JP2003141215A - Operation analyzing device, method, computer program and computer readable storage medium, in manufacturing process - Google Patents

Operation analyzing device, method, computer program and computer readable storage medium, in manufacturing process

Info

Publication number
JP2003141215A
JP2003141215A JP2001338359A JP2001338359A JP2003141215A JP 2003141215 A JP2003141215 A JP 2003141215A JP 2001338359 A JP2001338359 A JP 2001338359A JP 2001338359 A JP2001338359 A JP 2001338359A JP 2003141215 A JP2003141215 A JP 2003141215A
Authority
JP
Japan
Prior art keywords
local
quality
data
relational expression
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001338359A
Other languages
Japanese (ja)
Other versions
JP3875875B2 (en
Inventor
Kiyoshi Wajima
潔 和嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001338359A priority Critical patent/JP3875875B2/en
Publication of JP2003141215A publication Critical patent/JP2003141215A/en
Application granted granted Critical
Publication of JP3875875B2 publication Critical patent/JP3875875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To make properly analyzable the operations and quality data of processes. SOLUTION: This operation analyzing device is provided with an operational factor space separating part 102 for separating an operational factor space using process operation data as a base vector into local areas, a local relational expression calculating part 104 for introducing local relational expressions for expressing relevance between operational factors and quality in the respective local areas, an activity function calculating part 103 for introducing activity functions for calculating contribution ratio of the respective local relational equations to the whole based on operational data, a mathematical expression model calculating part 105 for introducing mathematical expression models for expressing relation between the operational factors and quality as superposition of the local areas having the local relational expressions and the activity functions, a minimum error mathematical expression model selecting part 106 for selecting the minimum error mathematical expression model among the mathematical expression models calculated for a plurality of divided patterns and a learning error evaluating part 107 for further finely separating the operational factor space according to an error of the minimum error mathematical expression model and for judging processings in the respective means to be repeatedly executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、製造プロセスにお
ける操業分析装置、方法、コンピュータプログラム、及
びコンピュータ読み取り可能な記憶媒体に関し、特に操
業結果として品質が決まるプロセス全般において、複数
の操業因子と品質の関連性を明らかにすることによっ
て、品質不合の要因を解明し、望ましい品質を得るため
の操業条件を見出すために用いて好適な技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation analysis device, a method, a computer program, and a computer-readable storage medium in a manufacturing process, and in particular, in a general process in which quality is determined as an operation result, a plurality of operation factors and quality The present invention relates to a technique suitable for elucidating the cause of quality incompatibility by clarifying the relevance and finding operating conditions for obtaining a desired quality.

【0002】[0002]

【従来の技術】従来、操業結果として品質が決まるプロ
セスにおいて、操業条件が品質に与える影響を解析する
操業分析手法としては、単一の操業因子と品質との相関
係数を用いて評価する相関解析法や、複数の操業因子を
入力とし品質を出力とする重回帰モデルを作成して評価
する方法が良く知られている。
2. Description of the Related Art Conventionally, in a process in which quality is determined as an operation result, an operation analysis method for analyzing the influence of operating conditions on quality is a correlation evaluated using a correlation coefficient between a single operation factor and quality. It is well known that an analysis method and a method of creating and evaluating a multiple regression model in which a plurality of operation factors are input and quality is output are evaluated.

【0003】また、操業因子と品質のより複雑な関連を
分析するためのモデルとしては、文献「J.R Quinlan、
"Learning with continuous classes" Proceedings of
the5th Australian Joint Conference on Artificial
Intelligence. AI '92、 、1992、 Pages 343-348」に
述べられている決定木を用いる方法が知られている。
Further, as a model for analyzing a more complicated relation between operating factors and quality, there is a document "JR Quinlan,
"Learning with continuous classes" Proceedings of
the5th Australian Joint Conference on Artificial
Intelligence. AI '92 ,, 1992, Pages 343-348 ”, a method using a decision tree is known.

【0004】また、特開平6−304723号公報に開
示された手法では、鉄鋼プロセスにおける鋳片のカーボ
ン量等の物性値、鋳造巾等の操業値、冷却ゾーンの温度
値等を操業因子とし、鋼板の表面欠陥を品質データとし
て多層神経回路網(multi layer neural network)を用
いた品質予測装置を学習させ、品質制御診断を行ってい
る。
Further, in the method disclosed in Japanese Patent Application Laid-Open No. 6-304723, the operating factors are physical property values such as carbon content of cast slab in the steel process, operating values such as casting width, and temperature values in the cooling zone. A quality control device using a multi-layer neural network is trained by using surface defects of steel sheets as quality data to perform quality control diagnosis.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、相関係
数や重回帰モデルを用いた方法では、分析対象である操
業及び品質データは全ての操業範囲において単一の線形
モデルで表現できるとの前提条件に基づいて相関係数や
回帰モデルを導出して分析を行うため、各々異なる特性
を有する複数の品質不合要因が存在するプロセスから得
られる操業及び品質データを解析する場合には、両者の
関係を正しく捉えることができない問題があった。
However, in the method using the correlation coefficient and the multiple regression model, the precondition is that the operation and quality data to be analyzed can be represented by a single linear model in all operation ranges. Since the correlation coefficient and regression model are derived and analyzed based on the above, when analyzing operation and quality data obtained from a process in which there are multiple quality mismatch factors each having different characteristics, the relationship between the two There was a problem that could not be captured correctly.

【0006】また、決定木を用いた手法では、操業デー
タを基底ベクトルとする操業因子空間を、操業条件に基
づいて分割し、各々の局所空間で操業因子と品質の線形
モデルを導出する処理を行うことによって、複数の品質
不合要因が存在するプロセスの操業データ解析を行って
いるが、局所領域の境界線を厳格に設定し、その両側で
異なる線型方程式が成立するという前提を取っているた
め、複数不合原因が重畳して品質を決定している境界領
域が存在するプロセスのデータについては、十分に精度
の高い分析ができない問題があった。
Further, in the method using the decision tree, the operation factor space having the operation data as a base vector is divided based on the operation condition, and a process of deriving a linear model of the operation factor and the quality in each local space is performed. By doing so, we are analyzing the operation data of a process that has multiple quality mismatch factors, but we assume that the boundary line of the local region is set strictly and different linear equations are established on both sides. However, there is a problem that it is not possible to perform a sufficiently accurate analysis on the data of a process in which there is a boundary region in which a plurality of disagreement factors are superimposed and which determines quality.

【0007】また、特開平6−304723号公報に開
示された手法では、多層神経回路網を用いて操業因子と
品質の関係性を学習したモデルを作成し、品質制御診断
に応用しているが、多層神経回路網は、その制御診断が
どのような論理に基づいて成されたかを人間が読み取る
ことが極めて難しく、制御診断結果の合理性をオペレー
タが判断できないという問題があった。
In the method disclosed in Japanese Unexamined Patent Publication No. 6-304723, a model in which a relationship between an operating factor and quality is learned is created using a multilayer neural network and applied to quality control diagnosis. The multilayer neural network has a problem that it is extremely difficult for a human to read based on what logic the control diagnosis was made, and the operator cannot judge the rationality of the control diagnosis result.

【0008】本発明は上記のような点に鑑みてなされた
ものであり、複数の品質不合要因が存在し、更のその要
因が重畳して品質を決定する境界領域が存在するプロセ
スの操業及び品質データを解析できるようにすることを
目的とする。
The present invention has been made in view of the above points, and operates a process in which there are a plurality of quality incompatibility factors, and there is a boundary region for determining quality by further superimposing these factors. The purpose is to be able to analyze quality data.

【0009】[0009]

【課題を解決するための手段】本発明の製造プロセスに
おける操業分析装置は、製造プロセスにおける操業及び
品質データを解析して、複数の操業因子と品質の関連性
を分析する操業分析装置であって、プロセス操業データ
及び品質データを入力するデータ入力手段と、プロセス
操業データを基底ベクトルとする操業因子空間を複数の
局所領域に分割する操業因子空間分割手段と、各局所領
域における操業因子と品質の関連性を表現する局所関係
式を導出する局所関係式算出手段と、各局所関係式の全
体への寄与率を操業データに基づいて算出する活性度関
数を導出する活性度関数算出手段と、前記局所関係式と
前記活性度関数を有する局所領域の重ね合せとして操業
因子と品質の関連を表す数式モデルを導出する数式モデ
ル算出手段と、複数の分割パターンについて求めた数式
モデルの内、最も誤差の少ない最小誤差数式モデルを選
択する最小誤差数式モデル選択手段と、前記最小誤差数
式モデルの誤差が与件の収束判定因子より大きければ操
業因子空間を更に細分割して上記の各手段での処理を繰
り返し実行するよう判定する学習誤差評価手段とを備え
た点に特徴を有する。
The operation analysis device in the manufacturing process of the present invention is an operation analysis device which analyzes the operation and quality data in the manufacturing process and analyzes the relationship between a plurality of operation factors and quality. , Data input means for inputting process operation data and quality data, operation factor space dividing means for dividing the operation factor space having the process operation data as a base vector into a plurality of local regions, and operation factor and quality of each local region Local relational expression calculating means for deriving a local relational expression expressing relevance, and activity function calculating means for deriving an activity function for calculating a contribution ratio of each local relational expression to the whole based on operation data, Mathematical model calculation means for deriving a mathematical model representing the relation between the operation factor and the quality as a superposition of the local relation and the local region having the activity function, Among the mathematical models obtained for the division patterns of, the minimum error mathematical expression model selecting means for selecting the minimum error mathematical expression model having the smallest error, and the operation factor space if the error of the minimum error mathematical expression model is larger than the given convergence judgment factor. Is further subdivided, and learning error evaluation means for determining to repeatedly execute the processing by each of the above means is characterized.

【0010】また、本発明の製造プロセスにおける操業
分析装置の他の特徴とするところは、前記局所関係式
が、操業と品質データ間の線形多項式である点にある。
Another feature of the operation analysis apparatus in the manufacturing process of the present invention is that the local relational expression is a linear polynomial between operation and quality data.

【0011】また、本発明の製造プロセスにおける操業
分析装置の他の特徴とするところは、前記活性度関数
が、局所領域の重心に中心を持つ正規分布関数に基づい
て構成される正規メンバシップ関数である点にある。
Another feature of the operation analyzing apparatus in the manufacturing process of the present invention is that the activity function is based on a normal distribution function having a center at the center of gravity of a local region. There is a point.

【0012】また、本発明の製造プロセスにおける操業
分析装置の他の特徴とするところは、特定の操業条件と
対応する品質条件を与件とし、それらの関連性を説明す
る手段として、複数の前記局所関係式と各々の局所関係
式の寄与割合を提示する解析結果表示手段を備えた点に
ある。
Another feature of the operation analysis apparatus in the manufacturing process of the present invention is that the quality condition corresponding to a specific operation condition is a condition, and a plurality of the above-mentioned items are used as means for explaining the relationship between them. It is provided with an analysis result display means for presenting the local relational expression and the contribution ratio of each local relational expression.

【0013】また、本発明の製造プロセスにおける操業
分析装置の他の特徴とするところは、鉄鋼プロセスに適
用され、前記品質データは、製品の表面及び内部欠陥の
個数である点にある。
Another feature of the operation analysis apparatus in the manufacturing process of the present invention is that it is applied to a steel process and the quality data is the number of surface defects and internal defects of the product.

【0014】本発明の製造プロセスにおける操業分析方
法は、製造プロセスにおける操業及び品質データを解析
して、複数の操業因子と品質の関連性を分析する方法で
あって、プロセス操業データ及び品質データを入力する
データ入力手順と、プロセス操業データを基底ベクトル
とする空間を複数の局所領域に分割する操業因子空間分
割手順と、各局所領域における操業因子と品質の関連性
を表現する局所関係式を導出する局所関係式算出手順
と、各局所関係式の全体への寄与率を操業データに基づ
いて算出する活性度関数を導出する活性度関数算出手順
と、前記局所関係式と前記活性度関数を有する局所領域
の重ね合せとして操業因子と品質の関連を表す数式モデ
ルを導出する数式モデル算出手順と、複数の分割パター
ンについて求めた数式モデルの内、最も学習誤差の少な
い最小誤差数式モデルを選択する最小誤差数式モデル選
択手順と、前記最小誤差数式モデルの誤差が与件の収束
判定因子より大きければ操業因子空間を更に細分割して
上記の各手順を繰り返し実行するよう判定する学習誤差
評価手順とを実行する点に特徴を有する。
The operation analysis method in the manufacturing process of the present invention is a method for analyzing the operation and quality data in the manufacturing process to analyze the relation between a plurality of operation factors and quality, and to analyze the process operation data and the quality data. Data input procedure for inputting, operation factor space division procedure for dividing the space whose process operation data is the basis vector into multiple local regions, and local relational expression expressing the relation between the operation factor and quality in each local region A local relational expression calculation procedure, an activity function calculation procedure for deriving an activity function for calculating the contribution rate of each local relational expression to the whole based on operation data, and the local relational expression and the activity function. A mathematical model calculation procedure for deriving a mathematical model that expresses the relationship between operation factors and quality as a superposition of local regions, and the number obtained for multiple division patterns Among the models, the minimum error formula model selection procedure for selecting the minimum error formula model with the least learning error, and if the error of the minimum error formula model is larger than the given convergence judgment factor, the operation factor space is further subdivided. It is characterized in that a learning error evaluation procedure for determining to repeatedly execute each of the above procedures is executed.

【0015】本発明のコンピュータプログラムは、上記
操業分析装置の各手段としてコンピュータを機能させる
点に特徴を有する。また、本発明の他のコンピュータプ
ログラムは、上記操業分析方法の各手順をコンピュータ
に実行させる点に特徴を有する。また、本発明のコンピ
ュータ読み取り可能な記憶媒体は、上記コンピュータプ
ログラムを格納した点に特徴を有する。
The computer program of the present invention is characterized in that the computer functions as each means of the operation analysis device. Further, another computer program of the present invention is characterized by causing a computer to execute each procedure of the operation analysis method. The computer-readable storage medium of the present invention is characterized in that the computer program is stored.

【0016】[0016]

【発明の実施の形態】以下に、図面を参照して、本発明
の製造プロセスにおける操業分析装置、方法、コンピュ
ータプログラム、及びコンピュータ読み取り可能な記憶
媒体の好適な実施の形態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of an operation analysis device, a method, a computer program, and a computer-readable storage medium in the manufacturing process of the present invention will be described below with reference to the drawings.

【0017】図1は、本実施の形態の製造プロセスにお
ける操業分析装置の構成を示す図である。図1に示す1
01はデータ入力部であり、操業分析装置には、製造プ
ロセスにおける操業データと当該操業に対応した品質デ
ータが入力される。上記操業データは、例えば鉄鋼プロ
セスにおける連続鋳造工程の湯面変動量や熱延工程の加
熱炉温度等であり、連続値として与えられる。p個の操
業因子u1、u2、…、upがN個のケースについて与
えられた場合、入力操業データはN行p列の行列とな
る。また、上記品質データとしては、例えば鉄鋼プロセ
スにおける自動車用鋼板コイル1本当りの表面欠陥個数
等であり、連続値として与えられる。操業データに対応
してNケースの品質データが与えられた場合、入力品質
データはN次元のベクトルとなる。N行p列の行列であ
る入力操業データとN次元ベクトルである品質データが
与えられた場合、線形代数理論より、品質データはu1
〜upを基底とするp次元の操業因子空間に分布してい
るN個の点と見なすことができる。従って、品質を記号
yで表すとすると、操業因子と品質は、一般に写像関数
f(・)を介した下記の数1に示す式(1)の関係にある
と見なすことができる。
FIG. 1 is a diagram showing the construction of an operation analysis device in the manufacturing process of this embodiment. 1 shown in FIG.
Reference numeral 01 is a data input unit, and operation data in the manufacturing process and quality data corresponding to the operation are input to the operation analysis device. The above-mentioned operation data is, for example, the fluctuation level of the molten metal surface in the continuous casting process in the steel process, the heating furnace temperature in the hot rolling process, and the like, and is given as a continuous value. When p operation factors u1, u2, ..., Up are given for N cases, the input operation data is a matrix with N rows and p columns. Further, the quality data is, for example, the number of surface defects per automobile steel plate coil in the steel process, and is given as a continuous value. When N cases of quality data are given corresponding to the operation data, the input quality data is an N-dimensional vector. Given the input operation data, which is a matrix of N rows and p columns, and the quality data, which is an N-dimensional vector, the quality data is u1 from the linear algebra theory.
It can be regarded as N points distributed in a p-dimensional operation factor space having .up. Therefore, if the quality is represented by the symbol y, it can be considered that the operation factor and the quality generally have the relationship of the formula (1) shown in the following Expression 1 via the mapping function f (·).

【0018】[0018]

【数1】 [Equation 1]

【0019】本発明においては、式(1)を、更に局所
関係式と活性度関数を有する局所領域の重ね合せで表現
すると仮定して、局所関係式及び活性度関数を導出す
る。具体的な局所領域の重ね合せとしては、例えば下記
の数2に示す式(2)のような線形和を用いることがで
きる。ここでΣは項の和、Mは局所領域の個数を表して
いる。
In the present invention, the local relational expression and the activity function are derived on the assumption that the equation (1) is further expressed by the superposition of the local relational expression and the local region having the activity function. As a specific superposition of local regions, for example, a linear sum as shown in Expression (2) below can be used. Here, Σ represents the sum of terms, and M represents the number of local regions.

【0020】[0020]

【数2】 [Equation 2]

【0021】図1に示す102は操業因子空間分割部で
あり、操業因子空間を局所領域に分割する手段を有して
いる。空間が既に幾つかの局所領域に分割されている場
合は、更に局所領域を細分割する処理を行う。具体的な
分割の方法としては、例えば前回の分割パターンにおけ
る局所領域における局所関係式のモデル誤差を評価し、
最も誤差の大きな局所領域を更に2つに分割する。この
ときp次元の操業因子空間では、u1〜upのそれぞれ
の軸に直交するp通りの分割パターンがあり得るので、
p通りの分割について各々数式モデル算出までの処理を
実行する。
Reference numeral 102 shown in FIG. 1 denotes an operation factor space division unit, which has means for dividing the operation factor space into local regions. When the space is already divided into some local areas, the local area is further subdivided. As a specific division method, for example, the model error of the local relational expression in the local region in the previous division pattern is evaluated,
The local area with the largest error is further divided into two. At this time, in the p-dimensional operation factor space, there can be p division patterns orthogonal to the respective axes u1 to up.
The processes up to the calculation of the mathematical model are executed for each of the p divisions.

【0022】図1に示す103は活性度関数算出部であ
り、操業因子空間分割部102で求めた空間分割パター
ンに基づいて、活性度関数を求める。活性度関数には、
下記の数3に示す式(3)で表現される正規条件を満た
す任意の関数を用いることができる。
Reference numeral 103 shown in FIG. 1 is an activity function calculation unit, which calculates an activity function based on the space division pattern obtained by the operation factor space division unit 102. The activity function is
It is possible to use an arbitrary function satisfying the normal condition expressed by the equation (3) shown in the following Expression 3.

【0023】[0023]

【数3】 [Equation 3]

【0024】具体的には、例えば、下記の数4に示す式
(4)で表現される局所領域の重心に中心を持つ正規分
布関数μiに基づいて、下記の数4に示す式(5)で定
義される正規メンバシップ関数は、活性度関数として用
いることができる。
Specifically, for example, based on the normal distribution function μi having the center at the center of gravity of the local region expressed by the equation (4) shown below, the equation (5) shown below is obtained. The regular membership function defined by can be used as the activity function.

【0025】[0025]

【数4】 [Equation 4]

【0026】ここで、cijは局所領域の中心点、σij
正規分布関数の標準偏差を表す。図2には、1次元の操
業因子空間を4つの局所領域に分割した場合の正規分布
関数と活性度関数の例を示す。また、図3には、2次元
の操業因子空間を3つの局所領域に分割した例を示す。
局所領域の境界領域に着目すれば、境界線の両側の領域
における活性度関数は、滑らかに重複しているため、決
定木とは異なり、複数の局所関係式が重畳して品質を決
定している状況を表現することができる。
Here, c ij represents the center point of the local area, and σ ij represents the standard deviation of the normal distribution function. FIG. 2 shows an example of the normal distribution function and the activity function when the one-dimensional operation factor space is divided into four local regions. Further, FIG. 3 shows an example in which the two-dimensional operation factor space is divided into three local regions.
Focusing on the boundary area of the local area, the activity functions in the areas on both sides of the boundary line overlap smoothly, so unlike a decision tree, multiple local relational expressions are superimposed to determine quality. You can express the situation that you are.

【0027】図1に示す104は局所関係式算出部であ
り、局所領域で仮定された関数系に基づいて、局所関係
式の未定係数を計算する。計算の前提となる関数系には
任意の関数を仮定することが可能である。具体例として
は、例えば下記の数5に示す式(6)で表現される線形
多項式を局所関係式とすることができる。
Reference numeral 104 shown in FIG. 1 denotes a local relational expression calculating unit, which calculates an undetermined coefficient of the local relational expression based on the functional system assumed in the local region. Arbitrary functions can be assumed for the functional system that is the basis of calculation. As a specific example, for example, a linear polynomial expressed by Equation (6) shown below can be used as the local relational expression.

【0028】[0028]

【数5】 [Equation 5]

【0029】ここでwijは局所線形モデルの未定係数を
表している。また、ここでは、線形多項式を前提とした
場合の式(6)における未定係数を算出する方法につい
て述べる。入力データとして、操業データにp行N列の
行列データ、品質データにN次元のベクトルデータが入
力された場合、各局所領域では、下記の数6に示す式
(7)が成り立つと仮定されている。
Here, w ij represents an undetermined coefficient of the local linear model. Further, here, a method of calculating the undetermined coefficient in the equation (6) on the assumption of the linear polynomial will be described. When p-row N-column matrix data is input to the operation data and N-dimensional vector data is input to the quality data as the input data, it is assumed that the equation (7) shown in the following Equation 6 holds in each local region. There is.

【0030】[0030]

【数6】 [Equation 6]

【0031】未定係数wijを求めるには、活性度関数に
よる重み付き誤差評価関数、下記の数7に示す式(1
1)が最小となるように未定係数を決定する。これは、
活性度の小さい領域での誤差は小さく評価するように重
み付けすることを意味している。
To determine the undetermined coefficient w ij , a weighted error evaluation function based on the activity function and the expression (1
The undetermined coefficient is determined so that 1) becomes the minimum. this is,
This means that the error in the area with low activity is weighted so that it is evaluated small.

【0032】[0032]

【数7】 [Equation 7]

【0033】式(11)を最小とする未定係数は、下記
の数8に示す式(12)を満たす係数に等しく、式(1
3)の行列演算にて算出する。
The undetermined coefficient that minimizes the equation (11) is equal to the coefficient that satisfies the equation (12) shown in the following equation (8).
It is calculated by the matrix calculation of 3).

【0034】[0034]

【数8】 [Equation 8]

【0035】図1に示す105は操業と品質の数式モデ
ル算出部であり、上記活性度関数算出部103及び上記
局所関係式算出部104で求められた活性度関数と局所
関係式を用いて、式(2)の数式モデルを構成する。
Reference numeral 105 shown in FIG. 1 denotes a mathematical model calculation unit for operation and quality, which uses the activity function and the local relational expressions obtained by the activity function calculating unit 103 and the local relational expression calculating unit 104. The mathematical model of Expression (2) is constructed.

【0036】図1に示す106は最小誤差数式モデル選
択部である。操業因子空間を分割するにあたり、複数の
分割自由度がある場合には、複数の分割パターンを作成
し、各々について活性度関数と局所関係式を算出した上
で、数式モデルを構成する。各々の数式モデルについ
て、下記の数9に示す式(15)でモデル誤差を評価
し、最も誤差の小さいモデルを採用する。ここでy
inputは入力された品質データである。
Reference numeral 106 shown in FIG. 1 is a minimum error mathematical model selection unit. In dividing the operation factor space, when there are a plurality of division degrees of freedom, a plurality of division patterns are created, an activity function and a local relational expression are calculated for each, and then a mathematical model is constructed. With respect to each mathematical model, the model error is evaluated by the formula (15) shown in the following Expression 9, and the model with the smallest error is adopted. Where y
input is the input quality data.

【0037】[0037]

【数9】 [Equation 9]

【0038】図1に示す107は学習誤差評価部であ
り、最小誤差数式モデル選択部106で求めた最小誤差
モデルの誤差と、与えられた誤差判定因子とを比較し
て、十分な精度でデータを説明できる数式モデルが構築
されたかを判定する。誤差判定の方法としては、例え
ば、誤差の絶対値を誤差判定因子と比較する方法、分割
の増分に対する誤差の変化量を誤差判定因子と比較する
方法、分割数とモデル誤差を考慮した評価関数を算出し
分割の増加に対して評価関数が増加した時点で分割を打
ち切る方法等が用いられる。いずれの方法においても、
収束が不十分と評価された場合には、操業因子空間を細
分割する102からの処理を反復実行する。図4は、2
次元の操業因子空間における分割の様子を模式的に示す
図である。初期分割状態に対して、u1或いはu2の軸
に直交する2通りの分割が存在するため、それぞれの分
割パターンに対して活性度関数、局所関係式、数式モデ
ルが構成され、誤差が評価される。図4の例では、u2
軸に直交する分割パターンが誤差最小であったため、そ
の分割パターンが採用されている。次に、2−1及び2
−2の各局所関係式のモデル誤差を評価し、誤差の大き
な局所領域2−1を細分割の対象に決定する。局所領域
2−1に対して、2通りの分割パターンが取り得る為、
以下上記の処理が繰り返し行われる。
Reference numeral 107 shown in FIG. 1 is a learning error evaluation unit, which compares the error of the minimum error model obtained by the minimum error mathematical model selection unit 106 with a given error determination factor to obtain data with sufficient accuracy. Determine if a mathematical model that can explain As an error determination method, for example, a method of comparing the absolute value of the error with the error determination factor, a method of comparing the change amount of the error with respect to the increment of division with the error determination factor, and an evaluation function considering the number of divisions and the model error are used. For example, a method of aborting the division when the evaluation function increases with respect to the increase in the division calculated. Either way,
If the convergence is evaluated to be inadequate, the process from 102 to subdivide the operating factor space is repeated. 4 is 2
It is a figure which shows typically the mode of division | segmentation in the operation factor space of dimension. Since there are two types of divisions orthogonal to the axis of u1 or u2 with respect to the initial division state, the activity function, the local relational expression, and the mathematical model are configured for each division pattern, and the error is evaluated. . In the example of FIG. 4, u2
Since the division pattern orthogonal to the axis has the smallest error, the division pattern is adopted. Next, 2-1 and 2
-2, the model error of each local relational expression is evaluated, and the local region 2-1 having a large error is determined as a target of subdivision. Since there are two possible division patterns for the local region 2-1,
The above processing is repeated thereafter.

【0039】図1に示す108は解析結果表示部であ
り、最終的に得られた数式モデルの領域分割パターンと
各局所領域における局所関係式、更に活性度関数分布を
表示することによって、データに潜む関係式とその寄与
する状況を分析するための情報を表示する。
Reference numeral 108 shown in FIG. 1 is an analysis result display unit, which displays the finally obtained area division pattern of the mathematical model, the local relational expression in each local area, and the activity function distribution to display the data. Display information to analyze the underlying relations and their contributing situations.

【0040】以上述べた本実施の形態による操業分析装
置によれば、操業因子空間を局所領域に分割し、局所領
域毎の関係式を導出するため、異なる特性を有する複数
の品質不合原因が存在するプロセスから得られるデータ
を正しく解析することができる。また、複数の不合原因
が重畳して品質を決定している境界領域が存在するプロ
セスデータを解析する場合でも、決定木に比べて、各領
域の境界が滑らかに接続される活性度関数を用いて数式
モデルを構成するため、重畳した領域の影響を適切に評
価することができる。
According to the operation analysis apparatus according to the present embodiment described above, the operation factor space is divided into local regions and the relational expression for each local region is derived, so that there are a plurality of quality mismatch causes having different characteristics. The data obtained from the process can be analyzed correctly. In addition, even when analyzing process data in which there is a boundary region in which multiple disagreement factors are superimposed to determine quality, an activity function that smoothly connects the boundaries of each region is used compared to a decision tree. Since the mathematical model is constructed by using the mathematical model, the influence of the overlapped region can be appropriately evaluated.

【0041】[0041]

【実施例】以下では、鉄鋼プロセスにおける連続鋳造工
程の鋳型内湯面変動量、鋳片の引抜き速度及び熱延工程
の加熱炉温度の3項目を操業因子とし、自動車用メッキ
鋼板の表面欠陥個数をコイル重量で正規化した指標を品
質データとした実施例について説明する。
[Examples] In the following, the number of surface defects of plated steel sheets for automobiles was determined by using three factors, namely, the fluctuation level in the mold in the continuous casting process in the steel process, the drawing speed of the slab, and the heating furnace temperature in the hot rolling process as operating factors. An example in which an index normalized by the coil weight is used as the quality data will be described.

【0042】解析対象は、プロセスコンピュータにより
収集された420本のコイルに対するデータで、操業デ
ータは、各コイルに対応する操業タイミングでの時系列
データを平均処理したものを代表値として用いた。ま
た、解析にあたっては、スケーリングのために操業実績
を存在するデータ範囲で0〜1の値に正規化した。以下
の説明では、操業因子u1が鋳型内湯面変動量、u2が
鋳片引抜き速度、u3が加熱炉温度に対応している。
The data to be analyzed are the data for 420 coils collected by the process computer, and the operation data was obtained by averaging the time-series data at the operation timing corresponding to each coil as a representative value. Further, in the analysis, the operation results were normalized to a value of 0 to 1 in the existing data range for scaling. In the following description, the operation factor u1 corresponds to the fluctuation level of the molten metal in the mold, u2 corresponds to the slab drawing speed, and u3 corresponds to the heating furnace temperature.

【0043】図5は、上記操業及び品質データを本操業
分析装置にて解析した場合の操業因子空間分割数とモデ
ル誤差の様子を示す図である。横軸は空間の分割数、縦
軸は品質の実績値とモデル予測値の差を二乗し、データ
点数で規格化した誤差を示している。分割数を4から5
に増加させても、誤差の減少量はわずかである為、領域
分割数4で収束したものと見なし、このケースについて
数式モデルを評価した。解析結果表示部に示された数式
モデルの領域分割パターンと各局所領域における局所関
係式は、以下の通りである。
FIG. 5 is a diagram showing the state of the operation factor space division number and the model error when the above operation and quality data are analyzed by this operation analysis apparatus. The horizontal axis shows the number of divisions of the space, and the vertical axis shows the error standardized by the number of data points obtained by squaring the difference between the actual value of quality and the model predicted value. Number of divisions from 4 to 5
Since the amount of decrease in the error is small even if the number is increased to 1, it is considered that the error has converged with the number of region divisions of 4, and the mathematical model was evaluated in this case. The area division pattern of the mathematical model shown in the analysis result display section and the local relational expression in each local area are as follows.

【0044】局所領域1:(u1、u2、u3)=
(0.5、0.25、0.25)を中心とする領域 y = 1.7079 + 2.7834u1 − 1.0689u2 − 0.87
13u3
Local area 1: (u1, u2, u3) =
Region centered on (0.5, 0.25, 0.25) y = 1.7079 + 2.7834u1-1.0689u2-0.87
13u3

【0045】局所領域2:(u1、u2、u3)=
(0.5、0.25、0.75)を中心とする領域 y = −0.1959 + 2.7234u1 − 0.2624u2 + 2.44
80u3
Local area 2: (u1, u2, u3) =
Region centered at (0.5, 0.25, 0.75) y = -0.1959 + 2.7234u1-0.2624u2 + 2.44
80u3

【0046】局所領域3:(u1、u2、u3)=
(0.5、0.75、0.25)を中心とする領域 y = −1.4710 + 2.4671u1 + 6.5374u2 − 0.4
656u3
Local area 3: (u1, u2, u3) =
Region centered on (0.5, 0.75, 0.25) y = -1.4710 + 2.4671u1 + 6.5374u2-0.4
656u3

【0047】局所領域4:(u1、u2、u3)=
(0.5、0.75、0.75)を中心とする領域 y = −4.5674 + 3.4088u1 + 7.9233u2 + 4.3
592u3
Local area 4: (u1, u2, u3) =
Region centered on (0.5, 0.75, 0.75) y = -4.5674 + 3.4088u1 + 7.9233u2 + 4.3
592u3

【0048】上記結果より、本プロセスに関する以下の
ような特性を読み取ることができる。u1(湯面変動
量)の係数は、全ての領域で正値となっており、湯面変
動の増加に対して疵個数は増加する。
From the above results, the following characteristics regarding this process can be read. The coefficient of u1 (fluctuation level) is a positive value in all regions, and the number of flaws increases with an increase in fluctuation of the level.

【0049】u2(鋳片引抜き速度)の係数は、u2が
小さい領域1、2では負値、u2が大きい領域3、4で
は正値となっている。従って、引抜き速度の増加に対し
て、速度が小さい場合疵個数は減少、速度が大きい場合
疵個数は増加する。
The coefficient of u2 (cast strip drawing speed) has a negative value in regions 1 and 2 where u2 is small, and a positive value in regions 3 and 4 where u2 is large. Therefore, as the drawing speed increases, the number of flaws decreases when the speed is low, and the number of flaws increases when the speed is high.

【0050】u3(加熱炉温度)の係数は、u3が小さ
い領域1、3では負値、u3が大きい領域2、4では正
値となっている。従って、加熱炉温度の増加に対して、
温度が低い領域では疵は減少し、温度が高い領域では疵
は増加する。
The coefficient of u3 (heating furnace temperature) has a negative value in regions 1 and 3 where u3 is small, and has a positive value in regions 2 and 4 where u3 is large. Therefore, as the heating furnace temperature increases,
Defects decrease in the low temperature region and increase in the high temperature region.

【0051】各領域における線形局所関係式の係数値よ
り、領域1及び2ではu1(湯面変動量)、領域3及び
4ではu2(鋳片引抜き速度)が、疵個数に最も影響度
が高い因子である。
From the coefficient values of the linear local relations in each region, u1 (melt level fluctuation amount) in regions 1 and 2 and u2 (cast slab drawing speed) in regions 3 and 4 have the greatest influence on the number of defects. Is a factor.

【0052】図6は、解析より得られた数式モデルよ
り、全操業範囲における疵個数値を算出し、u1、u
2、u3の各操業因子から2つの項目を選択して品質y
との関連を3次元図でプロットしたものである。この図
より、上に述べた各領域毎の操業因子の疵に対する影響
を可視的に評価することができる。比較のため、図7に
各操業因子と疵個数の単相関の様子を示すが、この図か
らは、本例で得られるような分析を得ることは難しい。
In FIG. 6, the number of flaws in the entire operating range is calculated from the mathematical model obtained by the analysis, and u1, u
Select two items from each operation factor of 2 and u3 and quality y
It is a three-dimensional plot of the relationship with. From this figure, it is possible to visually evaluate the influence of the above-mentioned operating factors for each area on the flaw. For comparison, FIG. 7 shows the state of simple correlation between each operation factor and the number of flaws. From this figure, it is difficult to obtain the analysis obtained in this example.

【0053】なお、今回の実施例では、コンピュータ上
のプログラムとして分析装置を実現したが、演算装置、
メモリ等を組み合わせたハードウェアによって構成され
るものであっても良い。
In this embodiment, the analysis device is realized as a program on a computer, but the calculation device,
It may be configured by hardware in which a memory or the like is combined.

【0054】また、本発明の操業分析装置は、複数の機
器から構成されるものであっても、一つの機器から構成
されるものであっても良い。
The operation analysis apparatus of the present invention may be composed of a plurality of devices or one device.

【0055】また、上述した実施の形態は、コンピュー
タのCPU或いはMPU、RAM、ROM等で構成され
るものであり、RAMやROMに記録されたプログラム
が動作することで実施される。従って、前記実施の形態
の機能を実現するためのソフトウェアのプログラムコー
ド自身、かかるプログラムコードをコンピュータに供給
するための手段、例えばプログラムコードを格納した記
憶媒体は本発明の範疇に含まれる。
Further, the above-described embodiment is composed of a CPU of a computer, an MPU, a RAM, a ROM or the like, and is carried out by operating a program recorded in the RAM or the ROM. Therefore, the program code itself of software for realizing the functions of the above-described embodiments, means for supplying the program code to a computer, for example, a storage medium storing the program code are included in the scope of the present invention.

【0056】[0056]

【発明の効果】以上述べたように本発明によれば、操業
因子空間分割を行い、局所領域の活性度関数と局所関係
式を導出して、操業と品質の関連を表す数式モデルを導
出するので、複数の操業不合要因が存在し、またそれら
が重畳して品質を決定している領域があるような製造プ
ロセスの操業データを適切に分析することができる。こ
のため、例えばある操業条件で品質不合が発生した場
合、その操業条件における局所関係式と活性度関数を算
出し、最も活性度の高い局所関係式の係数より、どの操
業因子をどのように変化させることで、望ましい品質条
件を得ることができるか、という指針を得ることができ
る。また、同程度の活性度を有する局所関係式が複数個
存在する操業条件の場合、各々の局所関係式から望まし
い品質を得る操業条件を探索し、その効果が全体的にど
の程度改善量となるかを評価することができる。
As described above, according to the present invention, the operation factor space division is performed, the activity function of the local region and the local relational expression are derived, and the mathematical model expressing the relation between the operation and the quality is derived. Therefore, it is possible to appropriately analyze the operation data of the manufacturing process in which there are a plurality of operation incompatibility factors and there is a region in which they are superposed to determine quality. For this reason, for example, if a quality mismatch occurs under a certain operating condition, the local relational expression and the activity function under that operating condition are calculated, and which operating factor and how are changed based on the coefficient of the highest active local relational expression. By doing so, it is possible to obtain a guideline as to whether a desired quality condition can be obtained. Further, in the case of operating conditions in which there are a plurality of local relational expressions having the same degree of activity, the operating condition for obtaining the desired quality is searched from each of the local relational expressions, and the effect is the improvement amount as a whole. Can be evaluated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施の形態の操業分析装置の構成を示す図で
ある。
FIG. 1 is a diagram showing a configuration of an operation analysis device according to the present embodiment.

【図2】1次元の操業因子空間を4つに分割した場合の
局所活性度関数分布を示す図である。
FIG. 2 is a diagram showing a local activity function distribution when a one-dimensional operation factor space is divided into four.

【図3】2次元の操業因子空間を3つに分割した場合の
局所活性度関数分布を示す図である。
FIG. 3 is a diagram showing a local activity function distribution when a two-dimensional operation factor space is divided into three.

【図4】2次元の操業因子空間を細分割する様子を示す
模式図である。
FIG. 4 is a schematic diagram showing how a two-dimensional operation factor space is subdivided.

【図5】実施例の解析における操業領域分割数に対する
モデル誤差の挙動を示す図である。
FIG. 5 is a diagram showing a behavior of a model error with respect to the number of operating region divisions in the analysis of the example.

【図6】実施例の解析で得られた数式モデルより全操業
範囲における疵個数値を算出し、各操業因子から2つの
項目を選択して品質yとの関連を3次元図でプロットし
た図である。
FIG. 6 is a diagram in which the number of flaws in the entire operation range is calculated from the mathematical model obtained by the analysis of the example, two items are selected from each operation factor, and the relationship with the quality y is plotted in a three-dimensional diagram. Is.

【図7】実施例で解析した操業データにおける操業因子
と疵個数の単相関を示す図である。
FIG. 7 is a diagram showing a single correlation between an operation factor and the number of flaws in the operation data analyzed in the example.

【符号の説明】[Explanation of symbols]

101 データ入力部 102 操業因子空間分割部 103 活性度関数算出部 104 局所関係式算出部 105 操業と品質の数式モデル算出部 106 最小誤差数式モデル選択部 107 学習誤差評価部 108 解析結果表示部 101 Data input section 102 Operation factor space division unit 103 Activity Function Calculation Unit 104 Local Relational Expression Calculation Unit 105 Operation and quality mathematical model calculation unit 106 minimum error formula model selection unit 107 learning error evaluation unit 108 Analysis result display section

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 製造プロセスにおける操業及び品質デー
タを解析して、複数の操業因子と品質の関連性を分析す
る操業分析装置であって、 プロセス操業データ及び品質データを入力するデータ入
力手段と、 プロセス操業データを基底ベクトルとする操業因子空間
を複数の局所領域に分割する操業因子空間分割手段と、 各局所領域における操業因子と品質の関連性を表現する
局所関係式を導出する局所関係式算出手段と、 各局所関係式の全体への寄与率を操業データに基づいて
算出する活性度関数を導出する活性度関数算出手段と、 前記局所関係式と前記活性度関数を有する局所領域の重
ね合せとして操業因子と品質の関連を表す数式モデルを
導出する数式モデル算出手段と、 複数の分割パターンについて求めた数式モデルの内、最
も誤差の少ない最小誤差数式モデルを選択する最小誤差
数式モデル選択手段と、 前記最小誤差数式モデルの誤差が与件の収束判定因子よ
り大きければ操業因子空間を更に細分割して上記の各手
段での処理を繰り返し実行するよう判定する学習誤差評
価手段とを備えたことを特徴とする操業分析装置。
1. An operation analysis device for analyzing operation and quality data in a manufacturing process to analyze the relationship between a plurality of operation factors and quality, comprising data input means for inputting process operation data and quality data. Operation factor space dividing means for dividing the operation factor space whose process operation data is the base vector into a plurality of local regions, and local relational expression calculation for deriving a local relational expression expressing the relation between the operation factor and quality in each local region Means, an activity function calculating means for deriving an activity function for calculating the contribution rate of each local relational expression to the whole based on the operation data, and a superposition of the local relational expression and the local region having the activity function As the mathematical model calculation means for deriving a mathematical model expressing the relation between the operation factor and the quality, and the mathematical model obtained for a plurality of division patterns, Minimum error formula model selection means for selecting a small minimum error formula model, and if the error of the minimum error formula model is larger than the given convergence determination factor, the operation factor space is further subdivided and the processing by each of the above means is performed. An operation analysis device, comprising: a learning error evaluation means that determines to repeatedly execute the operation.
【請求項2】 前記局所関係式が、操業と品質データ間
の線形多項式であることを特徴とする請求項1に記載の
操業分析装置。
2. The operation analysis device according to claim 1, wherein the local relational expression is a linear polynomial between operation and quality data.
【請求項3】 前記活性度関数が、局所領域の重心に中
心を持つ正規分布関数に基づいて構成される正規メンバ
シップ関数であることを特徴とする請求項1又は2に記
載の操業分析装置。
3. The operation analysis device according to claim 1, wherein the activity function is a normal membership function configured based on a normal distribution function having a center at the center of gravity of a local region. .
【請求項4】 特定の操業条件と対応する品質条件を与
件とし、それらの関連性を説明する手段として、複数の
前記局所関係式と各々の局所関係式の寄与割合を提示す
る解析結果表示手段を備えたことを特徴とする請求項1
〜3のいずれか1項に記載の操業分析装置。
4. An analysis result display that presents a plurality of the local relational expressions and a contribution ratio of each of the local relational expressions as a means for explaining the relationship between the specific operating condition and the corresponding quality condition as a condition. A means is provided.
The operation analyzer according to any one of 1 to 3.
【請求項5】 鉄鋼プロセスに適用され、前記品質デー
タは、製品の表面及び内部欠陥の個数であることを特徴
とする請求項1〜4のいずれか1項に記載の操業分析装
置。
5. The operation analysis apparatus according to claim 1, wherein the quality data is applied to a steel process and the quality data is the number of surface defects and internal defects of a product.
【請求項6】製造プロセスにおける操業及び品質データ
を解析して、複数の操業因子と品質の関連性を分析する
方法であって、 プロセス操業データ及び品質データを入力するデータ入
力手順と、 プロセス操業データを基底ベクトルとする空間を複数の
局所領域に分割する操業因子空間分割手順と、 各局所領域における操業因子と品質の関連性を表現する
局所関係式を導出する局所関係式算出手順と、 各局所関係式の全体への寄与率を操業データに基づいて
算出する活性度関数を導出する活性度関数算出手順と、 前記局所関係式と前記活性度関数を有する局所領域の重
ね合せとして操業因子と品質の関連を表す数式モデルを
導出する数式モデル算出手順と、 複数の分割パターンについて求めた数式モデルの内、最
も学習誤差の少ない最小誤差数式モデルを選択する最小
誤差数式モデル選択手順と、 前記最小誤差数式モデルの誤差が与件の収束判定因子よ
り大きければ操業因子空間を更に細分割して上記の各手
順を繰り返し実行するよう判定する学習誤差評価手順と
を実行することを特徴とする操業分析方法。
6. A method for analyzing operation and quality data in a manufacturing process to analyze the relationship between a plurality of operation factors and quality, comprising a data input procedure for inputting process operation data and quality data, and a process operation. An operation factor space division procedure that divides the space whose data is the basis vector into multiple local regions, and a local relational expression calculation procedure that derives a local relational expression that expresses the relation between the operation factor and quality in each local region, An activity function calculation procedure for deriving an activity function for calculating the contribution rate to the whole of the local relational expression based on the operation data, and an operation factor as a superposition of the local relational expression and the local area having the activity function. Among the mathematical model calculation procedure for deriving a mathematical model that expresses the relationship of quality and the mathematical model with the smallest learning error among the mathematical models obtained for multiple division patterns. A minimum error formula model selection procedure for selecting a formula model, and if the error of the minimum error formula model is larger than a given convergence determination factor, the operation factor space is further subdivided and it is determined to repeatedly execute each of the above procedures. An operation analysis method, characterized by executing a learning error evaluation procedure.
【請求項7】 請求項1〜5のいずれか1項に記載の操
業分析装置の各手段としてコンピュータを機能させるこ
とを特徴とするコンピュータプログラム。
7. A computer program that causes a computer to function as each unit of the operation analysis apparatus according to claim 1. Description:
【請求項8】 請求項6に記載の操業分析方法の各手順
をコンピュータに実行させることを特徴とするコンピュ
ータプログラム。
8. A computer program for causing a computer to execute each procedure of the operation analysis method according to claim 6.
【請求項9】 請求項7又は8に記載のコンピュータプ
ログラムを格納したことを特徴とするコンピュータ読み
取り可能な記憶媒体。
9. A computer-readable storage medium having the computer program according to claim 7 or 8 stored therein.
JP2001338359A 2001-11-02 2001-11-02 Operation analysis apparatus, method, computer program, and computer-readable storage medium in manufacturing process Expired - Fee Related JP3875875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001338359A JP3875875B2 (en) 2001-11-02 2001-11-02 Operation analysis apparatus, method, computer program, and computer-readable storage medium in manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001338359A JP3875875B2 (en) 2001-11-02 2001-11-02 Operation analysis apparatus, method, computer program, and computer-readable storage medium in manufacturing process

Publications (2)

Publication Number Publication Date
JP2003141215A true JP2003141215A (en) 2003-05-16
JP3875875B2 JP3875875B2 (en) 2007-01-31

Family

ID=19152865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001338359A Expired - Fee Related JP3875875B2 (en) 2001-11-02 2001-11-02 Operation analysis apparatus, method, computer program, and computer-readable storage medium in manufacturing process

Country Status (1)

Country Link
JP (1) JP3875875B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006155557A (en) * 2004-11-05 2006-06-15 Nippon Steel Corp Relation analysis device between operation and quality in manufacturing process, method, computer program and computer-readable recording medium
JP2007140694A (en) * 2005-11-15 2007-06-07 Nippon Steel Corp Device and method for analyzing relevance of operation and quality in manufacturing process, computer program and computer-readable recording medium
JP2009151383A (en) * 2007-12-18 2009-07-09 Nippon Steel Corp Analyzer for analyzing relation between operation and quality in production process, analytical method, program, and computer-readable recording medium
JP2010115692A (en) * 2008-11-13 2010-05-27 Nippon Steel Corp Device and method for predicting quality in manufacturing process, program and computer-readable recording medium
JP2011085970A (en) * 2009-10-13 2011-04-28 Nippon Steel Corp Quality prediction device, quality prediction method, program and computer-readable recording medium
JP2011085969A (en) * 2009-10-13 2011-04-28 Nippon Steel Corp Quality prediction device, quality prediction method, program and computer-readable recording medium
JP2011221645A (en) * 2010-04-06 2011-11-04 Nippon Steel Corp Quality prediction device, quality prediction method, computer program, and computer readable recording medium
JP2012146205A (en) * 2011-01-13 2012-08-02 Nippon Steel Corp Quality prediction device, operation condition determination method, quality prediction method, computer program, and computer-readable storage medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434837B2 (en) * 2010-07-23 2014-03-05 新日鐵住金株式会社 Quality prediction apparatus, quality prediction method, program, and computer-readable recording medium
JP7102962B2 (en) * 2018-06-12 2022-07-20 日本製鉄株式会社 Control set value determination device, control set value determination method, and program

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006155557A (en) * 2004-11-05 2006-06-15 Nippon Steel Corp Relation analysis device between operation and quality in manufacturing process, method, computer program and computer-readable recording medium
JP4653547B2 (en) * 2004-11-05 2011-03-16 新日本製鐵株式会社 Apparatus and method for analyzing relation between operation and quality in manufacturing process, computer program, and computer-readable recording medium
JP2007140694A (en) * 2005-11-15 2007-06-07 Nippon Steel Corp Device and method for analyzing relevance of operation and quality in manufacturing process, computer program and computer-readable recording medium
JP4681426B2 (en) * 2005-11-15 2011-05-11 新日本製鐵株式会社 Apparatus and method for analyzing relation between operation and quality in manufacturing process, computer program, and computer-readable recording medium
JP2009151383A (en) * 2007-12-18 2009-07-09 Nippon Steel Corp Analyzer for analyzing relation between operation and quality in production process, analytical method, program, and computer-readable recording medium
JP2010115692A (en) * 2008-11-13 2010-05-27 Nippon Steel Corp Device and method for predicting quality in manufacturing process, program and computer-readable recording medium
JP2011085970A (en) * 2009-10-13 2011-04-28 Nippon Steel Corp Quality prediction device, quality prediction method, program and computer-readable recording medium
JP2011085969A (en) * 2009-10-13 2011-04-28 Nippon Steel Corp Quality prediction device, quality prediction method, program and computer-readable recording medium
JP2011221645A (en) * 2010-04-06 2011-11-04 Nippon Steel Corp Quality prediction device, quality prediction method, computer program, and computer readable recording medium
JP2012146205A (en) * 2011-01-13 2012-08-02 Nippon Steel Corp Quality prediction device, operation condition determination method, quality prediction method, computer program, and computer-readable storage medium

Also Published As

Publication number Publication date
JP3875875B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
JP4681426B2 (en) Apparatus and method for analyzing relation between operation and quality in manufacturing process, computer program, and computer-readable recording medium
JP5068637B2 (en) Operation and quality related analysis apparatus, analysis method, program, and computer-readable recording medium in manufacturing process
Cemernek et al. Machine learning in continuous casting of steel: A state-of-the-art survey
CA2636898C (en) Apparatus and method for constructing prediction model
Ghosh et al. Data mining driven DMAIC framework for improving foundry quality–a case study
US20220244705A1 (en) Control for laser cutting head movement in a cutting process
CN114678080B (en) Converter end point phosphorus content prediction model, construction method and phosphorus content prediction method
Uyan et al. Industry 4.0 foundry data management and supervised machine learning in low-pressure die casting quality improvement
JP2003141215A (en) Operation analyzing device, method, computer program and computer readable storage medium, in manufacturing process
JP4653547B2 (en) Apparatus and method for analyzing relation between operation and quality in manufacturing process, computer program, and computer-readable recording medium
WO2020013726A1 (en) Method for interpreting artificial neural networks
CN114918581A (en) Welding parameter processing method and device, storage medium and processor
JP5962290B2 (en) Steel heat transfer coefficient prediction apparatus and cooling control method
US20230342908A1 (en) Distortion prediction for additive manufacturing using image analysis
Cica et al. Intelligent process modeling and optimization of porosity formation in high-pressure die casting
German et al. An experimental study of continuous and discrete visualization paradigms for interactive trade space exploration
Bidyuk et al. An Approach to Identifying and Filling Data Gaps in Machine Learning Procedures
CN109960146A (en) The method for improving soft measuring instrument model prediction accuracy
JP4299508B2 (en) Operation and quality related analysis device in manufacturing process, related analysis method, and computer-readable storage medium
CN113780287A (en) Optimal selection method and system for multi-depth learning model
Ziegenbein et al. Machine learning algorithms in machining: A guideline for efficient algorithm selection
JPH09167152A (en) Interactive model preparing method
JP2006318232A (en) Analytical mesh correction device
CN114359300B (en) Optimization method, device and system of image segmentation model and storage medium
JP4230890B2 (en) Model identification device, model identification program, and method of operating model identification device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061027

R151 Written notification of patent or utility model registration

Ref document number: 3875875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees