JP2003139529A - Coaxial degree measuring method for bearing body - Google Patents

Coaxial degree measuring method for bearing body

Info

Publication number
JP2003139529A
JP2003139529A JP2001333064A JP2001333064A JP2003139529A JP 2003139529 A JP2003139529 A JP 2003139529A JP 2001333064 A JP2001333064 A JP 2001333064A JP 2001333064 A JP2001333064 A JP 2001333064A JP 2003139529 A JP2003139529 A JP 2003139529A
Authority
JP
Japan
Prior art keywords
bearing body
bearing
coaxiality
component
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001333064A
Other languages
Japanese (ja)
Inventor
Yasuaki Matsunaga
泰明 松永
Nobuhiro Takano
伸広 高野
Yasuhiko Yamazaki
康彦 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001333064A priority Critical patent/JP2003139529A/en
Publication of JP2003139529A publication Critical patent/JP2003139529A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a coaxial degree measuring method capable of inexpensively and accurately measuring the coaxial degree of a bearing body without flawing it. SOLUTION: A cylindrical support component 4 having a diameter smaller than an inner diameter of the bearing body 1 with a bearing component 3 assembled on a cylindrical component 2 is brought into contact with the inner diameter of the bearing body, a distance L1 between the contact point A1 and an outer diameter part B1 of the bearing body facing it is measured, the measurement is conducted throughout the whole circumference of the bearing body, and the coaxial degree of the bearing body is determined by a difference between a maximum value MaxL1 and a minimum value MinL1 of the distance L1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、中央に孔が設けら
れた円筒状部材の外周と内周との同軸度測定方法に関
し、特に円筒形部品に軸受部品を組み付けた後の軸受体
の円筒形部品外周と軸受部品内周との同軸度測定方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the coaxiality between the outer circumference and the inner circumference of a cylindrical member having a hole in the center, and more particularly to a cylinder of a bearing body after the bearing part is assembled to a cylindrical part. The present invention relates to a method for measuring the coaxiality between the outer periphery of a shaped component and the inner periphery of a bearing component.

【0002】[0002]

【従来の技術】従来、円筒形部品2に軸受部品3を組み
付けた軸受体1の同軸度は、図5の(a),(b),
(c)に示されるように、ピンテージ5やテーパーゲー
ジ6を用いて測定していた。しかしながら、図5(a)
に示されるように軸受体1の内径に合わせたピンゲージ
5を用いた測定では、軸受体内径に合う最適なピンケー
ジ5の選定に時間がかかったり、軸受体内径へのピンケ
ージ5の挿入時にピンケージ自身もしくは軸受体内径に
傷が付くという問題があった。また、図5(b),
(c)に示されるようにテーパーゲージ6を用いた軸受
体1の同軸度の測定では、軸受体1とテーパーゲージ6
との接触状態が不安定のため、図5(c)に示すように
テーパーゲージ6が傾きがちであり、同軸度が正確に測
定できないという問題があった。
2. Description of the Related Art Conventionally, the coaxiality of a bearing body 1 in which a bearing component 3 is assembled to a cylindrical component 2 is as shown in FIGS.
As shown in (c), pintage 5 and taper gauge 6 were used for measurement. However, FIG.
In the measurement using the pin gauge 5 matched to the inner diameter of the bearing body 1 as shown in Fig. 4, it takes time to select the optimum pin cage 5 that fits the inner diameter of the bearing body, or when the pin cage 5 is inserted into the inner diameter of the bearing body. Alternatively, there is a problem that the inner diameter of the bearing body is scratched. In addition, FIG.
As shown in (c), when measuring the coaxiality of the bearing body 1 using the taper gauge 6, the bearing body 1 and the taper gauge 6 are measured.
Since the contact state with is unstable, the taper gauge 6 tends to incline as shown in FIG. 5C, and the coaxiality cannot be measured accurately.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記問題
は、従来の測定が軸受体内周と多点で同時にかつ安定し
て接触する必要があるために生じていたという知見に基
づいてなされたものであり、その目的は、軸受体内周と
1点接触により測定できる測定系を供給して、軸受体の
同軸度を安価かつ高精度に測定できる、同軸度測定方法
を提供することである。
SUMMARY OF THE INVENTION The present invention has been made based on the finding that the above-mentioned problems have arisen because the conventional measurement requires simultaneous and stable contact with the inner circumference of the bearing at multiple points at the same time. SUMMARY OF THE INVENTION It is an object of the present invention to provide a coaxiality measuring method capable of inexpensively and highly accurately measuring the coaxiality of a bearing body by supplying a measuring system capable of measuring the inner circumference of the bearing by one-point contact.

【0004】[0004]

【課題を解決するための手段】本発明は、前記課題を解
決するための手段として、特許請求の範囲の各請求項に
記載の同軸度測定方法を提供する。請求項1に記載の同
軸度測定方法は、軸受体の内径より小さい直径の支持部
品を、軸受体の内径に接触させ、この接触点A1と対向
する軸受体の外径部B1との距離L1を軸受体の全周に
渡って測定し、この距離L1の最大と最小との差によ
り、軸受体の同軸度を求めるようにしたものであり、こ
れにより、軸受部品に傷を付けることもなく、軸受体の
同軸度を安価かつ高精度に測定できる。
The present invention provides a coaxiality measuring method as set forth in each of the claims as a means for solving the above problems. In the coaxiality measuring method according to claim 1, a supporting component having a diameter smaller than the inner diameter of the bearing body is brought into contact with the inner diameter of the bearing body, and the distance L1 between the contact point A1 and the outer diameter portion B1 of the bearing body facing the contact point A1. Is measured over the entire circumference of the bearing body, and the concentricity of the bearing body is obtained from the difference between the maximum and the minimum of this distance L1, so that the bearing parts are not damaged. The coaxiality of the bearing body can be measured inexpensively and with high accuracy.

【0005】請求項2の同軸度測定方法は、支持部品の
外周に球状軸受の球部を保持し易くするために断面V字
状又は円弧状溝を形成したものであり、これにより、軸
受部品が球状軸受であっても、安定して高精度に軸受体
の同軸度を測定できる。請求項3の同軸度測定方法は、
接触点A1と軸受体の外径部B1との延長線が、軸受体
の外周と交わる点を外径部B2とし、接触点A1と外径
部B2との距離L2もまた軸受体の全周に渡って測定す
ることで、L1+L2及びL2−L1の平均値から軸受
体の外径及び内径を、軸受体の同軸度の測定と同時に測
定できるようにしたものである。
According to the coaxiality measuring method of the second aspect, a groove having a V-shaped cross section or an arcuate groove is formed on the outer periphery of the support component in order to easily hold the spherical portion of the spherical bearing. Even if is a spherical bearing, the coaxiality of the bearing body can be stably and accurately measured. The coaxiality measuring method according to claim 3,
An outer diameter portion B2 is a point where an extension line between the contact point A1 and the outer diameter portion B1 of the bearing body intersects with the outer circumference of the bearing body, and a distance L2 between the contact point A1 and the outer diameter portion B2 is also the entire circumference of the bearing body. It is possible to measure the outer diameter and the inner diameter of the bearing body from the average value of L1 + L2 and L2-L1 at the same time as the measurement of the coaxiality of the bearing body by measuring over the range.

【0006】[0006]

【発明の実施の形態】以下、図面に基づいて本発明の実
施の形態の同軸度測定方法について説明する。図1の
(a)は、本発明の実施の形態の同軸度測定方法につい
て説明する図であり、(b)は図1(a)のI−I線断
面図である。本実施形態においては、同軸度測定の対象
品として、円筒形部品2に軸受部品3を組み付けた軸受
体1を対象にして説明するが、円筒形部品及び軸受部品
の単品についても同様に同軸度の測定が行えることは当
然である。
BEST MODE FOR CARRYING OUT THE INVENTION A coaxial measuring method according to an embodiment of the present invention will be described below with reference to the drawings. 1A is a diagram for explaining the coaxiality measuring method according to the embodiment of the present invention, and FIG. 1B is a sectional view taken along the line I-I of FIG. 1A. In the present embodiment, the bearing body 1 in which the bearing component 3 is assembled to the cylindrical component 2 is described as the target of the coaxiality measurement, but the cylindrical component and the single bearing component are also the same. Of course, it is possible to measure.

【0007】図1(a)に示すように、円筒形部品2に
軸受部品3を組み付けた軸受体1の外径中心もしくは外
径中心近傍より外周方向に伸ばした直線Tと、軸受体1
の内周が交わる2点をA1,A2とし、かつこの直線T
と軸受体1の外周が交わる2点B1,B2において、点
A1と対向する点をB1とし、点A2と対向する点をB
2としたときに、軸受体1の内径よりも小さい直径をも
つ円柱状の支持部品4を、軸受体1内に挿通して、点A
1で軸受体1の内径と支持部品4が接触するように配置
する。この支持部品4は、高真円度を有し、その中心位
置が既知である。また、支持部品4は、円柱状以外に球
状であってもよい。
As shown in FIG. 1A, a straight line T extending from the center of the outer diameter of the bearing body 1 in which the bearing component 3 is assembled to the cylindrical part 2 or the vicinity of the center of the outer diameter and the bearing body 1
The two points where the inner circumference intersects are A1 and A2, and this straight line T
At two points B1 and B2 where the outer circumference of the bearing body 1 intersects with each other, a point facing the point A1 is B1, and a point facing the point A2 is B.
2, the columnar support component 4 having a diameter smaller than the inner diameter of the bearing body 1 is inserted into the bearing body 1, and the point A
1, the inner diameter of the bearing body 1 and the support component 4 are arranged to be in contact with each other. This support component 4 has a high roundness and its center position is known. Further, the support component 4 may have a spherical shape instead of a cylindrical shape.

【0008】この場合、点A1での軸受体1と支持部品
4との接触を確実なものにするために、軸受体内径を点
A1に押し当てる側に荷重を加えてもよい。また、荷重
を加える押付け治具(図示せず)としては、例えば先端
をコロにするなどして、軸受体外周接線方向にはあまり
荷重の加わらない構造が、後述する軸受体の同軸度の測
定が安定的にできるため望ましい。
In this case, in order to ensure the contact between the bearing body 1 and the supporting component 4 at the point A1, a load may be applied to the side where the inner diameter of the bearing body is pressed against the point A1. Further, as a pressing jig (not shown) for applying a load, for example, a structure in which the load is not so much applied in the tangential direction of the outer circumference of the bearing body by, for example, making the tip a roller, is described below. Is stable, which is desirable.

【0009】上述した図1(a),(b)に示された軸
受体1と支持部品4との配置状態で、支持部品4の位置
を固定し、さらに軸受体1と支持部品4との接触を維持
しつつ軸受体1を回転させたときの上記の点B1と点A
1との距離L1を、例えば変位計(変位センサ、寸法測
定器)7で測定する。ここで変位計7とは光学式(レー
ザフォーカス式や三角測距式)、レーザ透過式、渦電流
式、超音波式、接触式及びその他変位量(寸法)が測定
可能な方式を用いている計測機器のことである。
In the arrangement of the bearing body 1 and the support component 4 shown in FIGS. 1A and 1B, the position of the support component 4 is fixed, and the bearing body 1 and the support component 4 are further fixed. The above point B1 and point A when the bearing body 1 is rotated while maintaining contact.
The distance L1 from 1 is measured by, for example, a displacement meter (displacement sensor, dimension measuring device) 7. Here, the displacement meter 7 is an optical type (laser focus type or triangulation type), a laser transmission type, an eddy current type, an ultrasonic type, a contact type, or any other type capable of measuring the displacement amount (dimension). It is a measuring instrument.

【0010】前記点B1と点A1の距離L1は、軸受体
1の回転角度θを変数として表わせるため、図1
(a),(b)に示すようにL1(θ)とすると、軸受
体1の同軸度はL1(θ)の最大と最小の差となる。即
ち、同軸度=MaxL1(θ)−MinL1(θ)の式
で表わせる。ここで、軸受部品3の軸受外輪の内径を
D、軸受コロの外径をdとした場合、回転角度θはθ≧
2πであることが望ましく、さらに自然数をiとすると
θ=2πiD/dとなることが望ましい。なお、D/d
は任意のコロが軸受外輪の内径を1周する条件である。
また軸受部品を円筒形部品に圧入すると軸受外輪内径は
多少変形する。このため軸受の内接円(コロとの内接
円)の中心位置は一意に決まらず、結果として同軸度も
一意に決まらない。そこで同軸度のバラツキや平均等を
求める場合は、今回の測定方法においてθ≧2πとする
ことが望ましい。また各コロの径もバラツキを持ってい
るため、正確な同軸度測定をするためにはコロが外輪内
径を一周回った時点で平均化等の処理を行うことが望ま
しい。今、コロと軸受外輪内径間にすべりが発生してい
ないと仮定すると、コロが外輪内径を一周する条件はD
/dのため、本測定において正確な同軸度測定をする条
件としてθ=2πiD/dがあげられる。このようにし
て、軸受体1の同軸度が測定できる。
The distance L1 between the point B1 and the point A1 can be represented by the rotation angle θ of the bearing body 1 as a variable.
When L1 (θ) is set as shown in (a) and (b), the coaxiality of the bearing body 1 is the difference between the maximum and the minimum of L1 (θ). That is, it can be expressed by the formula of coaxiality = MaxL1 (θ) −MinL1 (θ). Here, when the inner diameter of the bearing outer ring of the bearing component 3 is D and the outer diameter of the bearing roller is d, the rotation angle θ is θ ≧
It is desirable that it is 2π, and it is desirable that θ = 2πiD / d, where i is a natural number. In addition, D / d
Is a condition that an arbitrary roller makes one round around the inner diameter of the bearing outer ring.
When the bearing part is press-fitted into the cylindrical part, the inner diameter of the outer ring of the bearing is slightly deformed. Therefore, the center position of the inscribed circle (inscribed circle with the roller) of the bearing is not uniquely determined, and as a result, the coaxiality is not uniquely determined. Therefore, in the case of obtaining the variation or the average of the coaxiality, it is desirable that θ ≧ 2π in the present measurement method. Further, since the diameters of the rollers also vary, it is desirable to perform processing such as averaging at the time when the rollers go around the inner diameter of the outer ring in order to accurately measure the coaxiality. Assuming that no slip has occurred between the roller and the inner diameter of the outer ring of the bearing, the condition that the roller goes around the inner diameter of the outer ring is D
Therefore, θ = 2πiD / d can be cited as a condition for accurate measurement of coaxiality in this measurement. In this way, the coaxiality of the bearing body 1 can be measured.

【0011】図2の(a)は、本発明の別の実施形態の
同軸度測定方法を説明する図であり、(b)は、(a)
のII−II線断面図である。本実施形態では、軸受体1の
同軸度の測定に加えて、軸受体1の外径又は内径を測定
している。同軸度の測定は、前述した方法と同様であ
る。軸受体1の外径及び内径を測定するために、本実施
形態では、直線Tと軸受体1の内周が交わる点A1と軸
受体1の外周が交わる一方の点B1との距離L1に加え
て、この点A1と直線Tが軸受体1の外周と交わるもう
一方の点B2との距離L2を測定している。この距離L
2の測定も、距離L1と同様に軸受体1の内径と支持部
品4との接触を維持しつつ軸受体1を回転させること
で、軸受体1の全周に渡って同様の変位計7を使用して
測定を実施する。
FIG. 2A is a diagram for explaining a coaxiality measuring method according to another embodiment of the present invention, and FIG. 2B is a diagram showing (a).
11 is a sectional view taken along line II-II of FIG. In this embodiment, in addition to the measurement of the coaxiality of the bearing body 1, the outer diameter or the inner diameter of the bearing body 1 is measured. The measurement of coaxiality is similar to the method described above. In order to measure the outer diameter and the inner diameter of the bearing body 1, in this embodiment, in addition to the distance L1 between the point A1 where the straight line T and the inner circumference of the bearing body 1 intersect and the point B1 where the outer circumference of the bearing body 1 intersects. Then, the distance L2 between this point A1 and the other point B2 where the straight line T intersects with the outer circumference of the bearing body 1 is measured. This distance L
In the measurement of 2 as well, by rotating the bearing body 1 while maintaining the contact between the inner diameter of the bearing body 1 and the support component 4 as in the case of the distance L1, the same displacement gauge 7 is provided over the entire circumference of the bearing body 1. Use to make measurements.

【0012】この場合、距離L2も軸受体1の回転角度
θを変数として表わせ、軸受体1の外径は、L1(θ)
+L2(θ)の平均より算出でき、軸受体1の内径は、
L2(θ)−L1(θ)の平均より算出できる。即ち、
外径=Σ{L1(θ)+L2(θ)}/N、内径=Σ
{L2(θ)−L1(θ)}/N;N=測定回数、の式
で表わせる。上記のようにして、本実施形態では、軸受
体1の同軸度と共に軸受体1の外径又は内径を測定す
る。
In this case, the distance L2 is also expressed by using the rotation angle θ of the bearing body 1 as a variable, and the outer diameter of the bearing body 1 is L1 (θ).
It can be calculated from the average of + L2 (θ), and the inner diameter of the bearing body 1 is
It can be calculated from the average of L2 (θ) -L1 (θ). That is,
Outer diameter = Σ {L1 (θ) + L2 (θ)} / N, inner diameter = Σ
{L2 (θ) −L1 (θ)} / N; N = number of times of measurement As described above, in the present embodiment, the outer diameter or the inner diameter of the bearing body 1 is measured together with the coaxiality of the bearing body 1.

【0013】上述した測定方法においては、支持部品4
として円柱状もしくは球状部品を使用しており、この形
状は、図3に示すような針状軸受部品を組み付けた軸受
体の測定に適している。符号31は、針状軸受部品の外
輪であり、符号32は、同部品のコロであり、符号33
は、同部品の保持器である。図4は、軸受部品3として
球状軸受を使用した場合における支持部品4の変形例を
示している。この変形例においては、支持部品4の外周
に断面V字状の溝41が形成されている。これにより、
球状軸受の球部34が溝41に保持されるので、球状軸
受の測定に対しても精度よく対応できる。また断面V字
状ではなく断面円弧状の溝でもよい。
In the measuring method described above, the support component 4
A cylindrical or spherical part is used as this, and this shape is suitable for the measurement of a bearing body assembled with a needle-shaped bearing part as shown in FIG. Reference numeral 31 is an outer ring of the needle bearing component, reference numeral 32 is a roller of the same component, reference numeral 33
Is a retainer of the same component. FIG. 4 shows a modification of the support component 4 when a spherical bearing is used as the bearing component 3. In this modification, a groove 41 having a V-shaped cross section is formed on the outer periphery of the support component 4. This allows
Since the spherical portion 34 of the spherical bearing is held in the groove 41, it is possible to accurately measure the spherical bearing. Further, the groove may have an arcuate cross section instead of the V-shaped cross section.

【0014】なお、上記実施形態の説明においては、軸
受体を1断面で測定することで説明しているが、1断面
で測定するだけでなく複数断面で行うことにより、3次
元的な測定にも展開できる。また、本発明の同軸度測定
方法は、軸受体だけでなく、円筒形部品においても円筒
の外径、内径及び同軸度が測定でき、さらに、下記の式 外径の真円度=〔Max{L1(θ)+L2(θ)}−
Min{L1(θ)+L2(θ)}〕/2 内径の真円度=〔Max{L2(θ)−L1(θ±π/
2)}−Min{L2(θ)−L1(θ±π/2)}〕
/2 により、外径の真円度及び内径の真円度も測定できる。
In the above description of the embodiment, the bearing body is measured in one section, but not only in one section but also in a plurality of sections, three-dimensional measurement is possible. Can also be deployed. Further, the coaxiality measuring method of the present invention can measure the outer diameter, inner diameter and coaxiality of a cylinder not only in a bearing body but also in a cylindrical part, and further, the circularity of the following outer diameter = [Max { L1 (θ) + L2 (θ)}-
Min {L1 (θ) + L2 (θ)}] / 2 Roundness of inner diameter = [Max {L2 (θ) −L1 (θ ± π /
2)}-Min {L2 (θ) -L1 (θ ± π / 2)}]
The circularity of the outer diameter and the circularity of the inner diameter can also be measured by / 2.

【0015】以上説明したように、本発明の同軸度測定
方法は、軸受部品の内周と1点接触により測定できるの
で、軸受部品に傷を付けることもなく、同軸度を安価か
つ高精度に測定できる。
As described above, since the coaxiality measuring method of the present invention can be measured by one-point contact with the inner circumference of the bearing component, the bearing component is not damaged and the coaxiality can be obtained inexpensively and with high accuracy. Can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は、本発明の実施の形態の同軸度測定方
法を説明する図であり、(b)は、(a)のI−I線断
面図である。
FIG. 1A is a diagram illustrating a coaxiality measuring method according to an embodiment of the present invention, and FIG. 1B is a sectional view taken along line I-I of FIG.

【図2】(a)は、本発明の別の実施の形態の同軸度測
定方法を説明する図であり、(b)は、(a)のII−II
線断面図である。
FIG. 2 (a) is a diagram illustrating a coaxiality measuring method according to another embodiment of the present invention, and FIG. 2 (b) is a II-II of (a).
It is a line sectional view.

【図3】軸受部品である針状軸受の断面図である。FIG. 3 is a cross-sectional view of a needle bearing that is a bearing component.

【図4】軸受部品として球状軸受を使用する場合におけ
る支持部品の変形例である。
FIG. 4 is a modification of the support component when a spherical bearing is used as the bearing component.

【図5】従来技術の同軸度測定方法をそれぞれ示してお
り、(a)はピンゲージを使用した場合を、(b),
(c)はテーパーゲージを使用した場合を示している。
5A and 5B respectively show a conventional coaxiality measuring method, in which FIG. 5A shows a case where a pin gauge is used, FIG.
(C) shows the case where a taper gauge is used.

【符号の説明】 1…軸受体 2…円筒形部品 3…軸受部品 4…支持部品 7…変位計[Explanation of symbols] 1 ... Bearing body 2 ... Cylindrical parts 3 ... Bearing parts 4 ... Supporting parts 7 ... Displacement meter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 康彦 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 2F069 AA21 AA39 AA40 AA56 BB08 CC03 DD25 GG01 GG04 GG06 GG07 GG09 GG52 GG62 HH02 HH09 JJ17 JJ25 LL04 MM02 MM21 NN26 3J101 AA01 AA02 AA12 AA52 AA62 EA01 FA25 FA31    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yasuhiko Yamazaki             1-1, Showa-cho, Kariya city, Aichi stock market             Inside the company DENSO F term (reference) 2F069 AA21 AA39 AA40 AA56 BB08                       CC03 DD25 GG01 GG04 GG06                       GG07 GG09 GG52 GG62 HH02                       HH09 JJ17 JJ25 LL04 MM02                       MM21 NN26                 3J101 AA01 AA02 AA12 AA52 AA62                       EA01 FA25 FA31

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 円筒形部品に軸受部品を組み付けた軸受
体の外径と内径との同軸度を測定する方法において、 前記軸受体の内径より小さい直径をもつ円柱状もしくは
球状の支持部品を、前記軸受体の内径に接触させ、この
接触点A1と対向する前記軸受体の外径部B1との距離
L1を測定し、この測定を前記軸受体の全周に渡って実
施した後に、この距離L1の最大MaxL1と最小Mi
nL1との差により、前記軸受体の同軸度を求めること
を特徴とする同軸度測定方法。
1. A method for measuring the coaxiality between an outer diameter and an inner diameter of a bearing body in which a bearing component is assembled to a cylindrical component, comprising a cylindrical or spherical support component having a diameter smaller than the inner diameter of the bearing body. After making contact with the inner diameter of the bearing body and measuring the distance L1 between the contact point A1 and the outer diameter portion B1 of the bearing body facing the contact point A1, this measurement is performed over the entire circumference of the bearing body, and then this distance is measured. Max L1 and minimum Mi of L1
A coaxiality measuring method, wherein the coaxiality of the bearing body is obtained from the difference from nL1.
【請求項2】 前記軸受体の軸受部品が球状軸受である
場合、前記支持部品の外周に球状軸受の球部を保持し易
くするための断面V字状又は円弧状溝を形成したことを
特徴とする請求項1に記載の同軸度測定方法。
2. When the bearing component of the bearing body is a spherical bearing, a V-shaped or arc-shaped groove is formed on the outer periphery of the support component to facilitate holding of the spherical portion of the spherical bearing. The coaxiality measuring method according to claim 1.
【請求項3】 前記接触点A1と前記軸受体の外径部B
1との延長線が、前記軸受体の外周と交わる点を外径部
B2とし、前記接触点A1と前記外径部B2との距離L
2を測定し、この測定を前記軸受体の全周に渡って実施
し、L1+L2の平均値より前記軸受体の外径を、又は
L2−L1の平均値より前記軸受体の内径を同時に測定
することを特徴とする請求項1又は2に記載の同軸度測
定方法。
3. The contact point A1 and the outer diameter portion B of the bearing body.
1 is an outer diameter portion B2 at a point where an extension line with 1 intersects with the outer circumference of the bearing body, and a distance L between the contact point A1 and the outer diameter portion B2.
2 is measured, and this measurement is performed over the entire circumference of the bearing body, and the outer diameter of the bearing body is measured from the average value of L1 + L2, or the inner diameter of the bearing body is measured from the average value of L2-L1 at the same time. The coaxiality measuring method according to claim 1 or 2, wherein.
JP2001333064A 2001-10-30 2001-10-30 Coaxial degree measuring method for bearing body Pending JP2003139529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001333064A JP2003139529A (en) 2001-10-30 2001-10-30 Coaxial degree measuring method for bearing body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001333064A JP2003139529A (en) 2001-10-30 2001-10-30 Coaxial degree measuring method for bearing body

Publications (1)

Publication Number Publication Date
JP2003139529A true JP2003139529A (en) 2003-05-14

Family

ID=19148394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001333064A Pending JP2003139529A (en) 2001-10-30 2001-10-30 Coaxial degree measuring method for bearing body

Country Status (1)

Country Link
JP (1) JP2003139529A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137976A (en) * 2014-01-23 2015-07-30 株式会社ジェイテクト Dimension measurement jig for thrust roller bearing and dimension measurement method of thrust roller bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137976A (en) * 2014-01-23 2015-07-30 株式会社ジェイテクト Dimension measurement jig for thrust roller bearing and dimension measurement method of thrust roller bearing

Similar Documents

Publication Publication Date Title
US5074677A (en) Center-free large roller bearing
JP3046636B2 (en) Method and apparatus for measuring objects such as screw parts and their materials
CN103857979B (en) Profile normal component with rotational symmetric calibration region, the use of normal component and the method for calibrating and/or detecting profile measurer
EA027164B1 (en) Device for measuring an internal or external profile of a tubular component
EP1193464A1 (en) Measuring apparatus for pulley
CN106624011B (en) A kind of method for boring hole for long stern pipe marine shafting
US7637023B2 (en) Threaded stud position measurement adapter
Chen et al. A stitching linear-scan method for roundness measurement of small cylinders
JP4492801B2 (en) Measuring instrument and manufacturing method thereof
JP2003139529A (en) Coaxial degree measuring method for bearing body
JP4897951B2 (en) Tubular deflection measurement method and apparatus
US4169319A (en) Methods and apparatus for measuring the thickness of wet films
JP2008215841A (en) Management method of circular arc shape of inner ring raceway surface of self-aligning roller bearing
JP2004511793A (en) Method for determining alignment of a cylindrical member with respect to a reference direction
JP2009098092A (en) Relative height detector
JP2003220545A (en) End face grinding apparatus and end face grinding method
JP2001091244A (en) Roundness measuring method and device
JP5317077B2 (en) Ball dimension gauge device
TWI558978B (en) Roundness measurement method and roundness measurement device
JP4113903B1 (en) Concentricity measuring instrument and concentricity measuring method using the same
CN106705788B (en) Detection device and detection method
JPS63196801A (en) Method for measuring gap quantity between circular arc cross-sectional part and planar part
JP2004264191A (en) Method for measuring profile of cylinder
EP1600729A2 (en) Instrument for measuring the bending radius of convex pieces of different diameters
US11092420B2 (en) Probe and cap therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051213