JP2003133785A - Fiber structural composition having electromagnetic absorbability - Google Patents

Fiber structural composition having electromagnetic absorbability

Info

Publication number
JP2003133785A
JP2003133785A JP2001329225A JP2001329225A JP2003133785A JP 2003133785 A JP2003133785 A JP 2003133785A JP 2001329225 A JP2001329225 A JP 2001329225A JP 2001329225 A JP2001329225 A JP 2001329225A JP 2003133785 A JP2003133785 A JP 2003133785A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
fiber
fiber structure
fine particles
structure composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001329225A
Other languages
Japanese (ja)
Inventor
Toshinori Hara
稔典 原
Yasuhiko Tanabe
靖彦 田辺
Keiji Takeda
恵司 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2001329225A priority Critical patent/JP2003133785A/en
Publication of JP2003133785A publication Critical patent/JP2003133785A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fiber structural composition having electromagnetic absorbability, the composition being flexible and light in weight and showing effective performance, and further having air permeability, acoustic insulation and damping performance. SOLUTION: The composition includes 30% to 500% of magnetic substance particles as a percentage of the weight of the fiber. It is preferred that an electromagnetic reflection layer and/or a protection layer be provided on the surface of the composition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高い電磁波吸収性を
有し、かつ柔軟で施工性のよい電磁波吸収性繊維構造物
複合体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic wave absorbing fiber structure composite which has a high electromagnetic wave absorbing property and is flexible and has good workability.

【0002】[0002]

【従来の技術】近年、多くの分野での電磁波利用拡大に
より電磁波環境が悪化しており、なかでも電磁波障害と
して、電波を利用した通信における通信障害、建造物に
よるテレビ電波障害、妨害電波の発生による電子回路の
誤動作などが問題となっている。このような障害を防止
するため、電磁波を吸収する素材を用いた電磁波吸収体
を反射面や電子回路近傍に設置し障害の原因となる電磁
波の反射や漏洩を抑制する方策がとられている。
2. Description of the Related Art In recent years, the electromagnetic wave environment has deteriorated due to the widespread use of electromagnetic waves in many fields. Among them, as electromagnetic wave interference, there are communication interference in communication using radio waves, television electromagnetic interference due to buildings, and generation of jamming electromagnetic waves. There is a problem such as malfunction of the electronic circuit due to. In order to prevent such an obstacle, a measure has been taken to suppress the reflection or leakage of the electromagnetic wave that causes the obstacle by installing an electromagnetic wave absorber using a material that absorbs the electromagnetic wave in the vicinity of the reflecting surface or the electronic circuit.

【0003】この電磁波吸収材料とは、電磁波エネルギ
ーを熱エネルギーに変換する材料をいうものであり、そ
の電磁波損失は導電損失、誘電損失、磁性損失の3種類
に大きく分類することができる(清水康敬著「電磁波の
吸収と遮蔽」1989年日経技術図書発行など)。導電
損失とは抵抗体に流れる導電電流によって電磁波を吸収
する作用であり、この作用を利用した電磁波吸収材料に
は導電性繊維による織物などがある。誘電損失とは誘電
体を絶縁体に混合してコンデンサが連結した回路を形成
し、高周波がその回路に作用することで吸収を行うもの
であり、この作用を利用した電磁波吸収材料には発泡ス
チロールにカーボンブラック粒子などを混合した発泡体
などがある。磁性損失とは磁界により磁化の状態が変化
することで吸収が起こる作用であり、この作用を利用し
た電磁波吸収材料にはフェライトをゴムに練り込んだシ
ート体などがある。
The electromagnetic wave absorbing material is a material that converts electromagnetic wave energy into heat energy, and the electromagnetic wave loss can be broadly classified into three types: conduction loss, dielectric loss, and magnetic loss (Yasutaka Shimizu). Author "Absorption and shielding of electromagnetic waves", 1989 Nikkei technical book, etc.). The conductive loss is an action of absorbing an electromagnetic wave by a conductive current flowing through the resistor, and an electromagnetic wave absorbing material utilizing this action includes a woven fabric made of a conductive fiber. Dielectric loss is a process in which a dielectric is mixed with an insulator to form a circuit in which capacitors are connected, and high-frequency waves act on the circuit to absorb it. There are foams and the like in which carbon black particles and the like are mixed. The magnetic loss is an action in which absorption occurs when the state of magnetization is changed by a magnetic field, and an electromagnetic wave absorbing material utilizing this action includes a sheet body in which ferrite is kneaded into rubber.

【0004】これらの電磁波吸収材料を別の方式で分類
すると、電磁波発生源から離れて電磁波が平面波として
到達する場所で用いられる遠方界用材料と、電磁波発生
源の近くで用いられる近傍界用材料に分けられる。前者
のためには電磁波吸収材料の背面に導電性の電磁波反射
体をおいてそれからの反射と電磁波吸収材料表面での反
射の打ち消し合いを利用した設計が行われ、高い吸収率
を得るためには既知の理論(橋本修著「電波吸収材料」
などに記載)に従って誘電体や磁性体の配合を決定し、
厚みを制御して作成する。しかし、携帯電話や高性能パ
ソコンのような電子機器の内部、あるいは高速通信用ケ
ーブル被覆材で使われる可能性のあるう近傍界用材料に
おいてはこの理論は適用できず、明確な設計原理が確立
していない。
When these electromagnetic wave absorbing materials are classified by another method, the far field material used at a place where the electromagnetic wave arrives as a plane wave away from the electromagnetic wave generation source and the near field material used near the electromagnetic wave generation source. It is divided into For the former, a conductive electromagnetic wave reflector is placed on the back surface of the electromagnetic wave absorbing material, and design is performed by using the cancellation of the reflection from the electromagnetic wave absorbing material and the reflection on the surface of the electromagnetic wave absorbing material. Known theory (Osamu Hashimoto "Electromagnetic wave absorption material"
, Etc.) and determine the composition of the dielectric or magnetic material,
Create by controlling the thickness. However, this theory cannot be applied to the inside of electronic devices such as mobile phones and high-performance personal computers, or to near-field materials that may be used as cable coating materials for high-speed communication, and a clear design principle has been established. I haven't.

【0005】このような状況で、現在近傍界用材料とし
ては主に磁性体を樹脂に練り込んで成形、シート化など
したものが一定の効果があることが知られており、電子
機器の内部で基板の上に貼り付けるなどして用いられて
いる(工業材料1998年10月号、P54など)。し
かし、このような素材は樹脂成形体で高率で磁性体を含
有するため曲げにくく、かつ重いものであった。そのた
め、加工性や施工性、さらに機器の軽量化の面でこの点
を改善した電磁波吸収素材が求められていた。またこの
ような素材は電磁波吸収効果が高々20dB(デシベ
ル)で、また1GHz以上のマイクロ波領域ではさらに
効果が低いものであり、さらに効果の大きい素材が求め
られていた。加えて、電磁波吸収素材の使用形態の多様
化に伴い、ガスケットや通気孔で使用する通気性のある
素材や、自動車など交通機関で使用する吸音・制振性の
ある素材も求められていた。
Under these circumstances, it is known that materials for near-field use, such as those obtained by mainly kneading a magnetic material into a resin and molding or sheeting, have a certain effect. It is used by pasting it on the substrate (industrial materials, October 1998, P54, etc.). However, since such a material is a resin molded body and contains a magnetic material at a high rate, it is difficult to bend and is heavy. Therefore, there has been a demand for an electromagnetic wave absorbing material that is improved in terms of workability, workability, and weight reduction of equipment. Further, such a material has an electromagnetic wave absorption effect of at most 20 dB (decibel) and is less effective in a microwave region of 1 GHz or higher, and a material having a greater effect has been demanded. In addition, with the diversification of usage of electromagnetic wave absorbing materials, there has been a demand for air-permeable materials used for gaskets and ventilation holes and sound-absorbing / vibrating materials used for transportation such as automobiles.

【0006】これに対し繊維構造物に磁性粉体を樹脂と
ともに表面塗布する例(特開紹60−50902)はあ
ったが、通気性や柔軟性が低下する問題があった。また
誘電体粉体を繊維構造物と複合化した例(特開平8−1
81482)もあるが、誘電体の利用では広い周波数範
囲での電磁波吸収性が得られにくかった。
On the other hand, there is an example (Japanese Patent Laid-Open No. 60-50902) in which the magnetic powder is applied to the surface of the fiber structure together with the resin, but there is a problem that the air permeability and the flexibility are lowered. Further, an example in which dielectric powder is combined with a fiber structure (Japanese Patent Laid-Open No. 8-1
81482), but it was difficult to obtain electromagnetic wave absorption in a wide frequency range by using a dielectric.

【0007】[0007]

【発明が解決しようとする課題】かかる状況に鑑み、本
発明は柔軟・軽量で効果が高く、さらに通気性や吸音・
制振性も併せ持つような電波吸収性繊維構造物複合体を
提供するものである。中でも本発明は特に近傍界用の電
波吸収性材料を提供することを目的とする。
In view of the above situation, the present invention is flexible and lightweight and highly effective, and further has breathability and sound absorption.
It is intended to provide a radio wave absorbing fiber structure composite which also has a vibration damping property. In particular, the present invention aims to provide a radio wave absorbing material for the near field.

【0008】[0008]

【課題を解決するための手段】本発明は、かかる課題を
解決するために、次のような手段を採用するものであ
る。すなわち、本発明の電磁波吸収性繊維構造物複合体
は、磁性体微粒子を繊維重量に対し30〜500重量%
含有したことを特徴とするものである。本発明の繊維構
造物複合体は、表面に電磁波反射層および/または保護
層を設けられていることが望ましい。
The present invention employs the following means in order to solve the above problems. That is, the electromagnetic wave absorbing fiber structure composite of the present invention contains magnetic fine particles in an amount of 30 to 500% by weight based on the weight of the fiber.
It is characterized by containing. The fiber structure composite of the present invention is preferably provided with an electromagnetic wave reflection layer and / or a protective layer on the surface.

【0009】[0009]

【発明の実施の形態】本発明の磁性体微粒子としては、
電磁波の磁界成分と相互作用して損失を生じる素材によ
る粒子全般を用いることができる。例としてはソフトフ
ェライト、M型六方晶フェライト、軟磁性金属、アモル
ファス金属、カルボニル鉄などを挙げることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The magnetic fine particles of the present invention include:
It is possible to use all particles made of a material that causes a loss by interacting with the magnetic field component of the electromagnetic wave. Examples include soft ferrite, M-type hexagonal ferrite, soft magnetic metal, amorphous metal, and carbonyl iron.

【0010】ソフトフェライトの例としては Ni−Z
n系フェライト、Mn−Zn系フェライト、Mn−Mg
−Zn系フェライトなどを挙げることができる。軟磁性
金属の例としては純鉄、Fe−Si合金、Fe−Co合
金、Fe−Ni合金、Fe−Al合金、Fe−Cr合
金、Fe−Si−Al合金、Fe−Cr−Si合金、F
e−Cr−Al合金などから選ばれた素材を挙げること
ができる。また磁石フェライトであるBaFe1219
組織系において、鉄をチタン、マンガンなどで置換した
M型六方晶系フェライトも好適に用いることができる。
アモルファス金属としては上記軟磁性合金やその他の金
属をアモルファス構造にしたものを挙げることができ、
液体急速冷却やスパッタリングなど最近盛んに研究が行
われている手法を用いて所望の元素組成、形状のものを
得ればよい。
An example of soft ferrite is Ni-Z
n type ferrite, Mn-Zn type ferrite, Mn-Mg
-Zn type ferrite etc. can be mentioned. Examples of the soft magnetic metal are pure iron, Fe-Si alloy, Fe-Co alloy, Fe-Ni alloy, Fe-Al alloy, Fe-Cr alloy, Fe-Si-Al alloy, Fe-Cr-Si alloy, F.
Examples include materials selected from e-Cr-Al alloys. Further, in the texture system of BaFe 12 O 19 which is a magnet ferrite, M-type hexagonal ferrite in which iron is replaced by titanium, manganese or the like can also be suitably used.
Examples of the amorphous metal include the above soft magnetic alloys and other metals having an amorphous structure,
A desired elemental composition and shape may be obtained by using a technique which has been actively researched recently such as liquid rapid cooling and sputtering.

【0011】本発明では適正な磁性体微粒子を選定する
ことにより、周波数帯に応じた素材設計を行うことがで
きる。特に1GHz以上の高周波帯で高い効果を得るた
めには、軟磁性金属、アモルファス金属、カルボニル鉄
などを用いるのが望ましい。
In the present invention, by selecting appropriate magnetic fine particles, it is possible to design the material according to the frequency band. In particular, in order to obtain a high effect in a high frequency band of 1 GHz or more, it is desirable to use soft magnetic metal, amorphous metal, carbonyl iron, or the like.

【0012】また、本発明において用いられる磁性体微
粒子の平均粒径は0.1〜300μmであることが望ま
しい。0.1μmよりも小さい場合には不織布中の繊維
間空隙に保持しにくくなり、また300μmよりも大き
い場合は不織布中の繊維間空隙に入り込みにくくなる。
本発明でより好ましい微粒子の平均粒径は1〜20μm
である。平均粒径が20μm以下がよい理由は、粒径が
小さいほど粒子間の空隙が少なく繊維構造物複合体中の
微粒子含有量を大きくしやすいためであること、不織布
複合体内部で粒子が動きやすく柔軟性を高めやすいこと
などである。平均粒径が1μm以上がよい理由は、これ
以下の粒径では粒子が気流で飛散などしやすく、製造時
の取扱いが難しくなるからである。
The average particle size of the magnetic fine particles used in the present invention is preferably 0.1 to 300 μm. If it is smaller than 0.1 μm, it becomes difficult to hold it in the inter-fiber voids in the nonwoven fabric, and if it is larger than 300 μm, it becomes difficult to enter the inter-fiber voids in the nonwoven fabric.
In the present invention, more preferable average particle diameter of fine particles is 1 to 20 μm.
Is. The reason why the average particle size is preferably 20 μm or less is that the smaller the particle size is, the smaller the voids between particles are and the larger the content of fine particles in the fibrous structure composite is. It is easy to increase flexibility. The reason why the average particle size is preferably 1 μm or more is that if the particle size is smaller than this, the particles are likely to be scattered by the air flow, and the handling during manufacturing becomes difficult.

【0013】本発明で用いる磁性体微粒子は電磁波吸収
効果を高めるために扁平化、線状化、針状化、複合化な
どの形状変化を施されていてもよい。例えば、本発明で
は扁平化した軟磁性金属やアモルファス微粒子なども好
適に利用することができる。
The fine magnetic particles used in the present invention may be subjected to shape changes such as flattening, linearization, acicularization, and compounding in order to enhance the electromagnetic wave absorption effect. For example, in the present invention, flattened soft magnetic metal or amorphous fine particles can be preferably used.

【0014】本発明の微粒子としては磁性体微粒子が効
果は高く、望ましい。しかし、磁性体粒子に誘電体粒子
を併用するとその効果を相乗的に高めることができ、さ
らに望ましい。誘電体微粒子としては、電磁波の電界成
分と相互作用して損失を生じる素材による粒子全般を用
いることができる。例としてはカーボンブラック、グラ
ファイトなど炭素系材料が代表的であるが、金属粉など
他の素材も用いることができる。
As the fine particles of the present invention, magnetic fine particles are highly effective and desirable. However, it is more desirable to use the dielectric particles in combination with the magnetic particles because the effect can be enhanced synergistically. As the dielectric fine particles, it is possible to use all particles made of a material that causes a loss by interacting with an electric field component of electromagnetic waves. Typical examples are carbon-based materials such as carbon black and graphite, but other materials such as metal powder can also be used.

【0015】本発明の繊維構造物としては、天然繊維、
再生繊維、半合成繊維、合繊繊維のうち少なくとも一つ
からなるフィラメント、紡績糸、織物、編物、不織布な
どを用いることができる。天然繊維としては綿、獣毛繊
維、絹、麻など、再生繊維としてはセルロース系再生繊
維のレーヨン(ビスコースレーヨン)、キュプラ(銅ア
ンモニアレーヨン)など、半合成繊維としてはセルロー
ス系半合成繊維としてアセテート(トリアセテート)な
ど、また合成繊維としては有機繊維と無機繊維がある
が、有機繊維としてはポリエステル、ナイロン、アクリ
ル、アラミドなどの各種繊維を挙げることができる。無
機繊維としては、金属繊維、ガラス繊維、セラミックス
繊維、炭素繊維、複合無機繊維などを挙げることができ
る。また本発明の繊維構造物には上記繊維の表面や内部
に各種有機物や無機物を付与したものも含まれる。
The fiber structure of the present invention includes natural fibers,
A filament, a spun yarn, a woven fabric, a knitted fabric, a non-woven fabric, or the like made of at least one of regenerated fiber, semi-synthetic fiber, and synthetic fiber can be used. Natural fibers such as cotton, animal hair fibers, silk and hemp, regenerated fibers such as cellulosic regenerated fibers rayon (viscose rayon) and cupra (copper ammonia rayon), etc., semi-synthetic fibers such as cellulosic semi-synthetic fibers Acetate (triacetate) and the like, and synthetic fibers include organic fibers and inorganic fibers, and as the organic fibers, various fibers such as polyester, nylon, acrylic, and aramid can be cited. Examples of the inorganic fibers include metal fibers, glass fibers, ceramic fibers, carbon fibers, composite inorganic fibers and the like. Further, the fiber structure of the present invention also includes those in which various organic substances or inorganic substances are provided on the surface or inside of the above fibers.

【0016】本発明の繊維構造物として合成繊維を用い
る場合、合成繊維を構成するポリマーとしてはポリエス
テル系高分子、ポリアミド系高分子、ポリオレフィン系
高分子などを挙げることができる。ここでポリエステル
系高分子としては、ポリエチレンテレフタレート、ポリ
プロピレンテレフタレート、ポリブチレンテレフタレー
トなどの芳香族ポリエステルやポリ乳酸、ポリカプロラ
クトンなどの脂肪族ポリエステルを基本的な構成単位と
してなるポリエステルを含む。なかでもポリエチレンテ
レフタレートを基本的な構成単位としてなるものが強度
や耐久性の点で望ましい。また本発明では上記のポリエ
ステルに何らかの他の成分を共重合した共重合体からな
る高分子や、これらに他の有機高分子化合物を少量ブレ
ンドした混合物からなる繊維もこれに含まれる。ポリア
ミド系高分子としてはナイロン、芳香族ポリアミドを、
ポリオレフィン系高分子としてはポリエチレン、ポリプ
ロピレン、ポリスチレンなどを挙げることができる。ま
たこれら以外の合成高分子としてポリフェニレンサルフ
ァイドやフッ素系高分子によって構成される合成繊維も
好適に用いることができる。
When synthetic fibers are used as the fiber structure of the present invention, examples of the polymer constituting the synthetic fibers include polyester type polymers, polyamide type polymers and polyolefin type polymers. Here, the polyester-based polymer includes a polyester having an aromatic polyester such as polyethylene terephthalate, polypropylene terephthalate, and polybutylene terephthalate, or an aliphatic polyester such as polylactic acid and polycaprolactone as a basic constituent unit. Among them, those having polyethylene terephthalate as a basic constituent unit are preferable in terms of strength and durability. Further, in the present invention, a polymer made of a copolymer obtained by copolymerizing the above polyester with some other component, or a fiber made of a mixture obtained by blending a small amount of another organic polymer compound therein is also included therein. As the polyamide-based polymer, nylon, aromatic polyamide,
Examples of the polyolefin-based polymer include polyethylene, polypropylene, polystyrene and the like. In addition, synthetic fibers composed of polyphenylene sulfide or a fluorine-based polymer can also be suitably used as other synthetic polymers.

【0017】本発明の繊維構造物中の繊維を構成する素
材としては、特に難燃性を有するものを用いると好まし
い。この理由は本発明の電磁波吸収性繊維構造物複合体
は電子機器の周辺で用いられることが多く、危険防止の
ために難燃化が求められるからである。難燃性を有する
素材の具体例としては、有機高分子としてポリフェニレ
ンサルファイド、フッ素系高分子、フェノール樹脂系高
分子、芳香族系液晶ポリエステルなどを挙げることがで
きる。また当然無機物は難燃性が高いため、上記の無機
繊維を構成する素材も好適に用いることができる。同様
に本発明の繊維構造物に難燃性を持たせるため繊維構造
物に難燃剤を含有させてもよい。
As the material constituting the fibers in the fiber structure of the present invention, it is preferable to use a material having flame retardancy. This is because the electromagnetic wave absorbing fiber structure composite of the present invention is often used in the vicinity of electronic devices, and flame retardancy is required to prevent danger. Specific examples of the flame-retardant material include polyphenylene sulfide, a fluorine-based polymer, a phenol resin-based polymer, and an aromatic liquid crystal polyester as the organic polymer. Naturally, inorganic materials have high flame retardancy, and thus the materials forming the above-mentioned inorganic fibers can also be suitably used. Similarly, in order to impart flame retardancy to the fiber structure of the present invention, the fiber structure may contain a flame retardant.

【0018】本発明の繊維構造物を構成する繊維径の平
均値は0.1〜1000μmが好ましく、特に1〜50
μmが好ましい。この範囲の繊維径の繊維構造物は本発
明の微粒子を保持するのに好適である。不織布の目付は
20〜1000g/m2で、厚みは0.1〜20mmが
好ましい。この理由は目付や厚みがこれより小さいもの
は強度が不足であり、これより大きいものは用途によっ
ては扱いにくいためである。また繊維構造物の見かけ密
度は0.01〜0.30g/cm3が好ましい。この理
由は見かけ密度がこれより小さいものは強度や耐久性が
不足であり、これより大きいものは本発明の微粒子を保
持できる空隙が少ないからである。
The average value of the fiber diameters constituting the fiber structure of the present invention is preferably 0.1 to 1000 μm, particularly 1 to 50.
μm is preferred. A fiber structure having a fiber diameter within this range is suitable for holding the fine particles of the present invention. The basis weight of the nonwoven fabric is preferably 20 to 1000 g / m 2 and the thickness is preferably 0.1 to 20 mm. The reason for this is that if the basis weight or thickness is smaller than this, the strength is insufficient, and if it is larger than this, it is difficult to handle depending on the application. The apparent density of the fiber structure is preferably 0.01 to 0.30 g / cm 3 . The reason for this is that if the apparent density is smaller than this, strength and durability are insufficient, and if it is larger than this, there are few voids that can hold the fine particles of the present invention.

【0019】本発明では繊維構造物中に多量の微粒子を
含有させるため、繊維構造物は織編み物に比べて内部に
均一な空隙を多量に有する不織布であることが望まし
い。本発明の不織布としては、乾式、湿式、スパンレー
ス、スパンボンド、メルトブローなどの各種方法で製造
される短繊維不織布または長繊維不織布から必要に応じ
て選択して用いることができる。不織布は好ましくはポ
リエステル系高分子、ポリアミド系高分子、ポリオレフ
ィン系高分子などの溶融紡糸可能な合成高分子で形成さ
れていることが望ましい。この理由はこのような合成高
分子を用いた不織布は繊度や繊維間空隙の量、形状など
を制御した安価な製品が容易に得られるからである。
In the present invention, since a large amount of fine particles are contained in the fiber structure, it is desirable that the fiber structure is a non-woven fabric having a large amount of uniform voids inside as compared with a woven or knitted fabric. The non-woven fabric of the present invention can be selected and used from short fiber non-woven fabrics or long fiber non-woven fabrics produced by various methods such as dry, wet, spunlace, spunbond, and melt blow, as required. The non-woven fabric is preferably formed of a melt-spinnable synthetic polymer such as a polyester polymer, a polyamide polymer, or a polyolefin polymer. The reason for this is that a nonwoven fabric using such a synthetic polymer can easily be obtained as an inexpensive product in which the fineness, the amount of inter-fiber voids, the shape, etc. are controlled.

【0020】不織布では特に繊維径が10〜50μmの
繊維を含有する層と、繊維径が0.1〜3μmの繊維を
含有する層との両方を含有する不織布を用いるのが好ま
しい。この理由は、このような積層不織布を用いると本
発明の微粒子が一方の層に選択的に捕捉されてもう一方
の側に移行できず、微粒子を不織布内部に長期的に保持
しやすいためである。上記2つの層を含有する不織布と
しては例えばスパンボンド不織布とメルトブロー不織布
を積層したものなどを挙げることができる。
As the non-woven fabric, it is particularly preferable to use a non-woven fabric containing both a layer containing fibers having a fiber diameter of 10 to 50 μm and a layer containing fibers having a fiber diameter of 0.1 to 3 μm. The reason for this is that when such a laminated nonwoven fabric is used, the fine particles of the present invention cannot be selectively trapped in one layer and migrate to the other side, and it is easy to retain the fine particles inside the nonwoven fabric for a long period of time. . Examples of the non-woven fabric containing the above two layers include those obtained by laminating a spun bond non-woven fabric and a melt blown non-woven fabric.

【0021】本発明では上記微粒子を繊維構造物の繊維
重量に対し30〜500重量%含有したことが特徴であ
る。本発明ではこのように電磁波吸収性のある微粒子を
繊維構造物と複合化することで、従来にない柔軟で軽量
な電磁波吸収素材が可能となった。ここで該微粒子を繊
維重量に対し30重量%以上含有することが好ましい理
由は、繊維重量あたりの電磁波吸収成分の割合を高めて
高い電磁波吸収効果を得るためである。該微粒子の含有
率が500重量%以下が望ましい理由はこれより大きく
なると繊維構造物の外観や取扱い性が低下するからであ
る。より好ましくは、該微粒子の含有率は80〜200
重量%であることが望ましい。含有率が80%以上であ
ることが望ましい理由は、このように多量の電波吸収成
分を含有することで厚さの薄い繊維構造物複合体でも高
い電磁波吸収効果が得られるからである。該微粒子の含
有率が200重量%以下が望ましい理由は、これより大
きくなると繊維構造物複合体の生産プロセスが難しくな
るからである。
The present invention is characterized in that the fine particles are contained in an amount of 30 to 500% by weight based on the weight of the fiber of the fiber structure. In the present invention, by combining the fine particles having electromagnetic wave absorbing property with the fiber structure in this manner, a flexible and lightweight electromagnetic wave absorbing material which has never been available has been made possible. The reason why it is preferable to contain the fine particles in an amount of 30% by weight or more based on the weight of the fiber is to increase the ratio of the electromagnetic wave absorbing component per the weight of the fiber to obtain a high electromagnetic wave absorbing effect. The reason why the content of the fine particles is preferably 500% by weight or less is that the appearance and handleability of the fiber structure are deteriorated when the content is larger than this. More preferably, the content of the fine particles is 80 to 200.
It is desirable that the content is wt%. The reason why the content ratio is preferably 80% or more is that such a large amount of radio wave absorbing component allows a high electromagnetic wave absorbing effect to be obtained even with a thin fiber structure composite. The reason why the content of the fine particles is preferably 200% by weight or less is that the production process of the fiber structure composite becomes difficult if the content is more than this range.

【0022】本発明では該微粒子を繊維構造物内部の繊
維間空隙に含有させることが特徴である。微粒子を高分
子に混合して繊維化する方法では繊維物性が低下するた
め高率の微粒子含有量を得ることが難しかったが、本発
明では特に不織布を利用し、繊維構造物内部に80〜9
0%以上の割合で存在する繊維間空隙を利用すること
で、従来にないほど多量の微粒子を繊維構造物に複合化
することができた。
The present invention is characterized in that the fine particles are contained in inter-fiber voids inside the fiber structure. In the method of mixing fine particles with a polymer to form a fiber, it is difficult to obtain a high content of fine particles because the physical properties of the fiber are deteriorated. However, in the present invention, a nonwoven fabric is particularly used and 80 to 9 are contained inside the fiber structure.
By utilizing the inter-fiber voids that exist in a proportion of 0% or more, it was possible to compound a large amount of fine particles into the fiber structure as never before.

【0023】本発明の繊維構造物複合体は、さらに通気
量が0.1〜800ml/cm2/secであることが
望ましい。通気量がこれより小さいと電子機器の通気孔
などに使用した際に空気が内部に流通せず実用性が得ら
れにくいためで、通気量がこれより大きいと用途によっ
ては取り扱いにくくなるからである。本発明では繊維構
造物複合体の通気量は10〜100ml/cm2/se
cであることがより好ましい。この理由はこれ以下の通
気量では多量の水分処理が必要な際に空気の繊維構造物
複合体内への流通が不足しやすいためで、これ以上の通
気量となるように繊維構造物の構造をルーズにすると強
度や耐久性が不足するためである。本発明ではやはり不
織布を用いる方がより通気性と粒子含有量をバランスし
やすく望ましい。
The fiber structure composite of the present invention preferably has an air permeability of 0.1 to 800 ml / cm 2 / sec. This is because if the air flow rate is smaller than this, it will be difficult to obtain practicality because the air will not circulate inside when used for ventilation holes of electronic devices. If the air flow rate is higher than this, it will be difficult to handle for some applications. . In the present invention, the air permeability of the fiber structure composite is 10 to 100 ml / cm 2 / se.
It is more preferably c. The reason for this is that if the air flow rate is less than this amount, the flow of air into the fiber structure composite tends to be insufficient when a large amount of water treatment is required. This is because strength and durability are insufficient when loosened. In the present invention, it is also preferable to use a non-woven fabric because the air permeability and the particle content can be more easily balanced.

【0024】本発明では、繊維構造物複合体の表面に電
磁波反射層および/または保護層を設けることが望まし
い。電磁波反射層とは導電性が高く内部に電磁波を進入
させないものを言い、金属箔や導電性繊維布帛などを挙
げることができる。電磁波反射層を設けることが望まし
い理由は、これにより電磁波が反射に反対側への伝搬を
抑制することで電子機器からの電磁波の輻射を抑える効
果が得られるためである。保護層とは電磁波吸収層の表
面を被覆し他の物体との接触・摩擦や有害ガスなどから
保護するもので、樹脂層、多孔質フィルム、紙、繊維シ
ート、通気性ネット、その他各種繊維構造物などを挙げ
ることができる。本発明の目的のため、これら電磁波反
射層や保護層は通気性を有していることが望ましい。ま
た同様に接着剤や粘着剤の層を設けることもできる。保
護層を設けることが望ましい理由は、本発明の繊維構造
物複合体からの微粒子の脱落を抑え、装置への悪影響な
どを避けるためや、長期使用時の耐久性を向上したりす
るためである。電磁波反射層は片面のみに設ければよ
く、その場合は保護層は反対面に設けるのがよい。この
ように電磁波反射層や保護層を一体化した製品とするこ
とで、本発明の繊維構造物複合体は電子機器やケーブル
被覆材として施工性のよい、使いやすいものとなる。
In the present invention, it is desirable to provide an electromagnetic wave reflection layer and / or a protective layer on the surface of the fiber structure composite. The electromagnetic wave reflection layer is a layer having high conductivity and preventing electromagnetic waves from entering inside, and examples thereof include a metal foil and a conductive fiber cloth. The reason why it is desirable to provide the electromagnetic wave reflection layer is that this suppresses the propagation of the electromagnetic wave to the side opposite to the reflection, thereby obtaining the effect of suppressing the radiation of the electromagnetic wave from the electronic device. The protective layer is a layer that covers the surface of the electromagnetic wave absorption layer and protects it from contact with other objects, friction, harmful gas, etc., resin layer, porous film, paper, fiber sheet, breathable net, and other various fiber structures. You can list things. For the purpose of the present invention, it is desirable that these electromagnetic wave reflection layers and protective layers have air permeability. Similarly, an adhesive layer or a pressure-sensitive adhesive layer may be provided. The reason why it is desirable to provide a protective layer is to prevent the fine particles from falling out of the fiber structure composite of the present invention, to avoid adverse effects on the device, and to improve durability during long-term use. . The electromagnetic wave reflection layer may be provided on only one surface, and in that case, the protection layer is preferably provided on the opposite surface. By thus forming a product in which the electromagnetic wave reflection layer and the protective layer are integrated, the fiber structure composite of the present invention has good workability and is easy to use as an electronic device or a cable covering material.

【0025】また本発明の繊維構造物複合体は導電性繊
維を含有することが望ましい。導電性繊維とは抵抗値が
1Ω・cm程度以下の繊維を言い、例として金属繊維、
炭素繊維、金属メッキ高分子繊維などを挙げることがで
きる。このような繊維を例えば上記電磁波反射層に含有
させれば柔軟・軽量で通気性のよい電磁波吸収性繊維構
造物複合体を得ることができる。またこのような繊維を
微粒子を含有させる繊維構造物層に含有させてもよく、
その種類や配合量を適当に選ぶことで電磁波吸収効果を
さらに向上したりできる。
Further, the fiber structure composite of the present invention preferably contains conductive fibers. The conductive fiber means a fiber having a resistance value of about 1 Ω · cm or less, for example, a metal fiber,
Examples thereof include carbon fibers and metal-plated polymer fibers. If such a fiber is contained in the electromagnetic wave reflecting layer, for example, an electromagnetic wave absorbing fiber structure composite body which is flexible, lightweight and has good air permeability can be obtained. Further, such a fiber may be contained in the fiber structure layer containing fine particles,
The electromagnetic wave absorption effect can be further improved by appropriately selecting the type and blending amount.

【0026】中でも、本発明では導電性繊維として炭素
繊維を用いることが望ましい。この理由は炭素繊維は金
属繊維に比べて軽量であること、抵抗値を製法により制
御できること、大きな誘電損失を持つことなどである。
例えば炭素繊維を電磁波反射層に含有させればさらに軽
量な電磁波吸収性繊維構造物複合体を得ることができ、
微粒子を含有させる繊維構造物層に含有させればその誘
電損失により電磁波吸収効果をさらに向上できる。
Among them, in the present invention, it is desirable to use carbon fiber as the conductive fiber. The reason for this is that the carbon fiber is lighter than the metal fiber, the resistance value can be controlled by the manufacturing method, and the dielectric loss is large.
For example, by including carbon fibers in the electromagnetic wave reflection layer, a lighter electromagnetic wave absorption fiber structure composite can be obtained,
If it is contained in the fiber structure layer containing fine particles, the dielectric loss can further improve the electromagnetic wave absorption effect.

【0027】本発明では、本発明の繊維構造物複合体の
特性が得られる限りにおいて、特に微粒子を繊維構造物
に付与する方法に限定はない。例としては、微粒子の水
分散液をディッピングやスプレーなどで付与して乾燥す
る方法、微粒子を気流にて繊維構造物に吹き付けて保持
させる方法、微粒子と短繊維を混合した状態でネットに
気流で吹き付けて不織布化する方法、水流交絡で短繊維
を交絡させて不織布を形成する過程で微粒子を取り込ま
せる方法、メルトブロー不織布の気流に微粒子を含有さ
せて不織布に取り込ませる方法などを挙げることができ
る。必要によっては上記方法を繰り返し用いたり、複合
して用いたりしてもよい。
In the present invention, as long as the characteristics of the fiber structure composite of the present invention can be obtained, there is no particular limitation on the method of applying fine particles to the fiber structure. Examples include a method in which an aqueous dispersion of fine particles is applied by dipping or spraying and drying, a method in which fine particles are sprayed and held on a fiber structure by an air flow, and a state in which fine particles and short fibers are mixed is air flow in a net. Examples thereof include a method of spraying to make a nonwoven fabric, a method of incorporating fine particles in the process of forming the nonwoven fabric by entanglement of short fibers by hydroentanglement, a method of incorporating fine particles into the air flow of a meltblown nonwoven fabric and incorporating them into the nonwoven fabric. If necessary, the above methods may be repeatedly used or combined.

【0028】本発明の繊維構造物複合体では、微粒子を
繊維に固着するため、繊維構造物に熱融着繊維を含有さ
せたり、接着剤を微粒子とともに繊維構造物に付与した
りすることも可能である。熱融着繊維や接着剤の種類や
配合量は用途や必要特性に応じて選択すればよい。
In the fibrous structure composite of the present invention, since the fine particles are fixed to the fiber, it is possible to include a heat-sealing fiber in the fibrous structure or to apply an adhesive together with the fine particles to the fibrous structure. Is. The types and blending amounts of the heat-sealing fibers and the adhesive may be selected according to the application and required characteristics.

【0029】本発明ではこのように電波吸収性微粒子を
多量に繊維構造物に含有させることで、特に電子機器の
内部、通気孔周辺で用いるガスケットなどの部品や、通
信ケーブル被覆材が可能となった。電子機器部品用途の
具体例としては、パソコンのガスケット、基板に貼り付
けるシート、携帯電話内部に配置する部品などを挙げる
ことができる。通信ケーブル被覆材の具体例としては、
高速LAN、画像転送用、高周波測定機器用などの各種
ケーブルの被覆材を挙げることができる。
In the present invention, by including a large amount of the radio wave absorbing fine particles in the fiber structure as described above, it becomes possible to provide a component such as a gasket used especially inside the electronic equipment and around the ventilation hole, and a communication cable coating material. It was Specific examples of electronic device parts applications include gaskets for personal computers, sheets to be attached to substrates, and parts to be placed inside mobile phones. As a concrete example of the communication cable covering material,
Examples include coating materials for various cables for high-speed LAN, image transfer, high-frequency measuring equipment, and the like.

【0030】[0030]

【実施例】以下、実施例をあげて本発明をさらに具体的
に説明する。
EXAMPLES The present invention will be described in more detail below with reference to examples.

【0031】なお、実施例および比較例における測定は
以下の方法で行った。 <平均粒径>コールターカウンター法により、常法に従
い行った。 <反射減衰量とピーク周波数>500MHz、3GH
z、9GHzにおける入射波に対する反射波の減衰量を
ネットワークアナライザーを用いて測定し、それぞれの
周波数における減衰量(dB)を得た。 [実施例1]Mn−Zn系フェライト微粒子(平均粒径
3.2μm)を用い、この粒子の20重量%水分散液
に、目付240g/m2、厚み1.5mmのポリエステ
ルスパンボンド不織布を絞り率95%で浸漬し、130
℃で乾燥する操作を2回繰り返し、多孔質シリカ微粒子
が繊維重量に対し37%付与された繊維構造物複合体を
得た。
The measurements in Examples and Comparative Examples were carried out by the following methods. <Average particle size> The average particle size was measured according to the usual method by the Coulter counter method. <Return loss and peak frequency> 500MHz, 3GH
The amount of attenuation of the reflected wave with respect to the incident wave at z and 9 GHz was measured using a network analyzer, and the amount of attenuation (dB) at each frequency was obtained. [Example 1] Mn-Zn ferrite fine particles (average particle size 3.2 µm) were used, and a 20% by weight aqueous dispersion of these particles was squeezed with a polyester spunbond nonwoven fabric having a basis weight of 240 g / m 2 and a thickness of 1.5 mm. Dipping at 95%, 130
The operation of drying at 0 ° C. was repeated twice to obtain a fiber structure composite in which 37% of the porous silica fine particles were added to the fiber weight.

【0032】得られた複合体の特性を表1に示す。これ
から、本発明により高い電磁波吸収性を持ち、柔軟・軽
量な繊維構造物複合体が得られた。 [実施例2]目付60g/m2、厚み0.3mmのポリ
エステルスパンボンド不織布上に、実施例1のフェライ
ト微粒子と低融点ポリエステルを鞘にした熱融着性の芯
鞘ポリエステル短繊維とを混合して気流にて吹き付け積
層し、熱プレスした。微粒子の熱融着性短繊維との混合
比は微粒子重量2に対して短繊維重量1とした。これに
よりフェライト微粒子が繊維重量に対し145%付与さ
れた不織布複合体を得た。
The characteristics of the obtained composite are shown in Table 1. From this, according to the present invention, a flexible and lightweight fiber structure composite having high electromagnetic wave absorption was obtained. [Example 2] A ferrite spunbonded nonwoven fabric having a basis weight of 60 g / m 2 and a thickness of 0.3 mm was mixed with the ferrite fine particles of Example 1 and a heat-sealable core-sheath polyester staple fiber having a low melting point polyester as a sheath. Then, they were spray-laminated by an air stream and hot-pressed. The mixing ratio of the fine particles to the heat-fusible short fibers was 1 to 2 parts by weight of fine particles. As a result, a nonwoven fabric composite in which 145% of ferrite fine particles were added to the fiber weight was obtained.

【0033】得られた複合体の特性を表1に示す。これ
から、本発明により高い電磁波吸収性を持ち、柔軟・軽
量な繊維構造物複合体が得られた。 [実施例3]スパンボンド不織布(平均繊維径20μ
m)の上にメルトブロー不織布(平均繊維研2μm)が
積層された、目付80g/m2、厚み0.5mmのポリ
プロピレン不織布を用い、これに実施例1の磁性体微粒
子をスパンボンド不織布側から気流にて吹き付けて複合
化した。これにより多孔質シリカ微粒子が繊維重量に対
し156%付与された不織布複合体を得た。
The characteristics of the obtained composite are shown in Table 1. From this, according to the present invention, a flexible and lightweight fiber structure composite having high electromagnetic wave absorption was obtained. [Example 3] Spunbonded nonwoven fabric (average fiber diameter 20μ
m), a melt-blown nonwoven fabric (average fiber thickness: 2 μm) was laminated on the polypropylene nonwoven fabric having a basis weight of 80 g / m 2 and a thickness of 0.5 mm, and the magnetic fine particles of Example 1 were flown from the spunbonded nonwoven fabric side. It was sprayed and compounded. As a result, a non-woven fabric composite was obtained in which 156% of the porous silica fine particles were added to the fiber weight.

【0034】得られた複合体の特性を表1に示す。これ
から、本発明により高い電磁波吸収性を持ち、柔軟・軽
量な繊維構造物複合体が得られた。 [実施例4〜6]実施例1〜3の繊維構造物複合体の片
面に電磁波反射層としてニッケルメッキ導電布(厚み
0.8mm、表面抵抗0.8Ω/□)をアクリル系接着
剤を用いて全面接着した。
The characteristics of the obtained composite are shown in Table 1. From this, according to the present invention, a flexible and lightweight fiber structure composite having high electromagnetic wave absorption was obtained. [Examples 4 to 6] A nickel-plated conductive cloth (thickness 0.8 mm, surface resistance 0.8 Ω / □) was used as an electromagnetic wave reflection layer on one surface of each of the fiber structure composites of Examples 1 to 3 using an acrylic adhesive. And bonded all over.

【0035】得られた繊維構造物複合体の特性を表1に
示す。これから、本発明により高い電磁波吸収性を持
ち、柔軟・軽量な繊維構造物複合体が得られた。 [実施例7]目付60g/m2、厚み0.3mmのポリ
エステルスパンボンド不織布上に、実施例1のフェライ
ト微粒子と低融点ポリエステルを鞘にした熱融着性の芯
鞘ポリエステル短繊維、さらに誘電体微粒子としてカー
ボンブラックを混合して気流にて吹き付け積層し、熱プ
レスした。各成分の混合比は微粒子重量2に対して短繊
維重量1、カーボンブラック0.2とした。これにより
フェライト微粒子がポリエステル繊維重量に対し124
%、カーボンブラックが11%含有された繊維構造物複
合体を得た。
The properties of the obtained fiber structure composite are shown in Table 1. From this, according to the present invention, a flexible and lightweight fiber structure composite having high electromagnetic wave absorption was obtained. Example 7 A polyester spunbonded nonwoven fabric having a basis weight of 60 g / m 2 and a thickness of 0.3 mm was used, and the ferrite fine particles of Example 1 and the low-melting point polyester were used as sheaths for heat-sealing core-sheath polyester short fibers, and further dielectrics. Carbon black was mixed as body particles, sprayed and laminated by an air stream, and hot pressed. The mixing ratio of each component was such that the weight of fine particles was 2 and the weight of short fibers was 1 and carbon black was 0.2. As a result, the ferrite fine particles are 124
%, And a carbon fiber composite containing 11% of carbon black was obtained.

【0036】得られた繊維構造物複合体の特性を表1に
示す。これから、本発明によりさらに高い電磁波吸収性
を持ち、柔軟・軽量な繊維構造物複合体が得られた。 [実施例8]実施例7においてカーボンブラック粒子の
代わりに短繊維化したニッケルメッキアクリル繊維を用
いて同様に行った。これによりフェライト微粒子がポリ
エステル繊維重量に対し124%、ニッケルメッキアク
リル繊維が12%含有された繊維構造物複合体を得た。
The characteristics of the obtained fiber structure composite are shown in Table 1. From this, according to the present invention, a flexible and lightweight fiber structure composite having higher electromagnetic wave absorption was obtained. [Example 8] The same operation as in Example 7 was carried out by using nickel-plated acrylic fibers made into short fibers instead of the carbon black particles. Thus, a fiber structure composite containing 124% of ferrite fine particles and 12% of nickel-plated acrylic fiber based on the weight of polyester fiber was obtained.

【0037】得られた繊維構造物複合体の特性を表1に
示す。これから、本発明によりさらに高い電磁波吸収性
を持ち、柔軟・軽量な繊維構造物複合体が得られた。 [実施例9]実施例7においてカーボンブラック粒子の
代わりに短繊維化した炭素繊維を用いて同様に行った。
これによりフェライト微粒子がポリエステル繊維重量に
対し122%、炭素繊維が10%含有された繊維構造物
複合体を得た。
The characteristics of the obtained fiber structure composite are shown in Table 1. From this, according to the present invention, a flexible and lightweight fiber structure composite having higher electromagnetic wave absorption was obtained. [Example 9] The same operation as in Example 7 was carried out by using short carbon fibers instead of the carbon black particles.
Thus, a fiber structure composite containing 122% of ferrite fine particles and 10% of carbon fibers based on the weight of polyester fibers was obtained.

【0038】得られた繊維構造物複合体の特性を表1に
示す。これから、本発明によりさらに高い電磁波吸収性
を持ち、柔軟・軽量な繊維構造物複合体が得られた。 [比較例1]実施例1において、ポリエステルスパンボ
ンド不織布を浸漬し乾燥する操作を1回しか行わないこ
とを除いては実施例1と同様に行った。結果、フェライ
ト微粒子の付与量は14%で、表1に示すように高い電
磁波吸収効果は得れなかった。
The characteristics of the obtained fiber structure composite are shown in Table 1. From this, according to the present invention, a flexible and lightweight fiber structure composite having higher electromagnetic wave absorption was obtained. Comparative Example 1 The procedure of Example 1 was repeated, except that the operation of dipping and drying the polyester spunbonded nonwoven fabric was performed only once. As a result, the amount of the ferrite fine particles applied was 14%, and as shown in Table 1, a high electromagnetic wave absorbing effect was not obtained.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【発明の効果】本発明の電磁波吸収性繊維構造物複合体
により、高周波で動作する電子機器や通信ケーブルのノ
イズ対策を施工性よく、簡便に行うことができる。特に
電子機器通気孔のガスケットとして用いると通気性を高
く保ちながら高い電磁波漏洩防止効果が得られる。また
高速通信ケーブル被覆材として用いると細いケーブルに
も巻きやすく、かつ高い電磁波漏洩防止効果が得られ
る。また本発明の電磁波吸収素材は繊維構造物であるた
めその内部で振動のエネルギーを吸収する作用があり、
吸音・制振性も併せ持つ。
EFFECT OF THE INVENTION The electromagnetic wave absorbing fiber structure composite of the present invention makes it possible to easily and easily take measures against noise in electronic devices and communication cables operating at high frequencies. Especially when it is used as a gasket for a ventilation hole of an electronic device, a high effect of preventing electromagnetic wave leakage can be obtained while maintaining high air permeability. Further, when used as a high-speed communication cable covering material, it can be easily wound even on a thin cable, and a high electromagnetic wave leakage prevention effect can be obtained. Further, since the electromagnetic wave absorbing material of the present invention is a fiber structure, it has an action of absorbing vibration energy inside,
It also has sound absorption and damping properties.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4L031 AA27 BA05 BA20 DA00 DA15 5E321 AA03 AA21 BB21 BB25 BB31 BB51 CC16 GG05 GG09 GG11 GH05    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4L031 AA27 BA05 BA20 DA00 DA15                 5E321 AA03 AA21 BB21 BB25 BB31                       BB51 CC16 GG05 GG09 GG11                       GH05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】磁性体微粒子を繊維重量に対し30〜50
0重量%含有したことを特徴とする電磁波吸収性繊維構
造物複合体。
1. Magnetic fine particles in an amount of 30 to 50 relative to the weight of fiber.
An electromagnetic wave absorbing fiber structure composite characterized by containing 0% by weight.
【請求項2】該微粒子の繊維重量に対する含有量が80
〜200重量%であることを特徴とする請求項1に記載
の電磁波吸収性繊維構造物複合体。
2. The content of the fine particles with respect to the fiber weight is 80.
% To 200% by weight, the electromagnetic wave absorbing fiber structure composite according to claim 1.
【請求項3】該繊維構造物複合体の表面に電磁波反射層
および/または保護層を設けることを特徴とする請求項
1または2に記載の電磁波吸収性繊維構造物複合体。
3. The electromagnetic wave absorbing fiber structure composite according to claim 1, wherein an electromagnetic wave reflecting layer and / or a protective layer is provided on the surface of the fiber structure composite.
【請求項4】該繊維構造物複合体が導電性繊維を含有す
ることを特徴とする請求項1〜3のいずれかに記載の電
磁波吸収性繊維構造物複合体。
4. The electromagnetic wave absorbing fiber structure composite according to claim 1, wherein the fiber structure composite contains conductive fibers.
【請求項5】該導電性繊維が炭素繊維であることを特徴
とする請求項4に記載の電磁波吸収性繊維構造物複合
体。
5. The electromagnetic wave absorbing fiber structure composite according to claim 4, wherein the conductive fiber is a carbon fiber.
【請求項6】通気量が0.1〜800ml/cm2/s
ecであることを特徴とする請求項1〜5のいずれかに
記載の電磁波吸収性繊維構造物複合体。
6. A ventilation rate of 0.1 to 800 ml / cm 2 / s.
It is ec, The electromagnetic wave absorptive fiber structure composite body in any one of Claims 1-5 characterized by the above-mentioned.
JP2001329225A 2001-10-26 2001-10-26 Fiber structural composition having electromagnetic absorbability Pending JP2003133785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001329225A JP2003133785A (en) 2001-10-26 2001-10-26 Fiber structural composition having electromagnetic absorbability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001329225A JP2003133785A (en) 2001-10-26 2001-10-26 Fiber structural composition having electromagnetic absorbability

Publications (1)

Publication Number Publication Date
JP2003133785A true JP2003133785A (en) 2003-05-09

Family

ID=19145160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001329225A Pending JP2003133785A (en) 2001-10-26 2001-10-26 Fiber structural composition having electromagnetic absorbability

Country Status (1)

Country Link
JP (1) JP2003133785A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093908A (en) * 2003-09-19 2005-04-07 Fine Rubber Kenkyusho:Kk Electromagnetic wave controller, method for manufacturing same, and portable telephone
JP2009030221A (en) * 2007-06-28 2009-02-12 Toray Ind Inc Electromagnetic wave absorption fabric for noncontact radio frequency identification
JP2009088025A (en) * 2007-09-27 2009-04-23 Kuraray Kuraflex Co Ltd Electromagnetic wave absorbing material and its manufacturing method
JP2011181714A (en) * 2010-03-02 2011-09-15 Terada Takaron Kk Electromagnetic wave shield sheet and manufacturing method thereof
JP2016530822A (en) * 2013-08-26 2016-09-29 サーティ エス.ピー.エー. Multi-layer fabric structure for magnetic field protection and screening

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093908A (en) * 2003-09-19 2005-04-07 Fine Rubber Kenkyusho:Kk Electromagnetic wave controller, method for manufacturing same, and portable telephone
JP4615200B2 (en) * 2003-09-19 2011-01-19 株式会社ファインラバー研究所 Electromagnetic wave control body and mobile phone
JP2009030221A (en) * 2007-06-28 2009-02-12 Toray Ind Inc Electromagnetic wave absorption fabric for noncontact radio frequency identification
JP2009088025A (en) * 2007-09-27 2009-04-23 Kuraray Kuraflex Co Ltd Electromagnetic wave absorbing material and its manufacturing method
JP2011181714A (en) * 2010-03-02 2011-09-15 Terada Takaron Kk Electromagnetic wave shield sheet and manufacturing method thereof
JP2016530822A (en) * 2013-08-26 2016-09-29 サーティ エス.ピー.エー. Multi-layer fabric structure for magnetic field protection and screening

Similar Documents

Publication Publication Date Title
JP5722608B2 (en) Noise absorbing fabric
JP2019106542A (en) Noise-absorbing sheet
KR101780649B1 (en) Heat insulating pad having excellent effect for sound absorption and electromagnetic wave shield
KR101849887B1 (en) Interior sound proof curtain having excellent heat insulation property
KR102113351B1 (en) Composite fiber aggregate having excellent sound absorption performance and electromagnetic wave shield and manufacturing method thereof
JP5092144B2 (en) Sound absorbing material and manufacturing method thereof
JP5151162B2 (en) Noise suppression sheet
JP2003133785A (en) Fiber structural composition having electromagnetic absorbability
CN103709451A (en) Ceiling with electromagnetic wave absorption function and preparation method thereof
Shen et al. Design of microperforated nanofibrous membrane coated nonwoven structure for acoustic applications
JP4303388B2 (en) Electromagnetic wave absorber and method for producing the same
JP2006002429A (en) Radio wave-sound wave absorbing thermal insulation body
KR101863514B1 (en) Nonflammable interior material of building
JP4226140B2 (en) Non-combustible radio wave absorbing felt and felt with composite panel and metal foil
JP5469388B2 (en) Coiled conductive yarn, radio wave absorber, and radio wave absorption structure
JP3106109U (en) Electromagnetic wave shielding sheet and electromagnetic wave shielding body using the same
WO2005069712A1 (en) Woody electric wave absorber
JP2640779B2 (en) Electromagnetic wave shielding material
JP2002198683A (en) Electromagnetic wave absorber
JP2005123479A (en) Electromagnetic wave shield structure
JP2855402B2 (en) Broadband radio wave absorber
JPH04146249A (en) Carbon fiber-containing low-density formed product
CN113650378A (en) Non-woven fabric with electromagnetic wave absorption capacity and preparation method thereof
JPH08181482A (en) Electromagnetic wave absorber
JP2002141691A (en) Radio wave absorbing body