場合0.2〜1モルの範囲である。
When the pH of the fluorinating agent-containing aqueous solution is less than 2.0, the metal fluorination reaction on the surface of the metal or alloy rapidly proceeds, so that a uniform fluorinated surface is difficult to be formed. If it exceeds, the metal fluorination reaction rate becomes slow and a fluorinated surface having a sufficient thickness cannot be formed. The preferable range of this pH is 4.5 to 6.0 from the viewpoint of having a moderate metal fluorination reaction rate and forming a fluorinated surface with a uniform and sufficient thickness. The amount of hydrogen fluoride required to adjust to the above pH range is usually 1 to 1 mol of sodium fluoride for 1 mol of alkali fluoride.
3 mol, 0.2 to 3 mol for potassium fluoride, and 0.2 to 1 mol for ammonium fluoride.

【0029】前記フッ化剤含有水溶液を用いて、金属又
は合金にフッ化処理表面を形成させるには、このフッ化
剤含有水溶液中に、金属又は合金を浸せきし、通常、常
圧下で0〜80℃程度、好ましくは30〜60℃の範囲
の温度において、その表面に十分な厚さ、すなわち0.
01〜1μm程度のフッ化処理表面が形成されるまで保
持する。これに要する時間は1〜60分間程度である。
In order to form a fluorinated surface on a metal or an alloy by using the fluorinating agent-containing aqueous solution, the metal or alloy is immersed in the fluorinating agent-containing aqueous solution, and usually 0 to 0 under normal pressure. At a temperature of about 80 ° C., preferably in the range of 30 to 60 ° C., the surface has a sufficient thickness, that is, 0.
It is held until a fluorinated surface of about 1 to 1 μm is formed. The time required for this is about 1 to 60 minutes.

【0030】本発明方法においては、前記した水素発生
用触媒は、粒子状、棒状、板状、多孔板状、網状に成形
して用いられるが、取り扱いが容易で、接触面積が大き
いという点で多孔質ブロックに成形して用いるのが好ま
しい。
In the method of the present invention, the above-mentioned hydrogen generating catalyst is used after being shaped into particles, rods, plates, perforated plates or nets, but it is easy to handle and has a large contact area. It is preferable to use by molding into a porous block.

【0031】そして、本発明方法において、この水素発
生用触媒と金属水素錯化合物のアルカリ水溶液との接触
面積を、該アルカリ水溶液の水位を上昇又は下降させる
ことにより変化させて、水素発生量を制御する。
In the method of the present invention, the contact area between the hydrogen generating catalyst and the alkali aqueous solution of the metal hydrogen complex compound is changed by raising or lowering the water level of the alkali aqueous solution to control the hydrogen generation amount. To do.

【0032】次に、本発明方法において発生した水素を
低温燃焼して、水蒸気と空気との混合物すなわち湿潤空
気を製造する場合には、酸化用触媒を用いることが必要
であるが、この酸化用触媒としては、一般に酸化用触媒
として慣用されているもの、例えば白金、パラジウムな
どの貴金属触媒を挙げることができる。これらは、ニッ
ケル、ニッケル合金などの発泡金属表面に薄膜状に担持
させて用いるのが好ましい。
Next, when the hydrogen generated in the method of the present invention is burned at a low temperature to produce a mixture of steam and air, that is, wet air, it is necessary to use an oxidation catalyst. Examples of the catalyst include those commonly used as oxidation catalysts, for example, noble metal catalysts such as platinum and palladium. These are preferably used by being supported in the form of a thin film on the surface of foam metal such as nickel or nickel alloy.

【0033】この低温燃焼は、供給される水素ガスに対
し、大過剰の空気の存在下、例えば水素と反応して水を
生成する酸素の5モル倍以上の酸素を含む空気の存在
下、すなわち体積比として5倍以上、好ましくは10倍
以上、一般に7ないし15倍の割合の空気の存在下で行
われる。
This low temperature combustion is carried out in the presence of a large excess of air with respect to the supplied hydrogen gas, for example, in the presence of air containing 5 moles or more of oxygen that reacts with hydrogen to produce water. It is carried out in the presence of air in a volume ratio of 5 times or more, preferably 10 times or more, generally 7 to 15 times.

【0034】このような低温燃焼の機構は、触媒担持体
表面で、ノズルから直接噴出する水素と、周囲の空気中
の酸素とが直接接触反応を起こすことで、水素1gから
生成物として水蒸気9gを発生し、121kJの燃焼熱
を発生する。
The mechanism of such low-temperature combustion is that the hydrogen directly ejected from the nozzle and the oxygen in the ambient air directly contact with each other on the surface of the catalyst carrier, whereby 1 g of hydrogen produces 9 g of steam as a product. To generate combustion heat of 121 kJ.

【0035】低温燃焼は、水素と空気中の酸素が直接接
触するので、炭化水素を含む燃焼のようなCO2やCO
は発生しないと共に、低温で自然に燃焼するため、火炎
燃焼のような窒素酸化物も発生しない。
The low temperature combustion, the oxygen of the hydrogen and air are in direct contact, CO 2 and CO, such as combustion, including hydrocarbons
Does not occur, and because it burns naturally at low temperatures, it does not generate nitrogen oxides such as flame combustion.

【0036】低温燃焼の燃焼熱は、空気の直接加熱も可
能であるが、通常は熱移動の差から周囲の空気の加熱よ
りも、触媒担持体の加熱に大部分消費され、熱移動は、
触媒担持体からの放射伝熱が主である。触媒担持体から
の放射伝熱を効率的に受けるように、触媒担持体に対面
するように、空気が通過可能な多孔質材で形成される加
熱体を設け、触媒担持体より受けた放射伝熱によって加
熱された加熱体を空気が通過するとき、空気中の微生物
などをろ過しながら加熱殺菌消毒効果を発揮する。この
低温燃焼は、水素ガスと空気とを混合して200〜40
0℃の範囲で行われる。
Although the combustion heat of the low temperature combustion can directly heat the air, it is usually more largely consumed for heating the catalyst carrier than for heating the surrounding air due to the difference in heat transfer, and the heat transfer is
Radiative heat transfer from the catalyst carrier is mainly used. In order to efficiently receive the radiant heat transfer from the catalyst carrier, a heating body made of a porous material through which air can pass is provided so as to face the catalyst carrier, and the radiant heat received from the catalyst carrier is provided. When air passes through a heating element heated by heat, it exerts a heat sterilization effect while filtering microorganisms in the air. This low temperature combustion is carried out by mixing hydrogen gas and air for 200 to 40
It is carried out in the range of 0 ° C.

【0037】加熱体は、熱に耐えられるアルミニウム、
ニッケル、セラミックスなどの多孔質体で成形され、形
状としてはハニカム、網目、発泡、材料繊維の不織布状
混合体など、ろ過と殺菌消毒効果を発揮可能なものであ
ればよい。加熱体は、酸化チタンや光触媒などで表面を
被覆して、さらに殺菌効果を与えることも可能である。
The heating element is aluminum, which can withstand heat,
It may be formed of a porous material such as nickel or ceramics, and may have any shape as long as it has a filtering and sterilizing effect, such as a honeycomb, a mesh, a foam, or a non-woven mixture of material fibers. The surface of the heating body can be coated with titanium oxide, a photocatalyst or the like to further give a bactericidal effect.

【0038】次に、図3は、本発明方法を実施するのに
好適な制御システムの1例を示すブロック図である。こ
の図において、水素発生装置の主要部は、低温燃焼部分
1、水溶液貯蔵部4、水素発生部7及び水溶液排出槽1
7から構成され、水素発生部7と低温燃焼部分1との間
は、水素ガス量調節バルブ9を備えた管路によって、水
溶液貯蔵部4と水素発生部7との間は水溶液量調節バル
ブ5を備えた管路によって、また水素発生部7と水溶液
排出槽17との間は、水溶液排出バルブ18を備えた管
路によってそれぞれ連通されている。また、水素発生部
7には、水素ガス緊急放出バルブ19を備えた管路が設
けられている。
Next, FIG. 3 is a block diagram showing an example of a control system suitable for carrying out the method of the present invention. In this figure, the main parts of the hydrogen generator are a low temperature combustion part 1, an aqueous solution storage part 4, a hydrogen generating part 7 and an aqueous solution discharge tank 1.
7 between the hydrogen generation part 7 and the low temperature combustion part 1 by a pipe provided with a hydrogen gas amount control valve 9, and between the aqueous solution storage part 4 and the hydrogen generation part 7 an aqueous solution amount control valve 5 And the hydrogen generation part 7 and the aqueous solution discharge tank 17 are connected by a pipeline provided with an aqueous solution discharge valve 18, respectively. In addition, the hydrogen generation unit 7 is provided with a conduit provided with a hydrogen gas emergency release valve 19.

【0039】そして、この装置には付属機器として、水
素発生部7の内部に検出端を有する圧力計及び液面計、
水素ガス量調節バルブ9と連動する流量計、水溶液排出
バルブ18と連動する流量計、水溶液量調節バルブ5と
連動する流量計がそれぞれ付設され、上記の圧力計は圧
力変換器に、液面計及び各流量計は流量調節器に接続
し、それらから与えられた情報に従って、水素ガス量調
節バルブ9、水溶液量調節バルブ5、水溶液排出バルブ
18及び水素ガス緊急放出バルブ19の開度を調節する
ための指令が発信される。
As an accessory to this apparatus, a pressure gauge and a liquid level gauge having a detection end inside the hydrogen generating section 7,
A flow meter interlocking with the hydrogen gas amount control valve 9, a flow meter interlocking with the aqueous solution discharge valve 18, and a flow meter interlocking with the aqueous solution volume control valve 5 are respectively attached, and the above pressure gauge is a pressure converter and a liquid level gauge. And each flow meter is connected to a flow rate controller, and according to the information given thereto, the opening degree of the hydrogen gas amount control valve 9, the aqueous solution amount control valve 5, the aqueous solution discharge valve 18 and the hydrogen gas emergency release valve 19 is controlled. A command for is sent.

【0040】このシステムを構成する部材としては、ア
ルカリ水溶液に対して耐食性を有し、かつある程度の耐
圧強度を有するものであればよく、例えばステンレス
鋼、硬質プラスチックなどが用いられる。また、これら
の各部分は、系内閉鎖時に水溶液を排出させるのに必要
な系内圧力(例えば5000mm水柱)、水溶液の最高
温度(例えば100℃)に耐えうるように設計すること
が必要である。
As a member constituting this system, any member may be used as long as it has corrosion resistance to an alkaline aqueous solution and has a certain degree of pressure resistance, such as stainless steel and hard plastic. In addition, each of these parts must be designed to withstand the system internal pressure (for example, 5000 mm water column) and the maximum temperature of the aqueous solution (for example, 100 ° C.) required to discharge the aqueous solution when the system is closed. .

【0041】上記のシステムの動作は、次のようにして
行われる。すなわち、水素発生容器における触媒体の水
素ガス発生能を基準として、水素ガス量調節バルブの開
度に伴う一定時間の系内圧力を検出して、その圧力変化
に応じて水溶液供給バルブ及び水溶液排出バルブを調節
して、触媒体における液面高さを調整することにより、
水素ガスの発生量及び取出し量を制御する。この際、系
内圧力の設定には、直接に圧力計を検出端として測定し
てもよいが、間接的に触媒体における液面高さの測定を
検出端としてもよい。このような制御システムは、回分
式、連続式、サイクル式又は水溶液移動にポンプを使用
するか、液ヘッドを用いるかなどにより補助的部分を異
にするが、基本的な制御システムの操作は共通である。
The operation of the above system is performed as follows. That is, based on the hydrogen gas generation capacity of the catalyst in the hydrogen generation container, the system pressure for a certain time with the opening of the hydrogen gas amount control valve is detected, and the aqueous solution supply valve and the aqueous solution discharge are detected according to the pressure change. By adjusting the valve to adjust the liquid level height in the catalyst body,
The amount of hydrogen gas generated and the amount taken out are controlled. At this time, the pressure inside the system may be set directly by using a pressure gauge as a detection end, but indirectly by measuring the liquid level height in the catalyst body as a detection end. Such a control system has different auxiliary parts depending on whether a pump is used for a batch type, a continuous type, a cycle type or an aqueous solution transfer, a liquid head is used, etc., but the basic operation of the control system is common. Is.

【0042】次に、本発明の制御システムを連続式を例
として説明する。水素発生容器において、ある一定量の
水素ガス発生に対しては、水素ガス供給バルブはその流
量に応じて一定の開度を示し、水素発生容器の系内も一
定の圧力を示す。この系内圧力にカスケードされ、水溶
液供給バルブ及び水溶液排出バルブは適当な開度をと
り、水溶液の液面は、触媒体をある一定の高さまで浸漬
し、その水溶液は水溶液排出バルブを経由して水溶液排
出槽に放出される。
Next, the control system of the present invention will be described by taking a continuous system as an example. In the hydrogen generating container, when a certain amount of hydrogen gas is generated, the hydrogen gas supply valve has a certain opening according to the flow rate, and the system of the hydrogen generating container also has a certain pressure. Cascaded to this system pressure, the aqueous solution supply valve and the aqueous solution discharge valve have appropriate openings, the liquid surface of the aqueous solution immerses the catalyst body to a certain height, and the aqueous solution passes through the aqueous solution discharge valve. It is discharged to the aqueous solution discharge tank.

【0043】所定量より、水素ガス発生量を増加させる
場合は、水素ガス量調節バルブの開度をより大きくする
ように操作して、水素発生容器の系内の圧力を低下させ
る。これにより、この系内圧力にカスケードされ、水溶
液量調節バルブはより大きく開放されるように作用させ
るとともに、水溶液排出バルブはより閉止するように作
用し、その後に適当な開度を保つことにより、液面を、
触媒体をある一定の高さより高い位置まで浸漬させる。
When the hydrogen gas generation amount is increased from a predetermined amount, the hydrogen gas amount control valve is operated so as to be larger, and the pressure in the system of the hydrogen generation container is lowered. As a result, the pressure in the system is cascaded, the aqueous solution amount control valve acts to be opened more, the aqueous solution discharge valve acts to close more, and thereafter, by maintaining an appropriate opening degree, Liquid level,
The catalyst body is immersed above a certain height.

【0044】逆に水素ガス発生量を減少させる場合に
は、水素ガス供給バルブは開度をより閉止するように操
作して、水素発生容器の系内の圧力を上昇させると、こ
の系内圧力にカスケードされ、水溶液量調節バルブはよ
り閉止するようになるとともに、水溶液排出バルブはよ
り開放するように作用し、その後に適当な開度を保つこ
とにより、液面は、触媒体をある一定の高さより低い位
置で浸漬する。
On the contrary, when the hydrogen gas generation amount is decreased, the hydrogen gas supply valve is operated so that the opening is further closed to increase the pressure in the system of the hydrogen generation container. The aqueous solution volume control valve is closed more and the aqueous solution discharge valve is opened more, and after that, by maintaining an appropriate opening, the liquid level keeps the catalyst body at a certain level. Dip below the height.

【0045】なお、緊急停止の場合、一定量の水素ガス
発生あるいは量が増加している場合に緊急停止すると、
水素ガス供給バルブは緊急遮断されるため、水素発生容
器の系内の圧力は急上昇し、この系内圧力にカスケード
され、水溶液量調節バルブは閉止となり、水溶液排出バ
ルブは全開となり、その後に適当な開度を保持するが、
液面は、触媒体に触れない最低の位置まで低下する。そ
して、水素発生容器が、系内が容器耐圧より高くなる場
合は、さらに水素ガス緊急放出バルブが開放される。こ
れらのバルブ操作と系内圧力及び液面高さとの関係は表
1のようになる。
In the case of an emergency stop, if a certain amount of hydrogen gas is generated or if the amount is increasing,
Since the hydrogen gas supply valve is shut off urgently, the pressure in the system of the hydrogen generation container suddenly rises and is cascaded to this system pressure, the aqueous solution volume control valve is closed, and the aqueous solution discharge valve is fully opened. Holds the opening,
The liquid level drops to the lowest position where it does not touch the catalyst body. Then, when the inside of the hydrogen generation container has a pressure higher than the pressure resistance of the container, the hydrogen gas emergency release valve is further opened. Table 1 shows the relationship between these valve operations and the system pressure and the liquid surface height.

【0046】[0046]

【表1】 [Table 1]

【0047】なお、水溶液排出バルブについては、初期
作動後、系内圧力に対応した開度とする。
The aqueous solution discharge valve has an opening corresponding to the system internal pressure after the initial operation.

【0048】[0048]

【実施例】次に、実施例により本発明をさらに詳細に説
明する。
EXAMPLES Next, the present invention will be described in more detail by way of examples.

【0049】実施例 ステンレス鋼製容器(350×100×750mm)内
に、連通孔を有する空隙率90%のニッケル発泡体(6
5×65×65mm)の表面をフッ化処理及びコバルト
還元して被覆を設け、その下部に幅65mm、高さ50
mmのステンレス鋼製フィルター付き分散溝を設けたブ
ロック5個を直列に配置して、水素発生容器を構成し
た。
Example In a stainless steel container (350 × 100 × 750 mm), a nickel foam (6 with a porosity of 90% having communicating holes) was prepared.
(5 x 65 x 65 mm) surface is fluorinated and cobalt reduced to provide a coating, with a width of 65 mm and a height of 50 at the bottom.
A hydrogen generating container was constructed by arranging 5 blocks each having a dispersion groove with a stainless steel filter having a size of mm in series.

【0050】次に、10質量%水酸化ナトリウム水溶液
に、水素化ホウ素ナトリウム(NaBH4)を約3質量
%の濃度で溶解した水溶液約6リットルを水溶液貯蔵槽
に装入し、各ブロックの最下部の分散溝に配置した液温
調整用シーズヒーターにより、液温を40℃に調節し
て、毎時37gの水素を発生させた。この水素量は、約
300ml/時(日本電機工業会規格に基づく木造和室
8畳分、プレハブ洋室13畳分を加湿しうる量)の水蒸
気を発生し得る。
Next, about 6 liters of an aqueous solution prepared by dissolving sodium borohydride (NaBH 4 ) at a concentration of about 3% by mass in an aqueous solution of 10% by mass sodium hydroxide was placed in the aqueous solution storage tank, and each block was filled with The liquid temperature was adjusted to 40 ° C. by a liquid temperature adjusting sheathed heater arranged in the lower dispersion groove, and 37 g of hydrogen was generated per hour. This amount of hydrogen can generate steam of about 300 ml / hour (amount capable of humidifying 8 tatami mats in a wooden Japanese-style room and 13 tatami mats in a prefabricated western room based on the Japan Denki Kogyo Standard).

【0051】次に、以下のようにして低温燃焼装置を作
製した。先ず、触媒バーナーを触媒担持体、逆火防止及
び断熱材、水素ガス供給板から構成し、燃焼反応をさせ
る触媒担体は、触媒はパラジウム、担体はセルメット
(材質:ニッケル)の板状体を用いた。逆火の防止及び
断熱材は、セラミックスウールとステンレス鋼製の網状
スペーサーの積層体で形成され、その裏側には、水素ガ
スを触媒体に供給するための水素ガス噴射用ノズルを多
数配列したガス供給板が積層されている。ガス供給板の
背後に裏当て板が配された垂直な扁平空間の下端部に角
筒状のマニホールドが形成され、そのマニホールドに
は、水素ガス配給配管が接続される。次いで、37g/
hの水素供給に対して5倍以上の過剰空気率を用いて、
触媒体表面温度は290〜325℃で燃焼させた。上
記、触媒バーナー以外には、この触媒担持体に相対する
ように98%空隙率のセラミックス製の空気の加熱体、
その断熱、ろ過にはセラミックスウール及びステンレス
製金網を配置している。低温燃焼装置部分は、幅350
mm、奥行き100mm、高さ300mmのステンレス
鋼製であり、これらをすべて枠内に保持させた。
Next, a low temperature combustion apparatus was manufactured as follows. First, the catalyst burner is composed of a catalyst carrier, a flashback prevention and heat insulating material, and a hydrogen gas supply plate, and the catalyst carrier for the combustion reaction is a palladium catalyst, and the carrier is a Celmet (material: nickel) plate. I was there. The flashback prevention and heat insulating material is formed by a laminated body of ceramic wool and a mesh spacer made of stainless steel, and on the back side thereof is a gas in which a large number of hydrogen gas injection nozzles for supplying hydrogen gas to the catalyst are arranged. The supply plates are stacked. A rectangular cylindrical manifold is formed at the lower end of a vertical flat space in which a backing plate is arranged behind the gas supply plate, and a hydrogen gas distribution pipe is connected to the manifold. Then 37 g /
Using an excess air ratio of 5 times or more for the hydrogen supply of h,
The catalyst surface temperature was burned at 290 to 325 ° C. In addition to the above catalyst burner, a ceramic air heater having 98% porosity facing the catalyst carrier,
Ceramic wool and stainless steel wire mesh are placed for heat insulation and filtration. The low temperature combustion device part has a width of 350
mm, depth 100 mm, height 300 mm, made of stainless steel, all of which were held in the frame.

【0052】このような条件下で操作し、水素ガス量調
節バルブの開度を50%とし、水素発生容器内の圧力を
約200mmH2Oに保った。次いで水溶液量調節バル
ブの開度を50%、水溶液排出バルブの開度を50%に
調整したところ、触媒体の80%の高さまで液面が達
し、水溶液は水素発生容器の底部の水溶液排出バルブを
経由して水溶液排出槽に放出された。
By operating under such conditions, the opening of the hydrogen gas amount control valve was set to 50%, and the pressure in the hydrogen generation container was maintained at about 200 mmH 2 O. Next, when the opening of the aqueous solution amount control valve was adjusted to 50% and the opening of the aqueous solution discharge valve was adjusted to 50%, the liquid surface reached the height of 80% of the catalyst body, and the aqueous solution was discharged at the bottom of the hydrogen generating container. Was discharged to the aqueous solution discharge tank via.

【0053】次に、水素ガス量調節バルブの開度を小さ
くし、系内の圧力を500mmH2Oに上昇させて、水
溶液量調節バルブの開度を小さくし、かつ水溶液排出バ
ルブの開度を大きくして液面の位置を触媒体の高さの約
50%にすると水素ガス発生量は50%に減少した。こ
の際の定常状態になるまでに要した時間は約40秒であ
った。
Next, the opening amount of the hydrogen gas amount adjusting valve is decreased, the pressure in the system is increased to 500 mmH 2 O, the opening amount of the aqueous solution amount adjusting valve is decreased, and the opening amount of the aqueous solution discharge valve is changed. When the position of the liquid surface was increased to about 50% of the height of the catalyst body, the hydrogen gas generation amount decreased to 50%. The time required to reach the steady state at this time was about 40 seconds.

【0054】また、水素ガス発生量を大きくして、緊急
停止させる試験を行うために、水素ガス量調節バルブを
完全に閉止したところ、水素発生容器内の圧力は急上昇
し、30秒後に約0.9KGとなり、水溶液量調節バル
ブを完全に閉止し、水溶液排出バルブは全開して定常状
態に達した。この際、水溶液は急速に排出され、液面は
触媒体に接触しない位置まで低下した。
In addition, when the hydrogen gas generation control valve was completely closed in order to carry out a test for making an emergency stop by increasing the hydrogen gas generation amount, the pressure in the hydrogen generation container suddenly increased, and after about 30 seconds, it was about 0. Then, the aqueous solution amount control valve was completely closed, and the aqueous solution discharge valve was fully opened to reach a steady state. At this time, the aqueous solution was rapidly discharged, and the liquid surface was lowered to a position where it did not contact the catalyst body.

【0055】[0055]

【発明の効果】本発明方法によれば、金属水素錯化合物
のアルカリ水溶液を分解して発生する水素ガスを応答性
よく制御又は停止することができるので、車搭載又は家
庭用燃料電池、水素燃焼による清浄な湿潤空気の製造装
置の制御に好適に利用できる。
According to the method of the present invention, hydrogen gas generated by decomposing an alkaline aqueous solution of a metal-hydrogen complex compound can be controlled or stopped with good responsiveness. It can be suitably used for controlling the apparatus for producing clean moist air.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明方法を行うのに適した水素発生装置の
正面図。
1 is a front view of a hydrogen generator suitable for carrying out the method of the present invention.

【図2】 同側面図FIG. 2 is a side view of the same.

【図3】 本発明方法を行う際の制御システムのブロッ
ク図。
FIG. 3 is a block diagram of a control system for performing the method of the present invention.

【符号の説明】[Explanation of symbols]

1 低温燃焼部分 2 水素発生部分 3 水溶液供給バルブ 4 水溶液貯蔵部 5 水溶液量調節バルブ 6 管路 7 水素発生部 8 水素発生用触媒ブロック 9 水素ガス量調節バルブ 10 空気取入孔 11 水蒸気、空気排出孔 12 水素ガスヘッダー 13 触媒担持板 14 逆火防止、断熱板 15 水素ガス供給板 16 加熱板 17 水溶液排出槽 18 水溶液排出バルブ 19 水素ガス緊急放出バルブ 1 Low temperature combustion part 2 Hydrogen generation part 3 Aqueous solution supply valve 4 Aqueous solution storage 5 Aqueous solution control valve 6 pipelines 7 Hydrogen generation part 8 Hydrogen generation catalyst block 9 Hydrogen gas amount control valve 10 Air intake hole 11 Water vapor and air exhaust holes 12 Hydrogen gas header 13 Catalyst support plate 14 Flashback prevention, heat insulation board 15 Hydrogen gas supply plate 16 heating plate 17 Aqueous solution discharge tank 18 Aqueous solution discharge valve 19 Hydrogen gas emergency release valve

【手続補正書】[Procedure amendment]

【提出日】平成14年6月12日(2002.6.1
2)
[Submission date] June 12, 2002 (2002.6.1)
2)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 触媒層を設けた反応帯域に、金属水素錯
化合物のアルカリ水溶液を供給し、これを触媒と接触さ
せて水素ガスを発生させる方法において、反応帯域から
の水素ガスの取出量とともに、該アルカリ水溶液の反応
帯域への供給量又は反応帯域からの排出量或いはその両
方を増減して、反応帯域内の圧力を変化させ、該アルカ
リ水溶液の水位を上昇又は下降させることにより触媒層
と該アルカリ水溶液との接触部分を調節することを特徴
とする水素発生制御方法。
1. A method of supplying an alkaline aqueous solution of a metal-hydrogen complex compound to a reaction zone provided with a catalyst layer, and bringing this into contact with a catalyst to generate hydrogen gas, in addition to the amount of hydrogen gas taken out from the reaction zone. The amount of the alkaline aqueous solution supplied to the reaction zone and / or the amount discharged from the reaction zone is increased / decreased to change the pressure in the reaction zone to raise or lower the water level of the alkaline aqueous solution to form a catalyst layer. A method for controlling hydrogen generation, which comprises adjusting a contact portion with the alkaline aqueous solution.
【請求項2】 反応帯域内の圧力を検出して行う請求項
1記載の水素発生制御方法。
2. The hydrogen generation control method according to claim 1, which is carried out by detecting the pressure in the reaction zone.
【請求項3】 触媒層における該アルカリ水溶液との接
触部分の高さを検出して行う請求項1記載の水素発生制
御方法。
3. The hydrogen generation control method according to claim 1, which is carried out by detecting a height of a contact portion of the catalyst layer with the alkaline aqueous solution.
【請求項4】 反応帯域からの水素ガス取出バルブ及び
反応帯域への該アルカリ水溶液供給バルブ又は反応帯域
からの該アルカリ水溶液の排出バルブを開閉して行う請
求項1、2又は3記載の水素発生制御方法。
4. The hydrogen generation according to claim 1, 2 or 3, wherein the hydrogen gas extraction valve from the reaction zone, the alkaline aqueous solution supply valve to the reaction zone or the alkaline aqueous solution discharge valve from the reaction zone is opened and closed. Control method.
JP2001344067A 2001-11-09 2001-11-09 Hydrogen generation control method Expired - Fee Related JP4173303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001344067A JP4173303B2 (en) 2001-11-09 2001-11-09 Hydrogen generation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001344067A JP4173303B2 (en) 2001-11-09 2001-11-09 Hydrogen generation control method

Publications (2)

Publication Number Publication Date
JP2003146603A true JP2003146603A (en) 2003-05-21
JP4173303B2 JP4173303B2 (en) 2008-10-29

Family

ID=19157644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001344067A Expired - Fee Related JP4173303B2 (en) 2001-11-09 2001-11-09 Hydrogen generation control method

Country Status (1)

Country Link
JP (1) JP4173303B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003126678A (en) * 2001-10-24 2003-05-07 Toyota Motor Corp Gas generator
EP1496014A1 (en) * 2003-06-25 2005-01-12 Massimo De Francesco Magnetic containment device for hydrogen generation from alkaline borohydrides
JP2009040677A (en) * 2007-07-26 2009-02-26 Rohm & Haas Co Preparation of hydrogen source for fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003126678A (en) * 2001-10-24 2003-05-07 Toyota Motor Corp Gas generator
EP1496014A1 (en) * 2003-06-25 2005-01-12 Massimo De Francesco Magnetic containment device for hydrogen generation from alkaline borohydrides
JP2009040677A (en) * 2007-07-26 2009-02-26 Rohm & Haas Co Preparation of hydrogen source for fuel cell

Also Published As

Publication number Publication date
JP4173303B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
JP5365037B2 (en) Hydrogen generator, ammonia burning internal combustion engine, and fuel cell
US6358488B1 (en) Method for generation of hydrogen gas
JP5511306B2 (en) Catalyst system for producing hydrogen by hydrolysis reaction of metal borohydride
CN101312779B (en) Hydrogen generator and fuel cell using same
JP2004514632A (en) Hydrogen generation method and hydrogen generation device for fuel cell
US20040247960A1 (en) Fuel cell system
CN115210175A (en) Ultra-light hydrogen production reactor with high-efficiency composite material
KR101866500B1 (en) Hydrogen production rector including carbon monoxide removing unit
JP6989879B1 (en) Hydrogen generator, hydrogen generation system, raw material cartridge, and hydrogen generation method
EP1160902A3 (en) Fuel cell system
JP2003146603A (en) Method for controlling hydrogen generation
ITSA20080023A1 (en) SELF-THERMAL CATALYTIC REACTOR WITH FLAT TEMPERATURE PROFILE FOR THE PRODUCTION OF HYDROGEN FROM LIGHT HYDROCARBONS
KR101368569B1 (en) The preparing method of nickel catalyst using Atomic Layer Deposition
KR20170001226A (en) A heat-exchange reactor producing hydrogen from carbon compound
CN100560477C (en) The preparation method of the tubular reactor of hydrogen production by sodium borohydride-hydrazine mixed fuel
JP4081262B2 (en) Hydrogen generation method and apparatus
JP2002029702A (en) Method and device for manufacturing hydrogen
CN100564245C (en) The method of preparing hydrogen by sodium borohydride-hydrazine mixed fuel
KR101630374B1 (en) Apparatus for generating hydrogen using catalyst and waste heat
JP2006069869A (en) Hydrogen generation method, hydrogen generation device and fuel cell system
JP2002317980A (en) Method and apparatus for generating clean humid air
CN211920873U (en) Methanol-water reforming hydrogen production system capable of being started quickly
JP2003257464A (en) Hydrogen generation system for fuel cell
KR101106563B1 (en) Device for hydrogen production
JP2004002115A (en) Hydrogen gas generating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080813

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees