JP2003142775A - Near-field optical probe integrated semiconductor laser and optical recorder using it - Google Patents

Near-field optical probe integrated semiconductor laser and optical recorder using it

Info

Publication number
JP2003142775A
JP2003142775A JP2001333820A JP2001333820A JP2003142775A JP 2003142775 A JP2003142775 A JP 2003142775A JP 2001333820 A JP2001333820 A JP 2001333820A JP 2001333820 A JP2001333820 A JP 2001333820A JP 2003142775 A JP2003142775 A JP 2003142775A
Authority
JP
Japan
Prior art keywords
semiconductor laser
light
probe
optical probe
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001333820A
Other languages
Japanese (ja)
Other versions
JP3962240B2 (en
Inventor
Shinichi Nakatsuka
慎一 中塚
Takuya Matsumoto
拓也 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001333820A priority Critical patent/JP3962240B2/en
Publication of JP2003142775A publication Critical patent/JP2003142775A/en
Application granted granted Critical
Publication of JP3962240B2 publication Critical patent/JP3962240B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a near-field optical probe integrated semiconductor laser which can be arranged closely to an object, is high in mass-productivity, and can be assembled easily. SOLUTION: A surface emitting semiconductor laser has at least a pair of reflecting mirrors respectively composed of semiconductor layers formed on the main surface of a semiconductor substrate and having different conductivities, and an active layer interposed between the reflecting mirrors and having a narrower forbidden band width than the semiconductor layers have. A probe which generates near-field light is formed at a light emitting position on the upper surface of the semiconductor laser. In part of the semiconductor substrate other than the forming area of the semiconductor laser, a hole is formed through the substrate from the main surface to the rear surface, and power to the main surface side of the semiconductor laser is performed from the rear surface side through the hole and an electrode formed to a height not higher than the upper surface of the laser.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光記録、光計測等
に用いる近接場光プローブを備えた半導体レーザとそれ
を用いた光記録装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser provided with a near-field optical probe used for optical recording, optical measurement and the like, and an optical recording apparatus using the same.

【0002】[0002]

【従来の技術】金属膜に設けた光の波長以下の孔や先端
が鋭く尖った構造の尖端などの本来光を透過しない構造
においても光の電磁場が漏れ出し、数十ナノメートル程
度の空間に強い光電磁場が形成される現象が知られてお
り、この現象を利用した近接場光プローブを超高密度光
記録や超高感度表面センサの光源に利用することが検討
されている。
2. Description of the Related Art An electromagnetic field of light leaks out even in a structure that originally does not transmit light, such as a hole provided in a metal film, which has a wavelength equal to or shorter than the wavelength of light, or a pointed tip having a sharp pointed structure, and leaks into a space of about several tens of nanometers. A phenomenon in which a strong photoelectric magnetic field is formed is known, and it is considered to use a near-field optical probe utilizing this phenomenon as a light source for ultra-high-density optical recording or an ultra-sensitive surface sensor.

【0003】そのような近接場光プローブを小型で低コ
ストに実現する方法として、光源である半導体レーザに
直接近接場プローブを設けることが提案されている。一
例として、面発光半導体レーザの表面に金属膜を設け、
これに微少な孔をあけることにより近接場光を得る技術
がある[例えば、応用物理学会誌「応用物理」第68巻
第12号の第1380頁(1999年12月)参照]。
As a method for realizing such a near-field optical probe in a small size and at a low cost, it has been proposed to provide the near-field probe directly on the semiconductor laser as a light source. As an example, a metal film is provided on the surface of the surface emitting semiconductor laser,
There is a technique for obtaining near-field light by making a minute hole in this [see, for example, Journal of Applied Physics, "Applied Physics" Vol. 68, No. 12, page 1380 (December 1999)].

【0004】[0004]

【発明が解決しようとする課題】従来の近接場光プロー
ブを設けた面発光レーザにおいては、面発光レーザの発
光部分と金属膜にあけた近接場光発生のための孔との位
置合わせが必要になる。位置合わせは、収束イオンビー
ムの位置を面発光レーザの中央に合わせることにより行
われていた。しかし、この様な位置合わせをウエハ内に
多数形成された素子に対し同時に精密に行なうことは難
しく、量産性に問題があった。
In the conventional surface emitting laser provided with the near field optical probe, it is necessary to align the light emitting portion of the surface emitting laser with the hole for generating the near field light formed in the metal film. become. The alignment was performed by aligning the position of the focused ion beam with the center of the surface emitting laser. However, it is difficult to precisely perform such alignment with respect to a large number of elements formed in a wafer at the same time, and there is a problem in mass productivity.

【0005】また、従来の近接場光プローブを備えた半
導体レーザにおいては、一方の電極が素子の主面上に、
他方の電極が素子の裏面上に設けられる。近接場光を用
いたシステムにおいては、光ディスクや測定対象の物体
に素子を近接して配置する必要があり、素子の主面側は
極力平坦に形成する必要がある。しかし、一方の電極が
素子主面上にあるため、主面側に電流を流し込むための
ボンディングワイヤなどが、プローブを他の物体に近接
して使用する場合に障害になるという問題があった。
Further, in a conventional semiconductor laser provided with a near-field optical probe, one electrode is on the main surface of the device,
The other electrode is provided on the back surface of the device. In a system using near-field light, it is necessary to arrange an element close to an optical disk or an object to be measured, and it is necessary to form the main surface side of the element as flat as possible. However, since one electrode is on the main surface of the element, there is a problem that a bonding wire or the like for flowing a current to the main surface becomes an obstacle when the probe is used in the vicinity of another object.

【0006】本発明の目的は、以上のような従来技術の
問題点を解決し、物体に近接して配置することができ、
かつ、量産性が高く応用装置の組立が容易な近接場光プ
ローブ集積半導体レーザ及びそれを用いた光記録装置を
提供することにある。
The object of the present invention is to solve the above-mentioned problems of the prior art and to place the object close to an object.
Another object of the present invention is to provide a near-field optical probe integrated semiconductor laser having high mass productivity and easy to assemble an applied device, and an optical recording device using the same.

【0007】[0007]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を説明すれば、下記の
通りである。 (1)半導体基板の主面上に形成した互いに導電性の異
なる半導体層よりなる1対の反射鏡及び該1対の反射鏡
に挟まれた上記半導体層よりも禁制帯幅の狭い活性層を
少なくとも有する面発光半導体レーザと、該面発光レー
ザの上面の光出射位置に形成された近接場光を発生する
プローブとを備えており、面発光レーザを形成する領域
以外の半導体基板の一部に主面からこれに対向する裏面
に到達する孔が設けられ、面発光レーザの上面側の上記
半導体層への通電が基板裏面に達する孔を経て形成され
た電極を介して基板裏面側から行なわれ、該電極が面発
光半導体レーザの上面に達しない高さに配置されている
近接場光プローブ集積半導体レーザ。 (2)項番(1)において、通電のための孔は、上記半導
体基板の主面側と裏面側からそれぞれ基板厚さの略2分
の1の深さのエッチングを行なうことにより形成されて
おり、主面側及び裏面側の電極は、いずれもエッチング
を行なう主面及び裏面と鈍角で交差する結晶面上に形成
されている。 (3)項番(2)の主面側の上記孔は、樹脂などの絶縁性
固体により充填され、該絶縁性固体により孔の底に設け
た金属膜が支持されている。 (4)項番(1)において、近接場光プローブは、面発光
レーザの光出射面上に形成された、厚さ及び頂点の曲率
半径が光波長以下の三角形の形状をした金属膜の頂点に
よって構成されている。 (5)項番(4)において、近接場光プローブ以外の面発
光レーザの上面は、反射率が近接場光プローブを設けた
領域よりも高い反射率を有する誘電体多層膜で覆われて
いる。 (6)項番(1)において、前記近接場光プローブは、前
記面発光レーザの光出射部位を規定する構造と同一の作
製工程によって形成されたものである。
The typical ones of the inventions disclosed in the present application will be outlined below. (1) A pair of reflecting mirrors formed of semiconductor layers having different conductivity from each other formed on the main surface of a semiconductor substrate, and an active layer having a narrower band gap than the semiconductor layer sandwiched between the pair of reflecting mirrors. At least a surface-emitting semiconductor laser having, and a probe for generating near-field light formed at a light emission position on the upper surface of the surface-emitting laser are provided, and in a part of the semiconductor substrate other than the region where the surface-emitting laser is formed. A hole is provided from the main surface to reach the back surface opposite to the main surface, and the semiconductor layer on the top surface side of the surface emitting laser is energized from the back surface side of the substrate through an electrode formed through the hole reaching the back surface of the substrate. A near-field optical probe integrated semiconductor laser in which the electrodes are arranged at a height that does not reach the upper surface of the surface emitting semiconductor laser. (2) In item (1), the holes for energization are formed by performing etching from the main surface side and the back surface side of the semiconductor substrate to a depth of approximately ½ of the substrate thickness, respectively. The electrodes on the main surface side and the back surface side are both formed on crystal planes that intersect the main surface and the back surface to be etched at an obtuse angle. (3) The hole on the main surface side of item (2) is filled with an insulating solid such as resin, and the insulating solid supports a metal film provided at the bottom of the hole. (4) In item (1), the near-field optical probe is a vertex of a metal film formed on the light emitting surface of a surface emitting laser and having a triangular shape with a thickness and a radius of curvature of the vertex being equal to or less than the light wavelength. It is composed by. (5) In the item (4), the upper surface of the surface emitting laser other than the near-field optical probe is covered with a dielectric multilayer film having a reflectance higher than that of the region where the near-field optical probe is provided. . (6) In item (1), the near-field optical probe is formed by the same manufacturing process as the structure that defines the light emitting portion of the surface emitting laser.

【0008】上述の項番(1)の構造によれば、面発光
レーザの上面側の半導体層から面発光レーザに電流を流
すために必要な電極は、基板裏側から基板を貫通しかつ
主面側に上記上面から突出せずに形成されるため、面発
光レーザと近接場光プローブを備えた素子の主面(面発
光レーザの上面)に記録媒体を近接させて駆動する際に
障害となる構造物は存在しない。
According to the structure of item (1) above, the electrode necessary for passing a current from the semiconductor layer on the upper surface side of the surface-emitting laser to the surface-emitting laser penetrates the substrate from the back side of the substrate and has a main surface. Since it is formed so as not to project from the upper surface on the side, it becomes an obstacle when the recording medium is driven close to the main surface of the element equipped with the surface emitting laser and the near-field optical probe (upper surface of the surface emitting laser). There are no structures.

【0009】素子裏面から素子主面側に通電するそのよ
うな電極は、具体的には、項番(2)のように通電用の
孔を基板の主面と裏面からそれぞれエッチングで穿ち、
形成された孔の側面がエッチング前の主面と裏面のそれ
ぞれに対し鈍角で交差する面上に形成される。エッチン
グで孔を形成する場合、(100)面である主面と(−1
00)面である裏面に鈍角で交わる面は、それぞれ(11
−1)(1−11)面及び(−111)(−1−1−1)面で
ある。このような鈍角の面に電極を形成することによっ
て電極の段切れが防止される。また、このような孔には
項番(3)のように樹脂などの絶縁物で充填することに
より孔の底の金属膜を支持するとともに、同絶縁物の面
平坦化により素子上面の平坦性を向上することが可能で
ある。
Such an electrode that conducts electricity from the back surface of the element to the principal surface side of the element is, specifically, as shown in item (2), holes for energization are formed by etching from the principal surface and the back surface of the substrate, respectively.
The side surface of the formed hole is formed on a surface that intersects the main surface and the back surface before etching at an obtuse angle. When a hole is formed by etching, the (100) main surface and the (-1)
The surfaces that intersect the back surface which is the (00) surface at an obtuse angle are (11
-1) (1-11) plane and (-111) (-1-1-1) plane. By forming an electrode on such an obtuse angle surface, disconnection of the electrode can be prevented. In addition, such a hole is filled with an insulating material such as resin as in item (3) to support the metal film at the bottom of the hole, and the flatness of the surface of the insulating material flattens the top surface of the element. It is possible to improve.

【0010】近接場光プローブとして、基板面に垂直な
方向の厚さ及び頂点の曲率半径がともに光波長以下の三
角形の形状をした金属膜の表面プラズモンの作用を利用
して近接場光を発生する項番(4)の構造が採用され
る。この場合、面発光レーザの出力光のうち金属膜以外
の部分から出射する光は無効なバックグランド光となる
が、金属膜以外の面発光レーザ表面を反射率97%以上
の高反射絶縁物多層膜で覆う項番(5)の構造とすれ
ば、バックグランド光をレーザ素子内に反射させること
により減少させ、近接場光の強度を高めることが可能と
なる。
As a near-field optical probe, near-field light is generated by utilizing the action of surface plasmons of a metal film in the shape of a triangle whose thickness in the direction perpendicular to the substrate surface and radius of curvature of the apex are both equal to or less than the light wavelength. The structure of item number (4) is adopted. In this case, of the output light of the surface-emission laser, the light emitted from the portion other than the metal film becomes ineffective background light, but the surface-emission laser surface other than the metal film has a high-reflection insulating multilayer with a reflectance of 97% or more. With the structure of item number (5) covered with a film, it is possible to increase the intensity of the near-field light by reducing the background light by reflecting it in the laser element.

【0011】また、項番(6)の工程により、面発光レ
ーザと近接場光プローブが自己整合的に形成され、従っ
て高精度の位置合わせの必要がなく、近接場光プローブ
集積半導体レーザの量産が可能となる。
Further, by the process of item (6), the surface emitting laser and the near-field optical probe are formed in a self-aligned manner, so that there is no need for highly accurate alignment, and the near-field optical probe integrated semiconductor laser is mass-produced. Is possible.

【0012】[0012]

【発明の実施の形態】以下、本発明に係る近接場光プロ
ーブ集積半導体レーザ及びそれを用いた光記録装置を図
面に示した発明の実施の形態を参照して更に詳細に説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A near-field optical probe integrated semiconductor laser according to the present invention and an optical recording device using the same will be described in more detail with reference to the embodiments of the invention shown in the drawings.

【0013】本発明の近接場光プローブ集積半導体レー
ザの一実施形態を図1に示す。図1において、101はp
型GaAs基板、102〜108は基板101の上面(主面)に
この順に形成した半導体層で、102は光反射鏡となる下
側p型DBR(Distributed Bragg Reflector)層、106
は下部スぺーサ層103と量子井戸活性層104と上部スぺー
サ層105とで構成された活性層領域(広義の活性層)、1
07はn型AlAs層、108は光反射鏡となる上側n型D
BR層であり、更に、109はDBR層108の上に形成した
光反射鏡となる絶縁膜DBR層、110は絶縁膜DBR層1
09の上に形成した近接場光プローブとなる金属膜、118
は、上側n型DBR層109に接続され、基板101の裏面側
に延びるn側電極、131は基板101の裏面に形成したp側
電極である。そして、活性層領域106は、DBR層102,
108に挟まれかつDBR層102,108をなす半導体層より
も禁制帯幅が狭い半導体層である。
One embodiment of the near-field optical probe integrated semiconductor laser of the present invention is shown in FIG. In FIG. 1, 101 is p
Type GaAs substrate, 102 to 108 are semiconductor layers formed on the upper surface (main surface) of the substrate 101 in this order, 102 is a lower p-type DBR (Distributed Bragg Reflector) layer to be a light reflecting mirror, 106
Is an active layer region (broadly defined active layer) composed of the lower spacer layer 103, the quantum well active layer 104, and the upper spacer layer 105, 1
07 is the n-type AlAs layer, 108 is the upper n-type D that serves as a light reflecting mirror
Reference numeral 109 is a BR layer, 109 is an insulating film DBR layer formed on the DBR layer 108 to be a light reflecting mirror, and 110 is an insulating film DBR layer 1.
A metal film, which serves as a near-field optical probe formed on 09, 118
Is an n-side electrode connected to the upper n-type DBR layer 109 and extending to the back surface side of the substrate 101, and 131 is a p-side electrode formed on the back surface of the substrate 101. The active layer region 106 includes the DBR layer 102,
It is a semiconductor layer sandwiched by 108 and having a narrower band gap than the semiconductor layers forming the DBR layers 102 and 108.

【0014】本構造の製造方法を以下に述べる。まず、
分子線エピタキシ法により、p型GaAs基板101上
に、AlAsとGaAsをそれぞれの膜厚が媒質内波長
の1/4となるように交互に30周期積層し、キャリア
濃度1×1018cm−3となる下側p型DBR層102
を形成した。
A method of manufacturing this structure will be described below. First,
By the molecular beam epitaxy method, AlAs and GaAs were alternately laminated for 30 cycles on the p-type GaAs substrate 101 so that the respective film thicknesses became 1/4 of the wavelength in the medium, and the carrier concentration was 1 × 10 18 cm −3. Lower p-type DBR layer 102 to be
Was formed.

【0015】次に、DBR層102の上にアンドープAl
0.22Ga0.78Asの下部スぺーサ層103を形成し、その
上にアンドープ量子井戸活性層104を形成し、更にその
上にアンドープAl0.22Ga0.78Asの上部スぺーサ層
105を形成し、膜厚が媒質内波長となる活性層領域106を
構成した。アンドープ量子井戸活性層104は、膜厚80
nmのInGaAs量子井戸層と膜厚150nmのGa
As障壁層とを、量子井戸層が3層、障壁層が4層とな
るように交互に積層して形成した。
Next, undoped Al is formed on the DBR layer 102.
A lower spacer layer 103 of 0.22 Ga 0.78 As is formed, an undoped quantum well active layer 104 is formed thereon, and an upper spacer layer of undoped Al 0.22 Ga 0.78 As is further formed thereon.
By forming 105, an active layer region 106 having a film thickness of the in-medium wavelength was formed. The undoped quantum well active layer 104 has a film thickness of 80.
nm InGaAs quantum well layer and 150 nm Ga
As barrier layers were alternately laminated so that the quantum well layers were 3 layers and the barrier layers were 4 layers.

【0016】続いて、活性層領域106の上に、キャリア
濃度が1×1018cm−3で膜厚が媒質内波長の1/
4となるn型AlAs層107を形成し、更にその上に、
それぞれの膜厚が媒質内波長の1/4のAl0.9Ga0.1
AsとGaAsとを交互に15周期積層し、キャリア濃
度が1×1018cm−3で総膜厚が約2μmとなる上
側n型DBR層108を形成した。
Next, on the active layer region 106, the carrier concentration is 1 × 10 18 cm −3 and the film thickness is 1/10 of the wavelength in the medium.
4. An n-type AlAs layer 107 to be 4 is formed, and further thereon,
Each film thickness is Al 0.9 Ga 0.1 which is 1/4 of the wavelength in the medium.
15 cycles of As and GaAs were alternately laminated to form an upper n-type DBR layer 108 having a carrier concentration of 1 × 10 18 cm −3 and a total film thickness of about 2 μm.

【0017】次いで、以上のようにして形成したウエハ
上に膜厚が媒質内波長の1/4となる酸化シリコン及び
窒化シリコン、即ち二種の誘電体膜を交互に4周期積層
して絶縁膜DBR層109とした。
Next, on the wafer thus formed, silicon oxide and silicon nitride having a film thickness of ¼ of the wavelength in the medium, that is, two kinds of dielectric films are alternately laminated for four cycles to form an insulating film. The DBR layer 109 is used.

【0018】この様な構造の上に、電子線レジストを用
いて金による金属膜110を厚さ約50nm堆積した。金
属膜110は、近接場光プローブとなるもので、そのパタ
ーンについては後述する。金属膜110形成のために、ま
ず、電子線レジストを用いて絶縁膜DBR層109の最上
層の窒化シリコンを金属膜110のパターンとほぼ同一の
形状に除去した。再び電子線レジストを用いて、最上層
の窒化シリコンを除去した部分に金属膜110を堆積し
た。金属膜110のパターニングは、電子線レジストを所
望のパターンの部分のみ除去し、金属膜110を蒸着した
後に残りの電子線レジストを除去するリフトオフ法によ
り行なった。
A metal film 110 of gold having a thickness of about 50 nm was deposited on the above structure using an electron beam resist. The metal film 110 serves as a near-field optical probe, and its pattern will be described later. To form the metal film 110, first, the uppermost silicon nitride film of the insulating film DBR layer 109 was removed by using an electron beam resist so as to have substantially the same shape as the pattern of the metal film 110. Using the electron beam resist again, a metal film 110 was deposited on the uppermost silicon nitride removed portion. The patterning of the metal film 110 was performed by a lift-off method of removing only the desired pattern of the electron beam resist, depositing the metal film 110, and then removing the remaining electron beam resist.

【0019】ここ迄形成した状態での面発光レーザの反
射鏡の反射率は、下側p型DBR層102が99.8%、
上側n型DBR層108が95.5%、絶縁膜DBR層109
が97.3%、絶縁膜DBR層109最上層の窒化シリコ
ン膜を除去した領域が40%であった。活性層側からみ
た上側n型DBR層108と絶縁膜DBR層109を合わせた
反射率は99.8%であり、最上層の窒化シリコン膜を
除去して金を付けた領域では96%であった。
The reflectivity of the reflecting mirror of the surface emitting laser thus formed is 99.8% for the lower p-type DBR layer 102,
95.5% of upper n-type DBR layer 108, insulating film DBR layer 109
Was 97.3%, and the region where the uppermost silicon nitride film of the insulating film DBR layer 109 was removed was 40%. The combined reflectance of the upper n-type DBR layer 108 and the insulating film DBR layer 109 when viewed from the active layer side is 99.8%, and it is 96% in the region where the uppermost silicon nitride film is removed and gold is attached. It was

【0020】このような反射率により、近接場プローブ
とその近傍以外に照射する光は、面発光レーザ内部に大
部分が反射されて再利用される。これにより、素子発光
効率の向上と近接場光に対するバックグランド光比率の
低減という二重の効果が得られた。
Due to such reflectance, most of the light irradiating the near field probe and its vicinity is reflected inside the surface emitting laser for reuse. As a result, the dual effects of improving the light emission efficiency of the device and reducing the ratio of background light to near-field light were obtained.

【0021】近接場光プローブである金属膜110の形状
を図2に示す。形状は、頂点が互いに向き合った2個の
三角形で、頂点の曲率半径が金属膜110の厚さの50n
mとほぼ同じく光波長以下であり、二つの頂点の間の間
隔もほぼ同じである。この間隔から近接場光が放射され
る。
The shape of the metal film 110, which is a near-field optical probe, is shown in FIG. The shape is two triangles whose vertices face each other, and the radius of curvature of the vertices is 50 n of the thickness of the metal film 110.
The wavelength is almost equal to or smaller than the light wavelength, and the distance between the two vertices is almost the same. Near-field light is emitted from this interval.

【0022】さて、金属膜110の形成のときに同時に、
上記間隔を中心にした金属膜110を囲むリング状の金の
金属膜132を形成した。金属膜132は、レーザ発光や近接
場光の放射に関与せず、もっぱら半導体レーザの発光部
分の製造のために利用される。即ち、金属膜110と金属
膜132は同時に形成することにより、相対位置精度を高
くすることができる。そのような金属膜132を使うこと
により、レーザ発光部分と金属膜110とは、自己整合に
より高精度の位置合わせがなされることになる。
At the same time when the metal film 110 is formed,
A ring-shaped gold metal film 132 surrounding the metal film 110 centered on the above interval was formed. The metal film 132 does not participate in laser light emission or near-field light emission and is used exclusively for manufacturing a light emitting portion of a semiconductor laser. That is, the relative position accuracy can be improved by forming the metal film 110 and the metal film 132 at the same time. By using such a metal film 132, the laser emitting portion and the metal film 110 are highly accurately aligned by self-alignment.

【0023】金属膜110及び金属膜132を形成してからの
工程を図2に示す。金属膜110及び金属膜132をホトレジ
スト111で覆い、ホトレジスト111と金属膜132をマスク
として、上記積層膜を、上側n型DBR層108のAlA
s層107に最も近いGaAs層、即ちDBR層108のGa
As層の最下層を残して、四塩化炭素をエッチングガス
として用いた反応性イオンエッチングによりエッチング
した。これにより直径50μmの円筒状の構造112が形
成された。
The process after forming the metal film 110 and the metal film 132 is shown in FIG. The metal film 110 and the metal film 132 are covered with a photoresist 111, and with the photoresist 111 and the metal film 132 as a mask, the laminated film is covered with AlA of the upper n-type DBR layer 108.
GaAs layer closest to the s layer 107, that is, Ga of the DBR layer 108
Etching was performed by reactive ion etching using carbon tetrachloride as an etching gas, leaving the bottom layer of the As layer. As a result, a cylindrical structure 112 having a diameter of 50 μm was formed.

【0024】続いて、図3に示すように、この円筒を覆
い、他の部分では幅約20μmのストライプ状となるホ
トレジスト133を形成し、これをマスクにして反応性イ
オンエッチングにより下側p型DBR層102に達するエ
ッチングを行なった。それにより、ストライプ状の部分
では、DBR層108の最下層のGaAs層やAlAs層1
07等がストライプ領域113となる。
Subsequently, as shown in FIG. 3, a photoresist 133 having a stripe shape with a width of about 20 .mu.m is formed on the other side of the cylinder, and the lower side p-type is formed by reactive ion etching using this as a mask. Etching was performed to reach the DBR layer 102. As a result, in the striped portion, the GaAs layer or AlAs layer 1 at the bottom of the DBR layer 108 is formed.
07 and the like become the stripe region 113.

【0025】その後、ホトレジスト133を除去し、約4
00℃の炉中で水蒸気によりAlAs層107だけを側方
から酸化し高抵抗化させ、酸化領域114を形成した。但
し、この横方向酸化は、円筒112の中央の径約4μmに
は達しないように途中で中止した。このようにして、上
面から見た図4に示すように、径約4μmの非酸化領域
115が円筒112の中央に形成された。その結果、酸化領域
114の上下が電気的に絶縁され、非酸化領域115が電流注
入領域となる。この領域からレーザ光が放射される。
After that, the photoresist 133 is removed, and about 4
Only the AlAs layer 107 was laterally oxidized by steam in a furnace at 00 ° C. to increase the resistance, and an oxidized region 114 was formed. However, this lateral oxidation was stopped midway so that the diameter of the center of the cylinder 112 was not reached to about 4 μm. Thus, as shown in FIG. 4 when viewed from above, the non-oxidized region having a diameter of about 4 μm is obtained.
115 was formed in the center of cylinder 112. As a result, the oxidized region
The top and bottom of 114 are electrically insulated, and the non-oxidized region 115 serves as a current injection region. Laser light is emitted from this region.

【0026】上記エッチングによって形成されたストラ
イプ領域113では、酸化領域114によって下側p型DBR
層102と上側n型DBR層108が電気的に分離されるた
め、ストライプ領域113の上に導電膜を形成すると、こ
の導電膜は、上側n型DBR層108に至る横方向の電流
通路として用いることができる。
In the stripe region 113 formed by the above etching, the lower p-type DBR is formed by the oxidized region 114.
Since the layer 102 and the upper n-type DBR layer 108 are electrically separated, when a conductive film is formed on the stripe region 113, this conductive film is used as a lateral current path to the upper n-type DBR layer 108. be able to.

【0027】その後、ストライプ領域113に隣接してG
aAs基板101の表面(主面)側から基板101の途中まで
深さ約15μmの化学エッチングを行ない、表側コンタ
クト孔116を形成した。
Then, G is formed adjacent to the stripe region 113.
A front side contact hole 116 was formed by performing chemical etching with a depth of about 15 μm from the surface (main surface) side of the aAs substrate 101 to the middle of the substrate 101.

【0028】更に、酸化シリコン絶縁膜117を素子全体
に厚さ約100nm蒸着し、レジストマスクを利用し
て、ストライプ領域113にある上側n型DBR層108の最
下層のGaAs層に電極をつけるための小孔を酸化シリ
コン絶縁膜117にあけた。同時に、コンタクト孔116の底
部の酸化シリコン絶縁膜117に孔をあけた。次に、再び
ホトレジストマスクを利用してコンタクト孔116の底部
孔からストライプ領域の小孔までつながるTi/Pt/
Au電極118を形成した。このとき、電極118は表側コン
タクト孔116の(01−1)方向の辺の斜面上に形成する
ことにより基板段差による電極の段切れが防止される。
Further, a silicon oxide insulating film 117 is vapor-deposited on the entire device to a thickness of about 100 nm, and a resist mask is used to attach an electrode to the lowermost GaAs layer of the upper n-type DBR layer 108 in the stripe region 113. A small hole was formed in the silicon oxide insulating film 117. At the same time, a hole was opened in the silicon oxide insulating film 117 at the bottom of the contact hole 116. Next, using the photoresist mask again, Ti / Pt / connecting from the bottom hole of the contact hole 116 to the small hole of the stripe region is connected.
The Au electrode 118 was formed. At this time, the electrodes 118 are formed on the slopes of the sides in the (01-1) direction of the front side contact holes 116, so that the electrodes are prevented from being disconnected due to the stepped portion of the substrate.

【0029】以上のようにして形成した基板101(ウエ
ハに形成されている状態)にポリイミド樹脂119を塗布
した。続いて、図5に示すように、基板101の接合面を
下向きにしてウエハを石英基板120に貼り付けた。石英
基板120は、酸化亜鉛121及び酸化シリコン122をスパッ
タ法により設け、その上にポリイミド樹脂119を約1μ
m塗布したものである。ウエハと石英基板120を貼り付
けた後、ポリイミドをベークして固化させた。石英基板
120は、以降の工程でウエハの強度を保つために用い
られるもので、所定の工程後に除去される。
A polyimide resin 119 was applied to the substrate 101 (in the state of being formed on a wafer) formed as described above. Subsequently, as shown in FIG. 5, the wafer was attached to the quartz substrate 120 with the bonding surface of the substrate 101 facing downward. The quartz substrate 120 is provided with zinc oxide 121 and silicon oxide 122 by a sputtering method, and a polyimide resin 119 is deposited thereon by about 1 μm.
m applied. After bonding the wafer and the quartz substrate 120, the polyimide was baked and solidified. The quartz substrate 120 is used to maintain the strength of the wafer in the subsequent steps, and is removed after the predetermined steps.

【0030】石英基板120に固定したGaAs基板101を
裏面から研磨して、ウエハ全体の厚さを30μm以下と
した。次いで、両面合わせ技術を用いて基板101裏側に
表側コンタクト孔116と重なる位置に裏側コンタクト孔1
23を設けた。裏側コンタクト孔123は表側コンタクト孔1
16よりも小さく、エッチングは表側コンタクト孔116の
底部に達したときに停止する。
The GaAs substrate 101 fixed to the quartz substrate 120 was polished from the back surface so that the total thickness of the wafer was 30 μm or less. Then, using the double-sided alignment technique, the backside contact hole 1 is formed at a position overlapping the frontside contact hole 116 on the backside of the substrate 101.
23 was set up. Back contact hole 123 is front contact hole 1
Below 16, the etching stops when it reaches the bottom of the front contact hole 116.

【0031】次に、基板101裏面全体を覆う酸化シリコ
ン絶縁膜117を厚さ約100nm堆積した。続いて、裏
面コンタクト孔123の底部の酸化シリコン絶縁膜117と面
発光レーザの発光部となる非酸化領域115の裏側の酸化
シリコン絶縁膜117とをホトリソグラフ技術を利用して
し除去した後、裏面側のn側電極118とp側電極131を形
成した。
Next, a silicon oxide insulating film 117 covering the entire back surface of the substrate 101 was deposited to a thickness of about 100 nm. Then, after removing the silicon oxide insulating film 117 at the bottom of the back surface contact hole 123 and the silicon oxide insulating film 117 on the back side of the non-oxidized region 115 which becomes the light emitting portion of the surface emitting laser by using the photolithographic technique, An n-side electrode 118 and a p-side electrode 131 on the back side were formed.

【0032】コンタクト孔部分の電極118は、図6に示
すように、表側電極118と裏側電極118が直交するように
形成され、その交点で両電極が接触し、電気的に接続さ
れる。図6におけるA・A線による表側コンタクト孔11
6及び裏側コンタクト孔123とそれらの近傍の断面、B・
B線による同じ部分の断面を図7に示す。図7に示すよ
うに、それぞれの電極118がウエハの表面と鈍角で交わ
る面上に形成されている。
As shown in FIG. 6, the electrode 118 in the contact hole portion is formed so that the front side electrode 118 and the back side electrode 118 are orthogonal to each other, and the two electrodes are in contact with each other at their intersections to be electrically connected. Front side contact hole 11 by AA line in FIG. 6
6 and cross section of the back side contact hole 123 and their vicinity, B ・
A cross section of the same portion along line B is shown in FIG. As shown in FIG. 7, each electrode 118 is formed on a surface that intersects the surface of the wafer at an obtuse angle.

【0033】続いて、ウエハ裏面の電極118,131に対応
したパターンの金電極118,131及び半田124を設けたサ
ブマウント125を用意し、これに電極118,131の位置を
合わせながらウエハを半田付けした。
Next, a submount 125 provided with gold electrodes 118 and 131 having a pattern corresponding to the electrodes 118 and 131 on the back surface of the wafer and solder 124 is prepared, and the wafer is soldered while aligning the positions of the electrodes 118 and 131 with this. I attached it.

【0034】次いで、塩酸系エッチング液により酸化亜
鉛膜121を除去して石英基板120をウエハから分離した。
ウエハの研磨工程以降サブマウントに取り付けるまで、
ウエハは石英基板120に貼り付けて取り扱われるため、
30μm程度の薄い素子となっても取り扱い上の問題は
発生しなかった。面発光レーザの表面には、金属膜110
を覆う厚さ約1μmのポリイミド樹脂119が残っている
ため、リアクティブイオンエッチング法によりこれを除
去した。除去後の表側コンタクト孔116を充填している
ポリイミド樹脂119により、孔116の底に設けた金属膜11
8が支持される。ポリイミド樹脂119は、これに限らず、
コンタクト孔116を充填可能な絶縁性固体であれば良
い。以上により、図1に示す素子を完成させた。図8
は、図1の正面からに対して側面から完成した素子を示
したものである。
Then, the zinc oxide film 121 was removed with a hydrochloric acid-based etching solution to separate the quartz substrate 120 from the wafer.
After the wafer polishing process, until mounting on the submount,
Since the wafer is attached to the quartz substrate 120 and handled,
No problem in handling occurred even if the device was thinned to about 30 μm. A metal film 110 is formed on the surface of the surface emitting laser.
Since a polyimide resin 119 having a thickness of about 1 μm that covers the film remains, it was removed by the reactive ion etching method. The polyimide resin 119 filling the removed front side contact hole 116 is used to form the metal film 11 provided at the bottom of the hole 116.
Eight is supported. The polyimide resin 119 is not limited to this,
Any insulating solid that can fill the contact hole 116 may be used. Through the above steps, the element shown in FIG. 1 was completed. Figure 8
Shows the device completed from the side with respect to the front in FIG.

【0035】本実施形態により、面発光半導体レーザと
近接場光プローブを自己整合的に集積することが可能と
なり、レーザ発光部分と近接場光プローブを高い位置精
度で配置することができる。それにより、レーザ光の利
用効率が向上して面発光レーザの特性向上と近接場光の
出力増加が可能となる。半導体レーザと近接場光プロー
ブを自己整合的に集積することにより、高精度の位置合
わせが不要になり、量産性を高めることができる。
According to this embodiment, the surface emitting semiconductor laser and the near-field optical probe can be integrated in a self-aligned manner, and the laser emitting portion and the near-field optical probe can be arranged with high positional accuracy. As a result, the utilization efficiency of the laser light is improved, the characteristics of the surface emitting laser can be improved, and the output of the near-field light can be increased. By integrating the semiconductor laser and the near-field optical probe in a self-aligned manner, highly accurate alignment becomes unnecessary and mass productivity can be improved.

【0036】更に、本実施形態により、表面が平坦な近
接場プローブが形成可能となり、光ディスク面に近接し
て光プローブを設置する光記録装置が容易に実現でき
る。
Further, according to this embodiment, it is possible to form a near-field probe having a flat surface, and it is possible to easily realize an optical recording device in which the optical probe is installed close to the optical disk surface.

【0037】なお、以上では、単一の面発光レーザを形
成する場合を例に述べたが、単一チップ上に複数の素子
を形成するアレイ型素子においても本発明が同様の効果
を持つことは言うまでもない。アレイ型とする場合に
は、特にサブマウントへの取り付けが終了してから素子
分離を行なうことにより上面の電極118の作成が容易に
なる点等で、アレイ化に伴った利点も発生する。
In the above description, the case of forming a single surface emitting laser has been described as an example, but the present invention also has the same effect in an array type element in which a plurality of elements are formed on a single chip. Needless to say. In the case of the array type, the advantages associated with the array are also generated, in particular, in that the element 118 is separated after the attachment to the submount is completed to facilitate the formation of the electrode 118 on the upper surface.

【0038】また、本実施形態では、活性層にGaAs
を用いた例を説明したが、本発明は、GaInAsを用
いた近赤外用、InGaP又はAlGaInPを用いた
赤色用の面発光レーザに適用することが可能である。更
には、GaN系やZnSe系等の青色又は紫外線を発光
する面発光レーザ、InGaAsP系等の1.3〜1.
5μm帯の長波長を発光する面発光レーザにも適用可能
であることは言うまでもない。
In this embodiment, the active layer is made of GaAs.
However, the present invention can be applied to a near-infrared surface emitting laser using GaInAs and a red surface emitting laser using InGaP or AlGaInP. Furthermore, surface emitting lasers such as GaN-based and ZnSe-based which emit blue or ultraviolet rays, 1.3 to 1.
It goes without saying that the present invention can also be applied to a surface emitting laser that emits a long wavelength in the 5 μm band.

【0039】次に、上述の近接場光プローブ集積半導体
レーザを用いた光記録装置の実施形態を図9に示す。図
9aにおいて、701は下面に記録膜を形成した光ディス
ク、702は上記半導体レーザを搭載したスライダ、703は
スライダ702を備えた記録ヘッド、704は記録ヘッド703
を光ディスク701の矢印の半径方向に移動させるアクチ
ュエータである。
Next, FIG. 9 shows an embodiment of an optical recording apparatus using the above-mentioned near-field optical probe integrated semiconductor laser. In FIG. 9A, 701 is an optical disk having a recording film formed on the lower surface, 702 is a slider on which the semiconductor laser is mounted, 703 is a recording head having a slider 702, and 704 is a recording head 703.
Is an actuator that moves the optical disc 701 in the radial direction of the arrow of the optical disc 701.

【0040】図9bに、記録ヘッド703の詳細を示す。
近接場光プローブが光ディスク701の記録膜に対向する
ように近接場光プローブ集積半導体レーザ707がスライ
ダ702に搭載される。スライダ702はサスペンション705
の一方の端に置かれ、サスペンション705の他方の端が
圧電素子706に固定される。更に、圧電素子706は、記録
ヘッド703の基部に設置される。圧電素子706は、トラッ
キング調整のために用いられる。
FIG. 9b shows the details of the recording head 703.
The near-field optical probe integrated semiconductor laser 707 is mounted on the slider 702 so that the near-field optical probe faces the recording film of the optical disk 701. Slider 702 is suspension 705
The other end of the suspension 705 is fixed to the piezoelectric element 706. Further, the piezoelectric element 706 is installed at the base of the recording head 703. The piezoelectric element 706 is used for tracking adjustment.

【0041】光記録装置は、上記のほか、光ディスク70
1の回転機構、記録信号を生成する信号回路、アクチュ
エータ704及び圧電素子706を制御する制御回路等を有す
るが図示を省略した。
In addition to the above, the optical recording device is an optical disk 70.
The rotary mechanism of 1, a signal circuit for generating a recording signal, a control circuit for controlling the actuator 704 and the piezoelectric element 706, and the like are provided, but they are not shown.

【0042】記録時に、スライダ702はサスペンション7
05のばね力によって光ディスク701の面に押し付けられ
るが、逆に光ディスク701の回転によって生じる光ディ
スク701の面上の空気流による浮上力がはたらき、両者
の力のバランスで、光ディスク701の面と半導体レーザ7
07の近接場光プローブの上面との間に数十ナノメータの
間隙が形成される。
During recording, the slider 702 moves the suspension 7
It is pressed against the surface of the optical disk 701 by the spring force of 05, but conversely, the levitation force by the air flow on the surface of the optical disk 701 that is generated by the rotation of the optical disk 701 acts, and the surface of the optical disk 701 and the semiconductor laser
A gap of several tens of nanometers is formed between the upper surface of the near-field optical probe 07 and the upper surface.

【0043】以上の構造により、近接場光プローブから
光の波長よりも小さい径の光スポットが光ディスク701
の記録膜に照射され、超高密度の光記録が行なわれる。
With the above structure, an optical spot with a diameter smaller than the wavelength of light is emitted from the optical disc 701 from the near-field optical probe.
Is irradiated onto the recording film, and ultra-high density optical recording is performed.

【0044】[0044]

【発明の効果】本発明によれば、面発光半導体レーザと
近接場光プローブを自己整合的に集積することにより、
高精度の位置合わせを伴わずに両者を精度良く配置する
ことが可能となる。それにより、レーザ光の利用効率を
向上させることができ、面発光レーザの特性向上と近接
場光の出力増加が可能となる。高精度の位置合わせが不
要になることから、量産性を高めることができる。更
に、半導体レーザの上側の電極を半導体レーザの表面に
突出しないで裏面に至る構造にすることができるので、
電極プローブを設けた半導体レーザの表面を平坦にする
ことが可能になる。そのような近接場光プローブ集積半
導体レーザを光ディスク面に近接して設置することが可
能になり、光の波長より小さい光スポットを利用した超
高密度の光記録装置を実現することができる。
According to the present invention, by integrating the surface emitting semiconductor laser and the near-field optical probe in a self-aligning manner,
Both can be arranged with high precision without high-precision alignment. Thereby, the utilization efficiency of the laser light can be improved, and the characteristics of the surface emitting laser can be improved and the output of the near-field light can be increased. Since high-precision alignment is unnecessary, mass productivity can be improved. Furthermore, since the upper electrode of the semiconductor laser can be made to reach the back surface without protruding to the front surface of the semiconductor laser,
It becomes possible to flatten the surface of the semiconductor laser provided with the electrode probe. It becomes possible to install such a near-field optical probe integrated semiconductor laser close to the optical disk surface, and it is possible to realize an ultra-high-density optical recording device using an optical spot smaller than the wavelength of light.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る近接場光プローブ集積半導体レー
ザの発明の実施の形態を説明するための断面図。
FIG. 1 is a sectional view for explaining an embodiment of the invention of a near-field optical probe integrated semiconductor laser according to the present invention.

【図2】本発明の近接場光プローブ集積半導体レーザの
製作工程を説明するための図。
FIG. 2 is a diagram for explaining a manufacturing process of the near-field optical probe integrated semiconductor laser of the present invention.

【図3】本発明の近接場光プローブ集積半導体レーザの
製作工程を説明するための別の図。
FIG. 3 is another diagram for explaining the manufacturing process of the near-field optical probe integrated semiconductor laser of the present invention.

【図4】図3の工程によって形成した酸化領域及び非酸
化領域を説明するための上面図。
FIG. 4 is a top view for explaining an oxidized region and a non-oxidized region formed by the process of FIG.

【図5】本発明の近接場光プローブ集積半導体レーザの
製作工程を説明するための更に別の図。
FIG. 5 is still another drawing for explaining the manufacturing process of the near-field optical probe integrated semiconductor laser of the present invention.

【図6】図5の工程によって形成したコンタクト孔を説
明するための上面図。
FIG. 6 is a top view for explaining a contact hole formed by the process of FIG.

【図7】図6に示したコンタクト孔の断面図。7 is a cross-sectional view of the contact hole shown in FIG.

【図8】本発明の近接場光プローブ集積半導体レーザを
説明するための別方向の断面図。
FIG. 8 is a sectional view in another direction for explaining the near-field optical probe integrated semiconductor laser of the present invention.

【図9】本発明の光記録装置を説明するための斜視図。FIG. 9 is a perspective view for explaining an optical recording device of the present invention.

【符号の説明】[Explanation of symbols]

101…p型GaAs基板、102…下側p型DBR層、103
…下部スぺーサ層、104…量子井戸活性層、105…上部ス
ぺーサ層、106…活性層領域、107…n型AlAs層、10
8…上側n型DBR層、109…絶縁膜DBR層、110…金
属膜、114…酸化領域、115…非酸化領域、116…表側コ
ンタクト孔、117…酸化シリコン絶縁膜、118,131…電
極、123…裏側コンタクト孔、124…半田、125…サブマ
ウント701…光ディスク、702…スライダ、703…記録ヘ
ッド、707…近接場光プローブ集積半導体レーザ。
101 ... P-type GaAs substrate, 102 ... Lower p-type DBR layer, 103
... lower spacer layer, 104 ... quantum well active layer, 105 ... upper spacer layer, 106 ... active layer region, 107 ... n-type AlAs layer, 10
8 ... Upper n-type DBR layer, 109 ... Insulating film DBR layer, 110 ... Metal film, 114 ... Oxidized region, 115 ... Non-oxidized region, 116 ... Front side contact hole, 117 ... Silicon oxide insulating film, 118, 131 ... Electrode, 123 ... Backside contact hole, 124 ... Solder, 125 ... Submount 701 ... Optical disc, 702 ... Slider, 703 ... Recording head, 707 ... Near-field optical probe integrated semiconductor laser.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G12B 21/06 G12B 1/00 601C Fターム(参考) 5D119 AA11 AA22 AA38 BA01 CA06 EB02 FA05 FA16 JA34 MA06 5D789 AA11 AA22 AA38 BA01 CA06 CA21 CA22 CA23 EB02 FA05 FA16 JA34 MA06 5F073 AA65 AA74 BA04 CA07 CB22 DA21 DA27 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G12B 21/06 G12B 1/00 601C F term (reference) 5D119 AA11 AA22 AA38 BA01 CA06 EB02 FA05 FA16 JA34 MA06 5D789 AA11 AA22 AA38 BA01 CA06 CA21 CA22 CA23 EB02 FA05 FA16 JA34 MA06 5F073 AA65 AA74 BA04 CA07 CB22 DA21 DA27

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】半導体基板の主面上に形成した互いに導電
性の異なる半導体層よりなる1対の反射鏡及び該1対の
反射鏡に挟まれた上記半導体層よりも禁制帯幅の狭い活
性層を少なくとも有する面発光半導体レーザと、該面発
光半導体レーザの上面の光出射位置に形成された近接場
光を発生するプローブとを備えており、該面発光半導体
レーザを形成する領域以外の該半導体基板の一部に主面
からこれに対向する裏面に到達する孔が設けられ、裏面
側から該面発光半導体レーザの上面側の上記半導体層へ
通電を行なうための電極が該孔を経て形成され、該電極
は、該面発光半導体レーザの上面に達しない高さに配置
されていることを特徴とする近接場光プローブ集積半導
体レーザ。
1. A pair of reflecting mirrors formed of semiconductor layers having different conductivity from each other formed on a main surface of a semiconductor substrate, and an active band gap narrower than the semiconductor layer sandwiched by the pair of reflecting mirrors. A surface emitting semiconductor laser having at least a layer, and a probe for generating near-field light formed at a light emitting position on the upper surface of the surface emitting semiconductor laser, the probe being provided in a region other than the region where the surface emitting semiconductor laser is formed. A hole is formed in a part of the semiconductor substrate so as to reach from the main surface to a back surface opposite to the main surface, and an electrode for conducting electricity from the back surface side to the semiconductor layer on the upper surface side of the surface emitting semiconductor laser is formed through the hole. The near-field optical probe integrated semiconductor laser, wherein the electrode is arranged at a height that does not reach the upper surface of the surface emitting semiconductor laser.
【請求項2】通電のための前記孔は、前記半導体基板の
主面側と裏面側からそれぞれ基板厚さの略2分の1の深
さのエッチングを行なうことにより形成されており、主
面側及び裏面側の電極はいずれもエッチングを開始する
前の面に対し鈍角で交わる結晶面に形成されていること
を特徴とする請求項1に記載の近接場光プローブ集積半
導体レーザ。
2. The holes for energization are formed by etching from the main surface side and the back surface side of the semiconductor substrate to a depth of about ½ of the substrate thickness, respectively. The near-field optical probe integrated semiconductor laser according to claim 1, wherein the electrodes on the side and the back surface are both formed on a crystal plane intersecting an obtuse angle with respect to a surface before etching is started.
【請求項3】前記近接場光プローブは、前記面発光半導
体レーザの上面の光出射面上に形成された、厚さ及び頂
点の曲率半径が光波長以下の三角形の形状をした金属膜
の頂点によって構成されていることを特徴とする請求項
1に記載の近接場光プローブ集積半導体レーザ。
3. The near-field optical probe is a vertex of a metal film formed on the light-emitting surface of the upper surface of the surface-emitting semiconductor laser and having a triangular shape whose thickness and radius of curvature of the vertex are equal to or less than the light wavelength. The near-field optical probe integrated semiconductor laser according to claim 1, wherein
【請求項4】前記近接場光プローブは、前記面発光レー
ザの光出射部位を規定する構造と同一の作製工程によっ
て形成されたものであることを特徴とする請求項1に記
載の近接場光プローブ集積半導体レーザ。
4. The near-field light probe according to claim 1, wherein the near-field light probe is formed by the same manufacturing process as the structure that defines the light emitting portion of the surface emitting laser. Probe integrated semiconductor laser.
【請求項5】請求項1に記載の近接場光プローブ集積半
導体レーザと、該半導体レーザの近接場光プローブの上
面と光ディスクの面との間に間隙を設けるためのスライ
ダと、該スライダを支持しかつ該スライダを光ディスク
の面へ押すばね力を有するサスペンションと、該半導体
レーザ、該スライダ及び該サスペンションを含む記録ヘ
ッドと、該記録ヘッドを光ディスクの半径方向に移動さ
せるアクチュエータとを備えていることを特徴とする光
記録装置。
5. A near-field optical probe integrated semiconductor laser according to claim 1, a slider for providing a gap between an upper surface of the near-field optical probe of the semiconductor laser and a surface of an optical disk, and a support for the slider. And a suspension having a spring force that pushes the slider against the surface of the optical disc, a recording head including the semiconductor laser, the slider and the suspension, and an actuator that moves the recording head in the radial direction of the optical disc. An optical recording device characterized by:
JP2001333820A 2001-10-31 2001-10-31 Near-field optical probe integrated semiconductor laser and optical recording apparatus using the same Expired - Fee Related JP3962240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001333820A JP3962240B2 (en) 2001-10-31 2001-10-31 Near-field optical probe integrated semiconductor laser and optical recording apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001333820A JP3962240B2 (en) 2001-10-31 2001-10-31 Near-field optical probe integrated semiconductor laser and optical recording apparatus using the same

Publications (2)

Publication Number Publication Date
JP2003142775A true JP2003142775A (en) 2003-05-16
JP3962240B2 JP3962240B2 (en) 2007-08-22

Family

ID=19149033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001333820A Expired - Fee Related JP3962240B2 (en) 2001-10-31 2001-10-31 Near-field optical probe integrated semiconductor laser and optical recording apparatus using the same

Country Status (1)

Country Link
JP (1) JP3962240B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059712A1 (en) * 2006-11-17 2008-05-22 Sharp Kabushiki Kaisha Optical element, transfer mold, method for manufacturing transfer mold, and method for manufacturing optical element
US7538357B2 (en) 2004-08-20 2009-05-26 Panasonic Corporation Semiconductor light emitting device
JP2010219342A (en) * 2009-03-17 2010-09-30 Fuji Xerox Co Ltd Surface-emitting semiconductor laser, optical transmission device, and method of manufacturing surface-emitting semiconductor laser
CN101964499A (en) * 2009-07-23 2011-02-02 索尼公司 Semiconductor device and method of manufacturing the same
KR101170569B1 (en) 2006-05-26 2012-08-01 삼성전자주식회사 Vertical cavity surface emitting laser
JP2013025830A (en) * 2011-07-15 2013-02-04 Pioneer Electronic Corp Manufacturing method for near-field optical device, and near-field optical device
JPWO2013011957A1 (en) * 2011-07-15 2015-02-23 パイオニア株式会社 Near-field optical device manufacturing method and near-field optical device
WO2020105411A1 (en) * 2018-11-20 2020-05-28 ソニーセミコンダクタソリューションズ株式会社 Light emitting device and light emitting apparatus
CN116845698A (en) * 2023-08-21 2023-10-03 深圳市速腾聚创科技有限公司 Laser, laser radar and mobile device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102421941B1 (en) * 2020-08-25 2022-07-18 울산과학기술원 System and method for generating and controlling a single quantum light source

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538357B2 (en) 2004-08-20 2009-05-26 Panasonic Corporation Semiconductor light emitting device
KR101170569B1 (en) 2006-05-26 2012-08-01 삼성전자주식회사 Vertical cavity surface emitting laser
WO2008059712A1 (en) * 2006-11-17 2008-05-22 Sharp Kabushiki Kaisha Optical element, transfer mold, method for manufacturing transfer mold, and method for manufacturing optical element
JP2010219342A (en) * 2009-03-17 2010-09-30 Fuji Xerox Co Ltd Surface-emitting semiconductor laser, optical transmission device, and method of manufacturing surface-emitting semiconductor laser
CN101964499A (en) * 2009-07-23 2011-02-02 索尼公司 Semiconductor device and method of manufacturing the same
JP2013025830A (en) * 2011-07-15 2013-02-04 Pioneer Electronic Corp Manufacturing method for near-field optical device, and near-field optical device
JPWO2013011957A1 (en) * 2011-07-15 2015-02-23 パイオニア株式会社 Near-field optical device manufacturing method and near-field optical device
WO2020105411A1 (en) * 2018-11-20 2020-05-28 ソニーセミコンダクタソリューションズ株式会社 Light emitting device and light emitting apparatus
JP7353299B2 (en) 2018-11-20 2023-09-29 ソニーセミコンダクタソリューションズ株式会社 Light emitting devices and devices
CN116845698A (en) * 2023-08-21 2023-10-03 深圳市速腾聚创科技有限公司 Laser, laser radar and mobile device
CN116845698B (en) * 2023-08-21 2023-11-24 深圳市速腾聚创科技有限公司 Laser, laser radar and mobile device

Also Published As

Publication number Publication date
JP3962240B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
US7376166B2 (en) Semiconductor laser apparatus and optical pickup apparatus
US6771589B2 (en) Flying recording head having semiconductor laser formed by growing semiconductor crystal, and method of manufacturing same
US8559127B2 (en) Integrated heat assisted magnetic recording head with extended cavity vertical cavity surface emitting laser diode
US20050276209A1 (en) Near-field optical head system with integrated slider and laser
US6807131B1 (en) Near-field hybrid magnetic-optical head system
US8290010B2 (en) Surface plasmon generating apparatus and method for making the same
JP2010183071A (en) Semiconductor light-emitting device and method of manufacturing the same
US20070147459A1 (en) Optical data processing apparatus using vertical-cavity surface-emitting laser (VCSEL) device with large oxide-aperture
US7916766B2 (en) Semiconductor laser device and manufacturing method thereof
JP3962240B2 (en) Near-field optical probe integrated semiconductor laser and optical recording apparatus using the same
CN104247174A (en) Optically pumped vertical external-cavity surface-emitting laser device
JP4877471B2 (en) Manufacturing method of surface emitting semiconductor laser
US20110188532A1 (en) Semiconductor Laser Apparatus
US20060045156A1 (en) Semiconductor laser apparatus and manufacturing method thereof
US20120044965A1 (en) Semiconductor laser apparatus and optical apparatus
JP2002217499A (en) Semiconductor laser element and its manufacturing method, and optical pickup using the same
EP1085625A1 (en) Surface optical amplifier and method of producing the same
US7069569B2 (en) Near-field optical head system with integrated slider and laser
JP4219147B2 (en) Multi-wavelength laser equipment
JP2022139943A (en) Surface light emitting laser array, light source module, and distance measuring device
WO2007072726A1 (en) Multi-wavelength integrated semiconductor laser and method for fabricating same
JP3981257B2 (en) Surface emitting semiconductor laser
JP4387485B2 (en) Light source device for emitting evanescent light
US11901701B2 (en) Surface emitting laser element, surface emitting laser, surface emitting laser device, light source device, and detection apparatus
JP2002164606A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees