JP2003138153A - Photo and biodegradable polymer composition - Google Patents

Photo and biodegradable polymer composition

Info

Publication number
JP2003138153A
JP2003138153A JP2001339489A JP2001339489A JP2003138153A JP 2003138153 A JP2003138153 A JP 2003138153A JP 2001339489 A JP2001339489 A JP 2001339489A JP 2001339489 A JP2001339489 A JP 2001339489A JP 2003138153 A JP2003138153 A JP 2003138153A
Authority
JP
Japan
Prior art keywords
titanium dioxide
biodegradable polymer
photo
biodegradable
polymer composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001339489A
Other languages
Japanese (ja)
Other versions
JP3880373B2 (en
Inventor
Tokuo Nakayama
徳夫 中山
Toyoji Hayashi
豊治 林
Tomonori Iijima
朋範 飯島
Seiji Obuchi
省二 大淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2001339489A priority Critical patent/JP3880373B2/en
Publication of JP2003138153A publication Critical patent/JP2003138153A/en
Application granted granted Critical
Publication of JP3880373B2 publication Critical patent/JP3880373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a photo and biodegradable polymer composition in which titanium oxide particles is uniformly dispersed without being mutually agglomerated and which keeps inherent transparency of the polymer. SOLUTION: Titanium dioxide whose surface is modified with a or with both saturated or an unsaturated carboxylic acid and a saturated or unsaturated amine. An electron donative group-containing polymer is used as a part of the structure of the polymer so that titanium dioxide in the polymer can be compounded in a nanosize area and the transparency of the polymer composition is kept.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生分解性ポリマーに二
酸化チタン超微粒子を複合化し、光により崩壊し分解す
るポリマー組成物に関する。さらに生分解性ポリマー本
来の透明性を保持しているため、透明性を必要とするフ
ィルム等の成形物に使用することができる光・生分解性
ポリマー組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer composition in which titanium dioxide ultrafine particles are combined with a biodegradable polymer, which is decomposed and decomposed by light. Further, the present invention relates to a photo-biodegradable polymer composition which can be used for a molded article such as a film requiring transparency because the biodegradable polymer has original transparency.

【0002】[0002]

【従来の技術】プラスチックごみの処理方法の対策とし
て、リサイクルとしての再利用が検討されている。それ
に平行して、自然環境の中で分解させ、自然のリサイク
ルに還す検討も広く進められている。例えば、土中、海
中において生物、微生物により分解する生分解性ポリマ
ーは実際に使用されるようになっている。さらに近年、
太陽光を利用し分解させる方法が検討されるようにな
り、二酸化チタン超微粒子(1〜100nm)を生分解性
ポリマーに混合し、太陽光により自己崩壊し分解する、
いわゆる光・生分解性ポリマー組成物も注目され、例え
ば、特開平8―1806、特開平9−194692など
に開示されている。これら二酸化チタンの混合の方法
は、機械的な溶融混練、例えば一軸および二軸押出機、
バンバリーミキサー、各種ニーダー、ローダーなどを用
い直接製品とするか、一旦ペレット化するなどの方法に
より行われている。
2. Description of the Related Art Reusing as a recycling is being studied as a countermeasure for a method for treating plastic waste. In parallel with this, the study of decomposing it in the natural environment and returning it to natural recycling is being widely promoted. For example, biodegradable polymers that are decomposed by organisms and microorganisms in soil and sea have come into practical use. More recently,
A method of decomposing by utilizing sunlight has been studied, and ultrafine titanium dioxide particles (1 to 100 nm) are mixed with a biodegradable polymer and self-decomposing and decomposing by sunlight,
So-called photo-biodegradable polymer compositions have also attracted attention and are disclosed in, for example, JP-A-8-1806 and JP-A-9-194692. The method of mixing these titanium dioxides is carried out by mechanical melt kneading, for example, a single-screw and twin-screw extruder,
It is carried out by directly making products using a Banbury mixer, various kneaders, loaders, etc., or once pelletizing.

【0003】直径1〜100nmの二酸化チタン超微粒
子一個一個は目に見えない領域にあるものの、その表面
エネルギーが著しく大きいために粒子同士の凝集や、凝
集した粒子同士が結合して大きな粒子となりやすく、生
分解性ポリマーと二酸化チタンの成形物を作成する際、
二酸化チタンの凝集は避けられず、成型物は透明性を失
ってしまう。そのため、使用の範囲は透明性を全く問わ
れない分野に限定されている。
Although each of the titanium dioxide ultrafine particles having a diameter of 1 to 100 nm is in an invisible region, the surface energy thereof is so large that the particles are easily aggregated, or the aggregated particles are bonded to each other to form large particles. When making a molded product of biodegradable polymer and titanium dioxide,
Aggregation of titanium dioxide is unavoidable and the molded product loses transparency. Therefore, the range of use is limited to the field where transparency is not questioned at all.

【0004】[0004]

【課題を解決しようとする課題】そこで本発明は、二酸
化チタン粒子同士が凝集することなくポリマー中に均一
に分散させることを可能とし、ポリマー本来の透明性を
損なわない光・生分解性ポリマー組成物を提供するもの
である。
Therefore, the present invention makes it possible to uniformly disperse titanium dioxide particles in a polymer without agglomerating each other, and a photo-biodegradable polymer composition which does not impair the original transparency of the polymer. It is to provide things.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記実状に
鑑み鋭意研究の結果、酸化チタン表面を飽和あるいは不
飽和カルボン酸単独、または、飽和あるいは不飽和カル
ボン酸と飽和あるいは不飽和アミンの両方により修飾し
た二酸化チタン超微粒子を用いることにより粒子同士の
凝集を抑制することができ、さらに生分解性ポリマーの
構造の一部に電子供与性基を含有するポリマーを用いる
とポリマーと二酸化チタン超微粒子がナノサイズ領域で
複合化し、ポリマー本来の透明性を保持することが可能
となることを見出し、本発明を完成するに至った。
DISCLOSURE OF THE INVENTION As a result of earnest research in view of the above situation, the inventors of the present invention have found that the surface of titanium oxide is a saturated or unsaturated carboxylic acid alone or a saturated or unsaturated carboxylic acid and a saturated or unsaturated amine. Agglomeration between particles can be suppressed by using titanium dioxide ultrafine particles modified by both, and when a polymer containing an electron-donating group as part of the structure of the biodegradable polymer is used, the polymer and titanium dioxide The present inventors have completed the present invention by discovering that fine particles can be composited in the nano-sized region to maintain the original transparency of the polymer.

【0006】以下に本発明を詳細に説明する。二酸化チ
タンは光触媒能をもち、有害な薬品などを使用せず太陽
光の光エネルギーを利用するだけで分解されにくい種々
の有機物を二酸化炭素と水などに分解する。またそれ自
体安全無害な物質であり、廃棄されても二次公害の危険
性もない。超微粒子とは一般的に粒径が1〜100nm
のものであり、粒径100nm以上の粒子などに比べ表
面積が著しく大きくなるため、粒子一個の光触媒能も非
常に高いものとなる。一方、逆に表面積が大きくなるに
伴い粒子同士の凝集が起こりやすくなる。水中における
強酸性領域では表面にH+が吸着して耐電することから分
散体をうることが出来るものの、中性付近や有機溶媒中
においては超微粒子としての安定性を確保するのが非常
に難しい。本発明に用いる二酸化チタン超微粒子は粒子
同士の凝集を抑制し、有機溶媒での分散性を確保するた
め、酸性基、または、酸性基と塩基性基の両方により修
飾している。その結果、ポリマーマトリックスへの分散
性も非常に高いものとなり、透明性を損なわない組成
物、より具体的には、JIS K 7105に従って測定
した10重量%二酸化チタン含有フィルムのヘイズ(曇
価)変化(ΔH)が、未含有のフィルムに対して、フィ
ルム厚み300μm換算で、5%以下、好ましくは4%
以下、より好ましくは3%以下である光・生分解性ポリ
マー組成物が得られる。本発明で用いる二酸化チタン超
微粒子は二酸化チタン超微粒子合成、超微粒子表面の酸
性基修飾、超微粒子表面の塩基性基修飾の工程により製
造され、以下説明する。
The present invention will be described in detail below. Titanium dioxide has a photocatalytic ability and decomposes various organic substances that are difficult to decompose into carbon dioxide and water, etc., only by using the light energy of sunlight without using harmful chemicals. In addition, it is a safe and harmless substance, and there is no risk of secondary pollution even if it is discarded. Ultrafine particles generally have a particle size of 1 to 100 nm
Since the surface area is remarkably larger than that of particles having a particle size of 100 nm or more, the photocatalytic ability of each particle is also very high. On the other hand, conversely, as the surface area increases, particles tend to aggregate. In the strongly acidic region in water, H + is adsorbed on the surface to resist electricity, but a dispersion can be obtained, but it is very difficult to secure stability as ultrafine particles in the vicinity of neutrality and in organic solvents. . The titanium dioxide ultrafine particles used in the present invention are modified with an acidic group or both an acidic group and a basic group in order to suppress aggregation of particles and to ensure dispersibility in an organic solvent. As a result, the dispersibility in the polymer matrix is also very high, and the haze (cloudiness value) change of the composition that does not impair the transparency, more specifically, the 10% by weight titanium dioxide-containing film measured according to JIS K 7105. (ΔH) is 5% or less, preferably 4%, in terms of film thickness of 300 μm, with respect to the film not containing it.
Below, a photo-biodegradable polymer composition having a content of 3% or less is more preferably obtained. The titanium dioxide ultrafine particles used in the present invention are produced by the steps of titanium dioxide ultrafine particle synthesis, ultrafine particle surface acidic group modification, and ultrafine particle surface basic group modification, which will be described below.

【0007】〈二酸化チタン超微粒子の合成〉二酸化チ
タン超微粒子はチタンアルコキシドの加水分解やJapane
se. Journal of Applied Physics、第37巻、4603−4
608ヘ゜ーシ゛(1998年)に記載されている二酸化チタン超微
粒子合成方法が採用できる。後者の場合、まず四塩化チ
タン(TiCl4)溶液を加水分解し、これより得られ
る塩酸含有のチタンオキシクロライド(TiOCl
水溶液あるいは、水とエタノールなどのアルコールとの
混合溶媒に溶解させた溶液を加水分解させ、二酸化チタ
ンを生成させる。この時、エタノールなどの一価アルコ
ールあるいはエチレングリコールなどの多価アルコール
を添加しておくと反応が促進され、最終的に1〜100
nmの二酸化チタン超微粒子を得ることが出来るので好
ましい。これは生成過程にある二酸化チタン超微粒子表
面にアルコール分子が吸着活性化し、また被覆により凝
集による粒子径の増大が抑止されているものと考えられ
る。生成した二酸化チタン溶液は遠心分離などの方法で
二酸化チタンを分離し、酢酸エチルなどの適当な溶媒で
繰り返し洗浄する。
<Synthesis of Titanium Dioxide Ultrafine Particles> Titanium dioxide ultrafine particles are produced by hydrolysis of titanium alkoxide or Japane.
se. Journal of Applied Physics, Volume 37, 4603-4
The titanium dioxide ultrafine particle synthesizing method described in 608 page (1998) can be adopted. In the latter case, titanium tetrachloride (TiCl 4 ) solution is first hydrolyzed, and hydrochloric acid-containing titanium oxychloride (TiOCl 2 ) obtained therefrom is obtained.
Titanium dioxide is produced by hydrolyzing an aqueous solution or a solution dissolved in a mixed solvent of water and an alcohol such as ethanol. At this time, if a monohydric alcohol such as ethanol or a polyhydric alcohol such as ethylene glycol is added, the reaction is promoted, and finally 1 to 100
It is preferable because ultrafine titanium dioxide particles having a thickness of 10 nm can be obtained. It is considered that this is because alcohol molecules are adsorbed and activated on the surface of the ultrafine titanium dioxide particles that are being produced, and the coating prevents the particle diameter from increasing due to aggregation. Titanium dioxide is separated from the produced titanium dioxide solution by a method such as centrifugation and repeatedly washed with a suitable solvent such as ethyl acetate.

【0008】〈超微粒子表面の酸性基修飾〉酢酸エチル
で洗浄した後、二酸化チタンを酸性基で表面修飾を行
う。この過程で酸性基修飾が進むにつれて有機溶媒への
分散性がよくなって行く。
<Modification of Ultrafine Particle Surface with Acidic Group> After washing with ethyl acetate, titanium dioxide is surface-modified with an acidic group. In this process, as the modification of the acidic group progresses, the dispersibility in an organic solvent improves.

【0009】酸性基とは、水中でH+を放出し酸性を示す
基であり、カルボキシル基、ヒドロキシル基、スルホン
基等があげられるが好ましくはカルボキシル基であり、
カルボキシ基を有する有機化合物としては飽和あるいは
不飽和カルボン酸である。例示すれば酢酸、プロピオン
酸、アクリル酸、メタクリル酸、ヘキシル酸、オクタン
酸、ドデカン酸、ステアリン酸、オレイン酸、安息香酸
などが挙げられる。傾向として、メチレン基の数が増え
るに従って極性の低い溶媒に分散しやすくなる。このよ
うにして合成された表面修飾した二酸化チタン超微粒子
はまずエタノール、1-ブタノールなどのアルコールに分
散させる。加熱還流あるいは超音波化学処理した後、溶
媒の極性を変化させるためにトルエンなどの低極性溶媒
を同量加える。これに所望のポリマーを溶解させ、二酸
化チタン超微粒子・ポリマー組成物を形成することは可
能である。
The acidic group is a group which releases H + in water and exhibits acidity, and examples thereof include a carboxyl group, a hydroxyl group and a sulfone group, but a carboxyl group is preferable.
The organic compound having a carboxy group is a saturated or unsaturated carboxylic acid. Examples include acetic acid, propionic acid, acrylic acid, methacrylic acid, hexylic acid, octanoic acid, dodecanoic acid, stearic acid, oleic acid, benzoic acid and the like. As a tendency, as the number of methylene groups increases, it becomes easier to disperse in a solvent having low polarity. The surface-modified titanium dioxide ultrafine particles thus synthesized are first dispersed in an alcohol such as ethanol or 1-butanol. After heating under reflux or ultrasonic chemical treatment, the same amount of a low polar solvent such as toluene is added to change the polarity of the solvent. It is possible to dissolve the desired polymer in this and form the titanium dioxide ultrafine particle / polymer composition.

【0010】〈超微粒子表面の塩基性基修飾〉酸性基で
修飾した二酸化チタン超微粒子は活性なサイトを多く残
しているため、選択するポリマーとの組み合わせによっ
ては黄色ないし赤色着色という問題を引き起こす場合も
ある。それを防止するために表面を塩基性基で修飾を行
う。塩基性基とは水中でH+を受け取り塩基性を示す基で
あり、主にアミノ基(アミン)があげられ、例えば二酸
化チタン超微粒子のトルエン・1ブタノール溶液にアミ
ンを加えて塩基性修飾を行う。
<Modification of basic group on the surface of ultrafine particles> Titanium dioxide ultrafine particles modified with an acidic group have many active sites. Therefore, depending on the combination with the selected polymer, yellow or red coloring may occur. There is also. To prevent this, the surface is modified with a basic group. The basic group is a group which receives H + in water and exhibits basicity, and an amino group (amine) is mainly mentioned. For example, a basic modification is made by adding amine to a toluene / 1-butanol solution of ultrafine titanium dioxide particles. To do.

【0011】用いられるアミンとしては、メチルアミ
ン、プロピルアミン、ヘキシルアミン、ドデシルアミ
ン、エタノールアミンなどのアルカノールアミン、アリ
ルアミンなどの飽和あるいは不飽和脂肪族アミンで、極
性の低い溶媒への超微粒子の溶解分散を所望するときは
メチレン基数が多いアミンが選ばれる。表面修飾したも
のは酢酸エチルなどのエステル類、メタノール、エタノ
ール等のアルコール類で洗浄する。
The amines used are alkanolamines such as methylamine, propylamine, hexylamine, dodecylamine and ethanolamine, and saturated or unsaturated aliphatic amines such as allylamine. Dissolution of ultrafine particles in a solvent of low polarity. When dispersion is desired, amines with a large number of methylene groups are selected. The surface-modified product is washed with esters such as ethyl acetate and alcohols such as methanol and ethanol.

【0012】さらに表面を酸性基と塩基性基の両方で修
飾した二酸化チタン超微粒子を所望の溶剤に分散させ
る。本発明に用いる溶剤は、使用する生分解性ポリマー
の種類により、周知の物から選択できる。例えば、トル
エン、キシレンなどの芳香族炭化水素、クロロホルム、
トリクロロエタンなどのハロゲン化炭化水素、アセト
ン、メチルエチルケトンなどのケトン類、さらに、N.
N−ジメチルホルムアミド、N.N−ジメチルアセトア
ミド、ジメチルスルホキドなどの溶剤が使用できる。
Further, the titanium dioxide ultrafine particles whose surface is modified with both acidic groups and basic groups are dispersed in a desired solvent. The solvent used in the present invention can be selected from known ones depending on the type of biodegradable polymer used. For example, aromatic hydrocarbons such as toluene and xylene, chloroform,
Halogenated hydrocarbons such as trichloroethane, ketones such as acetone and methyl ethyl ketone, and N.I.
N-dimethylformamide, N.I. A solvent such as N-dimethylacetamide or dimethylsulfoxide can be used.

【0013】次に本発明で示す生分解性ポリマーとは、
生分解性を持つポリエステル、ポリカーボネート、ポリ
アミド、ポリアミノ酸などであり、生分解性のポリエス
テルとしては、従来公知のもの、ポリ乳酸(PLA)、
ポリグリコール酸(PGA)、ポリ、ポリヒドロキシ酪
酸(PHB)、ポリジグリコール酸ブチレン、ポリカプ
ロラクトン、ポリブチレンサクシネート、ポリブチレン
サクシネート/アジペート共重合体などが挙げられ、生
分解性のポリカーボネートとしてはポリエチレンカーボ
ネート(PEC)、生分解性のポリアミドとしては、ナ
イロン4、ナイロン2/ナイロン6共重合体、生分解性
のポリアミノ酸ではポリアスパラギン酸などを用いるこ
とができる。さらにそれら2種類以上の混合物も用いる
ことができる。この中でも特にポリ乳酸は透明性の点で
好ましいものである。
Next, the biodegradable polymer used in the present invention means
Examples of the biodegradable polyester include biodegradable polyester, polycarbonate, polyamide, and polyamino acid. Polylactic acid (PLA),
Examples of the biodegradable polycarbonate include polyglycolic acid (PGA), poly, polyhydroxybutyric acid (PHB), polydiglycolic acid butylene, polycaprolactone, polybutylene succinate, and polybutylene succinate / adipate copolymer. As polyethylene carbonate (PEC) and biodegradable polyamide, nylon 4, nylon 2 / nylon 6 copolymer, and biodegradable polyamino acid such as polyaspartic acid can be used. Further, a mixture of two or more of them can also be used. Among them, polylactic acid is particularly preferable in terms of transparency.

【0014】〈ポリマー組成物(生分解生ポリマーとの
複合化)〉別に用意した上記で例示した生分解性のポリ
マーの溶液とあわせ、二酸化チタン超微粒子・ポリマー
混合溶液を得る。必要であれば、二酸化チタン超微粒子
とポリマーの複合化を促進するために加熱・攪拌するこ
とができる。ポリマーとのナノ領域における複合化を可
能としている理由としては、表面を飽和あるいは不飽和
カルボン酸、飽和あるいは不飽和アミンにより修飾した
二酸化チタン超微粒子を用いることにより粒子同士の凝
集を抑制し、所望の有機溶媒への分散を可能にしている
ためと考えられる。さらに、二酸化チタン超微粒子がポ
リマー中の電子供与性基(エステル結合型酸素、カーボ
ネート結合型酸素、アミド結合型酸素等)と相互作用
し、電子移動ないし電荷移動などを起こすことから凝集
することなくポリマーマトリックス中に一個一個分散・
複合化すると考えられるため、電子供与性基がポリマー
構造中に含有することは好ましい。
<Polymer composition (composite with biodegradable biopolymer)> Separately prepared solution of the biodegradable polymer exemplified above is mixed to obtain titanium dioxide ultrafine particle / polymer mixed solution. If necessary, heating and stirring can be performed in order to promote the complexation of the titanium dioxide ultrafine particles and the polymer. The reason why it is possible to form a composite with a polymer in the nano region is to suppress aggregation of particles by using titanium dioxide ultrafine particles whose surface is modified with a saturated or unsaturated carboxylic acid, a saturated or unsaturated amine, It is believed that this is because it is possible to disperse the above in an organic solvent. Furthermore, since the ultrafine titanium dioxide particles interact with electron-donating groups (ester-bonded oxygen, carbonate-bonded oxygen, amide-bonded oxygen, etc.) in the polymer and cause electron transfer or charge transfer, they do not aggregate. Dispersed one by one in the polymer matrix
It is preferable that the electron-donating group is contained in the polymer structure because it is considered to be complexed.

【0015】〈ポリマー組成物(二酸化チタンの含有
量)〉ポリマーに複合化する量は、特に規定するもので
はないが複合化する量は使用する用途、必要とするポリ
マーの光分解速度に応じて適宜調節することが出来る
が、ポリマーに対して0.001〜50wt%、より好ま
しくは0.01〜30wt%、更に好ましくは0.1〜1
0wt%が良い。複合化する量が多いと、ポリマー本来の
機械物性が損なわれ、少ないと充分な光分解性が得られ
ない場合があるため、用途に応じて適宜、混合する。二
酸化チタン超微粒子・ポリマー混合溶液をヘキサン、ヘ
プタン、メタノールなどの貧溶媒に加え、乾燥し粉末化
された組成物は、そのまま、あるいは、一度ペレット化
したのち、押出し機を用いフィルムまたはシートに成形
することができる。
<Polymer composition (content of titanium dioxide)> The amount to be combined with the polymer is not particularly limited, but the amount to be combined depends on the application to be used and the required photodecomposition rate of the polymer. It can be adjusted appropriately, but 0.001 to 50% by weight, more preferably 0.01 to 30% by weight, still more preferably 0.1 to 1% with respect to the polymer.
0wt% is good. If the compounding amount is large, the mechanical properties inherent to the polymer will be impaired, and if the compounding amount is small, sufficient photodegradability may not be obtained. Therefore, appropriate mixing is performed according to the application. The titanium dioxide ultrafine particles / polymer mixed solution is added to a poor solvent such as hexane, heptane, methanol, etc., and the dried and powdered composition is directly or once pelletized, and then formed into a film or sheet using an extruder. can do.

【0016】〈添加剤〉本発明に係る光・生分解性ポリ
マー組成物は成形時、目的(例えば成形性、二次加工
性、分解性、引張強度、耐熱性、保存安定性、耐候性等
の向上)に応じ各種添加剤(可塑剤、酸化防止剤、紫外
線吸収剤、熱安定剤、難燃剤、内部離型剤、無機添加
剤、帯電防止剤、表面ぬれ改善剤、焼却補助剤、顔料、
滑剤、天然物)等を添加することができる。例えば、イ
ンフレーション成形、Tダイ押出成形では、フィルム、
シートのブロッキング防止やすべり性を改良するため
に、無機添加剤や滑剤(脂肪族カルボン酸アミド類)を
添加することもできる。
<Additives> The photo-biodegradable polymer composition according to the present invention has a purpose (for example, moldability, secondary processability, degradability, tensile strength, heat resistance, storage stability, weather resistance, etc.) at the time of molding. Various additives (plasticizer, antioxidant, UV absorber, heat stabilizer, flame retardant, internal release agent, inorganic additive, antistatic agent, surface wetting improver, incineration aid, pigment) ,
Lubricants, natural products) and the like can be added. For example, in inflation molding and T-die extrusion molding, a film,
Inorganic additives and lubricants (aliphatic carboxylic acid amides) can be added in order to prevent blocking and improve the slipperiness of the sheet.

【0017】無機添加剤としては、特に制限はないが、
シリカ、炭酸カルシウム、タルク、カオリン、カオリナ
イト、酸化チタン、酸化亜鉛等が挙げられ、特にシリカ
や炭酸カルシウムが好適である。これ等は一種又は二種
以上の混合物として用いる事もできる。又、有機添加剤
としては、デンプン及びその誘導体、セルロース及びそ
の誘導体、パルプ及びその誘導体、紙及びその誘導体、
小麦粉、おから、ふすま、ヤシ殻、コーヒー糟、タンパ
ク等が挙げられる。これ等は一種又は二種以上の混合物
として用いる事もできる。
The inorganic additive is not particularly limited,
Examples thereof include silica, calcium carbonate, talc, kaolin, kaolinite, titanium oxide and zinc oxide, and silica and calcium carbonate are particularly preferable. These may be used alone or as a mixture of two or more. As organic additives, starch and its derivatives, cellulose and its derivatives, pulp and its derivatives, paper and its derivatives,
Examples thereof include flour, okara, bran, coconut shell, coffee mash, and protein. These may be used alone or as a mixture of two or more.

【0018】〈成形体及びその製造法〉本発明に係る光
・生分解性ポリマー組成物は、公知公用の成形法に適用
できる好適な材料であり、得られる成形体は、特に制限
はないが、例えばフィルム・シート、モノフィラメン
ト、繊維や不織布等のマルチフィラメント、射出成形
体、ブロー成形体、積層体、発泡体、真空成形体などの
熱成形体等が挙げられる。また、本発明に係る光・生分
解性組成物は、延伸配向結晶化させる際の成形性が良く
本発明効果が顕著に現れ、延伸して得られるフィルム・
シート、テープヤーン、延伸ブロー成形体、(モノ、マ
ルチ)フィラメントの製造に好適である。
<Molded Article and Manufacturing Method Thereof> The photo-biodegradable polymer composition according to the present invention is a suitable material that can be applied to publicly known molding methods, and the obtained molded article is not particularly limited. Examples thereof include films and sheets, monofilaments, multifilaments such as fibers and non-woven fabrics, injection molded articles, blow molded articles, laminates, foams, and thermoformed articles such as vacuum formed articles. Further, the photo-biodegradable composition according to the present invention has a good moldability when stretch-oriented and crystallized, and the effect of the present invention remarkably appears.
It is suitable for the production of sheets, tape yarns, stretch blow molded products and (mono-, multi-) filaments.

【0019】本発明に係る光・生分解性ポリマー組成物
から得られる成形体の成形方法としては、射出成形法、
ブロー成形法(射出延伸ブロー、押出し延伸ブロー、ダ
イレクトブロー)、バルーン法、インフレーション成
形、共押出法、カレンダー法、ホットプレス法、溶媒キ
ャスティング法、(延伸)押出し成形,紙やアルミとの
押出しラミネーション法、異形押出し成形、真空(圧
空)成形などの熱成形、溶融紡糸(モノフィラメント、
マルチフィラメント、スパンボンド法、メルトブローン
法、解繊糸法など)、発泡成形法、圧縮成形法等が挙げ
られ、何れの方法にも適応できる。特に、押出し成形、
溶融紡糸などの延伸配向結晶化させる工程を取り得る成
形法の場合、得られる成形体の強度、耐熱性、耐衝撃
性、透明性等の実用強度や外観を改良させる事ができ、
より好ましく用いられる。本発明に係わる光・生分解性
組成物から得られる成形体は、例えば、公知・公用の成
形法で得られる成形体を包含し、その形状、形態、大き
さ、厚み等に関して何ら制限はない。
The molding method of the molded article obtained from the photo-biodegradable polymer composition according to the present invention includes injection molding method,
Blow molding method (injection stretch blow, extrusion stretch blow, direct blow), balloon method, inflation molding, coextrusion method, calender method, hot press method, solvent casting method, (stretch) extrusion molding, extrusion lamination with paper and aluminum Method, profile extrusion molding, thermoforming such as vacuum (pressure) molding, melt spinning (monofilament,
Multifilament, spun bond method, melt blown method, defibrating yarn method, etc.), foam molding method, compression molding method and the like can be mentioned, and any method can be applied. In particular, extrusion molding,
In the case of a molding method that can take a step of stretch-oriented crystallization such as melt spinning, it is possible to improve the practical strength and appearance such as strength, heat resistance, impact resistance, and transparency of the obtained molded body,
More preferably used. The molded product obtained from the photo-biodegradable composition according to the present invention includes, for example, a molded product obtained by a publicly-known / publicly-used molding method, and there is no limitation on its shape, form, size, thickness and the like. .

【0020】〈用途の具体例〉本発明に係る光・生分解
性ポリマー組成物を上記成形方法から得られる、ボト
ル、フィルム又はシート、中空管、積層体、真空(圧
空)成形容器、(モノ、マルチ)フィラメント、不織
布、発泡体、ショッピングバッグ、紙袋、シュリンクフ
ィルム、ゴミ袋、コンポストバッグ、弁当箱、惣菜用容
器、食品・菓子包装用フィルム、食品用ラップフィル
ム、化粧品・香粧品用ラップフィルム、おむつ、生理用
ナプキン、医薬品用ラップフィルム、製薬用ラップフィ
ルム,肩こりや捻挫等に適用される外科用貼付薬用ラッ
プフィルム、農業用・園芸用フィルム、農薬品用ラップ
フィルム、温室用フィルム、肥料用袋、包装用バンド、
ビデオやオーディオ等の磁気テープカセット製品包装用
フィルム、フレキシブルディスク(FD)包装用フィル
ム、製版用フィルム、粘着テープ、テープ、ヤーン、育
苗ポット、防水シート、土嚢用袋、建築用フィルム、雑
草防止シート、植生ネット、など食品、電子、医療、薬
品、化粧品等の各種包装用フィルム、農業・土木・水産
分野で用いられる資材等の広範囲における材料として好
適に使用し得る。
<Specific Examples of Applications> Bottles, films or sheets, hollow tubes, laminates, vacuum (pneumatic) molding containers, which are obtained by the molding method of the photo-biodegradable polymer composition according to the present invention, ( Mono, multi) filament, non-woven fabric, foam, shopping bag, paper bag, shrink film, garbage bag, compost bag, lunch box, side dish container, food / confectionery packaging film, food wrap film, cosmetic / cosmetic wrap Film, diapers, sanitary napkins, pharmaceutical wrap films, pharmaceutical wrap films, surgical adhesive medicated wrap films applied to stiff shoulders, sprains, etc., agricultural / horticultural films, agricultural chemical wrap films, greenhouse films, Fertilizer bag, packing band,
Film for packaging magnetic tape cassette products such as video and audio, film for flexible disk (FD) packaging, film for plate making, adhesive tape, tape, yarn, seedling pot, waterproof sheet, bag for sandbags, construction film, weed prevention sheet , Vegetation net, various packaging films for foods, electronics, medical care, medicines, cosmetics, etc., and materials used in the fields of agriculture, civil engineering, fisheries, etc. can be suitably used.

【0021】[0021]

【実施例】以下、実施例により、さらに詳述するが、本
発明は実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to the examples.

【0022】[0022]

【実施例1】四塩化チタン(和光試薬特級)15ml (0.1
38mol)を200ml三口フラスコに窒素雰囲気中で測り取
り、反応系を0℃に保った後、イオン交換水15mlを一滴
づつ加え、黄色油状のチタンオキシクロライド(TiO
Cl)溶液(9.2mol/l)を得た。エタノール600mlと
イオン交換水400ml混合液を1l三口フラスコにとり、油
浴中につけ窒素雰囲気中で攪拌した。温度が60℃に達し
安定した後、先に調製したTiOCl溶液4mlをイオ
ン交換水36.8mlで希釈した1mol/lのTiOCl溶液
を滴下した。6時間後、生成した二酸化チタン超微粒子
の沈殿を遠心分離し、酢酸エチル50mlで洗浄した。この
遠心分離、洗浄の操作を計三回実施した後、酢酸エチル
を除去し、二酸化チタン超微粒子を得た。二酸化チタン
超微粒子を酢酸50mlに分散させ、室温で60時間攪拌し
た。沈殿を遠心分離した後、酢酸エチルで三回洗浄し
た。一部を取りだし、120℃減圧、6時間乾燥後KBr
錠剤法で赤外線スペクトルを測定したところ、二酸化チ
タン表面の酢酸修飾を示すカルボキシレート基(−CO
-)のピ−クが測定されたこのようにして得られた酢
酸修飾二酸化チタン超微粒子(乾燥状態で1g)を湿潤
状態で1-ブタノール100ml中に加え、超音波処理を一時
間実施した。これにトルエン100mlを加え、二酸化チタ
ン超微粒子が均一に分散した透明な溶液を得た。この溶
液にn-ヘキシルアミン50mlを添加し、1時間攪拌した
後、生成した沈殿を遠心分離して回収し、メタノール洗
浄と遠心分離の操作を二回繰り返した。一部を取りだ
し、乾燥後、KBr錠剤で赤外線スペクトル測定を行
い、二酸化チタン超微粒子の表面が酢酸とアミンの両方
で修飾されていることが確認された。この酢酸・n-ヘ
キシルアミン修飾二酸化チタン超微粒子をクロロホルム
40ml中に加えたところ、均一に分散した透明な溶液が得
られた。ポリ乳酸(商品名:LACEA(登録商標)H-1000
三井化学(株)製)9gをクロロホルム80mlに溶解さ
せた溶液を別に調製し、二酸化チタン超微粒子の溶液と
混合し、室温にて30分間攪拌した。この溶液をさらに
ヘプタン500ml中に投入し再沈殿させた後、沈殿物を濾
過により回収した。沈殿を60℃で10時間乾燥した後、
粉末を100kg/cm2の圧力、180℃で2分間プレスした
ところ、厚み100μmの無色透明なフィルムが得られ
た。得られたフィルムの透過電子顕微鏡観察から粒子径
3〜5nmの二酸化チタン超微粒子がポリマー中に全く凝
集することなく均一に分散していることが確認できた。
また、熱重量変化の測定により、フィルム中の二酸化チ
タン超微粒子の配合量は10重量%であることを確認し
た。
Example 1 Titanium tetrachloride (Wako reagent special grade) 15 ml (0.1
38mol) was weighed into a 200ml three-necked flask in a nitrogen atmosphere, and the reaction system was kept at 0 ° C. Then, 15ml of ion-exchanged water was added drop by drop to obtain yellow oily titanium oxychloride (TiO 2).
A Cl 2 ) solution (9.2 mol / l) was obtained. A mixture of 600 ml of ethanol and 400 ml of ion-exchanged water was placed in a 1-liter three-necked flask, placed in an oil bath and stirred in a nitrogen atmosphere. After the temperature reached 60 ° C and was stabilized, 4 ml of the TiOCl 2 solution prepared above was diluted with 36.8 ml of deionized water, and a 1 mol / l TiOCl 2 solution was added dropwise. After 6 hours, the formed titanium dioxide ultrafine particles were centrifuged and washed with 50 ml of ethyl acetate. After performing the centrifugation and washing operations three times in total, ethyl acetate was removed to obtain titanium dioxide ultrafine particles. Ultrafine titanium dioxide particles were dispersed in 50 ml of acetic acid and stirred at room temperature for 60 hours. The precipitate was centrifuged and washed with ethyl acetate three times. Remove a part of it, depressurize it at 120 ℃, and dry it for 6 hours.
When the infrared spectrum was measured by the tablet method, a carboxylate group (-CO
The thus obtained acetic acid-modified titanium dioxide ultrafine particles (1 g in a dry state) in which a peak of O ) was measured was added to 100 ml of 1-butanol in a wet state, and sonication was carried out for 1 hour. . To this, 100 ml of toluene was added to obtain a transparent solution in which ultrafine titanium dioxide particles were uniformly dispersed. After adding 50 ml of n-hexylamine to this solution and stirring for 1 hour, the generated precipitate was collected by centrifugation and washed with methanol and the operation of centrifugation was repeated twice. An aliquot was taken out, dried and subjected to infrared spectrum measurement with a KBr tablet, and it was confirmed that the surface of the titanium dioxide ultrafine particles was modified with both acetic acid and amine. The titanium dioxide ultrafine particles modified with acetic acid / n-hexylamine were added to chloroform.
When added in 40 ml, a uniformly dispersed transparent solution was obtained. Polylactic acid (trade name: LACEA (registered trademark) H-1000
A solution prepared by dissolving 9 g of Mitsui Chemicals, Inc. in 80 ml of chloroform was prepared separately, mixed with the solution of titanium dioxide ultrafine particles, and stirred at room temperature for 30 minutes. The solution was further poured into 500 ml of heptane for reprecipitation, and the precipitate was collected by filtration. After drying the precipitate at 60 ° C for 10 hours,
When the powder was pressed at a pressure of 100 kg / cm 2 and 180 ° C. for 2 minutes, a colorless transparent film having a thickness of 100 μm was obtained. From the transmission electron microscope observation of the obtained film, it was confirmed that the titanium dioxide ultrafine particles having a particle diameter of 3 to 5 nm were uniformly dispersed in the polymer without any aggregation.
Further, it was confirmed by the measurement of thermogravimetric change that the compounding amount of the titanium dioxide ultrafine particles in the film was 10% by weight.

【0023】[0023]

【実施例2】実施例1と同様の方法で二酸化チタンを合
成した。二酸化チタン超微粒子をオクタン酸50mlに分散
させ、室温で60時間攪拌した。沈殿を遠心分離した後、
酢酸エチルで三回洗浄した。一部を取りだし、120℃減
圧、6時間乾燥後KBr錠剤法で赤外線スペクトルを測
定したところ、二酸化チタン表面の酢酸修飾を示すカル
ボキシレート基(−COO-)のピ−クが測定された。
このようにして得られたオクタン酸修飾二酸化チタン超
微粒子(乾燥状態で1g)をクロロホルム40ml中に加え
超音波処理を一時間実施したところ、均一に分散した透
明な溶液が得られた。ポリ乳酸(商品名:LACEA(登録
商標)H-1000 三井化学(株)製)9gをクロロホルム8
0mlに溶解させた溶液を別に調製し、二酸化チタン超微
粒子の溶液と混合し、室温にて30分間攪拌した。この
溶液をさらにヘプタン500ml中に投入し再沈殿させた
後、沈殿物を濾過により回収した。沈殿を60℃で10時
間乾燥した後、粉末を100kg/cm2の圧力、180℃で2
分間プレスしたところ、厚み100μmの無色透明なフ
ィルムが得られた。また、熱重量変化の測定により、フ
ィルム中の二酸化チタン超微粒子の配合量は10重量%
であることを確認した。
Example 2 Titanium dioxide was synthesized in the same manner as in Example 1. The titanium dioxide ultrafine particles were dispersed in 50 ml of octanoic acid and stirred at room temperature for 60 hours. After centrifuging the precipitate,
It was washed three times with ethyl acetate. A portion was taken out, dried at 120 ° C. under reduced pressure for 6 hours, and the infrared spectrum was measured by the KBr tablet method. As a result, a peak of a carboxylate group (—COO ) showing the acetic acid modification on the surface of titanium dioxide was measured.
The octanoic acid-modified titanium dioxide ultrafine particles (1 g in a dry state) thus obtained were added to 40 ml of chloroform and sonicated for 1 hour to obtain a uniformly dispersed transparent solution. Chloroform 8 of 9 g of polylactic acid (trade name: LACEA (registered trademark) H-1000 manufactured by Mitsui Chemicals, Inc.)
A solution dissolved in 0 ml was prepared separately, mixed with a solution of titanium dioxide ultrafine particles, and stirred at room temperature for 30 minutes. The solution was further poured into 500 ml of heptane for reprecipitation, and the precipitate was collected by filtration. After precipitate was dried 10 hours at 60 ° C., a pressure of the powder 100kg / cm 2, 2 at 180 ° C.
When pressed for a minute, a colorless and transparent film having a thickness of 100 μm was obtained. In addition, as a result of thermogravimetric change measurement, the blending amount of the titanium dioxide ultrafine particles in the film was 10% by weight.
Was confirmed.

【0024】[0024]

【比較例1】実施例1と同様に二酸化チタン超微粒子を
合成した。実施例1に示した酢酸・n-ヘキシルアミン
修飾は実施せず、クロロホルム40ml中に二酸化チタンの
沈殿を加え攪拌した。しかしながら、実施例1のような
二酸化チタンがクロロホルム中に均一に分散した透明な
溶液は得られず白く濁っていた。ポリ乳酸(商品名:LA
CEA(登録商標)H-1000 三井化学(株)製)9gをクロ
ロホルム80mlに溶解させた溶液を別に調製し、二酸化チ
タン超微粒子の溶液と混合し、室温にて30分間攪拌し
た。この溶液をさらにヘプタン500ml中に投入し再沈殿
させた後、沈殿物を濾過により回収した。沈殿を60℃で
10時間乾燥した後、粉末を100kg/cm2の圧力、180
℃で2分間プレスしたがフィルムは白色不透明であっ
た。透過電子顕微鏡観察をおこなったところ、サブミク
ロンオーダーの2次粒子と粗大凝集粒子が観察された。
Comparative Example 1 Ultrafine titanium dioxide particles were synthesized in the same manner as in Example 1. The acetic acid / n-hexylamine modification shown in Example 1 was not carried out, and titanium dioxide was added to 40 ml of chloroform and stirred. However, a transparent solution in which titanium dioxide was uniformly dispersed in chloroform as in Example 1 could not be obtained and was white and turbid. Polylactic acid (trade name: LA
A solution of 9 g of CEA (registered trademark) H-1000 manufactured by Mitsui Chemicals, Inc. in 80 ml of chloroform was prepared separately, mixed with a solution of titanium dioxide ultrafine particles, and stirred at room temperature for 30 minutes. The solution was further poured into 500 ml of heptane for reprecipitation, and the precipitate was collected by filtration. After the precipitate was dried at 60 ° C for 10 hours, the powder was pressed at a pressure of 100 kg / cm2, 180
After pressing at 0 ° C. for 2 minutes, the film was white and opaque. When observed by a transmission electron microscope, submicron-order secondary particles and coarse aggregated particles were observed.

【0025】[0025]

【比較例2】ポリ乳酸(LACEA(登録商標)H-1000:三
井化学(株)製)90wt%と石原産業社製二酸化チタン
(ST-01 粒子径5〜7nm)10wt%をリホ゛フ゛レンタ゛ーで混合後、
2軸押出し機によりシリンタ゛ー設定温度180℃でペレット化し
た。その該ペレットを100kg/cm2の圧力、180℃で2
分間プレスし、厚み100μmフィルムが得た。フィル
ムは白色不透明であり、一部濃淡も見られた。透過電子
顕微鏡観察をおこなったところ、サブミクロンオーダー
の2次粒子と粗大凝集粒子が観察された。
[Comparative Example 2] 90% by weight of polylactic acid (LACEA (registered trademark) H-1000: manufactured by Mitsui Chemicals, Inc.) and 10% by weight of titanium dioxide (ST-01 particle size 5 to 7 nm) manufactured by Ishihara Sangyo Co., Ltd. were mixed by a reblender. rear,
Pelletization was performed by a twin-screw extruder at a cylinder set temperature of 180 ° C. The pellets at a pressure of 100 kg / cm2 and 180 ° C for 2
After pressing for a minute, a 100 μm thick film was obtained. The film was white and opaque, and some shades were also seen. When observed by a transmission electron microscope, submicron-order secondary particles and coarse aggregated particles were observed.

【0026】[0026]

【比較例3】ポリ乳酸(LACEA(登録商標)H-100:三井
化学社(株)製)のペレット9gをクロロホルム80mlに
一旦溶解させ、その溶液をヘプタン500ml中に投入し再
沈殿させ、沈殿物を濾過により回収した。沈殿を60℃で
10時間乾燥した後、100kg/cm2の圧力、180℃で2
分間プレスし、厚み100μmの無色透明なフィルムを
得た。
[Comparative Example 3] 9 g of pellets of polylactic acid (LACEA (registered trademark) H-100: manufactured by Mitsui Chemicals, Inc.) was once dissolved in 80 ml of chloroform, and the solution was poured into 500 ml of heptane to cause reprecipitation and precipitation. The material was collected by filtration. The precipitate was dried at 60 ° C for 10 hours and then at 100 ° C / cm2 pressure and 180 ° C for 2 hours.
After pressing for minutes, a colorless and transparent film having a thickness of 100 μm was obtained.

【0027】実施例、比較例で得たフィルムについて、
以下の方法でヘイズ、光分解性を評価した結果を示す
(表1)。なお、各評価は以下の通り、行った。 1)外観、透明性: 優:目視で観察し、透明性が良好であることが確認でき
る 劣:目視で観察し、透明性が良好であると認められない 2)ヘイズ :JIS K 7105に準じて測定し、厚
み300μmに換算したヘイズ値を求めた。なお、ΔH
は、二酸化チタン超微粒子が未配合の比較例3との差を
表す。 3)光分解性試験:2cm×5cmの試験片を作製し、太陽光
による試験を安定的に行うため、ソーラーシュミレータ
ー(ウシオ社製 SSS−252161−ER)を用い、照度70.0
00LUXにてサンプルへの照射を行い外観上の変化を調
べた。 4)生分解性試験:生分解性試験を1ヶ月実施したサン
プルについて2ヶ月間試験片を温度35℃、水分30%
の土壌中に埋設したあと外観上の変化を調べた。
Regarding the films obtained in Examples and Comparative Examples,
The results of evaluation of haze and photodegradability by the following methods are shown (Table 1). In addition, each evaluation was performed as follows. 1) Appearance and transparency: Excellent: Visual observation can confirm good transparency Poor: Visual observation does not show good transparency 2) Haze: According to JIS K 7105 Was measured to obtain a haze value converted into a thickness of 300 μm. In addition, ΔH
Represents the difference from Comparative Example 3 in which titanium dioxide ultrafine particles were not blended. 3) Photodegradability test: A 2 cm × 5 cm test piece was prepared and a solar simulator (SSS-252161-ER manufactured by Ushio Co., Ltd.) was used to stably perform a test by sunlight.
The sample was irradiated with 00LUX and the change in appearance was examined. 4) Biodegradability test: A sample subjected to a biodegradability test for 1 month was tested for 2 months at a temperature of 35 ° C and a water content of 30%.
After being embedded in the soil, the change in appearance was examined.

【0028】[0028]

【表1】 [Table 1]

【発明の効果】 本発明は生分解性ポリマーに二酸化チ
タン超微粒子を複合化し光により崩壊し分解する。さら
にポリマー本来の透明性を損なわないため、透明性を必
要とするフィルム等の成形物に使用することができる。
EFFECTS OF THE INVENTION In the present invention, titanium dioxide ultrafine particles are compounded with a biodegradable polymer and decomposed and decomposed by light. Further, since the original transparency of the polymer is not impaired, it can be used for molded products such as films requiring transparency.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大淵 省二 千葉県袖ヶ浦市長浦580−32 三井化学株 式会社内 Fターム(参考) 4F071 AA43 AA50 AA54 AB18 AF52 AH04 4J002 CF001 CF181 CG001 CL001 CL021 DE136 FB086 FD206 GG02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shoji Obuchi             580-32 Nagaura, Sodegaura-shi, Chiba Mitsui Chemicals, Inc.             Inside the company F-term (reference) 4F071 AA43 AA50 AA54 AB18 AF52                       AH04                 4J002 CF001 CF181 CG001 CL001                       CL021 DE136 FB086 FD206                       GG02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】生分解性ポリマーに、表面が酸性基単独、
または、酸性基と塩基性基の両方で修飾された二酸化チ
タン超微粒子を複合化し、光により崩壊し分解すること
を特徴とする光・生分解性ポリマー組成物。
1. A biodegradable polymer having an acidic group alone on the surface,
Alternatively, a photo-biodegradable polymer composition, characterized in that ultrafine titanium dioxide particles modified with both an acidic group and a basic group are compounded and decomposed and decomposed by light.
【請求項2】JIS K 7105に従って測定した10
重量%二酸化チタン含有フィルムのヘイズ(曇価)変化
(ΔH)が、未含有のフィルムに対して、フィルム厚み
300μm換算で、5%以下であることを特徴とする請
求項1記載の光・生分解性ポリマー組成物。
2. Tens measured according to JIS K 7105.
2. The light / raw material according to claim 1, wherein the haze (cloudiness value) change (ΔH) of the film containing wt% titanium dioxide is 5% or less in terms of a film thickness of 300 μm with respect to the film containing no titanium dioxide. Degradable polymer composition.
【請求項3】二酸化チタン超微粒子の表面を修飾する酸
性基が飽和あるいは不飽和カルボン酸、塩基性基が飽和
あるいは不飽和アミンであることを特徴とする請求項1
〜2記載の光・生分解性ポリマー組成物。
3. An acidic group for modifying the surface of ultrafine titanium dioxide particles is a saturated or unsaturated carboxylic acid, and a basic group is a saturated or unsaturated amine.
2. The photo-biodegradable polymer composition according to 2 above.
【請求項4】生分解性ポリマーが構造の一部に電子供与
性基を含有することを特徴とする請求項1〜3記載の光
・生分解性ポリマー組成物。
4. The photo-biodegradable polymer composition according to claim 1, wherein the biodegradable polymer contains an electron-donating group in a part of its structure.
【請求項5】生分解性ポリマーが生分解性ポリエステ
ル、生分解性ポリカーボネート、生分解性ポリアミド、
生分解性ポリアミノ酸から選択される一種または2種類
以上の混合物であることを特徴とする請求項1〜4記載
の光・生分解性ポリマー組成物。
5. The biodegradable polymer is biodegradable polyester, biodegradable polycarbonate, biodegradable polyamide,
The photo-biodegradable polymer composition according to claim 1, which is one kind or a mixture of two or more kinds selected from biodegradable polyamino acids.
【請求項6】生分解性ポリマーがポリ乳酸である請求項
1〜4記載の光・生分解性ポリマー組成物。
6. The photo-biodegradable polymer composition according to claim 1, wherein the biodegradable polymer is polylactic acid.
【請求項7】請求項1〜6記載の光・生分解性ポリマー
組成物を用いた成形体
7. A molded article using the photo-biodegradable polymer composition according to claim 1.
JP2001339489A 2001-11-05 2001-11-05 Photo / biodegradable polymer composition Expired - Fee Related JP3880373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001339489A JP3880373B2 (en) 2001-11-05 2001-11-05 Photo / biodegradable polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001339489A JP3880373B2 (en) 2001-11-05 2001-11-05 Photo / biodegradable polymer composition

Publications (2)

Publication Number Publication Date
JP2003138153A true JP2003138153A (en) 2003-05-14
JP3880373B2 JP3880373B2 (en) 2007-02-14

Family

ID=19153832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001339489A Expired - Fee Related JP3880373B2 (en) 2001-11-05 2001-11-05 Photo / biodegradable polymer composition

Country Status (1)

Country Link
JP (1) JP3880373B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013158697A (en) * 2012-02-03 2013-08-19 Toyohashi Univ Of Technology Electron donor supply agent and environment cleaning method using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100888089B1 (en) 2007-11-14 2009-03-11 (주)에코메이트코리아 Biodegradable resin composition with improved processability
CN102432065B (en) * 2011-09-07 2013-08-28 内蒙古科技大学 Method for synthesizing nanometer titanium dioxide through using carbon to adsorb titanium tetrachloride hydrolysis system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013158697A (en) * 2012-02-03 2013-08-19 Toyohashi Univ Of Technology Electron donor supply agent and environment cleaning method using the same

Also Published As

Publication number Publication date
JP3880373B2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
Loyo et al. PLA/CaO nanocomposites with antimicrobial and photodegradation properties
Kwak et al. Chemical and physical reinforcement of hydrophilic gelatin film with di-aldehyde nanocellulose
Mallakpour et al. Nanocomposites based on biosafe nano ZnO and different polymeric matrixes for antibacterial, optical, thermal and mechanical applications
Gautam et al. Green Natural Protein Isolate based composites and nanocomposites: A review
CN101395090A (en) Method for producing nanocomposite materials for multi-sectoral applications
KR101184750B1 (en) Control of biodegradability of polyvinyl alchol and cellulose polymer mixed polymer films and the preparation thereof
Anwer et al. State-of-the-art advances in nanocomposite and bio-nanocomposite polymeric materials: A comprehensive review
Hatami et al. Simultaneous improvements in antibacterial and flame retardant properties of PET by use of bio-nanotechnology for fabrication of high performance PET bionanocomposites
KR100312171B1 (en) Functional Polyolefin Film
Zuber et al. Chitin and chitosan based blends, composites and nanocomposites
Xu et al. Mussel-inspired polydopamine-modified cellulose nanocrystal fillers for the preparation of reinforced and UV-shielding poly (lactic acid) films
Mallakpour et al. Production of the ZnO-folic acid nanoparticles and poly (vinyl alcohol) nanocomposites: investigation of morphology, wettability, thermal, and antibacterial properties
AU2021201846B2 (en) A degradation agent and method of preparation thereof
Zhang et al. Ti–Dopamine hybrid nanoparticles with UV-blocking and durable poly (butylene adipate-co-terephthalate) materials
CN113717506A (en) Graphene-degradable resin master batch and preparation method and application thereof
JP3880373B2 (en) Photo / biodegradable polymer composition
Wu et al. Biocompatible and antibacterial poly (lactic acid)/cellulose nanofiber‑silver nanoparticle biocomposites prepared via Pickering emulsion method
Chandrakumara et al. Eco‐Friendly, Green Packaging Materials from Akaganeite and Hematite Nanoparticle‐Reinforced Chitosan Nanocomposite Films
Mary et al. Applications of starch nanoparticles and starch‐based bionanocomposites
Mathew et al. Polymer nanocomposites: Alternative to reduce environmental impact of non‐biodegradable food packaging materials
El-Sherbiny et al. Biopolymer‐Based Nanocomposites for Environmental Applications
Sachdeva et al. Composite Materials: Properties, Characterisation, and Applications
Madduma-Bandarage et al. Chitosan: structure, properties, preparation, characterization, modifications, and importance in environmental cleanup
JP2008303300A (en) Resin composition
Vigneshwaran et al. Functional behaviour of polyethylene-ZnO nanocomposites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees