JP2003132794A - Heating method of getter material - Google Patents

Heating method of getter material

Info

Publication number
JP2003132794A
JP2003132794A JP2001332729A JP2001332729A JP2003132794A JP 2003132794 A JP2003132794 A JP 2003132794A JP 2001332729 A JP2001332729 A JP 2001332729A JP 2001332729 A JP2001332729 A JP 2001332729A JP 2003132794 A JP2003132794 A JP 2003132794A
Authority
JP
Japan
Prior art keywords
getter material
core material
core
getter
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001332729A
Other languages
Japanese (ja)
Inventor
Satoshi Takemoto
聡 武本
Takanobu Saitou
貴伸 斉藤
Tsutomu Miyazaki
力 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Miyaden Co Ltd
Original Assignee
Daido Steel Co Ltd
Miyaden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Miyaden Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001332729A priority Critical patent/JP2003132794A/en
Publication of JP2003132794A publication Critical patent/JP2003132794A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heating method of a getter material, in which the getter material enclosed in a cathode-ray tube is induction-heated with large high frequency current. SOLUTION: In case of the induction heating of the getter material 4 enclosed in the cathode-ray tube using a core material 2 arranged in an excitation coil 1, to which high frequency current is conducted, the heating method of the getter material concerned has the core material, which is a dust core that consists of soft magnetic powder, in which Si: 5 to 12 mass %, Al: 3 to 8 mass %, and the remainder that consists of Fe and unavoidable impurity, and an insulating agent, as the main ingredient.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、陰極線管内に封入
されているゲッター材を誘導加熱する方法に関し、更に
詳しくは、高周波電流を通電しても自己発熱の度合いが
少なく、磁気特性の劣化も起こしづらいコア材を用いて
ゲッター材を誘導加熱する方法に関する。 【0002】 【従来の技術】ブラウン管や真空管のような陰極線管の
製造工程では、真空封止後に、次のようにして管内に残
留する気体の除去作業が行われる。すなわち、陰極線管
の真空封止に際しては、例えばTiのような活性金属か
ら成り、通常、ゲッター材と呼ばれる板材を同時に封入
しておく。そして、陰極線管の外部から上記ゲッター材
を誘導加熱する。 【0003】具体的には、図2で示したように、所定の
ターン数で巻線されている励磁コイルとその中に配置さ
れたコア材2とを、陰極線管3の中に封入されているゲ
ッター材4に対向配置し、励磁コイル1に高周波電流を
通電する。励磁コイル1で発生した磁束は、コア材2に
より集中してゲッター材4に導入される。そして当該ゲ
ッター材4には渦電流が流れ、ゲッター材4は抵抗発熱
する。このとき、通電する高周波電流の周波数と電流値
を適切に選定することにより、励磁コイルで強磁界を発
生させ、ゲッター材4の抵抗発熱量を大きくして当該ゲ
ッター材4を赤熱させる。 【0004】赤熱したゲッター材4(活性金属)は管内
の空気(酸素と窒素)と反応して酸化物や窒化物に転化
し、そのことにより、管内の残留空気はゲッター材に固
定されるので、管内の真空度は高くなる。このような誘
導加熱方式において、コア材2は、励磁コイル1で発生
させた磁束をゲッター材4に集中し、そのことによりゲ
ッター材の誘導加熱を効果的に実現させるために用いら
れる部材であって、従来からフェライトが多く用いられ
ている。 【0005】 【発明が解決しようとする課題】しかしながら、コア材
としてフェライトを用いて実施する上記したゲッター材
の誘導加熱方式には、当該フェライトの特性に規定され
て、次のような問題がある。まず、フェライトの飽和磁
束密度はそれほど大きくないので、励磁コイルに大きな
高周波電流を通電すると、発生した大きな磁界によって
フェライトコア材の磁束は飽和してしまい、その結果、
ゲッター材へ導入される磁束密度は低減してゲッター材
の抵抗発熱量は小さくなり、赤熱状態にまで発熱しない
ことがある。 【0006】また、励磁コイルに大きな高周波電流を通
電すると、フェライトコア材それ自体に渦電流が発生し
て、フェライトコア材は著しく自己発熱する。そして、
フェライトのキュリー点は150〜300℃程度の低温
であるため、上記した発熱によって磁気特性が大幅に劣
化して使用不能になることがある。これらの問題の発生
は、励磁コイルに通電する電流を低周波数で電流値が小
さい電流に変えれば抑制可能であるが、その場合には、
ゲッター材の発熱量は減少して赤熱状態にまで昇温する
ことができなくなるので採用することはできない。 【0007】本発明は、コア材としてフェライトを用い
たときのゲッター材の誘導加熱方式における上記した問
題を解決し、励磁コイルに大きな高周波電流を通電して
も自己発熱を起こしづらく、そしてゲッター材を赤熱状
態にまで加熱することができるコア材を用いたゲッター
材の加熱方法の提供を目的とする。 【0008】 【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、高周波電流を通電する励磁
コイルの中に配置されたコア材を用いて陰極線管内に封
入されたゲッター材を誘導加熱する際に、前記コア材
は、Si:5〜12質量%,Al:3〜8質量%,残部
がFeと不可避的不純物から成る軟磁性粉末と絶縁材と
を主体とする圧粉磁心であることを特徴とするゲッター
材の加熱方法が提供される。 【0009】 【発明の実施の形態】本発明方法は、コア材が後述する
圧粉磁心であることを除けば、既に説明した従来のゲッ
ター材の誘導加熱方式の場合と同様に実施される。本発
明方法でコア材として用いる圧粉磁心は、軟磁性粉末と
絶縁材を必須成分とする圧粉成形体である。 【0010】その場合の軟磁性粉末はSi:5〜12質
量%,Al:3〜8質量%,残部がFeと不可避的不純
物から成るFe−Si−Al系合金の粉末である。Fe
−Si−Al系合金の代表例はFe−9.5%Si−5.
5%Alであり、この組成のものが直流B−H曲線にお
けるヒステリシスが最も小さい。すなわち、ヒステリシ
スによる発熱が小さい。しかしながら、Fe−9.5%
Si−5.5%Alの組成から外れるにつれてヒステリ
シスは増加するため発熱も大きくなる。 【0011】この軟磁性粉末は、Si成分,Al成分、
そしてFe成分を目的組成となる量比で混合し、その混
合物を例えば誘導加熱して溶解することにより所定組成
の溶湯としたのち、その溶湯に対し、粉砕法やアトマイ
ズ法を適用して製造することができる。また、本発明で
用いる軟磁性粉末としては、その平均粒径が70μm以
下であることが好ましい。平均粒径が70μmより大き
い粒径である場合には、製造した圧粉磁心に大きな渦電
流が流れるようになって自己発熱が進み、コア材の温度
がキュリー点を超えることもあり得るからである。 【0012】圧粉磁心の製造に際し、この軟磁性粉末は
まず絶縁材と混合される。絶縁材としては、例えば水ガ
ラスやシリコーン樹脂などの液状絶縁材が用いられる。
具体的には、軟磁性粉末と上記絶縁材を混合することに
より、個々の軟磁性粉末を絶縁材で被覆する。したがっ
て、混合後にあっては、個々の軟磁性粉末の間に絶縁膜
が形成され、その結果、製造したコア材の電気抵抗率は
高くなり、そのコア材では渦電流の発生が低減する。 【0013】また、絶縁材としては例えばAl23粉末
やSiO2粉末などを用い、これら粉末と軟磁性粉末を
混合する際に、更に上記した液状絶縁材を添加して、個
々の軟磁性粉末の間を絶縁状態にしてもよい。絶縁材の
配合量は、軟磁性粉末100質量部に対し、0.5〜1
0質量部に設定することが好ましい。0.5質量部より
少ない場合は、個々の軟磁性粉末間に充分な絶縁膜が形
成されず、得られるコア材の電気抵抗率が低くなり、ま
た、10質量部より多くすると、電気抵抗率は高くなる
とはいえ、軟磁性粉末の相対的な割合が小さくなり、ま
た透磁率も小さくなって得られたコア材の飽和磁束密度
が小さくなってしまうからである。 【0014】このようにして調製された混合物は、次
に、金型内で例えばプレス成形して所定形状の圧粉成形
体に賦形される。このときの成形圧が高すぎると、前記
した絶縁膜の破壊が起こって個々の軟磁性粉末が直接接
触してコア材としての電気抵抗率が低くなってしまうの
で、その成形圧は、概ね、300〜2000MPa程度に
設定することが好ましい。 【0015】得られた圧粉成形体に対しては、ついで、
絶縁剤の熱分解温度よりも低い温度で、かつ、圧粉成形
時に蓄積された成形歪みを解放することができる温度3
00〜900℃で0.5〜2hr程度の熱処理を行う。こ
のようにして製造された圧粉磁心をコア材として用いる
ことにより、本発明方法においては、1MHz以上の高周
波の電流を励磁コイルに通電しても、コア材の温度は3
00〜350℃程度の低温域にある。そして、ゲッター
材を確実に赤熱状態にまで誘電加熱することができる。 【0016】 【実施例】実施例1,2,比較例1〜4 表1で示した合金組成の溶湯を溶製し、その溶湯に対し
て水アトマイズ法を適用して、平均粒径が50μmの軟
磁性粉末を製造した。この粉末100質量部に対し、水
ガラス3質量部を配合して全体を混練し、乾燥後、更に
ステアリン酸鉛を0.5質量部添加し、面圧1000MPa
でプレス成形して直径5mm、高さ10mmの円柱体を成形
した。ついで、この円柱体にAr雰囲気下において温度
650℃で1時間の熱処理を施して本発明のコア材とし
た。 【0017】ついで、図1に示したように、直径2mmの
銅線を1ターン巻線して励磁コイル1とし、その中にコ
ア材2を配置した。コア材2の端面から5mm離れた位置
に、直径10mm、厚み1mmのTi製のゲッター材4を配
置し、励磁コイル1に周波数2MHzで100Aの電流を
10秒間通電した。そのときのゲッター材4の溶融の有
無を目視観察し、またコア材2の温度を接触温度計で測
定した。 【0018】比較のために、寸法形状は同じであるが、
表1で示した各種材料でコア材を製造し、それらを用い
て実施例と同様の条件でゲッター材の誘導加熱を行っ
た。以下の結果を一括して表1に示した。 【0019】 【表1】 【0020】表1から明らかなように、本発明方法によ
れば、コア材の温度は350℃に抑制された状態でゲッ
ター材を溶融させている。これは、用いたコア材は、自
己発熱が抑制された状態で励磁コイルで発生した磁束を
確実にゲッター材に集中させていることを示している。
なお、比較例3,比較例4のようにここまでコア材の温
度が上昇すると、陰極線管自体に悪影響を及ぼすので不
可となる。 【0021】 【発明の効果】以上の説明で明らかなように、本発明方
法によれば、用いるコア材の自己発熱が抑制されるの
で、励磁コイルに大きな高周波電流を通電して強い磁束
を発生させることができ、そのことにより、ゲッター材
を赤熱状態にまで誘導加熱することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inductively heating a getter material sealed in a cathode ray tube, and more particularly to a method for self-heating even when a high-frequency current is applied. The present invention relates to a method for inductively heating a getter material using a core material having a low degree of deterioration and hardly causing deterioration of magnetic characteristics. 2. Description of the Related Art In a process of manufacturing a cathode ray tube such as a cathode ray tube or a vacuum tube, after vacuum sealing, a gas remaining in the tube is removed as follows. That is, when vacuum sealing the cathode ray tube, a plate material made of an active metal such as Ti and usually called a getter material is simultaneously enclosed. Then, the getter material is induction-heated from outside the cathode ray tube. More specifically, as shown in FIG. 2, an exciting coil wound with a predetermined number of turns and a core material 2 disposed therein are sealed in a cathode ray tube 3. And a high-frequency current is applied to the exciting coil 1. The magnetic flux generated by the exciting coil 1 is concentrated by the core material 2 and is introduced into the getter material 4. Then, an eddy current flows through the getter material 4, and the getter material 4 generates resistance heat. At this time, by appropriately selecting the frequency and the current value of the energized high-frequency current, a strong magnetic field is generated by the exciting coil, the amount of heat generated by the resistance of the getter material 4 is increased, and the getter material 4 is red-heated. [0004] The glowed getter material 4 (active metal) reacts with the air (oxygen and nitrogen) in the tube to be converted into oxides or nitrides, whereby the residual air in the tube is fixed to the getter material. Then, the degree of vacuum in the tube increases. In such an induction heating method, the core material 2 is a member used for concentrating the magnetic flux generated by the exciting coil 1 on the getter material 4 and thereby effectively realizing the induction heating of the getter material. Therefore, ferrite has been widely used. [0005] However, the above-mentioned induction heating method of the getter material, which is performed using ferrite as a core material, has the following problems defined by the characteristics of the ferrite. . First, since the saturation magnetic flux density of ferrite is not so large, when a large high-frequency current is applied to the exciting coil, the generated magnetic field saturates the magnetic flux of the ferrite core material, and as a result,
The magnetic flux density introduced into the getter material is reduced, the resistance heat generation amount of the getter material is reduced, and the heat may not be generated to a red-hot state. When a large high-frequency current is applied to the exciting coil, an eddy current is generated in the ferrite core material itself, and the ferrite core material remarkably generates heat. And
Since the Curie point of ferrite is a low temperature of about 150 to 300 ° C., the above-described heat generation may significantly degrade the magnetic properties and render the ferrite unusable. The occurrence of these problems can be suppressed by changing the current supplied to the exciting coil to a low frequency current having a small current value.
The calorific value of the getter material is reduced and cannot be increased to a red heat state, so that it cannot be adopted. The present invention solves the above-described problem in the induction heating method of the getter material when ferrite is used as the core material, and is less likely to cause self-heating even when a large high-frequency current is applied to the exciting coil. It is an object of the present invention to provide a method for heating a getter material using a core material capable of heating the material to a red hot state. [0008] In order to achieve the above-mentioned object, in the present invention, a cathode material is enclosed in a cathode ray tube using a core material disposed in an exciting coil for supplying a high-frequency current. When the getter material is induction-heated, the core material is mainly composed of soft magnetic powder composed of 5 to 12% by mass of Si, 3 to 8% by mass of Al, the balance being Fe and unavoidable impurities, and an insulating material. A method for heating a getter material, which is a dust core, is provided. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention is carried out in the same manner as in the case of the previously-described conventional getter material induction heating method, except that the core material is a dust core described later. The powder magnetic core used as the core material in the method of the present invention is a powder compact having soft magnetic powder and an insulating material as essential components. In this case, the soft magnetic powder is a powder of an Fe-Si-Al alloy containing 5 to 12% by mass of Si, 3 to 8% by mass of Al, and the balance of Fe and inevitable impurities. Fe
A typical example of a -Si-Al alloy is Fe-9.5% Si-5.
5% Al, and this composition has the smallest hysteresis in the DC BH curve. That is, heat generation due to hysteresis is small. However, Fe-9.5%
As the composition deviates from the composition of Si-5.5% Al, the hysteresis increases and the heat generation also increases. The soft magnetic powder comprises a Si component, an Al component,
Then, the Fe component is mixed in a quantitative ratio to obtain a target composition, and the mixture is melted by, for example, induction heating to obtain a molten metal having a predetermined composition. Then, the molten metal is manufactured by applying a pulverizing method or an atomizing method. be able to. The soft magnetic powder used in the present invention preferably has an average particle size of 70 μm or less. If the average particle diameter is larger than 70 μm, a large eddy current flows through the manufactured dust core, self-heating proceeds, and the temperature of the core material may exceed the Curie point. is there. In manufacturing a dust core, the soft magnetic powder is first mixed with an insulating material. As the insulating material, for example, a liquid insulating material such as water glass or silicone resin is used.
Specifically, each soft magnetic powder is covered with an insulating material by mixing the soft magnetic powder and the above-mentioned insulating material. Therefore, after mixing, an insulating film is formed between the individual soft magnetic powders. As a result, the electrical resistivity of the manufactured core material increases, and the generation of eddy current in the core material decreases. Further, as the insulating material, for example, Al 2 O 3 powder or SiO 2 powder is used, and when these powders and soft magnetic powder are mixed, the above-mentioned liquid insulating material is further added to each soft magnetic powder. Insulation may be provided between the powders. The compounding amount of the insulating material is 0.5 to 1 with respect to 100 parts by mass of the soft magnetic powder.
It is preferably set to 0 parts by mass. When the amount is less than 0.5 part by mass, a sufficient insulating film is not formed between the individual soft magnetic powders, and the obtained core material has a low electric resistivity. This is because the relative proportion of the soft magnetic powder becomes smaller, and the magnetic permeability also becomes smaller, so that the saturation magnetic flux density of the obtained core material becomes smaller. The mixture thus prepared is then formed into a green compact having a predetermined shape by, for example, press molding in a mold. If the molding pressure at this time is too high, the above-mentioned insulating film is destroyed, and the individual soft magnetic powders come into direct contact with each other, resulting in a low electrical resistivity as a core material. It is preferable to set the pressure to about 300 to 2000 MPa. [0015] The obtained green compact is then
Temperature 3 that is lower than the thermal decomposition temperature of the insulating agent and that can release the molding strain accumulated during compaction
Heat treatment is performed at a temperature of 00 to 900 ° C. for about 0.5 to 2 hours. By using the dust core manufactured as described above as a core material, in the method of the present invention, even if a high-frequency current of 1 MHz or more is applied to the exciting coil, the temperature of the core material is 3%.
It is in the low temperature range of about 00 to 350 ° C. Then, the getter material can be reliably dielectrically heated to the red heat state. Examples 1 and 2 and Comparative Examples 1 to 4 A melt having an alloy composition shown in Table 1 was melted, and a water atomizing method was applied to the melt to obtain an average particle diameter of 50 μm. Was produced. To 100 parts by mass of this powder, 3 parts by mass of water glass were blended and kneaded as a whole.
To form a column having a diameter of 5 mm and a height of 10 mm. Then, this column was subjected to a heat treatment at 650 ° C. for 1 hour in an Ar atmosphere to obtain a core material of the present invention. Next, as shown in FIG. 1, a copper wire having a diameter of 2 mm was wound for one turn to form an exciting coil 1 in which a core material 2 was disposed. A getter material 4 made of Ti having a diameter of 10 mm and a thickness of 1 mm was arranged at a position 5 mm away from the end face of the core material 2, and a current of 100 A was applied to the exciting coil 1 at a frequency of 2 MHz for 10 seconds. At that time, the presence or absence of melting of the getter material 4 was visually observed, and the temperature of the core material 2 was measured with a contact thermometer. For comparison, the dimensions and shape are the same,
Core materials were produced from the various materials shown in Table 1, and the getter materials were subjected to induction heating using the same under the same conditions as in the examples. The following results are collectively shown in Table 1. [Table 1] As is apparent from Table 1, according to the method of the present invention, the getter material is melted while the temperature of the core material is suppressed to 350 ° C. This indicates that the core material used surely concentrates the magnetic flux generated by the exciting coil on the getter material in a state where self-heating is suppressed.
If the temperature of the core material rises so far as in Comparative Examples 3 and 4, it becomes impossible because the temperature of the cathode ray tube itself is adversely affected. As is apparent from the above description, according to the method of the present invention, self-heating of the core material used is suppressed, so that a large high-frequency current is applied to the exciting coil to generate a strong magnetic flux. , Whereby the getter material can be induction heated to a glowing state.

【図面の簡単な説明】 【図1】本発明方法でゲッター材を誘導加熱する状態を
示す概略図である。 【図2】陰極線管内のゲッター材を誘導加熱する状態を
示す概略図である。 【符号の説明】 1 励磁コイル 2 コア材 3 陰極線管 4 ゲッター材
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a state in which a getter material is induction-heated by the method of the present invention. FIG. 2 is a schematic view showing a state in which a getter material in a cathode ray tube is induction-heated. [Description of Signs] 1 excitation coil 2 core material 3 cathode ray tube 4 getter material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 貴伸 愛知県名古屋市南区大同町二丁目30番地 大同特殊鋼株式会社技術開発研究所内 (72)発明者 宮崎 力 静岡県磐田市匂坂中1600−9 株式会社ミ ヤデン内 Fターム(参考) 3K059 AA08 AB26 AD03 5C012 AA02    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Takanobu Saito             Aichi Prefecture Nagoya City Minami-ku Daidocho 2-chome 30             Daido Steel Co., Ltd. (72) Inventor Riki Miyazaki             1600-9 Sakasakanaka, Iwata-shi, Shizuoka             Yaden F term (reference) 3K059 AA08 AB26 AD03                 5C012 AA02

Claims (1)

【特許請求の範囲】 【請求項1】 高周波電流を通電する励磁コイルの中に
配置されたコア材を用いて陰極線管内に封入されたゲッ
ター材を誘導加熱する際に、 前記コア材は、Si:5〜12質量%,Al:3〜8質
量%,残部がFeと不可避的不純物から成る軟磁性粉末
と絶縁剤とを主体とする圧粉磁心であることを特徴とす
るゲッター材の加熱方法。
When a getter material enclosed in a cathode ray tube is induction-heated using a core material arranged in an exciting coil for supplying a high-frequency current, the core material is made of Si. : 5 to 12% by mass, Al: 3 to 8% by mass, the balance being a dust core mainly composed of a soft magnetic powder composed of Fe and unavoidable impurities and an insulating agent. .
JP2001332729A 2001-10-30 2001-10-30 Heating method of getter material Pending JP2003132794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001332729A JP2003132794A (en) 2001-10-30 2001-10-30 Heating method of getter material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001332729A JP2003132794A (en) 2001-10-30 2001-10-30 Heating method of getter material

Publications (1)

Publication Number Publication Date
JP2003132794A true JP2003132794A (en) 2003-05-09

Family

ID=19148108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001332729A Pending JP2003132794A (en) 2001-10-30 2001-10-30 Heating method of getter material

Country Status (1)

Country Link
JP (1) JP2003132794A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120092106A1 (en) * 2009-08-04 2012-04-19 Panasonic Corporation Composite magnetic body and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120092106A1 (en) * 2009-08-04 2012-04-19 Panasonic Corporation Composite magnetic body and method for producing the same
CN102473501A (en) * 2009-08-04 2012-05-23 松下电器产业株式会社 Composite magnetic body and method for producing the same

Similar Documents

Publication Publication Date Title
CA2613862C (en) Method for manufacturing of insulated soft magnetic metal powder formed body
EP2947670A1 (en) Method for manufacturing powder magnetic core, powder magnetic core, and coil component
JP7220331B2 (en) Neodymium-iron-boron magnet material, raw material composition, manufacturing method, and application
JP2019131853A (en) Soft magnetic alloy and magnetic component
JP2006237153A (en) Composite dust core and manufacturing method thereof
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
JP2008172257A (en) Method for manufacturing insulating soft magnetic metal powder molding
US6723179B2 (en) Soft magnetism alloy powder, treating method thereof, soft magnetism alloy formed body, and production method thereof
JPH02290002A (en) Fe-si based alloy dust core and its manufacture
JP4618557B2 (en) Soft magnetic alloy compact and manufacturing method thereof
TWI742969B (en) R-t-b series permanent magnetic material, raw material composition, preparation method and application
JP2006196855A (en) Soft magnetic iron core material and manufacturing method thereof
JP2000232014A (en) Manufacture of composite magnetic material
JP2003160847A (en) Composite magnetic material, magnetic element using the same, and manufacture method therefor
JP2008235450A (en) Method of manufacturing dust core
JP4752641B2 (en) Method for sintering amorphous soft magnetic material
JP2003132794A (en) Heating method of getter material
JP2002231518A (en) Soft magnetic powder and dust core formed thereof
JP2005116820A (en) Dust core
JP3145832U (en) Composite magnetic material
US20210350962A1 (en) Powder magnetic core and method for producing the same
WO2000031000A1 (en) Method for producing manganese-zinc ferrite core and manganese-zinc ferrite core
JPS59219404A (en) Production of alloy powder for rare earth-iron-boron permanent magnet alloy
JP2003092211A (en) Powder magnetic core
JP2003147437A (en) Method for hardening blade edge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050713