JP2003144891A - Magnetic drive unit, agitating apparatus, mixing apparatus and substrate processing apparatus - Google Patents
Magnetic drive unit, agitating apparatus, mixing apparatus and substrate processing apparatusInfo
- Publication number
- JP2003144891A JP2003144891A JP2001353024A JP2001353024A JP2003144891A JP 2003144891 A JP2003144891 A JP 2003144891A JP 2001353024 A JP2001353024 A JP 2001353024A JP 2001353024 A JP2001353024 A JP 2001353024A JP 2003144891 A JP2003144891 A JP 2003144891A
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- driven
- drive
- magnetic
- rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、磁気駆動装置、撹拌装
置、混合装置及び基板処理装置にかかるものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic drive device, a stirring device, a mixing device and a substrate processing device.
【0002】[0002]
【従来の技術】従来、撹拌子と対向して配置したU字型
磁石を回転させ、両者の異極間の吸引作用のみで撹拌子
を回転させるものとして、マグネチックスターラと呼ば
れる磁気回転伝達装置が知られている。2. Description of the Related Art Conventionally, a U-shaped magnet arranged to face a stirrer is rotated, and the stirrer is rotated only by a suction action between the opposite poles of the two. It has been known.
【0003】その機構を図12により説明すると、液体
115を収容する容器114内に棒状の撹拌子112を
配置し、容器114外の底壁近傍にU字型磁石111を
対向配置し、駆動モータ113でU字型磁石111を回
転させて撹拌子112を回転させるものである。The mechanism will be described with reference to FIG. 12. A rod-shaped stirrer 112 is arranged in a container 114 for containing the liquid 115, and a U-shaped magnet 111 is arranged opposite to the bottom wall outside the container 114 to drive a drive motor. The U-shaped magnet 111 is rotated by 113 to rotate the stirring bar 112.
【0004】また、磁気カップリングと呼ばれる磁気回
転伝達装置もあり、これにはラジアル型とアキシャル型
とがある。There is also a magnetic rotation transmission device called a magnetic coupling, which includes a radial type and an axial type.
【0005】[0005]
【発明が解決しようとする課題】上述した従来のマグネ
チックスターラは、撹拌子112とU字型磁石111と
の磁力により撹拌子112が回転するものである。この
ため、伝達トルクが小さく、撹拌子112が容易に脱離
するという不具合がある。また、磁束の径が比較的小さ
い。In the conventional magnetic stirrer described above, the magnetic stirrer 112 and the U-shaped magnet 111 rotate the magnetic stirrer 112. Therefore, there is a problem that the transmission torque is small and the stirring bar 112 is easily detached. Moreover, the diameter of the magnetic flux is relatively small.
【0006】ところが、撹拌能力の向上という要請に応
えるため、撹拌子112および対向するU字型磁石11
1の各磁力を強化し、異極間相互の吸引力のみを増大し
て、撹拌子112の回転能力を向上しようとしている。However, in order to meet the demand for improving the stirring ability, the stirring bar 112 and the opposing U-shaped magnet 11 are provided.
The magnetic force of No. 1 is strengthened and only the attraction force between the different poles is increased to improve the rotating ability of the stirring bar 112.
【0007】しかし、このように単に異極間のみの吸引
力を増大しようとすると、スラスト方向の負荷が増大し
てしまう。However, if an attempt is made to increase the attractive force only between the different poles, the load in the thrust direction will increase.
【0008】駆動モータ113のスラスト方向の負荷増
大により回転トルクの損失が生じたり、軸受の摩耗が生
じたりする。また、撹拌子112の回転接触部の摩擦の
増大により回転トルクの損失が生じたり、撹拌子112
の回転接触部の摩耗が増大したり、さらには撹拌子11
2の回転接触部の摩擦音による騒音の増大が生じたりす
る。特に、撹拌子112の回転接触部が摩耗すると、そ
の摩耗粉が容器内の液体に混入するため、好ましくな
い。The increase of the load in the thrust direction of the drive motor 113 causes loss of rotational torque and wear of the bearing. Further, due to an increase in friction of the rotating contact portion of the stirrer 112, a rotational torque loss may occur, or
Wear on the rotating contact part of the stirrer 11
The noise may increase due to the frictional noise of the second rotary contact portion. In particular, when the rotating contact portion of the stirrer 112 is worn, the abrasion powder is mixed with the liquid in the container, which is not preferable.
【0009】一方、上述した磁気カップリングにあって
は、ラジアル型はアキシャル型に比べてスラスト力がか
からないという利点があるものの、隔壁が複雑な形状と
なる欠点を有する。これに対してアキシャル型はラジア
ル型に比べて構造が簡単で、軸方向の長さを短くでき、
隔壁形状を単純化できるという利点を有するものの、軸
受部にスラスト力が働き、それが磁力に比例するという
欠点を有していた。On the other hand, in the above-mentioned magnetic coupling, the radial type has an advantage that a thrust force is not applied as compared with the axial type, but has a drawback that the partition wall has a complicated shape. On the other hand, the axial type has a simpler structure than the radial type and the axial length can be shortened,
Although it has an advantage that the shape of the partition wall can be simplified, it has a drawback that thrust force acts on the bearing portion and it is proportional to the magnetic force.
【0010】なお、特許第2678569号による磁気
回転伝達装置は、スラストを低減させるが、マイナスの
スラストを得るには、至っていない。Although the magnetic rotation transmission device according to Japanese Patent No. 2678569 reduces thrust, it has not yet reached negative thrust.
【0011】また、上述した問題点は、マグネチックス
ターラに限らず、磁気駆動装置一般に共通し、駆動力の
増大にともなって、スラストが増大してしまうというも
のである。The above-mentioned problem is not limited to magnetic stirrers, but is common to magnetic drive devices in general, and thrust increases as the driving force increases.
【0012】本発明の目的は、上述した従来技術の欠点
を解消して、駆動力の増大にともないスラストが低減す
る特性を持つ磁気駆動装置、撹拌装置、混合装置及び基
板処理装置を提供することにある。An object of the present invention is to solve the above-mentioned drawbacks of the prior art, and to provide a magnetic drive device, a stirring device, a mixing device, and a substrate processing device having characteristics that thrust is reduced with an increase in driving force. It is in.
【0013】[0013]
【課題を解決するための手段】上記課題を解決するため
の第1の発明は、一方の磁石を駆動磁石とし他方の磁石
を従動磁石として、前記駆動磁石と前記従動磁石とを非
接触で磁気的に結合させ、前記駆動磁石の移動にともな
って前記従動磁石を従動させる磁気駆動装置において、
前記駆動磁石及び前記従動磁石は略同形状で形成され、
互いに略平行な対向面と、該対向面間の外周を覆う周側
面とで囲まれた立体をしており、前記周側面の一面全面
を一方の極の磁極とし、該周側面の一面と反対の面であ
る他面全面を他方の極の磁極とする両面2極型磁石でそ
れぞれ構成され、前記駆動磁石と前記従動磁石との対向
面同士を略平行にし、かつ前記駆動磁石の略平行な対向
面の中央を共通に通る中央延長線と、前記従動磁石の略
平行な対向面の中央を共通に通る中央延長線とが一致す
るように前記駆動磁石と前記従動磁石とを対向して設
け、前記駆動磁石を、該駆動磁石の中央延長線と交差す
る方向に移動させることにより、その移動を前記駆動磁
石の磁極と前記従動磁石の磁極間に生じる磁力で前記従
動磁石に伝達するようにしたことを特徴とする磁気駆動
装置である。According to a first aspect of the invention for solving the above-mentioned problems, one magnet is a driving magnet and the other magnet is a driven magnet, and the driving magnet and the driven magnet are magnetized in a non-contact manner. In a magnetic drive device that drives the driven magnet to follow the movement of the driving magnet.
The drive magnet and the driven magnet are formed in substantially the same shape,
It has a solid body surrounded by opposing surfaces that are substantially parallel to each other and a peripheral side surface that covers the outer periphery between the opposing surfaces. One surface of the peripheral side surface is a magnetic pole of one pole, and is opposite to the peripheral side surface. Is a double-sided two-pole magnet having the other surface as the magnetic pole of the other pole, and the facing surfaces of the driving magnet and the driven magnet are substantially parallel to each other, and the driving magnet is substantially parallel to each other. The drive magnet and the driven magnet are provided so as to face each other such that a central extension line that commonly passes through the centers of the facing surfaces and a central extension line that commonly passes through the centers of the substantially parallel facing surfaces of the driven magnet coincide with each other. , By moving the drive magnet in a direction intersecting a central extension line of the drive magnet, the movement is transmitted to the driven magnet by a magnetic force generated between the magnetic pole of the drive magnet and the magnetic pole of the driven magnet. The magnetic drive device is characterized by the above.
【0014】第2の発明は、回転軸を中心に回転する駆
動回転体と、前記駆動回転体と対向して設けられ、前記
駆動回転体の回転軸の延長線を回転軸として回転する従
動回転体と、前記駆動回転体の前記従動回転体と対向す
る面上に、前記駆動回転体の回転軸を中心に描かれる仮
想円の円周上に等間隔に設けられた少なくとも3つの駆
動磁石と、前記従動回転体の前記駆動回転体と対向する
面上に、前記駆動回転体に描かれた仮想円と対応して前
記従動回転体の回転軸を中心に描かれる仮想円の円周上
に等間隔に設けられた前記駆動磁石と同数の従動磁石
と、を備えた磁気駆動装置において、前記駆動磁石及び
前記従動磁石は略同形状で形成され、互いに平行な対向
面と、該対向面間の外周を覆う周側面とで囲まれた立体
をしており、前記周側面の一面全面を一方の極の磁極と
し、該周側面の一面と反対の面である他面全面を他方の
極の磁極とする両面2極型磁石でそれぞれ構成され、前
記駆動磁石と前記従動磁石の対向面同士を略平行にし、
かつ前記駆動磁石の対向面の中央を通る中央延長線と、
前記従動磁石の対向面の中央を通る中央延長線とが平行
になるように前記駆動磁石及び前記従動磁石を前記駆動
回転体及び前記従動回転体にそれぞれ取り付け、前記駆
動回転体を前記駆動回転体の回転軸を中心に回転させる
と、前記駆動磁石と前記従動磁石との磁力により前記従
動回転体が前記従動回転体の回転軸を中心に回転するこ
とを特徴とする磁気駆動装置である。According to a second aspect of the present invention, a drive rotating body that rotates about a rotating shaft and a driven rotating body that is provided so as to face the drive rotating body and rotates about an extension line of the rotating shaft of the drive rotating body as a rotating shaft. A body, and at least three drive magnets provided on the surface of the drive rotor, which faces the driven rotor, at equal intervals on the circumference of a virtual circle drawn around the rotation axis of the drive rotor. , On the surface of the driven rotating body facing the drive rotating body, on the circumference of a virtual circle drawn around the rotation axis of the driven rotating body corresponding to the virtual circle drawn on the drive rotating body. In a magnetic drive device including the same number of driven magnets and equal number of driven magnets provided at equal intervals, the driving magnets and the driven magnets are formed in substantially the same shape, and facing surfaces parallel to each other and between the facing surfaces. It has a solid body surrounded by the side surface that covers the outer circumference of One side of the magnetic pole is a magnetic pole of one pole, and the other side of the peripheral side surface is the magnetic pole of the other pole. Make the facing surfaces of the magnets substantially parallel to each other,
And a central extension line passing through the center of the facing surface of the drive magnet,
The drive magnet and the driven magnet are attached to the drive rotor and the driven rotor, respectively, so that a central extension line passing through the center of the facing surface of the driven magnet is parallel to the drive rotor and the drive rotor. The magnetic drive device rotates the driven rotor around the rotation axis of the driven rotor by the magnetic force of the drive magnet and the driven magnet.
【0015】第3の発明は、従動移動体に従動磁石を設
け、前記従動磁石を駆動磁石の移動にともなって従動さ
せることにより、前記従動移動体を走行させる磁気駆動
装置において、前記駆動磁石及び前記従動磁石は略同形
状で形成され、互いに略平行な対向面と、該対向面間の
外周を覆う周側面とで囲まれた立体をしており、前記周
側面の一面全面を一方の極の磁極とし、該周側面の一面
と反対の面である他面全面を他方の極の磁極とする両面
2極型磁石でそれぞれ構成され、前記従動移動体に設け
られる前記従動磁石が、前記駆動磁石に対して対向面同
士が略平行で、かつ前記駆動磁石の略平行な対向面の中
央を共通に通る中央延長線に対して、前記従動磁石の略
平行な対向面の中央を共通に通る中央延長線が平行にな
るように配置され、前記駆動磁石を該駆動磁石の中央延
長線を交差する方向に移動させたとき、前記駆動磁石と
前記従動磁石との磁力により、前記従動移動体が任意軌
道上を走行することを特徴とする磁気駆動装置である。According to a third aspect of the present invention, in a magnetic drive device in which a driven magnet is provided, and the driven magnet is driven in accordance with the movement of the driving magnet, thereby causing the driven moving body to travel. The driven magnet has a substantially three-dimensional shape, and is a three-dimensional body surrounded by opposing surfaces that are substantially parallel to each other and a peripheral side surface that covers the outer periphery between the opposing surfaces. And a driven magnet provided on the driven moving body, the driven magnet being configured as The opposing surfaces are substantially parallel to the magnet and commonly pass through the center of the substantially parallel opposing surfaces of the driven magnet with respect to a central extension line that commonly passes through the centers of the substantially parallel opposing surfaces of the drive magnet. Arranged so that the central extension lines are parallel When the drive magnet is moved in a direction intersecting the center extension line of the drive magnet, the driven moving body travels on an arbitrary orbit by the magnetic force of the drive magnet and the driven magnet. It is a drive device.
【0016】第4の発明は、第2の発明に記載の磁気駆
動装置が、撹拌槽の内部の液体を撹拌する手段として用
いられる撹拌装置であって、前記磁気駆動装置を構成す
る従動回転体に、前記撹拌槽内に設けた支持軸が挿通さ
れて前記支持軸を中心に前記従動回転体を回転自在に軸
支するための挿通孔と、前記従動回転体の回転により前
記液体を撹拌するための撹拌翼とをそれぞれ設け、前記
従動回転体を前記支持軸に軸支したとき、前記磁気駆動
装置を構成する駆動回転体が、前記撹拌槽の槽壁を介し
て前記駆動回転体と対向するように前記撹拌槽の外部に
配置されて、前記回転駆動体の回転により前記従動回転
体が前記支持軸を中心に回転することを特徴とする撹拌
装置である。A fourth invention is a stirring device in which the magnetic drive device according to the second invention is used as a means for stirring the liquid in the stirring tank, and the driven rotary body constituting the magnetic drive device. A support shaft provided in the agitation tank, and an insertion hole for rotatably supporting the driven rotor around the support shaft, and the liquid is agitated by rotation of the driven rotor. And a stirring blade for each of them, and when the driven rotary body is pivotally supported on the support shaft, the drive rotary body constituting the magnetic drive device faces the drive rotary body via the tank wall of the stirring tank. As described above, the stirring device is arranged outside the stirring tank, and the driven rotating body rotates about the support shaft by the rotation of the rotation driving body.
【0017】第5の発明は、第4の発明に記載の撹拌装
置が、混合対象の液体を流入させる所定数の液供給口と
混合処理を終えた液体を排出する液排出口とを有する前
記撹拌槽内に、該撹拌槽内の液体の混合状態を制御する
手段として複数個用いられる混合装置である。A fifth aspect of the present invention is the agitator according to the fourth aspect of the present invention, wherein the stirring device has a predetermined number of liquid supply ports for introducing liquids to be mixed and liquid discharge ports for discharging the liquids after the mixing process. The mixing device is used in the stirring tank as a means for controlling the mixing state of the liquid in the stirring tank.
【0018】第6の発明は、基板を処理する真空容器
と、前記真空容器内に鉛直回転軸を中心に回転自在に設
けられ前記基板を保持する基板保持体と、前記鉛直回転
軸の上方から該鉛直回転軸に回転力を付与して前記基板
保持体を回転させる回転駆動部と、前記基板保持体の下
方から該基板保持体をその重力に抗して浮上させつつ前
記鉛直回転軸の振れを防止する軸振れ防止機構とを備え
た基板処理装置において、前記駆動回転部として第2の
発明に記載の磁気駆動装置が用いられ、前記磁気駆動装
置を構成する従動回転体の回転軸に前記鉛直回転軸を連
結することにより、前記従動回転体を前記鉛直回転軸を
介して前記基板保持体に接続し、前記磁気駆動装置を構
成する駆動回転体を前記真空容器の上壁を介して前記回
転従動体と対向するように前記真空容器の外部に配置し
て、前記駆動回転体の回転により前記従動回転体を介し
て前記基板保持体を前記鉛直回転軸を中心に回転させる
ように構成し、前記軸振れ防止機構が、前記基板保持体
に設けられた浮揚磁石と、前記真空容器の外部に前記真
空容器の底壁を介して前記浮揚磁石と対向するように設
けられる超電導体とを備えて、該超電導体を超電導臨界
温度以下に冷却することによって、前記超電導体と前記
浮揚磁石とのマイスナー効果により前記基板保持体を前
記真空容器内で浮上させつつ前記鉛直回転軸をピン止め
効果によりピン止めするようにしたことを特徴とする基
板処理装置である。According to a sixth aspect of the present invention, a vacuum container for processing a substrate, a substrate holder that is rotatably provided in the vacuum container about a vertical rotation axis to hold the substrate, and from above the vertical rotation axis. A rotation drive unit that applies a rotational force to the vertical rotation shaft to rotate the substrate holding body, and a swing of the vertical rotation shaft while floating the substrate holding body from below the substrate holding body against its gravity. In a substrate processing apparatus having a shaft runout preventing mechanism, the magnetic drive device according to the second invention is used as the drive rotation part, and the magnetic rotary device of the driven rotary body constituting the magnetic drive device is provided with the magnetic drive device. By connecting a vertical rotary shaft, the driven rotary body is connected to the substrate holder via the vertical rotary shaft, and the drive rotary body forming the magnetic drive device is connected via the upper wall of the vacuum container. Opposite the rotary follower As described above, the substrate holder is arranged outside the vacuum container, and the substrate holder is rotated about the vertical rotation axis via the driven rotor by the rotation of the drive rotor, and the shaft shake preventing mechanism is provided. A superconducting conductor provided on the substrate holder, and a superconductor provided outside the vacuum container so as to face the levitation magnet via a bottom wall of the vacuum container. By cooling below the critical temperature, the vertical rotation shaft is pinned by the pinning effect while the substrate holder is levitated in the vacuum container by the Meissner effect of the superconductor and the levitation magnet. Is a substrate processing apparatus.
【0019】第7の発明は、撹拌すべき液体を収容する
密閉型の撹拌槽と、前記撹拌槽内に鉛直回転軸を中心に
回転自在に設けられ前記液体を撹拌する撹拌翼と、前記
鉛直回転軸の上方から該鉛直回転軸に回転力を付与して
前記撹拌翼を回転させる回転駆動部と、前記撹拌翼の下
方から該撹拌翼をその重力に抗して浮上させつつ前記鉛
直回転軸の振れを防止する軸振れ防止機構とを備えた撹
拌装置において、前記回転駆動部として第2の発明に記
載の磁気駆動装置が用いられ、前記磁気駆動装置を構成
する従動回転体の回転軸に前記鉛直回転軸を連結するこ
とにより、前記従動回転体を前記鉛直回転軸を介して前
記撹拌翼に接続し、前記磁気駆動装置を構成する駆動回
転体を前記撹拌槽の上壁を介して前記回転従動体と対向
するように前記撹拌槽の外部に配置して、前記駆動回転
体の回転により前記従動回転体を介して前記撹拌翼を前
記鉛直回転軸を中心に回転させるように構成し、前記軸
振れ防止機構が、前記撹拌翼に設けられた浮揚磁石と、
前記撹拌槽の外部に前記撹拌槽の底壁を介して前記浮揚
磁石と対向するように設けられる超電導体とを備えて、
該超電導体を超電導臨界温度以下に冷却することによっ
て、前記超電導体と前記浮揚磁石とのマイスナー効果に
より前記撹拌翼を前記撹拌槽内で浮上させつつ前記鉛直
回転軸をピン止め効果によりピン止めするようにしたこ
とを特徴とする撹拌装置である。A seventh aspect of the present invention is a closed stirring tank for containing a liquid to be stirred, a stirring blade rotatably provided in the stirring tank about a vertical rotation shaft for stirring the liquid, and the vertical stirring tank. A rotary drive unit for rotating the stirring blade by applying a rotational force to the vertical rotation shaft from above the rotation shaft, and the vertical rotation shaft while floating the stirring blade against the gravity from below the stirring blade. In a stirring device provided with a shaft runout preventing mechanism for preventing runout of the magnetic disk, the magnetic drive device according to the second invention is used as the rotary drive part, and the magnetic drive device is used as a rotary shaft of a driven rotary body. By connecting the vertical rotary shaft, the driven rotary body is connected to the stirring blade via the vertical rotary shaft, and the drive rotary body forming the magnetic drive device is connected via the upper wall of the stirring tank. The agitator is placed so that it faces the rotary follower. The stirring blade is arranged outside the tank, and the stirring blade is rotated about the vertical rotation shaft via the driven rotating body by the rotation of the driving rotating body. A levitating magnet installed in
A superconductor provided outside the stirring tank so as to face the levitation magnet through the bottom wall of the stirring tank,
By cooling the superconductor below the superconducting critical temperature, the vertical rotating shaft is pinned by the pinning effect while the stirring blade is levitated in the stirring tank by the Meissner effect of the superconductor and the levitation magnet. The stirring device is characterized in that.
【0020】第8の発明は、撹拌すべき液体を収容する
撹拌槽と、前記撹拌槽内の下方に回転自在に設けられる
撹拌翼と、該撹拌翼を回転させる回転駆動部と、前記撹
拌翼をその重力に抗して浮上させつつ前記撹拌翼の回転
中心の振れを防止する軸振れ防止機構とを備えた撹拌装
置において、前記回転駆動部として第2の発明に記載の
磁気駆動装置が用いられ、前記磁気駆動装置を構成する
一方の従動回転体に前記撹拌翼を取り付け、前記磁気駆
動装置を構成する他方の駆動回転体を前記撹拌槽の底壁
を介して前記回転従動体と対向するように前記撹拌槽の
外部に配置して、前記駆動回転体の回転により前記従動
回転体を介して前記撹拌翼を前記従動回転体の回転軸を
中心に回転させるように構成し、前記軸振れ防止機構
が、前記従動回転体の回転中心に設けられた浮揚磁石
と、前記撹拌槽の外部に配置された前記駆動回転体の回
転中心に、前記浮揚磁石と対向するように設けられた超
電導体とを備えて、該超電導体を超電導臨界温度以下に
冷却することによって、前記超電導体と前記浮揚磁石と
のマイスナー効果により前記撹拌翼を前記撹拌槽内で浮
上させつつ前記回転中心をピン止め効果によりピン止め
するようにしたことを特徴とする撹拌装置である。An eighth aspect of the present invention is a stirring tank for containing a liquid to be stirred, a stirring blade rotatably provided below the stirring tank, a rotary drive unit for rotating the stirring blade, and the stirring blade. And a shaft shake preventing mechanism for preventing the shake of the rotation center of the stirring blade while levitating against the gravity, and the magnetic drive device according to the second invention is used as the rotation drive unit. The stirring blade is attached to one driven rotary body that constitutes the magnetic drive device, and the other drive rotary body that constitutes the magnetic drive device faces the rotary driven body via the bottom wall of the stirring tank. As described above, the stirring blade is arranged outside the stirring tank, and the stirring blade is rotated about the rotation axis of the driven rotating body through the driven rotating body by the rotation of the driving rotating body. The prevention mechanism is the driven rotor. A levitation magnet provided at the center of rotation, and a superconductor provided so as to face the levitation magnet at the center of rotation of the drive rotor arranged outside the stirring tank, the superconductor being provided. By cooling to below the superconducting critical temperature, the stirring blade is floated in the stirring tank by the Meissner effect of the superconductor and the levitation magnet, and the rotation center is pinned by the pinning effect. It is a characteristic stirring device.
【0021】[0021]
【本発明の実施の形態】以下、本発明にかかる磁気駆動
装置の実施例を、図面に基づいて説明する。図1は本実
施例の2つの磁石を組合わせて構成した磁気駆動装置の
原理的な説明図であって、磁石間の組合わせ配置の仕方
から、磁気駆動装置を、以下便宜的に、(a)を同極直
交型、(b)を異極直交型、(c)を同極平行型、
(d)を異極平行型と呼ぶことにする。同図において
(イ)は平面図、(ロ)は正面図を示す。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a magnetic drive device according to the present invention will be described below with reference to the drawings. FIG. 1 is a principle explanatory diagram of a magnetic drive device configured by combining two magnets according to the present embodiment. For convenience of description, the magnetic drive device will be referred to as a a) is homopolar orthogonal type, (b) is heteropolar orthogonal type, (c) is homopolar parallel type,
(D) will be referred to as a parallel-parallel type. In the figure, (a) shows a plan view and (b) shows a front view.
【0022】上記(a)〜(c)に示した磁気駆動装置
は、つぎのような共通した構成をもつ。磁気駆動装置
は、2つの永久磁石から構成される。2つの永久磁石は
その磁極を特定方向に向けて上下方向に重ねられる。な
お、重ねる方向は左右、斜め等であっても良い。また、
上下の永久磁石の向きの組合わせは、上述したように4
種類ある((a)〜(c))。その向きについては後述
する。The magnetic drive devices shown in (a) to (c) above have the following common structure. The magnetic drive device is composed of two permanent magnets. The two permanent magnets are vertically stacked with their magnetic poles directed in a specific direction. The overlapping direction may be left, right, diagonal, or the like. Also,
The combination of the orientations of the upper and lower permanent magnets is 4 as described above.
There are types ((a) to (c)). The direction will be described later.
【0023】下方の磁石を駆動側の駆動磁石11とし、
上方の磁石を従動側の従動磁石12とする。駆動磁石1
1と従動磁石12とは適宜間隔を開けて非接触で磁気的
に結合させ、駆動磁石11を紙面と平行な矢印方向Cに
移動させることによって従動磁石12を同方向に従動さ
せるようになっている。The lower magnet is the driving magnet 11 on the driving side,
The upper magnet is the driven magnet 12 on the driven side. Drive magnet 1
1 and the driven magnet 12 are magnetically coupled in a non-contact manner with an appropriate gap, and the driven magnet 12 is driven in the same direction by moving the drive magnet 11 in the arrow direction C parallel to the paper surface. There is.
【0024】駆動磁石11及び従動磁石12は略同形状
の立体、例えば直方体で形成される。直方体をした駆動
磁石11及び従動磁石12は長手方向を水平に向けて重
ねてある。直方体では、互いに略平行な対向面は、上下
面11a,11b、および12a,12bとなる。ま
た、上下面11a,11b、および12a,12b間の
外周を覆う周側面は、長手方向に平行な2側面11c,
11d、および12c,12dと、短手方向に平行な2
側面との計4つの側面となる、長手方向に平行な一面と
なる1側面12cの全面を一方の極の磁極Nとする。1
側面12cと反対の面である他面12dの全面を他方の
極の磁極Sとする。このような両面2極型磁石で駆動磁
石11及び従動磁石12はそれぞれ構成される。The drive magnet 11 and the driven magnet 12 are formed in substantially the same three-dimensional shape, for example, a rectangular parallelepiped. The rectangular parallelepiped drive magnet 11 and the driven magnet 12 are stacked with their longitudinal directions oriented horizontally. In the rectangular parallelepiped, opposed surfaces that are substantially parallel to each other are upper and lower surfaces 11a and 11b and 12a and 12b. Further, the peripheral side surfaces that cover the outer periphery between the upper and lower surfaces 11a and 11b and 12a and 12b are two side surfaces 11c parallel to the longitudinal direction.
11d and 12c, 12d and 2 parallel to the lateral direction
The entire surface of one side surface 12c, which is one surface parallel to the longitudinal direction, which is a total of four side surfaces including the side surface, is a magnetic pole N of one pole. 1
The entire surface of the other surface 12d, which is the surface opposite to the side surface 12c, is the magnetic pole S of the other pole. The driving magnet 11 and the driven magnet 12 are each composed of such a double-sided two-pole magnet.
【0025】駆動磁石11の上面11aと従動磁石12
の下面12b同士を略平行にし、かつ駆動磁石11の上
下面11a、11bの中央を共通に通る中央延長線13
と、従動磁石12の上下面12a、12bの中央を共通
に通る中央延長線13とが一致するように駆動磁石11
と従動磁石12とを対向して設ける。The upper surface 11a of the drive magnet 11 and the driven magnet 12
A lower surface 12b of the drive magnet 11 and a central extension line 13 that passes through the centers of the upper and lower surfaces 11a and 11b of the drive magnet 11 in common.
And the drive magnet 11 so that the center extension line 13 that passes through the centers of the upper and lower surfaces 12a and 12b of the driven magnet 12 in common.
And the driven magnet 12 are provided so as to face each other.
【0026】そして、駆動磁石11を、駆動磁石11の
中央延長線13と交差する方向、例えば前述した矢印方
向Cに移動させることにより、駆動磁石11と従動磁石
12の向きを維持したまま、駆動磁石11の磁極NSと
従動磁石12の磁極NS間に生じる磁力で同方向の移動
を従動磁石12に伝達するようにしている。Then, the drive magnet 11 is moved in a direction intersecting the central extension line 13 of the drive magnet 11, for example, in the above-mentioned arrow direction C, so that the drive magnet 11 and the driven magnet 12 can be driven while maintaining their orientations. The magnetic force generated between the magnetic pole NS of the magnet 11 and the magnetic pole NS of the driven magnet 12 transmits the movement in the same direction to the driven magnet 12.
【0027】また、上記(a)〜(b)に示した磁気駆
動装置は、つぎのような異なる構成をもつ。先に便宜的
に呼ぶこととした(a)の同極直交型は、駆動磁石11
と従動磁石12とを直交させ、直交させた駆動磁石11
と従動磁石12の各磁極NSを、平面視で同じ側に向け
て配置したものである。したがって同極直交型の同極と
は、駆動磁石11と従動磁石12との直交を崩して向き
を一致させて重ねたとき、駆動磁石11と従動磁石12
の対向磁極が同極となっていることを意味する。Further, the magnetic drive devices shown in the above (a) and (b) have different configurations as follows. The homopolar and orthogonal type shown in FIG.
And the driven magnet 12 are orthogonal to each other, and the drive magnet 11 is orthogonal to each other.
The magnetic poles NS of the driven magnet 12 are arranged so as to face the same side in plan view. Therefore, when the driving magnet 11 and the driven magnet 12 are superposed so that the driving magnet 11 and the driven magnet 12 are orthogonal to each other and have the same direction, the driving magnet 11 and the driven magnet 12 have the same polarity.
It means that the opposite magnetic poles of are the same poles.
【0028】また、(b)の異極直交型の意味は、駆動
磁石11と従動磁石12とを直交させるが、直交させた
駆動磁石11と従動磁石12の各磁極NSを、平面視で
反対側の異なる方向に向けて配置したものである。した
がって異極直交型の異極とは、駆動磁石11と従動磁石
12との直交を崩して向きを一致させて重ねたとき、駆
動磁石11と従動磁石12の対向磁極が異極となってい
ることを意味する。図示例の(b)のものは、(a)に
おいて上方の従動磁石12に対して下方の駆動磁石11
を、中央延長線13を中心に180度回転させると実現
できる。The heteropolar orthogonal type of (b) means that the driving magnet 11 and the driven magnet 12 are orthogonal to each other, but the magnetic poles NS of the driving magnet 11 and the driven magnet 12 which are orthogonal to each other are opposite in plan view. They are arranged in different directions on the side. Therefore, when the drive magnet 11 and the driven magnet 12 are superposed so that the drive magnet 11 and the driven magnet 12 are orthogonal to each other and are aligned in the same direction, the opposite poles of the drive magnet 11 and the driven magnet 12 are different poles. Means that. In the illustrated example (b), the lower driven magnet 11 with respect to the upper driven magnet 12 in FIG.
Can be realized by rotating 180 degrees around the center extension line 13.
【0029】(c)の同極平行型の意味は、駆動磁石1
1と従動磁石12とを長手方向(短手方向)を一致さ
せ、一致させた駆動磁石11と従動磁石12の各磁極N
Sを、平面視で同じ側に向けて配置したものである。す
なわち、駆動磁石11と従動磁石12とが同極で平行配
置されたものである。平面視(イ)で、駆動磁石11
は、従動磁石12に隠れて見えなくなっている。(C) homopolar parallel type means drive magnet 1
1 and the driven magnet 12 are aligned in the longitudinal direction (short direction), and the respective magnetic poles N of the drive magnet 11 and the driven magnet 12 are aligned.
S is arranged so as to face the same side in a plan view. That is, the driving magnet 11 and the driven magnet 12 are arranged in parallel with the same pole. In a plan view (a), the drive magnet 11
Is hidden by the driven magnet 12 and disappears.
【0030】(d)の異極平行型の意味は、駆動磁石1
1と従動磁石12とを長手方向(短手方向)を一致させ
るが、一致させた駆動磁石11と従動磁石12の各磁極
NSを、平面視で反対側の異なる方向に向けて配置した
ものである。すなわち、駆動磁石11と従動磁石12と
を、異極で平行配置されたものである。平面視(イ)
で、駆動磁石11は、従動磁石12に隠れて見えなくな
っている。なお、上述した組み合せの磁極NSの方向は
図示例に限定されず、組単位で磁極NSを入れ替えても
良い。The meaning of the different polarity parallel type of (d) means the drive magnet 1
1 and the driven magnet 12 are aligned in the longitudinal direction (short direction), but the matched magnetic poles NS of the drive magnet 11 and the driven magnet 12 are arranged in different directions on the opposite sides in a plan view. is there. That is, the drive magnet 11 and the driven magnet 12 are arranged in parallel with different polarities. Plan view (I)
The drive magnet 11 is hidden by the driven magnet 12 and is invisible. The directions of the magnetic poles NS of the above combination are not limited to the illustrated example, and the magnetic poles NS may be replaced in units of groups.
【0031】磁石11、12の配置の仕方で4種類の組
合わせをもつ磁気駆動装置は、駆動磁石11を、駆動磁
石11の中央延長線13と交差する方向、例えば前述し
た矢印方向Cに移動させることにより、駆動磁石11と
従動磁石12の向きを維持したまま、駆動磁石11の磁
極NSと従動磁石12の磁極NS間に生じる磁力で同方
向の移動を従動磁石12に伝達する。ここで駆動磁石1
1の中央延長線13と交差する方向には、中央延長線1
3と直交する方向、中央延長線13と斜めに交わる方
向、及びこれらの組合わせ方向などが含まれる。しか
し、中央延長線13を中心とする回転方向や、中央延長
線13と重なる同じ方向、及び中央延長線13と平行な
方向は含まれない。また、(a)ないし(d)の状態を
それぞれ保持したまま移動させる以外に、ある場面で
は、(a)の状態で、他の場面では(b)の状態で、次
の場面では(c)の状態で、さらには異なる場面では
(d)の状態というように、任意に状態を推移させて使
用するという組合わせも可能である。In the magnetic drive device having four kinds of combinations depending on the arrangement of the magnets 11 and 12, the drive magnet 11 is moved in a direction intersecting with the central extension line 13 of the drive magnet 11, for example, the above-mentioned arrow direction C. By doing so, movement in the same direction is transmitted to the driven magnet 12 by the magnetic force generated between the magnetic pole NS of the drive magnet 11 and the magnetic pole NS of the driven magnet 12 while maintaining the orientations of the drive magnet 11 and the driven magnet 12. Drive magnet 1 here
In the direction intersecting the central extension line 13 of 1, the central extension line 1
3, a direction orthogonal to 3, a direction obliquely intersecting with the central extension line 13, a combination direction of these, and the like are included. However, the rotation direction about the center extension line 13, the same direction overlapping with the center extension line 13, and the direction parallel to the center extension line 13 are not included. Further, in addition to moving while holding the states of (a) to (d) respectively, in one scene, in the state of (a), in another scene in the state of (b), and in the next scene, (c). It is also possible to use a combination of different states, such as the state of (d) in different situations.
【0032】上述した磁気駆動装置の駆動磁石11を、
中央延長線13と直交する方向に移動させると、従動磁
石12が水平方向にずれて移動する。このとき磁力線も
従動磁石がある方向、すなわち水平方向にずれるので、
磁力線の水平成分が大きくなり、垂直成分が小さくな
る。すなわち駆動方向の引力が大きくなり、垂直方向の
引力は小さくなる。したがって従動磁石12の移動力が
大きくなり、従動磁石12の駆動磁石11に対するスラ
ストが小さくなる。The drive magnet 11 of the above magnetic drive device is
When the driven magnet 12 is moved in a direction orthogonal to the central extension line 13, the driven magnet 12 shifts in the horizontal direction. At this time, the lines of magnetic force also shift in the direction in which the driven magnet exists, that is, in the horizontal direction,
The horizontal component of the magnetic field line becomes large and the vertical component becomes small. That is, the attractive force in the driving direction becomes large, and the attractive force in the vertical direction becomes small. Therefore, the moving force of the driven magnet 12 increases, and the thrust of the driven magnet 12 with respect to the drive magnet 11 decreases.
【0033】さて、上述した4種類の組合わせをもつ磁
気駆動装置の特性を説明すれば次の通りである。共通特
性としては、駆動磁石11に対する従動磁石12のずれ
量15が増加すると、従動磁石12の移動力が増加する
とともに、スラストが増加ではなく低減することであ
る。ここで、ずれ量とは、駆動磁石11を矢印方向Cに
移動したとき、従動磁石12が移動遅れ又は移動進みを
生じるが、その従動磁石12の駆動磁石L11対する遅
れ量又は進み量である。なお、図において、二点鎖線で
示す符号11eは移動後の駆動磁石を示す。The characteristics of the magnetic drive device having the above-mentioned four types of combinations will be described below. The common characteristic is that when the displacement amount 15 of the driven magnet 12 from the drive magnet 11 increases, the moving force of the driven magnet 12 increases and the thrust decreases instead of increasing. Here, the shift amount is a delay amount or a lead amount of the driven magnet 12 with respect to the drive magnet L11, although the driven magnet 12 causes a movement delay or a movement advance when the drive magnet 11 is moved in the arrow C direction. In the figure, reference numeral 11e indicated by a chain double-dashed line indicates the drive magnet after the movement.
【0034】また、個別特性は、後述する図9を参考に
して説明すれば、概略次の通りである。(a)の同極直
交型では、ずれ量の増加に伴い、移動力もスラストも共
に比較的低率で増加し、低減する特性をもつ。移動力は
それほど大きくはならない。またスラストの低減幅も少
ない。(b)の異極直交型にあっては、ずれ量がピーク
近くに達すると、スラストがマイナスになる領域があ
る。(c)の同極平行型では、ずれ量の増加に伴い、移
動力が直線的に増加するが、移動力の増加率に比べてス
ラストの低減率が比較的小さい特性をもつ。スラストは
マイナスにはならない。駆動磁石11と従動磁石12間
の磁力の及ぶ距離が最も大きい。(d)の異極平行型で
は、ずれ量が僅かなうちに、移動力が急激に増加する
が、スラストの絶対値は比較的大きいままである。磁力
の及ぶ範囲が最も小さい。The individual characteristics are roughly as follows, referring to FIG. 9 described later. The homopolar orthogonal type of (a) has a characteristic that both the moving force and the thrust increase and decrease at a relatively low rate as the shift amount increases. Movement will not be that great. In addition, the reduction range of thrust is small. In the heteropolar orthogonal type of (b), there is a region where the thrust becomes negative when the deviation amount reaches near the peak. In the homopolar parallel type of (c), the moving force increases linearly with the increase of the shift amount, but the thrust reduction rate is relatively smaller than the increasing rate of the moving force. Thrust cannot be negative. The distance that the magnetic force between the drive magnet 11 and the driven magnet 12 reaches is the largest. In the heteropolar parallel type of (d), the moving force sharply increases while the displacement amount is small, but the absolute value of the thrust remains relatively large. The range of magnetic force is the smallest.
【0035】上述した特性及び特性の差異が生じる理由
は、必ずしも明確ではないが、上述した移動力とスラス
トの特性から推測して、駆動磁石11が中央延長線13
と交差する方向に移動したとき、磁力線の中央延長線1
3と直角の成分は増大し、中央延長線13と平行の成分
は減少したためだと考えられる。また、両面2極型磁石
の対向面左右でそれぞれ4極が共存し、吸引作用と同時
に反発作用が発生するからであると考えられる。Although the above-mentioned characteristics and the reason why the characteristics differ from each other are not always clear, the drive magnet 11 is assumed to have the central extension line 13 inferred from the characteristics of the moving force and the thrust described above.
When moving in the direction intersecting with, the central extension line 1 of the magnetic field line
It is considered that this is because the component orthogonal to 3 increased and the component parallel to the central extension line 13 decreased. It is also considered that four poles coexist on the left and right sides of the facing surface of the double-sided two-pole magnet, and a repulsive action occurs simultaneously with the attraction action.
【0036】なお、磁気駆動装置は、駆動磁石11を中
央延長線13と交差する方向に移動させることにより、
従動磁石12が移動するものであればよい。したがっ
て、それぞれの磁石は、まったく同じ形状でなくてもよ
く、また、厳密な立方体でなくてもよい。さらに中央延
長線13が完全に一致してなくてもよい。駆動磁石上面
11aと従動磁石下面12bとの間に設けた適宜の隙間
の大きさは、駆動磁石11を移動させると磁石間の磁力
が及ぶ範囲であって、それにより従動磁石12が移動す
ればよい。The magnetic drive device moves the drive magnet 11 in a direction intersecting the central extension line 13
It is sufficient that the driven magnet 12 can move. Therefore, the respective magnets do not have to have the exact same shape and need not have a strict cubic shape. Furthermore, the central extension lines 13 do not have to be completely aligned. The size of the appropriate gap provided between the driving magnet upper surface 11a and the driven magnet lower surface 12b is within a range in which the magnetic force between the magnets is exerted when the driving magnet 11 is moved. Good.
【0037】次に、上述した磁気駆動装置を回転磁気駆
動装置に適用した第1実施例を図2を用いて説明する。
この回転磁気駆動装置は、図1で説明した1組の磁石か
ら構成された磁気駆動装置を、上下の回転体上に4組同
心上に組み込んで構成したものである。回転体は円盤で
構成される。Next, a first embodiment in which the above magnetic drive device is applied to a rotary magnetic drive device will be described with reference to FIG.
In this rotary magnetic drive device, four sets of the magnetic drive device, which is composed of one set of magnets described in FIG. 1, are concentrically assembled on the upper and lower rotating bodies. The rotating body is composed of a disk.
【0038】図2は回転磁気駆動装置の平面図を示し、
磁石間の組合わせ配置の仕方から、図1と同様に、
(a)を同極直交型、(b)を異極直交型、(c)を同
極平行型、(d)を異極平行型と呼ぶことにする。上記
(a)〜(b)に示した回転磁気駆動装置は、つぎのよ
うな共通した構成をもつ。FIG. 2 shows a plan view of the rotary magnetic drive device.
From the way of combining and arranging the magnets, as in FIG. 1,
(A) is referred to as homopolar orthogonal type, (b) is referred to as heteropolar orthogonal type, (c) is referred to as homopolar parallel type, and (d) is referred to as heteropolar parallel type. The rotary magnetic drive devices shown in (a) and (b) above have the following common configuration.
【0039】回転磁気駆動装置は、2枚の回転体22、
23を備える。2枚の回転体は、例えば同一径の円板で
構成され、上下方向に重ねられる。重なって図では見え
ないが、下方の回転体を駆動回転体22とし、上方の回
転体を従動回転体23とする。駆動回転体22は、回転
軸21を中心に回転する。この駆動回転体22と対向し
て設けられた従動回転体23は、駆動回転体22の回転
軸21の延長線上に回転軸21が存在し、すなわち軸心
が一致しており、その回転軸21を中心に回転する。The rotary magnetic drive device comprises two rotary members 22,
23 is provided. The two rotating bodies are composed of, for example, discs having the same diameter, and are vertically stacked. Although not visible in the drawing, the lower rotating body is the driving rotating body 22 and the upper rotating body is the driven rotating body 23. The drive rotating body 22 rotates around the rotating shaft 21. The driven rotary body 23 provided so as to face the drive rotary body 22 has the rotary shaft 21 on an extension line of the rotary shaft 21 of the drive rotary body 22, that is, the axes coincide with each other. Rotate around.
【0040】駆動回転体22の従動回転体23と対向す
る上面上であって、駆動回転体22の回転軸21を中心
に描かれる仮想円の円周上に等間隔に4つの駆動磁石1
1が取り付けられる。また、従動回転体23の駆動回転
体22と対向する下面上であって、駆動回転体22に描
かれた仮想円と対応して従動回転体23の回転軸21を
中心に描かれる仮想円の円周上に等間隔に駆動磁石22
と同数の従動磁石12とが取り付けられる。これら磁石
11、12の回転体22、23に対する取り付けは、ね
じ止めや溶着等による固着とする。回転体22、23上
に取り付ける磁石11、12の数は、図示例では各4つ
であるが、これに限定されない。駆動回転体22に対し
て従動回転体23を面的に安定支持するために、少なく
とも3つあればよい。On the upper surface of the drive rotor 22 facing the driven rotor 23, the four drive magnets 1 are equally spaced on the circumference of a virtual circle drawn around the rotation axis 21 of the drive rotor 22.
1 is attached. In addition, a virtual circle drawn on the lower surface of the driven rotary body 23 facing the drive rotary body 22 and corresponding to the virtual circle drawn on the drive rotary body 22 around the rotary shaft 21 of the driven rotary body 23. Driving magnets 22 are evenly spaced on the circumference
And the same number of driven magnets 12 are attached. The magnets 11 and 12 are attached to the rotating bodies 22 and 23 by screwing, fixing by welding or the like. The number of magnets 11 and 12 mounted on the rotating bodies 22 and 23 is four in the illustrated example, but is not limited to this. In order to stably support the driven rotary body 23 with respect to the drive rotary body 22, the number of the driven rotary bodies 23 should be at least three.
【0041】上記駆動磁石22及び従動磁石23は、図
1に説明した両面2極型磁石で構成される。すなわち、
略同形状で形成され、互いに平行な上下面11a,11
bおよび12a,12bと、上下面間の外周を覆う4側
面とで囲まれた直方体をしており、4側面の一側面12
c全面を一方の極の磁極Nとし、上記一側面12cと反
対の面である他側面12d全面を他方の極の磁極Sとす
る両面2極型磁石でそれぞれ構成される(図1参照)。The drive magnet 22 and the driven magnet 23 are composed of the double-sided bipolar magnet described in FIG. That is,
Upper and lower surfaces 11a, 11 that are formed in substantially the same shape and are parallel to each other
b and 12a, 12b, and a rectangular parallelepiped surrounded by four side surfaces that cover the outer circumference between the upper and lower surfaces.
c, a double-sided two-pole type magnet having the entire surface as a magnetic pole N of one pole and the entire other side surface 12d opposite to the one side surface 12c as a magnetic pole S of the other pole (see FIG. 1).
【0042】これらの駆動磁石11と従動磁石12と
は、それらの対向面同士を略平行にし、かつ駆動磁石1
1の対向面の中央を通る中央延長線と、従動磁石12の
対向面の中央を通る中央延長線とが平行になるように、
駆動回転体22及び従動回転体23にそれぞれ取り付け
られる。そして駆動回転体22を、駆動回転体22の回
転軸21を中心に回転させると、駆動磁石11と従動磁
石12との磁力により従動回転体23が従動回転体23
の回転軸21を中心に回転する。The driving magnet 11 and the driven magnet 12 have their facing surfaces substantially parallel to each other, and the driving magnet 1
The central extension line passing through the center of the facing surface of 1 and the central extension line passing through the center of the facing surface of the driven magnet 12 are parallel to each other.
It is attached to each of the driving rotary body 22 and the driven rotary body 23. When the drive rotor 22 is rotated about the rotary shaft 21 of the drive rotor 22, the driven rotor 23 is driven by the magnetic force of the drive magnet 11 and the driven magnet 12.
It rotates centering on the rotating shaft 21 of.
【0043】次に、上記図2(a)〜(b)に示した磁
気駆動装置は、つぎのような異なる構成をもつ。異なる
構成は磁石配置にある。また、同図に示す駆動磁石1
1、従動磁石12間の相対位置は、回転体22、23同
士が磁力により釣り合っている平衡状態を示す。Next, the magnetic drive device shown in FIGS. 2 (a) and 2 (b) has the following different structure. The different configurations are in the magnet arrangement. In addition, the drive magnet 1 shown in FIG.
1. The relative position between the driven magnets 12 indicates an equilibrium state in which the rotors 22 and 23 are balanced by magnetic force.
【0044】図2(a)の同極直交型は、その磁石配置
が次のようになっている。駆動回転体22では、駆動回
転体22の上面が、直交する2つの直径で4つの領域に
仮想的に等分される。4つの領域にそれぞれ1個の両面
2極型磁石からなる駆動磁石11を取り付ける。各領域
では、両面2極型磁石は、その一方の極の磁極Nが径方
向内方を向き、他方の極の磁極Sが径方向外方を向くよ
うにする。さらに、磁極Nが形成された長手方向に平行
な面を一方の直径と平行に、短手方向に平行な面を他方
の直径と平行に配置する。すなわち、両面2極型磁石
は、その中心を通る直径に対して長手方向に平行な面が
45度傾けて取り付けられている。両面2極型磁石は、
その中心が仮想円の円周上に存在し、また領域の中心に
存在する。対向する領域にそれぞれ取り付けられた両面
2極型磁石は点対称に配置される。In the homopolar and orthogonal type shown in FIG. 2A, the magnets are arranged as follows. In the drive rotator 22, the upper surface of the drive rotator 22 is virtually divided into four regions with two diameters orthogonal to each other. A drive magnet 11 composed of one double-sided dipole magnet is attached to each of the four regions. In each region, in the double-sided magnet, the magnetic pole N of one pole is directed inward in the radial direction, and the magnetic pole S of the other pole is directed outward in the radial direction. Further, the surface parallel to the longitudinal direction on which the magnetic pole N is formed is arranged parallel to one diameter, and the surface parallel to the lateral direction is arranged parallel to the other diameter. That is, the double-sided dipole magnet is attached with the plane parallel to the longitudinal direction inclined by 45 degrees with respect to the diameter passing through the center thereof. The double-sided bipolar magnet is
Its center lies on the circumference of the imaginary circle and also lies at the center of the region. The double-sided dipole magnets attached to the opposite regions are arranged point-symmetrically.
【0045】従動回転体23では、基本的には駆動回転
体22と同様な構成になっている。すなわち、従動回転
体23の上面が4つの領域に当分され、各領域に1個の
両面2極型磁石が取り付けられ、その中心が仮想円の円
周上に存在し、領域の中心に存在し、点対称に配置され
る点も同一である。異なる点は、従動磁石12の取り付
け方向である。従動磁石12は、長手方向に平行な面が
駆動磁石11に対して45度ずれている。すなわち、駆
動回転体22又は従動回転体23を回転して、それらに
取り付けられた従動磁石12と駆動磁石11との中心を
重ねたときは、駆動磁石11は従動磁石12に対して直
交配置されるように取り付けられる。The driven rotary body 23 has basically the same structure as the drive rotary body 22. That is, the upper surface of the driven rotating body 23 is divided into four areas, and one double-sided dipole magnet is attached to each area, and the center thereof exists on the circumference of the virtual circle and exists in the center of the area. The points arranged symmetrically are also the same. The different point is the mounting direction of the driven magnet 12. The surface of the driven magnet 12 parallel to the longitudinal direction is displaced from the drive magnet 11 by 45 degrees. That is, when the drive rotor 22 or the driven rotor 23 is rotated and the centers of the driven magnet 12 and the drive magnet 11 attached to them are overlapped with each other, the drive magnet 11 is disposed orthogonal to the driven magnet 12. To be installed.
【0046】そして、図2(a)に示すように、駆動回
転体22の回転方向が時計方向である場合において、駆
動回転体22に設けられた駆動磁石11に対して、従動
回転体23に設けられた前記駆動磁石11に対応した従
動磁石12が45度遅れているときに、4つの駆動磁石
11と4つの従動磁石12間の磁力相互作用で、駆動回
転体22と従動回転体23とは平衡状態になる。Then, as shown in FIG. 2A, when the rotation direction of the drive rotor 22 is clockwise, the driven magnet 23 provided on the drive rotor 22 is driven by the driven rotor 23. When the driven magnet 12 corresponding to the provided drive magnet 11 is delayed by 45 degrees, magnetic force interaction between the four drive magnets 11 and the four driven magnets 12 causes the drive rotor 22 and the driven rotor 23 to interact with each other. Is in equilibrium.
【0047】図2(b)の異極直交型は、その磁石配置
が、図2(a)の同極直交型と異なる点は、磁極の向き
が異なっている点である。これにより、駆動磁石11と
従動磁石12とが、これらの中心を重ねて直交している
ときに、4つの駆動磁石11と4つの従動磁石12間の
磁力相互作用で、駆動回転体22と従動回転体23とは
平衡状態になる。The different pole orthogonal type shown in FIG. 2B differs from the homopolar orthogonal type magnet shown in FIG. 2A in that the magnet arrangement is different. Accordingly, when the drive magnet 11 and the driven magnet 12 are orthogonal to each other with their centers overlapped, the magnetic interaction between the four drive magnets 11 and the four driven magnets 12 causes the drive rotor 22 and the driven rotor 22 to move. The rotor 23 is in equilibrium.
【0048】図2(c)の同極平行型は、図2(a)の
同極直交型と磁極の向きにおいては同じである。異なる
点は、駆動回転体22及び従動回転体23に取り付けら
れた両面2極型磁石が、その中心を通る直径に対して長
手方向に平行な面が45度傾いておらず、前記直径と平
行に取り付けられている点である。すなわち、全ての両
面2極型磁石は、放射状に取り付けられる。これによ
り、駆動磁石11が従動磁石12間の真ん中に位置する
とき、または従動磁石12が駆動磁石11間の真ん中に
位置するときに、4つの駆動磁石11と4つの従動磁石
12間の磁力相互作用で、駆動回転体22と従動回転体
23とは平衡状態になる。The homopolar parallel type of FIG. 2C is the same as the homopolar orthogonal type of FIG. 2A in the direction of the magnetic poles. The difference is that the double-sided double-sided magnets attached to the driving rotary body 22 and the driven rotary body 23 do not have the plane parallel to the longitudinal direction inclined by 45 degrees with respect to the diameter passing through the center thereof, and are parallel to the diameter. Is the point attached to. That is, all double-sided dipole magnets are mounted radially. As a result, when the drive magnet 11 is located in the middle between the driven magnets 12, or when the driven magnet 12 is located in the middle between the drive magnets 11, the magnetic forces between the four driving magnets 11 and the four driven magnets 12 are mutual. By the action, the driving rotary body 22 and the driven rotary body 23 are in an equilibrium state.
【0049】図2(d)の異極平行型は、図2(c)と
磁極の向きが異なり、駆動磁石11と従動磁石12とで
反対になっている点である。これにより、駆動磁石11
が従動磁石12と重なるときに、4つの駆動磁石11と
4つの従動磁石12間の磁力相互作用で、駆動回転体2
2と従動回転体23とは平衡状態になる。The different-polarity parallel type shown in FIG. 2D is different from FIG. 2C in that the directions of the magnetic poles are different, and the drive magnet 11 and the driven magnet 12 are opposite to each other. Thereby, the drive magnet 11
When the driven magnet 12 overlaps with the driven magnet 12, the magnetic force interaction between the four driving magnets 11 and the four driven magnets 12 causes the driving rotor 2 to move.
2 and the driven rotor 23 are in equilibrium.
【0050】上述した図2(a)〜図2(d)の平衡状
態にある各回転体22、23の磁石11、12間の交差
角度をそれぞれθa、θb、θc、θdとしたとき、θa=
45度、θb=0度、θc=45度、θd=0度である。
また、平衡状態を破って駆動回転体22を回転すると、
それに伴って従動回転体23も回転するが、このときの
駆動回転体22と従動回転体23間の平衡状態からのず
れ量をずれ角θという。The crossing angles between the magnets 11 and 12 of the rotating bodies 22 and 23 in the equilibrium state shown in FIGS. 2A to 2D are represented by θ a , θ b , θ c and θ d , respectively. Then θ a =
45 degrees, θ b = 0 degrees, θ c = 45 degrees, and θ d = 0 degrees.
Moreover, when the driving rotor 22 is rotated by breaking the equilibrium state,
The driven rotary body 23 also rotates accordingly, but the amount of deviation from the equilibrium state between the drive rotary body 22 and the driven rotary body 23 at this time is referred to as a deviation angle θ.
【0051】次に、図2(a)〜図2(d)に示す回転
磁気駆動装置の上記ずれ角に対する各磁気特性(トルク
特性及びスラスト特性)を図9を用いて説明する。この
磁気特性は図11に示す磁気測定装置で測定した。回転
体に取り付けたテスト磁石は、希土類磁石で磁力は38
0mTである。寸法は、25mm×15mm×10mm
で、磁極面が25mm×15mm、対向面が10mm×
15mm、磁石間距離は7mm、磁石の中心の回転半径
は40mmである。トルクの単位は×10Ncmで、ス
ラストの単位はN(kgf)である。トルク測定には、
株式会社山崎精機研究所製回転トルクメーターSS−1
R(トルク測定範囲0〜98Ncm(0〜10kgc
m))、スラストの測定には、株式会社大場計器製作所
製丸型バネ式テンションゲージ置針式(測定範囲0〜1
96N(0〜20kgf))を使用した。Next, each magnetic characteristic (torque characteristic and thrust characteristic) with respect to the above deviation angle of the rotary magnetic drive device shown in FIGS. 2A to 2D will be described with reference to FIG. The magnetic characteristics were measured by the magnetic measurement device shown in FIG. The test magnet attached to the rotor is a rare earth magnet with a magnetic force of 38.
It is 0 mT. The dimensions are 25 mm x 15 mm x 10 mm
Then, the magnetic pole surface is 25 mm × 15 mm, the facing surface is 10 mm ×
The distance between the magnets is 15 mm, the distance between the magnets is 7 mm, and the radius of gyration at the center of the magnet is 40 mm. The unit of torque is × 10 Ncm, and the unit of thrust is N (kgf). For torque measurement,
Yamasaki Seiki Co., Ltd. made rotary torque meter SS-1
R (Torque measurement range 0 to 98 Ncm (0 to 10 kgc
m)), the thrust is measured by a circular spring type tension gauge set needle type manufactured by Oba Keiki Seisakusho Co., Ltd. (measurement range 0 to 1).
96 N (0-20 kgf)) was used.
【0052】上述した磁気測定装置によるトルク及びス
ラストの測定方法を説明する。回転ハンドル95によ
り、駆動回転体22を回転させ保持する。駆動回転体2
2の回転角度が角度目盛板A100に示される。従動回
転体23が、磁力により、回転する。従動回転体23の
回転角度が角度目盛版B101に示される。角度目盛板
A100と角度目盛板B101の示す値の差が、駆動回
転体22と従動回転体23とのずれ角である。このずれ
角を保持した状態で、まずトルクメーターの値を読む。A method of measuring torque and thrust by the above-mentioned magnetic measuring device will be described. The drive handle 22 is rotated and held by the rotating handle 95. Drive rotor 2
A rotation angle of 2 is shown on the angle dial A100. The driven rotating body 23 rotates due to the magnetic force. The rotation angle of the driven rotor 23 is shown on the angle scale plate B101. The difference between the values indicated by the angle graduation plate A100 and the angle graduation plate B101 is the deviation angle between the drive rotor 22 and the driven rotor 23. First, read the value on the torque meter while maintaining this deviation angle.
【0053】従動回転体23には、移動台99を駆動回
転体22方向へ、スライドさせようとするスラストが働
いている。移動体99の移動をストッパー103により
制限することで、駆動回転体22と従動回転体23との
距離は一定に保たれている。その状態から、移動台引っ
張りネジ102を回すことにより、従動回転体23を駆
動回転体22から離す方向へ引っ張る。引っ張る力が、
バネ秤92に示される。引っ張る力が、従動回転体23
に働くスラストを超えた瞬間に、移動台99はストッパ
ー103から一気に離れる。バネ秤92の指針は、置針
になっていて常に最大値を示すので、離れた瞬間の値を
示している。そのときのバネ秤92の示す値であるスラ
ストを読む。Thrust that acts to slide the moving base 99 toward the driving rotary body 22 acts on the driven rotary body 23. By limiting the movement of the moving body 99 by the stopper 103, the distance between the driving rotary body 22 and the driven rotary body 23 is kept constant. From this state, the driven base 23 is pulled in the direction away from the drive rotor 22 by turning the moving base tension screw 102. The pulling force
It is shown on the spring scale 92. The pulling force is the driven rotor 23.
At the moment when it exceeds the thrust that acts on the moving table 99, the moving base 99 is separated from the stopper 103 at a stretch. Since the pointer of the spring scale 92 is a needle and always shows the maximum value, it indicates the value at the moment of leaving. The thrust which is the value indicated by the spring balance 92 at that time is read.
【0054】スラストが負のとき、すなわち従動回転体
23が駆動回転体22から離れる方向にスラストが働い
ているときは、ストッパー103から離れた移動台99
を、移動台引っ張りネジ102を逆に回すことにより、
ストッパー103の位置までもどす。そのときのバネ秤
92の値が、スラストである。When the thrust is negative, that is, when the driven rotor 23 is acting in the direction away from the drive rotor 22, the movable base 99 separated from the stopper 103 is used.
By turning the moving table tension screw 102 in the reverse direction,
Return it to the stopper 103 position. The value of the spring balance 92 at that time is the thrust.
【0055】上述した方法により測定した図9に示すト
ルク及びスラスト特性を説明する。
1)同極直交型磁気特性(図9(a))
図2(a)に対応する特性であり、ずれ角θが増すにつ
れて、トルクは増大するが、逆にスラストは減少する。
ずれ角20度をすぎると反発磁界に入り測定不能になっ
た。しかし、この測定不能域でマイナストルクになり、
反発によるスラストが0近傍になる位置が観測された。The torque and thrust characteristics shown in FIG. 9 measured by the above method will be described. 1) Homopolar and orthogonal magnetic characteristics (FIG. 9A) This characteristic corresponds to FIG. 2A. As the deviation angle θ increases, the torque increases, but the thrust decreases.
If the deviation angle exceeds 20 degrees, a repulsive magnetic field is entered and measurement becomes impossible. However, in this unmeasurable range, the torque becomes negative,
A position where thrust due to repulsion was close to 0 was observed.
【0056】平衡状態でトルクは0、スラストは16.
17(1.65kgf)である。ずれ角θが10度の時
トルクは1.6と増大し始め、スラストは14.7
(1.5kgf)とやや減少傾向に入った。ずれ角θが
増すにつれトルクは増大しスラストは減少する。ずれ角
20度付近で、最大トルク2.7、最小スラスト10.
29(1.05kgf)になる。At equilibrium, torque is 0 and thrust is 16.
17 (1.65 kgf). When the deviation angle θ is 10 degrees, the torque starts to increase to 1.6 and the thrust is 14.7.
(1.5 kgf), which is slightly decreasing. The torque increases and the thrust decreases as the deviation angle θ increases. Maximum torque of 2.7 and minimum thrust of 10.
29 (1.05 kgf).
【0057】回転磁気駆動装置では、トルクは大きい程
よく、スラストは小さい程よい。トルクが最大のとき
に、スラストが最小になるので、好ましい。トルク最大
のときのスラストは、吸引作用の分力であると考察す
る。In the rotary magnetic drive device, the larger the torque, the better, and the smaller the thrust, the better. It is preferable because the thrust is minimized when the torque is maximum. It is considered that the thrust at the maximum torque is the component force of the suction action.
【0058】2)異極直交型磁気特性
図2(b)に対応する特性であり、平衡状態でトルクは
0、スラストは3.234(0.33kgf)である。
ずれ角θが4度の時トルクは1.8と増大し始め、スラ
ストは2.45(0.25kgf)と減少傾向に入っ
た。ずれ角θが増すにつれトルクは増大しスラストは減
少する。ずれ角8度付近になるとスラストは0になる。
さらに、ずれ角θを増やしていくと12度付近でスラス
トは負の値−2.254(−0.23kgf)を示し
た。16度付近で、最大トルク4.6、最小スラスト−
4.9(−0.5kgf)になる。2) Different polarity orthogonal type magnetic characteristic This is a characteristic corresponding to FIG. 2B, in which the torque is 0 and the thrust is 3.234 (0.33 kgf) in the equilibrium state.
When the deviation angle θ was 4 degrees, the torque started to increase to 1.8 and the thrust tended to decrease to 2.45 (0.25 kgf). The torque increases and the thrust decreases as the deviation angle θ increases. The thrust becomes 0 when the deviation angle is around 8 degrees.
Further, as the deviation angle θ was increased, the thrust exhibited a negative value of −2.254 (−0.23 kgf) near 12 degrees. Maximum torque 4.6 and minimum thrust around 16 degrees
It becomes 4.9 (-0.5 kgf).
【0059】トルクが最大のときにスラストがマイナス
になるので、好ましい。平衡状態でのスラスト3.23
4(0.33kgf)は、磁力線がねじられたときの分
力成分と考えられる。平衡状態から駆動回転体22を回
転させると、異極同士の吸引作用が減少し、同極同士の
反発作用が増大する。このことから、ずれ角16度付近
では、磁気浮上して負のスラストが発生したと考えられ
る。The thrust becomes negative at the maximum torque, which is preferable. 3.23 Thrust at equilibrium
4 (0.33 kgf) is considered to be a component component when the magnetic force lines are twisted. When the drive rotor 22 is rotated from the equilibrium state, the attracting action between the different poles is reduced and the repulsing action between the same poles is increased. From this, it is considered that negative thrust occurs due to magnetic levitation in the vicinity of the deviation angle of 16 degrees.
【0060】3)同極平行型磁気特性
図2(c)に対応する特性であり、平衡状態でトルクは
0、スラストは16.17(1.65kgf)である、
ずれ角θが10度の時トルクは2.5と増大し始め、ス
ラストは15.68(1.60kgf)と減少傾向に入
った。ずれ角θが増すにつれトルクは増大しスラストは
減少する。ずれ角25度付近で、最大トルク7.6、最
小スラスト6.37(0.65kgf)になる。3) Homopolar parallel type magnetic characteristics These are the characteristics corresponding to FIG. 2 (c). In the equilibrium state, the torque is 0 and the thrust is 16.17 (1.65 kgf).
When the deviation angle θ was 10 degrees, the torque started to increase to 2.5 and the thrust tended to decrease to 15.68 (1.60 kgf). The torque increases and the thrust decreases as the deviation angle θ increases. At a deviation angle of 25 degrees, the maximum torque is 7.6 and the minimum thrust is 6.37 (0.65 kgf).
【0061】トルクが最大のときにスラストが最小にな
るので、好ましい。ただし、スラストが負の値で、最大
のトルクを得るには、異極直行型磁気特性がよい。負の
スラストを得る必要がなければ、この特性がよい。最小
スラストに対する最大トルクの比率 (比率)=(最大
トルク)/(最小スラスト)を大きくしたければ、この
特性がいちばんよい。平衡状態でスラスト16.17
(1.65kgf)が発生している。この成分は、異極
間吸引力の分力成分と考えられる。The thrust is minimized when the torque is maximum, which is preferable. However, in order to obtain the maximum torque when the thrust is a negative value, the different polarity perpendicular magnetic property is preferable. This property is good if you do not need to obtain negative thrust. Ratio of maximum torque to minimum thrust (ratio) = (maximum torque) / (minimum thrust) If you want to increase, this characteristic is the best. Thrust 16.17 at equilibrium
(1.65 kgf) is generated. This component is considered to be the component component of the attraction force between different poles.
【0062】4)異極平行型磁気特性
図2(d)対応する特性であり、平衡状態でトルク0の
ときスラストは88.2(9kgf)と大きく、ずれ角
θが進むに従いトルクは大きくなるがスラストの減少傾
向はわずかである。ずれ角7度付近で、最大トルク9.
0、最小スラスト80.36(8.2kgf)になる。4) Different polarity parallel type magnetic characteristics These are the characteristics corresponding to FIG. 2 (d). When the torque is 0 in the equilibrium state, the thrust is as large as 88.2 (9 kgf), and the torque increases as the deviation angle θ increases. However, there is a slight tendency for the thrust to decrease. Maximum torque of 9.
0, the minimum thrust is 80.36 (8.2 kgf).
【0063】トルクが最大のときに、スラストが最小に
なるが、最小スラストの値は、上記4つの磁気特性のう
ち最も大きい。When the torque is maximum, the thrust becomes the minimum, but the value of the minimum thrust is the largest among the above four magnetic characteristics.
【0064】上述した4つの型の特性をまとめると、 最大トルク 最小スラスト ずれ角 比率 同極直交型 2.7 10.29 20 0.26 異極直交型 4.6 −4.9 16 −0.94 同極平行型 7.6 6.37 25 1.19 異極平行型 9.0 80.36 7 0.11 となる。Summarizing the characteristics of the four types described above, Maximum torque Minimum thrust deviation angle ratio Homopolar orthogonal type 2.7 10.29 20 0.26 Different polarity orthogonal type 4.6 -4.9 16 -0.94 Homopolar parallel type 7.6 6.37 25 1.19 Different polarity parallel type 9.0 80.36 7 0.11 Becomes
【0065】なお、上述した回転磁気駆動装置では、駆
動回転板及び従動回転板上に4つの磁石を取り付けた場
合を説明したが、これに限定されない。少なくとも3つ
の磁石を備えればよい。面は3点支持によって安定する
からである。In the rotary magnetic drive device described above, the case where four magnets are mounted on the drive rotary plate and the driven rotary plate has been described, but the present invention is not limited to this. At least three magnets may be provided. This is because the surface is stabilized by three-point support.
【0066】また、上述した磁石の形状は直方体の場合
について説明したが、実用に合わせて色々な立方形状を
とることができる。図10は、回転体に取り付けた駆動
磁石121,123,125,127及び従動磁石12
2,124,126,128の実用的ないろいろの形状
を示す平面図である。なお、これらを取り付ける回転体
22、23の中央部には、後述する軸に挿通するための
挿通孔120を設けてある。The shape of the magnet described above has been described in the case of a rectangular parallelepiped, but various cubic shapes can be adopted for practical use. FIG. 10 shows the drive magnets 121, 123, 125, 127 and the driven magnet 12 attached to the rotating body.
It is a top view which shows various practical shapes of 2,124,126,128. In addition, an insertion hole 120 for inserting a shaft, which will be described later, is provided in the central portions of the rotating bodies 22 and 23 to which these are attached.
【0067】図10(a)は、断面が扇形をした扇柱型
の磁石121、122を4個配置した図である。限られ
たスペースで強力な磁力を得る場合に有利である。図1
0(b)は、略直方体をしており、その径方向内方側の
短手方向に平行な内面、及び径方向外方側の短手方向に
平行な外面が、前記挿通孔120及び回転板22、23
の外周にそれぞれ沿う曲面で構成された磁石123、1
24を4個配置した図である。実施時はこの形が実用向
きである。図10(c)は、立方体の磁石125、12
6を4個配置した図である。実施時はこの形が実用向き
である。図10(d)は、円柱型の磁石127、128
を8個配置した図である。実施時はこの形が実用向きで
ある。磁石の形状は、上記に述べた以外に磁気作用及び
実施形態に応じて任意の形状を選ぶことができる。FIG. 10A is a diagram in which four fan-shaped magnets 121 and 122 having a fan-shaped cross section are arranged. This is advantageous when obtaining a strong magnetic force in a limited space. Figure 1
0 (b) has a substantially rectangular parallelepiped shape, and an inner surface parallel to the lateral direction on the radially inner side and an outer surface parallel to the lateral direction on the radially outer side have the insertion hole 120 and the rotation. Plates 22, 23
The magnets 123, 1 each having a curved surface along the outer circumference of the
It is the figure which arranged four 24. At the time of implementation, this shape is suitable for practical use. FIG. 10C shows the cubic magnets 125, 12
It is the figure which arranged 4 six. At the time of implementation, this shape is suitable for practical use. FIG. 10D shows a cylindrical magnet 127, 128.
It is the figure which arranged eight. At the time of implementation, this shape is suitable for practical use. The shape of the magnet may be any shape other than the above, depending on the magnetic action and the embodiment.
【0068】なお、それぞれの回転体の形状は、必ずし
も円盤でなくてもよい。例えば、十字型や正三角形など
でもよく、回転軸を中心に回転させたとき安定に回転す
ることが可能な形状であればよい。The shape of each rotating body does not necessarily have to be a disk. For example, a cross shape or an equilateral triangle may be used, and any shape that allows stable rotation when rotated about the rotation axis may be used.
【0069】次に、図3を用いて第2実施例を説明す
る。これは図1で説明した磁気駆動装置をリニア磁気駆
動装置に適用したものである。このリニア磁気駆動装置
は、上下の移動体上に1組の磁石を組み込んで構成した
ものである。図3(a)〜(b)に示したリニア磁気駆
動装置は、つぎのような共通した構成をもつ。Next, a second embodiment will be described with reference to FIG. This is an application of the magnetic drive device described in FIG. 1 to a linear magnetic drive device. This linear magnetic drive device is configured by incorporating a pair of magnets on the upper and lower moving bodies. The linear magnetic drive device shown in FIGS. 3A and 3B has the following common configuration.
【0070】リニア磁気駆動装置は、任意軌道34上を
走行する駆動移動体32の移動にともなって、従動移動
体33を従動させることにより、従動移動体33を任意
軌道34を走行させる。駆動移動体32は例えば板状の
もので構成され、車輪を有し、任意軌道34上で移動可
能である。また、従動移動体33も例えば板状のもので
構成され、車輪を有し、任意軌道34上で移動可能であ
る。従動移動体33の任意軌道は、例えば、駆動移動体
32の存在する空間と、従動移動体33の存在する空間
とを仕切る隔壁などで構成される。The linear magnetic drive device causes the driven moving body 33 to follow the movement of the driving moving body 32 running on the arbitrary trajectory 34, thereby causing the driven moving body 33 to travel on the arbitrary trajectory 34. The drive moving body 32 is formed of, for example, a plate-like body, has wheels, and can move on an arbitrary track 34. The driven body 33 is also made of, for example, a plate, has wheels, and is movable on an arbitrary track 34. The arbitrary trajectory of the driven moving body 33 is configured by, for example, a partition wall that partitions the space where the drive moving body 32 exists from the space where the driven moving body 33 exists.
【0071】前述したように、駆動磁石11及び従動磁
石12は略同形状で形成され、互いに略平行な対向面
と、対向面間の外周を覆う周側面とで囲まれた立体をし
ており、周側面の一面全面を一方の極の磁極Nとし、周
側面の一面と反対の面である他面全面を他方の極の磁極
Sとする両面2極型磁石でそれぞれ構成される。As described above, the driving magnet 11 and the driven magnet 12 are formed in substantially the same shape, and are three-dimensionally surrounded by the facing surfaces that are substantially parallel to each other and the peripheral side surface that covers the outer circumference between the facing surfaces. A double-sided two-pole magnet is used, in which one surface of the peripheral side surface is the magnetic pole N of one pole, and the other surface of the peripheral side surface opposite the one surface is the magnetic pole S of the other pole.
【0072】従動移動体33に設けられる従動磁石12
が、駆動磁石11に対して対向面同士が略平行で、かつ
駆動磁石11の略平行な対向面の中央を共通に通る中央
延長線に対して、従動磁石12の略平行な対向面の中央
を共通に通る中央延長線が平行になるように配置され
る。The driven magnet 12 provided on the driven moving body 33.
However, the opposing surfaces of the driven magnet 12 are substantially parallel to each other, and the centers of the opposing surfaces of the driven magnet 12 that are substantially parallel to the central extension line that commonly passes through the centers of the opposing surfaces of the driving magnet 11 that are substantially parallel to each other. The central extension lines that pass in common are arranged so as to be parallel.
【0073】駆動磁石11を駆動磁石11の中央延長線
を交差する方向、例えば直交する方向に移動させたと
き、駆動磁石11と従動磁石12との磁力により、従動
移動体33が隔壁などの軌道34上を走行する。When the drive magnet 11 is moved in a direction intersecting the central extension line of the drive magnet 11, for example, in a direction orthogonal to the drive magnet 11, the magnetic force between the drive magnet 11 and the driven magnet 12 causes the driven moving body 33 to move on a track such as a partition wall. Drive over 34.
【0074】また、図3に示したリニア磁気駆動装置
は、回転磁気駆動装置と同様に、4種類の組合わせ
((a)〜(d))が考えられる。図3(a)に示す同
極直交型はあまり実用向きでない。図3(b)に示す異
極直交型は摺動軸受けに最適な磁気特性があり、スラス
トが0または浮上力となって重量物の重さを軽くするこ
とができる。図3(c)に示す同極平行型は異極直交型
に比較して推力があり、転がり軸受け型で大型装置に向
いている。図3(d)に示す異極平行型はずれ量が小さ
いので移動体を正確に一定位置に停止する装置に最適で
ある。In the linear magnetic drive device shown in FIG. 3, four types of combinations ((a) to (d)) are conceivable as in the rotary magnetic drive device. The homopolar and orthogonal type shown in FIG. 3A is not suitable for practical use. The different-polarity orthogonal type shown in FIG. 3 (b) has the optimum magnetic characteristics for the sliding bearing, and the thrust becomes 0 or the levitation force, and the weight of the heavy object can be reduced. The homopolar parallel type shown in FIG. 3C has thrust as compared with the heteropolar orthogonal type, and is a rolling bearing type suitable for a large-sized device. Since the heteropolar parallel type shown in FIG. 3D has a small deviation amount, it is most suitable for an apparatus for accurately stopping a moving body at a fixed position.
【0075】なお、リニア磁気駆動装置の移動方向は、
必ずしも水平方向でなく、中央延長線13と交差してい
る方向であればよい。The moving direction of the linear magnetic drive device is
The direction is not necessarily horizontal, but may be any direction as long as it intersects with the central extension line 13.
【0076】また、従動移動体33が、その場で自転し
てしまうと、すべての磁気特性は磁石の特性上、異極平
行型へ移行してしまうので、それが好ましくない場合
は、駆動移動体32と従動移動体33はレールやガイド
のようなものの上を移動させる。つまり、移動方向に対
する、駆動磁石11と従動磁石12の角度は、常に一定
を保たせる必要がある。If the driven body 33 rotates on the spot, all the magnetic characteristics shift to the different pole parallel type due to the characteristics of the magnets. The body 32 and the driven moving body 33 move on a rail or guide. That is, the angles of the drive magnet 11 and the driven magnet 12 with respect to the moving direction must always be kept constant.
【0077】また、図3では、それぞれの駆動磁石11
は、すべて従動磁石12と中央延長線を一致させて位置
しているが、(a)同極直交型と(c)同極平行型につ
いては、磁力の反発により従動移動体が、図3で示した
位置より少し右か左にずれた状態で安定する。Further, in FIG. 3, each drive magnet 11 is
Are all positioned with the center extension line aligned with the driven magnet 12, but in (a) the same-polarity orthogonal type and (c) the same-polarity parallel type, the driven moving body in FIG. Stabilizes a little to the right or left of the position shown.
【0078】図4に、上述した駆動回転体22と従動回
転体23を備えた、材料45の撹拌を行う撹拌装置を示
す。撹拌槽44の底部を隔壁として駆動回転体22と従
動回転体23を対向して取り付ける。駆動回転体22中
央に挿通孔を設け、撹拌槽44外部に、モーター41の
軸に固定し、モーター41は支持体46で隔壁47に適
宜すき間をあけて設置する。従動回転体23の中央にも
挿通孔を設け、撹拌翼43を備える。従動回転体23の
挿通孔を撹拌槽44内部底壁に備えられた支持軸42に
回転自在に挿通する。上記、駆動回転体22を回転手段
により回転させ、磁力により従動回転体23を回転させ
撹拌翼により撹拌する構成を撹拌体48とする。FIG. 4 shows a stirring device for stirring the material 45, which is equipped with the above-described drive rotor 22 and driven rotor 23. The drive rotator 22 and the driven rotator 23 are attached to face each other with the bottom of the stirring tank 44 as a partition. An insertion hole is provided in the center of the drive rotor 22 and is fixed to the shaft of the motor 41 outside the stirring tank 44. The motor 41 is installed with a support 46 in a partition wall 47 with an appropriate gap. An insertion hole is also provided in the center of the driven rotating body 23, and the stirring blade 43 is provided. The insertion hole of the driven rotor 23 is rotatably inserted into the support shaft 42 provided on the inner bottom wall of the stirring tank 44. The structure in which the drive rotor 22 is rotated by the rotating means and the driven rotor 23 is rotated by the magnetic force and is agitated by the agitating blades is called an agitator 48.
【0079】なお、撹拌体48は必ずしも底部のみでな
く、上部、側面部、または撹拌に適したどの位置でもよ
いが、上述した異極直交型磁気特性で構成し、撹拌槽4
4の底部に備えることが好ましい。従動回転体23の自
重と、マイナスのスラストによる浮力が打ち消しあい、
従動回転体23が支持軸42の軸受けに接することなく
回転するので、軸受けとの磨耗が発生しない。したがっ
て、粉塵の発生を抑えることができるので、材料45を
高純度で撹拌することができる。The stirring member 48 is not limited to the bottom portion, but may be the upper portion, the side surface portion, or any position suitable for stirring.
4 is preferably provided at the bottom. The weight of the driven rotor 23 and the buoyancy due to the negative thrust cancel each other out,
Since the driven rotary body 23 rotates without coming into contact with the bearing of the support shaft 42, abrasion with the bearing does not occur. Therefore, since the generation of dust can be suppressed, the material 45 can be stirred with high purity.
【0080】図5に、材料を効率よく混合する混合装置
を示す。容器51は、供給口52と吐出口53とを備
え、上述した撹拌体48を容器51内に対向して2組備
えている。供給口52aから液体A、供給口52bから
液体Bを供給する。モーター41によって、駆動回転体
22を回転させ、従動回転体23と一体になった撹拌翼
43を駆動させる。供給された液体Aと液体Bは、撹拌
翼43により、混合され、吐出口53より吐出される。FIG. 5 shows a mixing device for efficiently mixing the materials. The container 51 includes a supply port 52 and a discharge port 53, and includes two sets of the above-described stirring members 48 facing each other inside the container 51. Liquid A is supplied from the supply port 52a and liquid B is supplied from the supply port 52b. The drive rotating body 22 is rotated by the motor 41, and the stirring blade 43 integrated with the driven rotating body 23 is driven. The supplied liquid A and liquid B are mixed by the stirring blade 43 and are discharged from the discharge port 53.
【0081】実施によると、モーター41の回転を同じ
方向にして、かつ、容器51内の対向した位置に設置す
ると、撹拌翼43の回転方向は異なるため、効率の良い
撹拌ができる。数種類の混合する液体を連続に供給する
と容器51の中で瞬時に混合し、混合された材料は連続
に吐出される。According to the embodiment, when the motors 41 are set to rotate in the same direction and are installed at opposite positions in the container 51, the stirring blades 43 rotate in different directions, so that efficient stirring can be performed. When several kinds of liquids to be mixed are continuously supplied, they are instantaneously mixed in the container 51, and the mixed materials are continuously discharged.
【0082】なお、撹拌体48を対向して設置する際
に、容器51の上下に設置する場合は、下側の撹拌体4
8は、異極直交型で構成することで、負のスラストと自
重が打ち消し合い、軸受けとの磨耗が発生せず、上側
は、それ以外の磁気特性で構成した撹拌体48を備える
ことで、正のスラストと自重が打ち消し合い、軸受けと
の磨耗が発生しないので好ましい。When the stirrers 48 are installed facing each other, when the stirrers 48 are installed above and below the container 51, the lower stirrer 4 is installed.
8 is a heteropolar orthogonal type, so that the negative thrust and its own weight cancel each other out, wear with the bearing does not occur, and the upper side is provided with the stirring body 48 configured with other magnetic characteristics, This is preferable because the positive thrust and the self-weight cancel each other out and wear with the bearing does not occur.
【0083】また、撹拌に限らずポンプの役目を果たす
ことも可能である。撹拌体48の設置位置と撹拌翼48
の形状を適宜選ぶことで、液体を供給口52から吐出口
53方向に送ることができる。Further, it is possible to play the role of a pump as well as stirring. Position of stirrer 48 and stirrer 48
The liquid can be sent from the supply port 52 to the discharge port 53 by appropriately selecting the shape of the above.
【0084】図6に、撹拌体48と浮揚磁石65を備え
た基板処理装置の概略を示す。FIG. 6 schematically shows a substrate processing apparatus equipped with the agitator 48 and the levitation magnet 65.
【0085】真空容器66内の鉛直回転軸67は、上部
に従動回転体23、下部基板保持体68と浮揚磁石65
を備える。真空容器66上方には、駆動回転体22が備
えられ、モーター41により回転する。真空容器66底
部外壁中央には、超電導体64が接合されている。超電
導体64は、超低温冷凍体61の先端である超冷凍部6
2に接合されている。霜付き防止と断熱効果のため、超
冷凍部62と超電導体64は、低温真空容器63に蔽わ
れている。超電導体64を超電導臨界温度まで下げる
と、磁気浮上磁石65はマイスナー効果により浮上しピ
ン止め効果によりピン止めされ、鉛直回転軸67の軸振
れを防止する。The vertical rotary shaft 67 in the vacuum container 66 has a driven rotor 23 at the top, a lower substrate holder 68 and a levitation magnet 65.
Equipped with. The drive rotor 22 is provided above the vacuum container 66 and is rotated by the motor 41. The superconductor 64 is joined to the center of the outer wall of the bottom of the vacuum container 66. The superconductor 64 is the ultra-freezing portion 6 that is the tip of the ultra-low temperature freezing body 61.
It is joined to 2. The ultra-freezing portion 62 and the superconductor 64 are covered with a low temperature vacuum container 63 for the purpose of preventing frost and heat insulation. When the temperature of the superconductor 64 is lowered to the superconducting critical temperature, the magnetic levitation magnet 65 floats by the Meissner effect and is pinned by the pinning effect, and prevents the vertical rotation shaft 67 from swinging.
【0086】モーター41が回転すると隔壁を介して従
動回転体23が回転し、鉛直回転軸67を中心に基板保
持体68が回転する。鉛直回転軸67と基板保持体68
は真空容器66に接触せずに回転する。したがって回転
磨耗の塵埃発生は起こらない。また、鉛直回転軸67
は、上部と下部で2点支持されことで、安定して回転す
ることができる。When the motor 41 rotates, the driven rotor 23 rotates via the partition wall, and the substrate holder 68 rotates about the vertical rotation shaft 67. Vertical rotation shaft 67 and substrate holder 68
Rotates without contacting the vacuum container 66. Therefore, no dust is generated due to rotational wear. Also, the vertical rotation shaft 67
Can be stably rotated by being supported at two points by the upper part and the lower part.
【0087】鉛直回転軸67に備えられた基板保持体6
8上に、ウェーハを置き成膜時に回転させることで、均
一に成膜することができる。その他、半導体産業のスパ
ッタリング、フォトレジスト塗布、現像処理等の非接触
回転装置に効果がある。The substrate holder 6 provided on the vertical rotation shaft 67.
A film can be uniformly formed by placing a wafer on the wafer 8 and rotating it during film formation. In addition, it is effective for non-contact rotating devices such as sputtering, photoresist coating, and developing process in the semiconductor industry.
【0088】図7に液体の撹拌を行う撹拌装置を示す。
図6の説明に付け加えれば、密閉撹拌槽70は液体の撹
拌を行う目的のものである。鉛直回転軸67に撹拌の目
的に応じた撹拌翼71を設ける。磁気浮上した鉛直回転
軸67に回転を与えると非接触で塵埃発生の起こらない
高純度な撹拌をおこなうことができる。また、鉛直回転
軸67は、上部と下部で2点支持されことで、安定して
回転することができる。FIG. 7 shows a stirring device for stirring a liquid.
In addition to the description of FIG. 6, the closed stirring tank 70 is for the purpose of stirring the liquid. The vertical rotating shaft 67 is provided with a stirring blade 71 according to the purpose of stirring. When the magnetically levitated vertical rotation shaft 67 is rotated, high-purity stirring can be performed in a non-contact manner without generating dust. Further, the vertical rotation shaft 67 can be stably rotated by being supported at two points at the upper portion and the lower portion.
【0089】図8に、その他の撹拌装置を示す。図7の
説明に付け加えれば、鉛直回転軸67を有さず、撹拌体
48が超電導体64の近傍にある。駆動回転体22は、
低温真空容器63を軸として回転する。駆動回転体22
は同時に被駆動プーリーとして機能する。駆動プーリー
81がモーター41により回転すると、回転力は、ベル
ト82により駆動回転体22へ伝えられる。図8では、
紙面手前側部分のベルト82を省略して示している。磁
気浮上撹拌翼85は従動回転体23を密封内蔵してい
る。従動回転体の回転中心に浮揚磁石65を備える。超
電導効果により浮上し、ピン止めされている磁気浮上撹
拌翼85は、撹拌体48で回転を与えられると磁気浮上
したまま非接触で撹拌ができる。超電導体64と撹拌体
48それぞれの磁気回路が影響しないように、適度の距
離を設けたり磁気遮蔽壁を設ける。FIG. 8 shows another stirring device. In addition to the description of FIG. 7, the vertical rotating shaft 67 is not provided, and the stirring body 48 is in the vicinity of the superconductor 64. The drive rotor 22 is
It rotates around the low temperature vacuum container 63 as an axis. Drive rotor 22
Simultaneously functions as a driven pulley. When the drive pulley 81 is rotated by the motor 41, the rotational force is transmitted to the drive rotating body 22 by the belt 82. In FIG.
The belt 82 on the front side of the drawing is omitted. The magnetic levitation stirring blade 85 has the driven rotary body 23 sealed therein. A levitation magnet 65 is provided at the center of rotation of the driven rotor. The magnetic levitation stirring blade 85, which is levitated by the superconducting effect and is pinned, can stir in a non-contact state while being magnetically levitated when rotated by the stirring member 48. An appropriate distance is provided or a magnetic shield wall is provided so that the magnetic circuits of the superconductor 64 and the agitator 48 do not affect each other.
【0090】回転駆動部と超電導体を密閉撹拌槽70の
底部に備えたので、上部には、備える必要がなく、構造
が簡単である。また鉛直回転軸67を有していない分、
構造が簡単で、メンテナンスも容易である。Since the rotary drive unit and the superconductor are provided at the bottom of the closed stirring tank 70, it is not necessary to provide them at the top, and the structure is simple. Moreover, since the vertical rotation shaft 67 is not provided,
Simple structure and easy maintenance.
【0091】[0091]
【発明の効果】本発明によれば、駆動力の増大にともな
いスラストを低減できる。According to the present invention, the thrust can be reduced as the driving force increases.
【図1】 本実施例にかかる磁気駆動装置の平面図と正
面図である。FIG. 1 is a plan view and a front view of a magnetic drive device according to an embodiment.
【図2】 本実施例にかかる回転体の平面図である。FIG. 2 is a plan view of a rotating body according to the present embodiment.
【図3】 本実施例にかかる移動体の正面図である。FIG. 3 is a front view of a moving body according to the present embodiment.
【図4】 本実施例にかかる撹拌体を備えた撹拌装置の
側断面図である。FIG. 4 is a side sectional view of a stirring device including the stirring body according to the present embodiment.
【図5】 本実施例にかかる撹拌体を複数備えた混合装
置の側断面図である。FIG. 5 is a side sectional view of a mixing device including a plurality of stirring bodies according to the present embodiment.
【図6】 本実施例にかかる基板処理装置の側断面図で
ある。FIG. 6 is a side sectional view of the substrate processing apparatus according to the present embodiment.
【図7】 本実施例にかかる超伝導体を備えた撹拌装置
の側断面図である。FIG. 7 is a side sectional view of an agitator including a superconductor according to the present embodiment.
【図8】 本実施例にかかるその他の撹拌装置である。FIG. 8 is another stirring device according to the present embodiment.
【図9】 本実施例にかかる回転体のずれ角と、トルク
およびスラストとの関係を示すグラフである。FIG. 9 is a graph showing the relationship between the deviation angle of the rotating body and the torque and thrust according to the present embodiment.
【図10】 本実施例にかかる回転体に備える磁気駆動
装置の磁石の形状例である。FIG. 10 is an example of a shape of a magnet of a magnetic drive device included in a rotating body according to the present embodiment.
【図11】 本実施例にかかる回転体のずれ角と、トル
クおよびスラストとの関係を測定する測定機の概略図で
ある。FIG. 11 is a schematic diagram of a measuring machine for measuring the relationship between the deviation angle of the rotating body and the torque and thrust according to the present embodiment.
【図12】 従来のマグネチックスターラの側断面図で
ある。FIG. 12 is a side sectional view of a conventional magnetic stirrer.
11 駆動磁石 11a 駆動磁石の上面 11b 駆動磁石の下面 11c 駆動磁石のN極面 11d 駆動磁石のS極面 12 従動磁石 12a 従動磁石の上面 12b 従動磁石の下面 12c 従動磁石のN極面 12d 従動磁石のS極面 13 中央延長線 C 矢印方向(移動方向) N 一方の極の磁極 S 他方の極の磁極 11 Drive magnet 11a Top surface of drive magnet 11b Lower surface of drive magnet 11c N pole surface of drive magnet 11d S-pole surface of driving magnet 12 Driven magnet 12a Upper surface of driven magnet 12b Lower surface of driven magnet 12c N pole surface of driven magnet 12d S pole surface of driven magnet 13 Central extension line C arrow direction (movement direction) N One pole magnetic pole S Magnetic pole of the other pole
Claims (8)
動磁石として、前記駆動磁石と前記従動磁石とを非接触
で磁気的に結合させ、前記駆動磁石の移動にともなって
前記従動磁石を従動させる磁気駆動装置において、 前記駆動磁石及び前記従動磁石は略同形状で形成され、
互いに略平行な対向面と、該対向面間の外周を覆う周側
面とで囲まれた立体をしており、前記周側面の一面全面
を一方の極の磁極とし、該周側面の一面と反対の面であ
る他面全面を他方の極の磁極とする両面2極型磁石でそ
れぞれ構成され、 前記駆動磁石と前記従動磁石との対向面同士を略平行に
し、かつ前記駆動磁石の略平行な対向面の中央を共通に
通る中央延長線と、前記従動磁石の略平行な対向面の中
央を共通に通る中央延長線とが一致するように前記駆動
磁石と前記従動磁石とを対向して設け、 前記駆動磁石を、該駆動磁石の中央延長線と交差する方
向に移動させることにより、その移動を前記駆動磁石の
磁極と前記従動磁石の磁極間に生じる磁力で前記従動磁
石に伝達するようにしたことを特徴とする磁気駆動装
置。1. One magnet is a drive magnet and the other magnet is a follower magnet, the drive magnet and the follower magnet are magnetically coupled in a non-contact manner, and the follower magnet is moved as the drive magnet moves. In the driven magnetic drive device, the drive magnet and the driven magnet are formed in substantially the same shape,
It has a solid body surrounded by opposing surfaces that are substantially parallel to each other and a peripheral side surface that covers the outer periphery between the opposing surfaces. One surface of the peripheral side surface is a magnetic pole of one pole, and is opposite to the peripheral side surface. Is a double-sided two-pole magnet having the other surface as the magnetic pole of the other pole, and the opposing surfaces of the driving magnet and the driven magnet are substantially parallel to each other, and the driving magnet is substantially parallel to each other. The drive magnet and the driven magnet are provided so as to face each other such that a central extension line that commonly passes through the centers of the facing surfaces and a central extension line that commonly passes through the centers of the substantially parallel facing surfaces of the driven magnet coincide with each other. , By moving the drive magnet in a direction intersecting a central extension line of the drive magnet, so that the movement is transmitted to the driven magnet by a magnetic force generated between the magnetic pole of the drive magnet and the magnetic pole of the driven magnet. A magnetic drive device characterized by the above.
回転軸の延長線を回転軸として回転する従動回転体と、 前記駆動回転体の前記従動回転体と対向する面上に、前
記駆動回転体の回転軸を中心に描かれる仮想円の円周上
に等間隔に設けられた少なくとも3つの駆動磁石と、 前記従動回転体の前記駆動回転体と対向する面上に、前
記駆動回転体に描かれた仮想円と対応して前記従動回転
体の回転軸を中心に描かれる仮想円の円周上に等間隔に
設けられた前記駆動磁石と同数の従動磁石と、を備えた
磁気駆動装置において、 前記駆動磁石及び前記従動磁石は略同形状で形成され、
互いに平行な対向面と、該対向面間の外周を覆う周側面
とで囲まれた立体をしており、前記周側面の一面全面を
一方の極の磁極とし、該周側面の一面と反対の面である
他面全面を他方の極の磁極とする両面2極型磁石でそれ
ぞれ構成され、 前記駆動磁石と前記従動磁石の対向面同士を略平行に
し、かつ前記駆動磁石の対向面の中央を通る中央延長線
と、前記従動磁石の対向面の中央を通る中央延長線とが
平行になるように前記駆動磁石及び前記従動磁石を前記
駆動回転体及び前記従動回転体にそれぞれ取り付け、 前記駆動回転体を前記駆動回転体の回転軸を中心に回転
させると、前記駆動磁石と前記従動磁石との磁力により
前記従動回転体が前記従動回転体の回転軸を中心に回転
することを特徴とする磁気駆動装置。2. A drive rotating body that rotates about a rotation axis, a driven rotating body that is provided so as to face the drive rotating body, and that rotates using an extension line of the rotation axis of the drive rotating body as the rotation axis. At least three drive magnets provided at equal intervals on the circumference of an imaginary circle drawn around the rotation axis of the drive rotating body, on the surface of the drive rotating body facing the driven rotating body; Provided on the surface of the body facing the drive rotor at equal intervals on the circumference of the virtual circle drawn around the rotation axis of the driven rotor corresponding to the virtual circle drawn on the drive rotor. In the magnetic drive device including the same number of driven magnets as the driven magnets, the driving magnets and the driven magnets are formed in substantially the same shape,
It has a solid body surrounded by opposing surfaces parallel to each other and a peripheral side surface covering the outer periphery between the opposing surfaces, and one surface of the peripheral side surface is a magnetic pole of one pole, and is opposite to the peripheral side surface. Each of which is a double-sided magnet having the other surface as the magnetic pole of the other pole, the facing surfaces of the driving magnet and the driven magnet are substantially parallel to each other, and the center of the facing surface of the driving magnet is The drive magnet and the driven magnet are attached to the drive rotor and the driven rotor, respectively, so that the center extension line passing through and the center extension line passing through the center of the facing surface of the driven magnet are parallel to each other. When the body is rotated about the rotation axis of the drive rotor, the driven rotor rotates about the rotation axis of the driven rotor due to the magnetic force of the drive magnet and the driven magnet. Drive.
石を駆動磁石の移動にともなって従動させることによ
り、前記従動移動体を走行させる磁気駆動装置におい
て、 前記駆動磁石及び前記従動磁石は略同形状で形成され、
互いに略平行な対向面と、該対向面間の外周を覆う周側
面とで囲まれた立体をしており、前記周側面の一面全面
を一方の極の磁極とし、該周側面の一面と反対の面であ
る他面全面を他方の極の磁極とする両面2極型磁石でそ
れぞれ構成され、 前記従動移動体に設けられる前記従動磁石が、前記駆動
磁石に対して対向面同士が略平行で、かつ前記駆動磁石
の略平行な対向面の中央を共通に通る中央延長線に対し
て、前記従動磁石の略平行な対向面の中央を共通に通る
中央延長線が平行になるように配置され、 前記駆動磁石を該駆動磁石の中央延長線を交差する方向
に移動させたとき、前記駆動磁石と前記従動磁石との磁
力により、前記従動移動体が任意軌道上を走行すること
を特徴とする磁気駆動装置。3. A magnetic drive device for moving a driven moving body by providing a driven magnet for the driven moving body and moving the driven magnet according to the movement of the driving magnet, wherein the driving magnet and the driven magnet are Formed in almost the same shape,
It has a solid body surrounded by opposing surfaces that are substantially parallel to each other and a peripheral side surface that covers the outer periphery between the opposing surfaces. One surface of the peripheral side surface is a magnetic pole of one pole, and is opposite to the peripheral side surface. Of the other side, which is the other side, is used as the magnetic pole of the other pole, and the driven magnet provided in the driven moving body has the opposing surfaces substantially parallel to the drive magnet. And a central extension line that commonly passes through the centers of the substantially parallel facing surfaces of the driven magnet is parallel to a central extension line that commonly passes through the centers of the substantially parallel facing surfaces of the drive magnet. When the drive magnet is moved in a direction intersecting a central extension line of the drive magnet, the driven moving body travels on an arbitrary track due to the magnetic forces of the drive magnet and the driven magnet. Magnetic drive.
の内部の液体を撹拌する手段として用いられる撹拌装置
であって、 前記磁気駆動装置を構成する従動回転体に、前記撹拌槽
内に設けた支持軸が挿通されて前記支持軸を中心に前記
従動回転体を回転自在に軸支するための挿通孔と、前記
従動回転体の回転により前記液体を撹拌するための撹拌
翼とをそれぞれ設け、 前記従動回転体を前記支持軸に軸支したとき、前記磁気
駆動装置を構成する駆動回転体が、前記撹拌槽の槽壁を
介して前記駆動回転体と対向するように前記撹拌槽の外
部に配置されて、前記回転駆動体の回転により前記従動
回転体が前記支持軸を中心に回転することを特徴とする
撹拌装置。4. The magnetic drive device according to claim 2, wherein the magnetic drive device is used as a means for agitating the liquid inside the agitation tank, wherein the driven rotor that constitutes the magnetic drive device is provided with the agitation tank. An insertion hole for inserting a support shaft provided therein to rotatably support the driven rotor about the support shaft, and a stirring blade for stirring the liquid by rotation of the driven rotor. Respectively, and when the driven rotor is pivotally supported on the support shaft, the stirring is performed so that the driving rotor constituting the magnetic drive device faces the driving rotor via the tank wall of the stirring tank. An agitator, which is disposed outside the tank, wherein the driven rotary body rotates around the support shaft by the rotation of the rotary drive body.
液体を流入させる所定数の液供給口と混合処理を終えた
液体を排出する液排出口とを有する前記撹拌槽内に、該
撹拌槽内の液体の混合状態を制御する手段として複数個
用いられる混合装置。5. The stirring device according to claim 4, wherein the stirring tank has a predetermined number of liquid supply ports for introducing liquids to be mixed and a liquid discharge port for discharging the liquids after the mixing process, A plurality of mixing devices are used as means for controlling the mixing state of the liquid in the stirring tank.
内に鉛直回転軸を中心に回転自在に設けられ前記基板を
保持する基板保持体と、前記鉛直回転軸の上方から該鉛
直回転軸に回転力を付与して前記基板保持体を回転させ
る回転駆動部と、前記基板保持体の下方から該基板保持
体をその重力に抗して浮上させつつ前記鉛直回転軸の振
れを防止する軸振れ防止機構とを備えた基板処理装置に
おいて、 前記駆動回転部として請求項2に記載の磁気駆動装置が
用いられ、前記磁気駆動装置を構成する従動回転体の回
転軸に前記鉛直回転軸を連結することにより、前記従動
回転体を前記鉛直回転軸を介して前記基板保持体に接続
し、前記磁気駆動装置を構成する駆動回転体を前記真空
容器の上壁を介して前記回転従動体と対向するように前
記真空容器の外部に配置して、前記駆動回転体の回転に
より前記従動回転体を介して前記基板保持体を前記鉛直
回転軸を中心に回転させるように構成し、 前記軸振れ防止機構が、前記基板保持体に設けられた浮
揚磁石と、前記真空容器の外部に前記真空容器の底壁を
介して前記浮揚磁石と対向するように設けられる超電導
体とを備えて、該超電導体を超電導臨界温度以下に冷却
することによって、前記超電導体と前記浮揚磁石とのマ
イスナー効果により前記基板保持体を前記真空容器内で
浮上させつつ前記鉛直回転軸をピン止め効果によりピン
止めするようにしたことを特徴とする基板処理装置。6. A vacuum container for processing a substrate, a substrate holder rotatably provided in the vacuum container about a vertical rotation shaft to hold the substrate, and a vertical rotation shaft from above the vertical rotation shaft. A rotation drive unit that applies a rotational force to the substrate holder to rotate the substrate holder, and a shaft that prevents the vertical rotation shaft from swinging while lifting the substrate holder from below the substrate holder against its gravity. In a substrate processing apparatus including a shake prevention mechanism, the magnetic drive device according to claim 2 is used as the drive rotation unit, and the vertical rotation shaft is connected to a rotation shaft of a driven rotary body that constitutes the magnetic drive device. By doing so, the driven rotating body is connected to the substrate holding body via the vertical rotation shaft, and the drive rotating body forming the magnetic drive device faces the rotating driven body via the upper wall of the vacuum container. As the vacuum volume Is arranged outside the container, and is configured to rotate the substrate holder through the driven rotor by the rotation of the drive rotor around the vertical rotation axis, and the shaft shake prevention mechanism is configured to rotate the substrate. A levitation magnet provided on a holder and a superconductor provided outside the vacuum container so as to face the levitation magnet through a bottom wall of the vacuum container, and the superconductor is below a superconducting critical temperature. By cooling to, by superposing the substrate holder in the vacuum container by the Meissner effect of the superconductor and the levitation magnet, the vertical rotating shaft is pinned by the pinning effect. Substrate processing equipment.
と、前記撹拌槽内に鉛直回転軸を中心に回転自在に設け
られ前記液体を撹拌する撹拌翼と、前記鉛直回転軸の上
方から該鉛直回転軸に回転力を付与して前記撹拌翼を回
転させる回転駆動部と、前記撹拌翼の下方から該撹拌翼
をその重力に抗して浮上させつつ前記鉛直回転軸の振れ
を防止する軸振れ防止機構とを備えた撹拌装置におい
て、 前記回転駆動部として請求項2に記載の磁気駆動装置が
用いられ、前記磁気駆動装置を構成する従動回転体の回
転軸に前記鉛直回転軸を連結することにより、前記従動
回転体を前記鉛直回転軸を介して前記撹拌翼に接続し、
前記磁気駆動装置を構成する駆動回転体を前記撹拌槽の
上壁を介して前記回転従動体と対向するように前記撹拌
槽の外部に配置して、前記駆動回転体の回転により前記
従動回転体を介して前記撹拌翼を前記鉛直回転軸を中心
に回転させるように構成し、 前記軸振れ防止機構が、前記撹拌翼に設けられた浮揚磁
石と、前記撹拌槽の外部に前記撹拌槽の底壁を介して前
記浮揚磁石と対向するように設けられる超電導体とを備
えて、該超電導体を超電導臨界温度以下に冷却すること
によって、前記超電導体と前記浮揚磁石とのマイスナー
効果により前記撹拌翼を前記撹拌槽内で浮上させつつ前
記鉛直回転軸をピン止め効果によりピン止めするように
したことを特徴とする撹拌装置。7. A closed stirring tank for containing a liquid to be stirred, stirring blades rotatably provided in the stirring tank about a vertical rotation shaft for stirring the liquid, and above the vertical rotation shaft. A rotation drive unit that applies a rotational force to the vertical rotating shaft to rotate the stirring blade, and prevents the vertical rotating shaft from swinging while floating the stirring blade from below the stirring blade against its gravity. In the agitating device including a shaft runout preventing mechanism, the magnetic drive device according to claim 2 is used as the rotary drive unit, and the vertical rotary shaft is provided as a rotary shaft of a driven rotary body that constitutes the magnetic drive device. By connecting, the driven rotor is connected to the stirring blade via the vertical rotation shaft,
A drive rotating body that constitutes the magnetic drive device is arranged outside the stirring tank so as to face the rotary driven body through an upper wall of the stirring tank, and the driven rotating body is rotated by the rotation of the drive rotating body. The stirring blade is configured to rotate about the vertical rotation shaft via the shaft, and the shaft runout preventing mechanism includes a levitation magnet provided on the stirring blade and a bottom of the stirring tank outside the stirring tank. A stirring blade provided with a superconductor provided so as to face the levitation magnet via a wall, and cooling the superconductor to a superconducting critical temperature or lower, by the Meissner effect of the superconductor and the levitation magnet. An agitating device, wherein the vertical rotating shaft is pinned by a pinning effect while being floated in the agitating tank.
撹拌槽内の下方に回転自在に設けられる撹拌翼と、該撹
拌翼を回転させる回転駆動部と、前記撹拌翼をその重力
に抗して浮上させつつ前記撹拌翼の回転中心の振れを防
止する軸振れ防止機構とを備えた撹拌装置において、 前記回転駆動部として請求項2に記載の磁気駆動装置が
用いられ、前記磁気駆動装置を構成する一方の従動回転
体に前記撹拌翼を取り付け、前記磁気駆動装置を構成す
る他方の駆動回転体を前記撹拌槽の底壁を介して前記回
転従動体と対向するように前記撹拌槽の外部に配置し
て、前記駆動回転体の回転により前記従動回転体を介し
て前記撹拌翼を前記従動回転体の回転軸を中心に回転さ
せるように構成し、 前記軸振れ防止機構が、前記従動回転体の回転中心に設
けられた浮揚磁石と、前記撹拌槽の外部に配置された前
記駆動回転体の回転中心に、前記浮揚磁石と対向するよ
うに設けられた超電導体とを備えて、該超電導体を超電
導臨界温度以下に冷却することによって、前記超電導体
と前記浮揚磁石とのマイスナー効果により前記撹拌翼を
前記撹拌槽内で浮上させつつ前記回転中心をピン止め効
果によりピン止めするようにしたことを特徴とする撹拌
装置。8. A stirring tank for containing a liquid to be stirred, a stirring blade rotatably provided below the stirring tank, a rotation drive unit for rotating the stirring blade, and the stirring blade for its gravity. A magnetic drive device according to claim 2 is used as the rotational drive unit in a stirring device provided with a shaft runout prevention mechanism that prevents the center of rotation of the agitating blade from swinging while being floated against the magnetic drive device. The stirring blade is attached to one driven rotor which constitutes the device, and the other driving rotor which constitutes the magnetic drive device is arranged so as to face the rotary driven member through the bottom wall of the stirring tank. The stirring blade is rotated around the rotation axis of the driven rotating body via the driven rotating body by the rotation of the drive rotating body, the shaft runout preventing mechanism is Installed at the center of rotation of the driven rotor. A levitation magnet and a superconductor provided so as to face the levitation magnet at the center of rotation of the drive rotor disposed outside the stirring tank, and the superconductor is below the superconducting critical temperature. The cooling is performed by pinning the rotation center with a pinning effect while floating the stirring blade in the stirring tank by the Meissner effect of the superconductor and the levitation magnet. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001353024A JP4087593B2 (en) | 2001-11-19 | 2001-11-19 | Magnetic drive device, stirring device, mixing device, and substrate processing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001353024A JP4087593B2 (en) | 2001-11-19 | 2001-11-19 | Magnetic drive device, stirring device, mixing device, and substrate processing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003144891A true JP2003144891A (en) | 2003-05-20 |
JP4087593B2 JP4087593B2 (en) | 2008-05-21 |
Family
ID=19165116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001353024A Expired - Lifetime JP4087593B2 (en) | 2001-11-19 | 2001-11-19 | Magnetic drive device, stirring device, mixing device, and substrate processing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4087593B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005233253A (en) * | 2004-02-18 | 2005-09-02 | Nippon Pulse Motor Co Ltd | Drive transmitting mechanism |
JP2006035098A (en) * | 2004-07-27 | 2006-02-09 | Aisin Seiki Co Ltd | Non-contact agitator |
EP1731217A1 (en) * | 2005-06-07 | 2006-12-13 | Maguneo Giken Co., Ltd. | Superconductive levitated stirrer |
JP2010174817A (en) * | 2009-01-30 | 2010-08-12 | Nokodai Tlo Kk | Syringe pump |
WO2013118673A1 (en) | 2012-02-07 | 2013-08-15 | 武蔵エンジニアリング株式会社 | Mixing device, discharge device provided therewith, and discharge method |
CN112791648A (en) * | 2020-12-23 | 2021-05-14 | 无锡市昌顺科技有限公司 | Noise-proof paddle type double-shaft mixer |
-
2001
- 2001-11-19 JP JP2001353024A patent/JP4087593B2/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005233253A (en) * | 2004-02-18 | 2005-09-02 | Nippon Pulse Motor Co Ltd | Drive transmitting mechanism |
JP2006035098A (en) * | 2004-07-27 | 2006-02-09 | Aisin Seiki Co Ltd | Non-contact agitator |
JP4581533B2 (en) * | 2004-07-27 | 2010-11-17 | アイシン精機株式会社 | Non-contact stirrer |
EP1731217A1 (en) * | 2005-06-07 | 2006-12-13 | Maguneo Giken Co., Ltd. | Superconductive levitated stirrer |
JP2007020387A (en) * | 2005-06-07 | 2007-01-25 | Maguneo Giken:Kk | Superconductive non-contact rotation device |
JP2010174817A (en) * | 2009-01-30 | 2010-08-12 | Nokodai Tlo Kk | Syringe pump |
WO2013118673A1 (en) | 2012-02-07 | 2013-08-15 | 武蔵エンジニアリング株式会社 | Mixing device, discharge device provided therewith, and discharge method |
KR20140122752A (en) | 2012-02-07 | 2014-10-20 | 무사시 엔지니어링 가부시키가이샤 | Mixing device, discharge device provided therewith, and discharge method |
US10315173B2 (en) | 2012-02-07 | 2019-06-11 | Musashi Engineering, Inc. | Mixing device, discharge device provided therewith, and discharge method |
CN112791648A (en) * | 2020-12-23 | 2021-05-14 | 无锡市昌顺科技有限公司 | Noise-proof paddle type double-shaft mixer |
CN112791648B (en) * | 2020-12-23 | 2023-09-22 | 无锡市昌顺科技有限公司 | Paddle type double-shaft mixer capable of preventing noise |
Also Published As
Publication number | Publication date |
---|---|
JP4087593B2 (en) | 2008-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108092486B (en) | Magnetic coupling assembly and magnetic coupling stirring device | |
JP4495346B2 (en) | Liquid stirrer with electromagnetic coupling | |
JP4354039B2 (en) | Drive device | |
WO1995020264A1 (en) | Magnetic levitation device | |
EP1731217A1 (en) | Superconductive levitated stirrer | |
JP2008068229A (en) | Magnetic stirrer and stirring apparatus | |
JP2003144891A (en) | Magnetic drive unit, agitating apparatus, mixing apparatus and substrate processing apparatus | |
JP4070326B2 (en) | Non-contact stirring device | |
JP2678569B2 (en) | Magnetic rotation transmission device | |
US20210320580A1 (en) | Torque-increasing device | |
JP3678796B2 (en) | Magnetic rotation transmission device, stirrer, stirring device and magnetic bearing | |
JP2009005550A (en) | Spherical acceleration/deceleration driving mechanism | |
JPS61173662A (en) | Magnetic rotary force transmitter | |
JPS58123578A (en) | Electromagnetic indicator | |
JPH01199637A (en) | Method and device for rotating agitation blade in short pipe | |
JP2006132614A (en) | Drive transmission mechanism | |
TWI809833B (en) | Magnetic coupling method and magnetic coupled stir motions and devices | |
JPH10192679A (en) | Rotator for stirring, and stirring apparatus | |
JPH01295019A (en) | Bearing | |
WO2022126208A1 (en) | Angled magnetic coupling | |
WO2022246446A1 (en) | Torque-increasing device | |
CN107705677B (en) | Water vortex principle demonstrator caused by earth rotation | |
JP3571389B2 (en) | Magnetic levitation device | |
Kazadi et al. | A levitating motor based on passive magnetic levitation supports | |
JP2003126670A (en) | Agitator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080221 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4087593 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140228 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |