JP2003139144A - Multipoint contact ball bearing and pulley for automobile accessory - Google Patents
Multipoint contact ball bearing and pulley for automobile accessoryInfo
- Publication number
- JP2003139144A JP2003139144A JP2001339410A JP2001339410A JP2003139144A JP 2003139144 A JP2003139144 A JP 2003139144A JP 2001339410 A JP2001339410 A JP 2001339410A JP 2001339410 A JP2001339410 A JP 2001339410A JP 2003139144 A JP2003139144 A JP 2003139144A
- Authority
- JP
- Japan
- Prior art keywords
- groove
- curvature
- radius
- ball bearing
- pulley
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/14—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
- F16C19/16—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
- F16C19/163—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
- F16C19/166—Four-point-contact ball bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/583—Details of specific parts of races
- F16C33/585—Details of specific parts of races of raceways, e.g. ribs to guide the rollers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2240/00—Specified values or numerical ranges of parameters; Relations between them
- F16C2240/40—Linear dimensions, e.g. length, radius, thickness, gap
- F16C2240/70—Diameters; Radii
- F16C2240/76—Osculation, i.e. relation between radii of balls and raceway groove
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2361/00—Apparatus or articles in engineering in general
- F16C2361/63—Gears with belts and pulleys
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
- Pulleys (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ベルトによって駆
動されるカーエアコンコンプレッサ用電磁クラッチなど
の自動車補機用のプーリを支持するのに好適な多点接触
玉軸受に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multipoint contact ball bearing suitable for supporting a pulley for an automobile accessory such as an electromagnetic clutch for a car air conditioner compressor driven by a belt.
【0002】[0002]
【従来の技術】上記のようなプーリを軸受で支持した場
合、プーリに掛け回されるベルトの幅方向中心位置と軸
受の軸方向中心位置とがずれている場合がある。この場
合、ベルトの張力は、軸受にラジアル荷重を与えると同
時に、上記ずれ(オフセット)量に比例したモーメント
荷重を与える。モーメント荷重は、支持軸に対してプー
リを傾けるように作用する。ここで、プーリが大きく傾
くと、ベルトが偏磨耗し、ベルト早期破損の原因とな
る。また、電磁クラッチの場合には、プーリの変位や傾
きが大きくなると、クラッチOFFの状態に必要な、ク
ラッチ部材間の一定の隙間が確保されない。クラッチ部
材間の隙間が大きくなると電磁クラッチの動作不良が生
じ、逆に隙間が小さくなると部材の衝突や磨耗、異音発
生などの不具合が生じる。したがって、このような用途
には、従来、剛性の高い複列アンギュラ玉軸受が用いら
れてきた。2. Description of the Related Art When a pulley as described above is supported by a bearing, the center position in the width direction of the belt wound around the pulley and the center position in the axial direction of the bearing may deviate from each other. In this case, the tension of the belt gives a radial load to the bearing and, at the same time, gives a moment load proportional to the amount of the offset. The moment load acts to incline the pulley with respect to the support shaft. Here, if the pulley is largely tilted, the belt is unevenly worn, which causes early damage of the belt. Further, in the case of the electromagnetic clutch, if the displacement or inclination of the pulley becomes large, a certain gap between the clutch members required for the clutch OFF state cannot be secured. If the gap between the clutch members becomes large, malfunction of the electromagnetic clutch occurs. Conversely, if the gap becomes small, problems such as collision of the members, wear, and abnormal noise occur. Therefore, a double row angular contact ball bearing with high rigidity has been conventionally used for such applications.
【0003】しかし、昨今、自動車のコンパクト化、コ
ストダウン化に対応するため、プーリ支持用軸受を単列
化する傾向がある。複列アンギュラ玉軸受は、単列玉軸
受に比べて幅寸法が大きいため、昨今の自動車に要求さ
れる省スペース化には適さない。また、複列アンギュラ
玉軸受は、構造上も大きさからも、単列玉軸受に比べて
コスト高になる。However, in recent years, in order to cope with the downsizing and cost reduction of automobiles, there is a tendency to use a single row of pulley supporting bearings. Since the double-row angular contact ball bearing has a larger width dimension than the single-row ball bearing, it is not suitable for the space-saving required in recent automobiles. Further, the double-row angular contact ball bearing is more expensive than the single-row ball bearing due to its structure and size.
【0004】プーリ支持用単列軸受として、上記のよう
なプーリの変位や傾きを抑える必要から、モーメント剛
性の高い4点接触玉軸受や、3点接触玉軸受を使おうと
する動きがある(例えば、特開平11−336795号
公報、特開平11−210766号公報、特開2000
−120668号公報等)。As a single-row bearing for supporting a pulley, there is a movement to use a four-point contact ball bearing or a three-point contact ball bearing having high moment rigidity in order to suppress the displacement and inclination of the pulley as described above (for example, , JP-A-11-336795, JP-A-11-210766, JP-A-2000
-120668 gazette etc.).
【0005】また、複列アンギュラ玉軸受を使用した際
に発生する異音抑制の観点から、4点接触玉軸受や3点
接触玉軸受を使おうとする動きもある(例えば、特開平
9−119510号公報、特開平9−126303号公
報、特開2000−170752号公報等)。There is also a tendency to use a four-point contact ball bearing or a three-point contact ball bearing from the viewpoint of suppressing abnormal noise generated when a double-row angular contact ball bearing is used (for example, Japanese Patent Laid-Open No. 9-119510). JP-A-9-126303, JP-A-2000-170752, etc.).
【0006】[0006]
【発明が解決しようとする課題】しかし、上記4点接触
玉軸受や3点接触玉軸受では、特開平11−21076
6号公報で指摘されているように、転動体である玉と2
点で接触する軌道輪上において、玉と軌道間のスピン運
動によるすべりが大きく、過大な発熱、焼付き、磨耗な
どの問題が生じやすい。プーリ支持用軸受は自動車のエ
ンジン近傍で使用されるため、使用条件によっては、軸
受周囲の温度がかなりの高温になる。周囲が高温で、更
に軸受内部の発熱が高いとき、軸受内部の温度、特に玉
と内輪軌道との接触楕円内で、局所的に温度が著しく高
くなることが想定できる。この局所的な高温にさらされ
ることで、軸受内部の潤滑グリースが劣化し、潤滑不良
から最終的には軸受がロックしてしまう不具合が考えら
れる。高温下で使用されるプーリ支持用多点接触玉軸受
では、転がり疲れ寿命に到達する前に、グリースの劣化
による潤滑不良によって軸受の運転性能が損なわれてし
まう可能性が高い。However, in the above-mentioned four-point contact ball bearing and three-point contact ball bearing, Japanese Unexamined Patent Publication (Kokai) No. 11-21076.
As pointed out in Japanese Patent No. 6, gazette and 2 which are rolling elements
On a raceway ring that is in point contact, slippage is large due to the spin motion between the ball and the raceway, and problems such as excessive heat generation, seizure, and wear are likely to occur. Since the pulley supporting bearing is used in the vicinity of the engine of an automobile, the temperature around the bearing becomes a considerably high temperature depending on the usage conditions. When the surroundings are high in temperature and the heat inside the bearing is high, it can be assumed that the temperature inside the bearing, especially within the contact ellipse between the balls and the inner ring raceway, locally becomes extremely high. It is conceivable that the lubricating grease inside the bearing deteriorates due to the exposure to this local high temperature, and the bearing eventually locks due to poor lubrication. In a pulley supporting multi-point contact ball bearing used under high temperature, there is a high possibility that the operating performance of the bearing will be impaired due to poor lubrication due to deterioration of grease before reaching the rolling fatigue life.
【0007】本発明は、上記事情に鑑みてなされたもの
で、その目的は、モーメント荷重もしっかりと支持で
き、高温下で使用されても異常発熱及び潤滑剤劣化が生
じない多点接触玉軸受及び自動車補機用プーリを提供す
ることにある。The present invention has been made in view of the above circumstances, and an object thereof is to provide a multi-point contact ball bearing which can firmly support a moment load and does not cause abnormal heat generation and lubricant deterioration even when used at high temperatures. And to provide a pulley for an automobile accessory.
【0008】[0008]
【課題を解決するための手段】本発明の目的は、下記構
成により達成される。
(1) 4点接触又は3点接触の多点接触玉軸受におい
て、内輪又は外輪の少なくとも一方に形成された、第一
の接触点を提供する第一溝の溝曲率半径と第二の接触点
を提供する第二溝の溝曲率半径とを異なる値としたこと
を特徴とする多点接触玉軸受。
(2) 前記第一溝の溝曲率半径と前記第二溝の溝曲率
半径との差が、転動体の玉径の0.5%以上である前記
(1)に記載の多点接触玉軸受。
(3) 前記(1)又は(2)に記載の多点接触玉軸受
を使用した自動車補機用プーリ。The object of the present invention is achieved by the following constitution. (1) In a four-point contact or three-point contact multi-point contact ball bearing, the groove curvature radius of the first groove and the second contact point, which are formed on at least one of the inner ring and the outer ring, and which provide the first contact point The multi-point contact ball bearing is characterized in that the radius of curvature of the second groove providing the above is set to a different value. (2) The multipoint contact ball bearing according to (1), wherein the difference between the radius of curvature of the first groove and the radius of curvature of the second groove is 0.5% or more of the ball diameter of the rolling element. . (3) A pulley for an automobile accessory, which uses the multipoint contact ball bearing according to (1) or (2).
【0009】上記構成によれば、内輪又は外輪の少なく
とも一方にある第一溝及び第二溝のうち片方の溝曲率半
径を大きくすることにより、その溝と玉との間にできる
接触楕円内のすべりが小さくなるため、接触楕円内での
局所的な発熱を抑えることができる。このため、潤滑剤
劣化が少なく、高温下での使用に耐えることができる。
また、2個の溝の両方について溝曲率半径を大きくした
とき(2個の溝を対称にしたとき)に比べて、プーリの
変位や傾きを小さく抑えることができる。According to the above structure, by increasing the radius of curvature of one of the first groove and the second groove in at least one of the inner ring and the outer ring, the contact ellipse within the contact ellipse formed between the groove and the ball is formed. Since the slip is small, it is possible to suppress the local heat generation within the contact ellipse. Therefore, the lubricant is less deteriorated and can be used under high temperature.
Further, the displacement and inclination of the pulley can be suppressed smaller than when the radius of curvature of both the two grooves is increased (when the two grooves are symmetrical).
【0010】[0010]
【発明の実施の形態】以下、本発明の実施形態を、図面
に基づいて詳細に説明する。図1は自動車補機用プーリ
の構成を示す要部の拡大断面図である。この自動車補機
用プーリ1は、カーエアコンコンプレッサ用電磁クラッ
チに関するものである。この電磁クラッチは、車両走行
用エンジンに発生する回転動力を冷凍サイクルのコンプ
レッサに伝達したり遮断したりするものである。図1に
示すように、コンプレッサハウジング2の中心から回転
自在に突出した駆動軸3の先端部に回転円盤4が設けら
れ、回転円盤4の外周側には可撓部材5を介してアーマ
チュア6が取り付けられている。駆動軸3の周囲を囲む
ようにして、コンプレッサハウジング2と一体に円筒軸
2aが突出するように設けられ、その外周面に、多点接
触玉軸受の一例である4点接触玉軸受11の内輪12が
固定されている。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is an enlarged cross-sectional view of a main part showing the configuration of an automobile accessory pulley. This automobile accessory pulley 1 relates to an electromagnetic clutch for a car air conditioner compressor. This electromagnetic clutch transmits or interrupts the rotational power generated in the vehicle running engine to the compressor of the refrigeration cycle. As shown in FIG. 1, a rotary disk 4 is provided at the tip of a drive shaft 3 that rotatably projects from the center of the compressor housing 2, and an armature 6 is provided on the outer peripheral side of the rotary disk 4 via a flexible member 5. It is installed. A cylindrical shaft 2a is provided so as to be integrated with the compressor housing 2 so as to surround the periphery of the drive shaft 3, and an inner ring 12 of a four-point contact ball bearing 11, which is an example of a multi-point contact ball bearing, is provided on the outer peripheral surface thereof. It is fixed.
【0011】4点接触玉軸受11の外輪13には、ロー
タ7が外嵌されている。ロータ7の外周面には、プーリ
7aが一体的に設けられている。プーリ7aの外周面
に、想像線で示すようにベルト8が掛け回される。ロー
タ7のコンプレッサハウジング2側とは反対側の側面に
は、アーマチュア6と接触して摩擦力により回転力を伝
達する摩擦面7bが形成されている。ロータ7のコンプ
レッサハウジング2側の側面には凹所7dが設けられて
いる。凹所7d内には、電磁コイル9が、ロータ7と接
触しないように収容されている。電磁コイル9は、コン
プレッサハウジング2に固定されている。A rotor 7 is fitted on the outer ring 13 of the four-point contact ball bearing 11. A pulley 7a is integrally provided on the outer peripheral surface of the rotor 7. A belt 8 is wound around the outer peripheral surface of the pulley 7a as shown by an imaginary line. On the side surface of the rotor 7 opposite to the compressor housing 2 side, a friction surface 7b that contacts the armature 6 and transmits the rotational force by the friction force is formed. A recess 7d is provided on the side surface of the rotor 7 on the compressor housing 2 side. The electromagnetic coil 9 is housed in the recess 7d so as not to contact the rotor 7. The electromagnetic coil 9 is fixed to the compressor housing 2.
【0012】電磁コイル9の非励磁時には、摩擦面7b
とアーマチュア6との間に隙間Gがあいている。電磁コ
イル9に電流を流すと磁界が発生し、アーマチュア6が
可撓部材5の弾性に抗して電磁コイル9側に引き付けら
れ、摩擦面7bに押圧接触する。この結果、プーリ7a
の回転力がアーマチュア6、回転円盤4、駆動軸3を介
してコンプレッサを駆動するように伝達される。ベルト
8の幅方向中心位置αと、軸受11の軸方向中心位置β
とは、オフセット量δでずれており、軸受11にはモー
メント荷重が作用する。When the electromagnetic coil 9 is not excited, the friction surface 7b
There is a gap G between the armature 6 and the armature 6. When a current is applied to the electromagnetic coil 9, a magnetic field is generated, the armature 6 is attracted toward the electromagnetic coil 9 side against the elasticity of the flexible member 5, and comes into pressure contact with the friction surface 7b. As a result, the pulley 7a
Is transmitted via the armature 6, the rotating disk 4, and the drive shaft 3 so as to drive the compressor. The widthwise center position α of the belt 8 and the axial direction center position β of the bearing 11
Are offset by an offset amount δ, and a moment load acts on the bearing 11.
【0013】上記4点接触玉軸受11は、図2に示すよ
うに、内輪12と外輪13との間に複数の玉14を転動
自在に配設したものである。内輪12の外径面には玉1
4との第一の接触点を提供する第一溝12aと、玉14
との第二の接触点を提供する第二溝12bとが設けら
れ、それらによって内輪軌道が形成されている。外輪1
3の内径面にも、玉14との第一の接触点を提供する第
一溝13aと、玉14との第二の接触点を提供する第二
溝13bとが設けられ、それらによって外輪軌道が形成
されている。外輪軌道の断面形状は、玉14とレスト角
θで接触するゴシックアーチ形状にされ、軸受の軸方向
中心線βに対して対称な形状になっている。外輪13の
第一溝13aの曲率半径RO1と第二溝13bの曲率半径
RO2とは等しい。第一溝13aの曲率半径中心Po1と、
第二溝13bの曲率半径中心Po2とは、径方向同位置、
かつ玉14の中心Pから軸方向に同距離離れた対称位置
に配置されている。第一溝13aの曲率半径中心P
o1は、レスト角を示す線La上に配置され、第二溝13
bの曲率半径中心Po2は、レスト角を示す線Lb上に配
置されている。なお、図2の左方に付した符号Dpはピ
ッチ円径を表し、Doは玉14の直径(玉径)を表し、
Pは玉14の中心を表している。As shown in FIG. 2, the four-point contact ball bearing 11 has a plurality of balls 14 rotatably arranged between an inner ring 12 and an outer ring 13. Ball 1 on the outer surface of inner ring 12
A first groove 12a which provides a first contact point with 4 and a ball 14
And a second groove 12b which provides a second contact point with the inner ring raceway. Outer ring 1
The inner diameter surface of 3 is also provided with a first groove 13a that provides a first contact point with the ball 14 and a second groove 13b that provides a second contact point with the ball 14, by which the outer ring raceway is formed. Are formed. The cross-sectional shape of the outer ring raceway is a Gothic arch shape that contacts the ball 14 at a rest angle θ, and is symmetrical with respect to the axial centerline β of the bearing. The radius of curvature R O1 of the first groove 13a of the outer ring 13 and the radius of curvature R O2 of the second groove 13b are equal. The radius of curvature center P o1 of the first groove 13a,
The curvature radius center P o2 of the second groove 13b is at the same position in the radial direction,
Moreover, they are arranged at symmetrical positions that are separated from the center P of the balls 14 in the axial direction by the same distance. Center P of curvature radius of the first groove 13a
o1 is arranged on the line La indicating the rest angle, and the second groove 13
The center of curvature P o2 of b is arranged on the line Lb indicating the rest angle. The symbol Dp attached to the left side of FIG. 2 represents the pitch circle diameter, Do represents the diameter of the ball 14 (ball diameter),
P represents the center of the ball 14.
【0014】内輪軌道を形成する第一溝12aの曲率半
径Ri1は、第二溝12bの曲率半径Ri2より大きくなっ
ている。第一溝12aの曲率半径中心Pi1と、第二溝1
2bの曲率半径中心Pi2とは、径方向に異なる位置、か
つ玉14の中心Pから軸方向反対側に異なる距離離れた
位置に配置されている。第一溝12aと第二溝12bと
の接続点(内輪軌道の頂点)12cは、軸受軸方向中心
位置βからずれている。接続点12cが、図1に示した
ベルト8の幅方向中心位置α側に位置するように、軸受
11は自動車補機用プーリ1に組み付けられる。ここで
は、第一溝12aの曲率半径中心Pi1は、レスト角を示
す線Lb上に配置され、第二溝12bの曲率半径中心P
i2は、レスト角を示す線La上に配置されている。しか
し、これに限定されず、例えば内輪12のレスト角を、
外輪13のレスト角と異ならせてもよい。例えば内輪1
2のレスト角を外輪13のそれより小さくしてもよい。The radius of curvature R i1 of the first groove 12a forming the inner ring raceway is larger than the radius of curvature R i2 of the second groove 12b. The center of curvature P i1 of the first groove 12a and the second groove 1
The center P i2 of the radius of curvature of 2b is arranged at a position different in the radial direction and at a position different in distance from the center P of the ball 14 on the opposite side in the axial direction. The connection point (the apex of the inner ring raceway) 12c between the first groove 12a and the second groove 12b is displaced from the bearing axial center position β. The bearing 11 is assembled to the automobile accessory pulley 1 so that the connection point 12c is located on the widthwise center position α side of the belt 8 shown in FIG. Here, the curvature radius center P i1 of the first groove 12a is arranged on the line Lb indicating the rest angle, and the curvature radius center P i of the second groove 12b.
i2 is arranged on the line La indicating the rest angle. However, the present invention is not limited to this, and for example, the rest angle of the inner ring 12 is
The rest angle of the outer ring 13 may be different. For example, inner ring 1
The rest angle of 2 may be smaller than that of the outer ring 13.
【0015】玉14は保持器18によって転動自在に保
持されている。玉14を挟む軸方向両側に、シール部材
15,15が設けられている。シール部材15の外周部
は、外輪13の内径面に設けられた係止溝17に固定さ
れ、シール部材15の内周部(リップ部)は、内輪の外
径面に設けられたシール溝16の側面に接している。潤
滑方式としては、グリース潤滑を採用することができ
る。The balls 14 are rotatably held by a cage 18. Sealing members 15 and 15 are provided on both sides of the ball 14 in the axial direction. The outer peripheral portion of the seal member 15 is fixed to a locking groove 17 provided on the inner diameter surface of the outer ring 13, and the inner peripheral portion (lip portion) of the seal member 15 is a seal groove 16 provided on the outer diameter surface of the inner ring. Touches the side of. Grease lubrication can be adopted as the lubrication method.
【0016】以上のような4点接触玉軸受11を自動車
補機用プーリ1に用いることで、内輪12の第一溝12
aと玉14との間にできる接触楕円内のすべりが小さく
なり、接触楕円内での局所的な発熱を抑えることができ
る。このため、潤滑剤劣化が少なく、高温下での使用に
長期間耐えることができる。By using the four-point contact ball bearing 11 as described above in the automobile accessory pulley 1, the first groove 12 of the inner ring 12 is formed.
The slip in the contact ellipse formed between a and the ball 14 becomes small, and local heat generation in the contact ellipse can be suppressed. Therefore, the lubricant is less deteriorated and can be used for a long time at high temperature.
【0017】図3に、多点接触玉軸受の別の例として、
3点接触玉軸受11’を示す。図3に示すように、内輪
12の外径面には第一溝12aと第二溝12bとが設け
られ、それらによって内輪軌道が形成されている。一
方、外輪13の内径面には、単一の接触点で玉14と接
する外輪軌道13dが形成されている。他の構成は、図
2に示した玉軸受11と同様とすることができる。FIG. 3 shows another example of the multi-point contact ball bearing.
A three-point contact ball bearing 11 'is shown. As shown in FIG. 3, a first groove 12a and a second groove 12b are provided on the outer diameter surface of the inner ring 12, and these form an inner ring raceway. On the other hand, the inner ring surface of the outer ring 13 is formed with an outer ring track 13d that contacts the ball 14 at a single contact point. Other configurations can be the same as the ball bearing 11 shown in FIG.
【0018】図4に示すような、内輪軌道及び外輪軌道
の双方を軸方向中心線βに対称なゴシックアーチ形状に
された従来品の4点接触玉軸受に、ラジアル荷重を負荷
したときの運転状態を、計算機を用いた解析でシミュレ
ートした。解析に用いた条件を表1に示す。ラジアル荷
重は、軸受中心(図1〜図3に示したβ)から軸方向に
4.35mmずれた(オフセットした)位置(図1の
α)に負荷されるものとした。Operation when a radial load is applied to a conventional four-point contact ball bearing having a Gothic arch shape in which both the inner ring raceway and the outer ring raceway are symmetrical with respect to the axial centerline β as shown in FIG. The state was simulated by computer analysis. Table 1 shows the conditions used for the analysis. The radial load was applied at a position (α in FIG. 1) axially displaced (offset) by 4.35 mm from the bearing center (β in FIGS. 1 to 3).
【0019】[0019]
【表1】 [Table 1]
【0020】解析手法には「4点接触玉軸受の性能解
析」(谷口、荒牧、正田;(社)日本トライボロジー学
会、トライボロジー会議1996年春 東京 講演予稿
集)に記載の方法を採用した。本解析によって計算され
る軸受の摩擦トルクは、実験によるトルク測定結果に一
致することが報告されている。ここでは、計算によって
得られる最大PV値に注目する。PV値は、玉と内外輪
軌道面の接触点における発熱や摩耗の指標として、しば
しば用いられるパラメータである(例えば特開平11−
210766号公報など)。玉と軌道との接触点は、実
際には表面の弾性変形により、ヘルツの接触理論におい
て楕円形で表される領域をもつ面となる。PV値は、こ
の接触面内の面圧Pとすべり速度Vとの積である。解析
では、各玉と各軌道との接触面内において、PV値を計
算している。PV値に表面間のすべり摩擦係数μを乗じ
た値μPVは、単位面積・単位時間当たりのすべりによ
る摩擦損失(=発熱)である。The method described in "Performance analysis of four-point contact ball bearing" (Taniguchi, Aramaki, Masada; Tribology Society of Japan, Tribology Conference Spring Tokyo 1996 Proceedings) was adopted as the analysis method. It is reported that the friction torque of the bearing calculated by this analysis agrees with the experimental torque measurement result. Here, attention is paid to the maximum PV value obtained by calculation. The PV value is a parameter often used as an index of heat generation and wear at the contact point between the ball and the inner and outer ring raceways (for example, JP-A-11-
No. 210766, etc.). The contact point between the ball and the orbit actually becomes a surface having an area represented by an ellipse in the Hertzian contact theory due to elastic deformation of the surface. The PV value is the product of the surface pressure P in the contact surface and the sliding speed V. In the analysis, the PV value is calculated within the contact surface between each ball and each orbit. A value μPV obtained by multiplying a PV value by a sliding friction coefficient μ between surfaces is a friction loss (= heat generation) due to a slip per unit area / unit time.
【0021】図4の4点接触玉軸受51に、ラジアル荷
重1000Nを負荷した際の、玉54の各接触点におけ
る最大PV値を計算機によって解析した結果を図5に示
す。図5に示すように、外輪53にかかるラジアル荷重
の位置に近い側の内輪軌道(第一溝)上のPV値が、他
の接触点に比べて大きくなった。FIG. 5 shows the result of computer analysis of the maximum PV value at each contact point of the ball 54 when a radial load of 1000 N was applied to the four-point contact ball bearing 51 of FIG. As shown in FIG. 5, the PV value on the inner ring raceway (first groove) on the side closer to the position of the radial load applied to the outer ring 53 was larger than at other contact points.
【0022】軸受の耐久性を低下させる高温下のグリー
ス劣化については、玉一個分や、接触楕円一つ分といっ
た局所的な発熱、温度上昇が影響していると考えられ
る。したがって、PV値に代表されるすべり発熱をでき
るだけ小さく抑えることによって、高温下で使用される
プーリ用軸受の寿命延長を図ることができる。Regarding the grease deterioration under high temperature which deteriorates the durability of the bearing, it is considered that local heat generation such as one ball or one contact ellipse and temperature rise influence. Therefore, by suppressing the sliding heat generation represented by the PV value as small as possible, it is possible to extend the life of the pulley bearing used under high temperature.
【0023】PV値を抑えるためには、接触楕円内のす
べり速度Vを小さくすることが有効である。軌道の溝曲
率半径を大きくし、接触楕円の大きさを小さくすること
によって、すべり速度Vを小さく抑えることができる。
そこで、内輪52の第一溝の溝曲率半径のみを変えて計
算を行った。この計算結果を図6に示す。外輪53の第
一溝及び第二溝並びに内輪52の第二溝の溝曲率半径
は、表1の条件と同じである。ラジアル荷重を1000
Nとしたときも2000Nとしたときも、内輪第一溝の
溝曲率半径を大きくすると、接触点における最大PV値
が減少した。このため、局所的な発熱が減少し、耐久時
間延長の効果が期待できる。In order to suppress the PV value, it is effective to reduce the slip velocity V in the contact ellipse. By increasing the radius of curvature of the groove of the track and decreasing the size of the contact ellipse, the slip velocity V can be suppressed to a small value.
Therefore, the calculation was performed by changing only the radius of curvature of the first groove of the inner ring 52. The result of this calculation is shown in FIG. The groove curvature radii of the first groove and the second groove of the outer ring 53 and the second groove of the inner ring 52 are the same as the conditions in Table 1. Radial load is 1000
Regardless of N and 2000 N, when the radius of curvature of the inner ring first groove was increased, the maximum PV value at the contact point decreased. Therefore, local heat generation is reduced, and the effect of extending the durability time can be expected.
【0024】PV値の限界には諸説あるが、発明者らの
研究では、計算によるPV値が1.5〜2.0GPam
/sを超えると、軌道面の摩耗が問題になることがわか
っている(特開平11−210766号公報)。ラジア
ル荷重2000Nに対する計算結果から、内輪第一溝の
溝曲率半径を玉径の52%以上、すなわち内輪第一溝と
内輪第二溝(溝曲率半径=玉径の51.5%)の溝曲率
半径の差を玉径の0.5%以上とすると、PV値が2.
0GPam/sを下まわり、摩耗などの問題が発生しに
くくなる。さらに、内輪第一溝の溝曲率半径を玉径の5
4.5%以上、すなわち内輪第一溝と内輪第二溝の溝曲
率半径の差を玉径の3%以上とすると、PV値が1.5
GPam/s以下となり、軌道の摩耗による問題が発生
しなくなることが期待できる。Although there are various theories regarding the limit of the PV value, the inventors' research shows that the calculated PV value is 1.5 to 2.0 GPam.
If it exceeds / s, it is known that the wear of the raceway surface becomes a problem (JP-A-11-210766). From the calculation results for the radial load of 2000 N, the groove curvature radius of the inner ring first groove is 52% or more of the ball diameter, that is, the groove curvature of the inner ring first groove and the inner ring second groove (groove curvature radius = 51.5% of the ball diameter). If the difference in radius is 0.5% or more of the ball diameter, the PV value is 2.
Below 0 GPam / s, problems such as abrasion are less likely to occur. Further, the radius of curvature of the first groove of the inner ring is set to 5 of the ball diameter.
If the difference in the radius of curvature between the inner ring first groove and the inner ring second groove is 3% or more of the ball diameter, the PV value is 1.5% or more.
It will be GPam / s or less, and it can be expected that problems due to track wear will not occur.
【0025】実際の軸受では、溝曲率半径を過度に大き
くすると、接触点における圧力が大きくなるため、転が
り疲れ寿命が短くなる可能性がある。本発明で取り上げ
た溝曲率半径の大きさには、転がり疲れ寿命の観点から
上限が決定されると考えられる。この観点から溝曲率半
径の上限を玉径の60%とすることが好ましい。また、
プーリや自動車用補機への組み付けを考慮すると、溝曲
率半径が第一溝、第二溝で異なる軸受には、オフセット
荷重の方向に対して正しい向きに軸受を組み付けること
ができるように、方向を示す識別マークを表示すること
が好ましい。In an actual bearing, if the radius of curvature of the groove is excessively increased, the pressure at the contact point increases, which may shorten the rolling fatigue life. It is considered that the groove radius of curvature taken up in the present invention has an upper limit determined from the viewpoint of rolling fatigue life. From this viewpoint, the upper limit of the radius of curvature of the groove is preferably 60% of the ball diameter. Also,
Considering the mounting on pulleys and automobile accessories, bearings with different groove curvature radii in the first groove and the second groove should be installed in the correct direction with respect to the offset load direction. It is preferable to display an identification mark indicating.
【0026】単に接触点のPV値、発熱を抑えるだけな
ら、図4に示した第一溝、第二溝が対称となる断面をも
つ4点接触玉軸受において、溝曲率半径を大きくするこ
とも有効である。すなわち、例えば内輪において、第一
溝と第二溝の溝曲率半径を両方とも大きくする方法が考
えられる。この方法と非対称溝による本発明の方法を比
較する。If only the PV value at the contact point and heat generation are to be suppressed, the radius of curvature of the groove can be increased in the four-point contact ball bearing having the cross section in which the first groove and the second groove are symmetrical as shown in FIG. It is valid. That is, for example, in the inner ring, a method of increasing both the radiuses of curvature of the first groove and the second groove can be considered. This method is compared with the method of the present invention using an asymmetric groove.
【0027】図7は、内輪第一溝の溝曲率半径のみを変
化させた場合と、内輪第一溝と第二溝の両方の溝曲率半
径を一致させたまま変化させた場合の、ラジアル負荷位
置にある玉の接触点における最大PV値を計算機によっ
て解析した結果を示すものである(ラジアル荷重100
0N)。溝曲率半径を大きくすると、どちらの場合も同
様に最大PV値が下がり、発熱を抑え、グリースの劣化
防止に効果があることがわかる。しかし、最大PV値
は、内輪第一溝の溝曲率半径のみを変化させた場合の方
が、内輪第一溝と第二溝の両方の溝曲率半径を一致させ
たまま変化させた場合に比べて小さく、本発明の手法が
有利であるといえる。FIG. 7 shows a radial load when only the radius of curvature of the inner ring first groove is changed and when the radius of curvature of both the inner ring first groove and the second groove is changed while being matched. It shows the result of analyzing the maximum PV value at the contact point of the ball at the position by a computer (radial load 100
0N). It is understood that when the radius of curvature of the groove is increased, the maximum PV value similarly decreases in both cases, heat generation is suppressed, and grease deterioration is prevented. However, the maximum PV value is larger when only the radius of curvature of the inner ring first groove is changed than when it is changed while keeping the radius of curvature of both the inner ring first groove and the second groove matched. Therefore, it can be said that the method of the present invention is advantageous.
【0028】図8は、上記と同様に溝曲率半径を変化さ
せた場合の、プーリ外径部(φ110mm)の軸方向変
位を示すものである(ラジアル荷重1000N)。内輪
第一溝の溝曲率半径のみを変化させた場合は、プーリ外
径部の移動量はあまり変化しない。一方、内輪第一溝、
第二溝の溝曲率半径をともに変化させて、対称断面の内
輪としたときには、溝曲率半径を大きくすると、プーリ
外径部の変位も増加することがわかる。ベルトがかかる
プーリ外径部の変位が大きくなることは、ベルトの偏摩
耗や、電磁クラッチの場合は、クラッチの動作不良につ
ながるため好ましくない。4点接触玉軸受内輪の2個の
溝のうち、すべり発熱の大きい一方の溝曲率半径を他方
に比べて大きくすることは、プーリ軸受としての剛性を
維持しながら、局所的な接触楕円内のすべり発熱を抑
え、軸受の耐久時間延長に大きな効果がある。FIG. 8 shows the axial displacement of the pulley outer diameter portion (φ110 mm) when the radius of curvature of the groove is changed in the same manner as described above (radial load 1000 N). When only the radius of curvature of the inner ring first groove is changed, the movement amount of the pulley outer diameter portion does not change much. On the other hand, the inner ring first groove,
It can be seen that when the radius of curvature of the second groove is changed together to form an inner ring having a symmetrical cross section, the displacement of the pulley outer diameter portion also increases when the radius of curvature of the groove is increased. The large displacement of the outer diameter portion of the pulley on which the belt is applied is not preferable because it causes uneven wear of the belt and malfunction of the clutch in the case of an electromagnetic clutch. Increasing the radius of curvature of one of the two grooves of the inner ring of the four-point contact ball bearing, which generates a large amount of slip heat, compared to the other groove allows the rigidity of the pulley bearing to be maintained while maintaining the local contact ellipse. It suppresses slip heat generation and has a great effect on extending the bearing durability time.
【0029】以上、単列4点接触玉軸受の内輪につい
て、本発明の作用効果について説明した。外輪上の2個
の溝についても同様に、すべりの大きい側の溝の溝曲率
半径を、他方の溝の溝曲率半径よりも大きくすることに
よって、局所的な発熱を抑えて、グリース劣化を低減さ
せる効果がある。なお、図3に示した3点接触玉軸受に
おいても、玉と2点で接触する軌道輪上の2個の溝の溝
曲率半径に上記同様の違いをもたせることは、スピンす
べりを低減し、発熱を抑制する効果がある。したがっ
て、本発明は3点接触玉軸受に適用しても有効である。The function and effect of the present invention has been described above for the inner ring of the single-row four-point contact ball bearing. Similarly, for the two grooves on the outer ring, by making the groove curvature radius of the groove with the larger slippage larger than the groove curvature radius of the other groove, local heat generation is suppressed and grease deterioration is reduced. Has the effect of Also in the three-point contact ball bearing shown in FIG. 3, it is possible to reduce the spin slip by reducing the radius of curvature of the two grooves on the bearing ring that come into contact with the ball at two points. It has the effect of suppressing heat generation. Therefore, the present invention is also effective when applied to a three-point contact ball bearing.
【0030】[0030]
【発明の効果】以上説明したように、本発明に係る多点
接触玉軸受によれば、軌道上の局所的な発熱を抑え、グ
リース劣化や摩耗による寿命低下を防ぐことができる。
また、この多点接触玉軸受を適用した自動車補機用プー
リは、所定の剛性を維持しながら、多点接触玉軸受が局
所的な発熱の抑制、耐久時間延長等を可能にする構成で
あることから、自動車補機用プーリ自体の信頼性向上は
もとより、自動車の信頼性向上をも図り得る。As described above, according to the multi-point contact ball bearing according to the present invention, it is possible to suppress the local heat generation on the raceway and prevent the deterioration of grease and the shortening of the service life due to wear.
In addition, an automobile accessory pulley to which this multi-point contact ball bearing is applied has a configuration in which the multi-point contact ball bearing enables local suppression of heat generation and extension of durability time while maintaining a predetermined rigidity. Therefore, it is possible to improve not only the reliability of the automobile accessory pulley itself, but also the reliability of the automobile.
【図1】本発明の実施形態である自動車補機用プーリの
構成を示す要部の拡大断面図である。FIG. 1 is an enlarged cross-sectional view of a main part showing a configuration of an automobile accessory pulley that is an embodiment of the present invention.
【図2】多点接触玉軸受の第1例を示す断面図である。FIG. 2 is a sectional view showing a first example of a multi-point contact ball bearing.
【図3】多点接触玉軸受の第2例を示す断面図である。FIG. 3 is a sectional view showing a second example of a multi-point contact ball bearing.
【図4】従来品における玉と軌道との接触点の位置を示
す模式的断面図である。FIG. 4 is a schematic sectional view showing positions of contact points between a ball and a track in a conventional product.
【図5】玉と軌道との接触点の位置と最大PV値との関
係を示す特性図である。FIG. 5 is a characteristic diagram showing a relationship between a position of a contact point between a ball and a track and a maximum PV value.
【図6】溝曲率半径と最大PV値との関係を示す特性図
である。FIG. 6 is a characteristic diagram showing a relationship between a groove curvature radius and a maximum PV value.
【図7】溝曲率半径と最大PV値との関係を示す特性図
である。FIG. 7 is a characteristic diagram showing a relationship between a groove curvature radius and a maximum PV value.
【図8】溝曲率半径とプーリ外径部の軸方向移動量との
関係を示す特性図である。FIG. 8 is a characteristic diagram showing a relationship between a groove curvature radius and an axial movement amount of a pulley outer diameter portion.
1 自動車補機用プーリ
7a プーリ
8 ベルト
11 4点接触玉軸受(多点接触玉
軸受)
12 内輪
12a 第一溝
12b 第二溝
14 玉1 Automobile accessory pulley 7a Pulley 8 Belt 11 Four-point contact ball bearing (multi-point contact ball bearing) 12 Inner ring 12a First groove 12b Second groove 14 Ball
Claims (3)
において、内輪又は外輪の少なくとも一方に形成され
た、第一の接触点を提供する第一溝の溝曲率半径と第二
の接触点を提供する第二溝の溝曲率半径とを異なる値と
したことを特徴とする多点接触玉軸受。1. In a multi-point contact ball bearing of four-point contact or three-point contact, a groove radius of curvature of a first groove formed in at least one of an inner ring and an outer ring and providing a first contact point, and a second groove. A multi-point contact ball bearing, characterized in that the radius of curvature of the second groove that provides the contact point has a different value.
溝曲率半径との差が、転動体の玉径の0.5%以上であ
る請求項1に記載の多点接触玉軸受。2. The multipoint contact ball according to claim 1, wherein the difference between the radius of curvature of the first groove and the radius of curvature of the second groove is 0.5% or more of the ball diameter of the rolling element. bearing.
玉軸受を使用した自動車補機用プーリ。3. A pulley for an automobile accessory, which uses the multi-point contact ball bearing according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001339410A JP4085235B2 (en) | 2001-11-05 | 2001-11-05 | Single row ball bearings for pulley support |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001339410A JP4085235B2 (en) | 2001-11-05 | 2001-11-05 | Single row ball bearings for pulley support |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003139144A true JP2003139144A (en) | 2003-05-14 |
JP4085235B2 JP4085235B2 (en) | 2008-05-14 |
Family
ID=19153760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001339410A Expired - Fee Related JP4085235B2 (en) | 2001-11-05 | 2001-11-05 | Single row ball bearings for pulley support |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4085235B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011153683A (en) * | 2010-01-28 | 2011-08-11 | Nsk Ltd | Angular ball bearing |
JP2013204642A (en) * | 2012-03-27 | 2013-10-07 | Nsk Ltd | Multi-row combinational ball bearing |
DE102015223064A1 (en) * | 2015-11-23 | 2017-05-24 | Zf Friedrichshafen Ag | Rolling, transmission and motor vehicle |
JP2017512653A (en) * | 2014-02-20 | 2017-05-25 | ヘーエーアー プロセス エンジニアリング ナームロゼ フェンノートシャップ | Rotary tablet press with turret and method for providing improved adjustment of parts of a rotary tablet press |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6268711B2 (en) * | 2013-01-30 | 2018-01-31 | 日本精工株式会社 | Multi-point contact ball bearing and manufacturing method thereof |
-
2001
- 2001-11-05 JP JP2001339410A patent/JP4085235B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011153683A (en) * | 2010-01-28 | 2011-08-11 | Nsk Ltd | Angular ball bearing |
JP2013204642A (en) * | 2012-03-27 | 2013-10-07 | Nsk Ltd | Multi-row combinational ball bearing |
JP2017512653A (en) * | 2014-02-20 | 2017-05-25 | ヘーエーアー プロセス エンジニアリング ナームロゼ フェンノートシャップ | Rotary tablet press with turret and method for providing improved adjustment of parts of a rotary tablet press |
US10052836B2 (en) | 2014-02-20 | 2018-08-21 | Gea Process Engineering Nv | Rotary tablet press comprising a turret and a method of providing improved adjustment of parts of the rotary tablet press |
DE102015223064A1 (en) * | 2015-11-23 | 2017-05-24 | Zf Friedrichshafen Ag | Rolling, transmission and motor vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP4085235B2 (en) | 2008-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3736149B2 (en) | Electromagnetic clutch with 3-point contact ball bearing | |
JP2001208081A (en) | Single row deep groove radial ball bearing | |
CN100400907C (en) | Rotation support device for compressor pulley | |
EP1275883A2 (en) | Pulley unit | |
JP2003042146A (en) | Rotation supporting device of pulley used for compressor | |
US6273230B1 (en) | Ball bearing and electromagnetic clutch having the same | |
WO2003069175A1 (en) | Pulley bearing for engine auxiliaries | |
JP4017818B2 (en) | Ball bearing | |
JP4085235B2 (en) | Single row ball bearings for pulley support | |
JP2007170680A (en) | Ball bearing | |
JP4174657B2 (en) | Deep groove ball bearing and fan coupling device | |
JP2003247556A (en) | Multi-point contact ball bearing and pulley for automobiles | |
JPWO2003025409A1 (en) | Pulley rotation support device | |
JP4058601B2 (en) | Single row bearing for pulley support | |
JP2003049848A (en) | Ball bearing for supporting pulley | |
JP2005042892A (en) | Ball bearing | |
JP2004324699A (en) | Roller bearing | |
JPH09126303A (en) | Pulley and fan and ball bearing of these | |
JP2003021149A (en) | Rotary support device for pulley for compressor | |
JP2002339989A (en) | Ball bearing | |
JP2004190763A (en) | Rotary supporting device for pulley | |
JP2003262227A (en) | Bearing for engine accessory devices | |
JP4122898B2 (en) | Rolling bearings and alternators for automotive electrical accessories | |
JP2002340144A (en) | Pulley unit | |
JP2004183693A (en) | Grease sealed bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041025 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070822 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071019 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080123 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080205 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4085235 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120229 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130228 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130228 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140228 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |