JP2003131144A - Light distribution lens of endoscope - Google Patents

Light distribution lens of endoscope

Info

Publication number
JP2003131144A
JP2003131144A JP2002185609A JP2002185609A JP2003131144A JP 2003131144 A JP2003131144 A JP 2003131144A JP 2002185609 A JP2002185609 A JP 2002185609A JP 2002185609 A JP2002185609 A JP 2002185609A JP 2003131144 A JP2003131144 A JP 2003131144A
Authority
JP
Japan
Prior art keywords
light
lens
light distribution
endoscope
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002185609A
Other languages
Japanese (ja)
Inventor
Minoru Murayama
稔 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Pentax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentax Corp filed Critical Pentax Corp
Priority to JP2002185609A priority Critical patent/JP2003131144A/en
Publication of JP2003131144A publication Critical patent/JP2003131144A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a light distribution lens of an endoscope which consists of a single lens, facilitates processing and obviates the drastic degradation in the light intensity of a peripheral part in spite of an increase in a light distribution angle. SOLUTION: This light distribution lens of the endoscope which is a light distribution lens consisting of the single lens situated at the distal end of an internal insertion portion of an endoscope to irradiate an observation object with the light of a light source, in which the single lens consists of a first recessed part formed on the surface opposite to the light source and a second recessed part formed on the surface on the observation object side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、内視鏡の体内挿入部の先端部に
設けられる配光レンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light distribution lens provided at the tip of an internal insertion portion of an endoscope.

【0002】[0002]

【従来技術及びその問題点】内視鏡の体内挿入部の先端
の照明は、一般的に外部光源の光を、体内挿入部内部に
配設された照明用光ファイバ束により挿入部の先端部に
導き、該挿入部の先端部に設けた配光レンズにより観察
対象に向けて照射することで行われている。配光レンズ
としては従来、照明用光ファイバ束の光束出射端面側を
凹面とした平凹の単レンズが一般的に用いられている
が、平凹の配光レンズは、照明範囲の中心は十分な光強
度が得られるものの、周辺部での光量低下が著しい。近
年、内視鏡の視野角が120°から140°と広角化
し、それに応じて挿入部の先端の照明は、照明範囲が広
角で周辺でも光強度が低下しないものが要求されてお
り、平凹単レンズからなる配光レンズではこの要求に応
えることができない。
2. Description of the Related Art Illumination of a distal end of an insertion portion of an endoscope is generally performed by illuminating light from an external light source with a bundle of illumination optical fibers disposed inside the insertion portion of the insertion portion. It is performed by irradiating the object to be observed with a light distribution lens provided at the tip of the insertion portion. Conventionally, as a light distribution lens, a plano-concave single lens having a concave light-beam exit end side of an optical fiber bundle for illumination is generally used, but a plano-concave light distribution lens has a sufficient center of illumination range. Although a high light intensity can be obtained, the light amount is significantly reduced in the peripheral portion. In recent years, the viewing angle of an endoscope has been widened from 120 ° to 140 °, and accordingly, the illumination of the distal end of the insertion portion is required to have a wide illumination range and a light intensity that does not decrease even in the periphery. A light distribution lens consisting of a single lens cannot meet this demand.

【0003】また、配光角が大きくなっても周辺部の光
強度があまり低下しないようにするために、特開平7−
311349号公報の発明のように配光レンズを複数枚
のレンズで構成したり、特開平5−53063号公報や
特開平5−119272号公報の発明のように、配光レ
ンズに非球面レンズを用いることがある。
Further, in order to prevent the light intensity of the peripheral portion from being significantly reduced even when the light distribution angle is increased, Japanese Patent Laid-Open No. 7-
The light distribution lens is composed of a plurality of lenses as in the invention of 311349, or an aspherical lens is provided in the light distribution lens as in the inventions of JP-A-5-53063 and JP-A-5-119272. May be used.

【0004】しかし、複数枚のレンズ構成では、内視鏡
の挿入部先端の小型化が困難となり、製造コストも上昇
してしまう。
However, in the case of the constitution of a plurality of lenses, it becomes difficult to miniaturize the tip of the insertion portion of the endoscope and the manufacturing cost also rises.

【0005】また、配光レンズに非球面レンズを用いる
場合、この非球面レンズの形状は、周辺部の光強度を上
げるという要求を満たすため、光源光軸から離れるに従
って曲率が大きくなる非球面として設計されるので、正
レンズの場合はレンズ厚が大きくなり、また負レンズの
場合はコバ厚が大きくなる。このため、内視鏡の挿入部
先端が大型化したり、コバ面で散乱される光線が多くな
り効率が悪化する。
Further, when an aspherical lens is used as the light distribution lens, the shape of the aspherical lens is an aspherical surface whose curvature increases with distance from the optical axis of the light source in order to satisfy the requirement of increasing the light intensity of the peripheral portion. Since the lens is designed, the lens thickness is large in the case of a positive lens, and the edge thickness is large in the case of a negative lens. For this reason, the tip of the insertion portion of the endoscope becomes large, and the number of light rays scattered on the edge surface increases, resulting in poor efficiency.

【0006】また、非球面レンズを用いつつレンズ厚を
小さくするにはフレネルレンズにするのが一般的である
が、内視鏡の配光レンズのような微小なレンズをフレネ
ルレンズとして加工するのは容易でない。
Further, a Fresnel lens is generally used to reduce the lens thickness while using an aspherical lens, but a minute lens such as a light distribution lens of an endoscope is processed as a Fresnel lens. Is not easy.

【0007】[0007]

【発明の目的】本発明は、単レンズからなり、加工が容
易で、かつ配光角が大きくなっても周辺部での光強度が
大きく低下することのない内視鏡の配光レンズを提供す
ることを目的とする。
An object of the present invention is to provide a light distribution lens for an endoscope, which is composed of a single lens, is easy to process, and does not significantly reduce the light intensity in the peripheral portion even if the light distribution angle becomes large. The purpose is to do.

【0008】[0008]

【発明の概要】本発明の内視鏡の配光レンズは、内視鏡
の体内挿入部の先端部に位置し、光源の光を観察対象に
向けて照射する単レンズからなる配光レンズであって、
上記光源との対向面に形成した第1の凹部と、上記観察
対象側の面に形成した第2の凹部とを有することを特徴
としている。
SUMMARY OF THE INVENTION The light distribution lens of an endoscope of the present invention is a light distribution lens which is located at the tip of the insertion portion of the endoscope and which is a single lens for irradiating the light of the light source toward the observation target. There
It is characterized by having a first concave portion formed on the surface facing the light source and a second concave portion formed on the surface on the observation target side.

【0009】上記光源を、照明用光ファイバ束の光束出
射端面とすることができる。
The light source may be a light flux emitting end face of the illumination optical fiber bundle.

【0010】また、上記光源を発光素子とすることがで
きる。
The light source may be a light emitting element.

【0011】また、上記第2の凹部が次の条件式(1)
(2)を満足するのが好ましい。 (1)tan{90−sin-1(1/n)}<h/d3<11.5 (2)0.35<h/h0 ただし、 h:光源光軸から第2の凹部の観察対象側端部までの高
さ、 h0:光源の光源光軸からの高さ、 d3:第2の凹部の深さ。
Further, the second concave portion has the following conditional expression (1).
It is preferable to satisfy (2). (1) tan {90-sin −1 (1 / n)} <h / d 3 <11.5 (2) 0.35 <h / h 0 where h: observation of the second concave portion from the optical axis of the light source Height to target end, h 0 : Height from light source optical axis of light source, d 3 : Depth of second recess.

【0012】また、上記第2の凹部を凹球面の一部から
なるものとすることができ、この場合、上記凹球面が次
の条件式(3)を満足するのが好ましい。 (3)0.35h0<h<0.95r3 ただし、 h:光源光軸から第2の凹部の観察対象側端部までの高
さ、 h0:光源の光源光軸からの高さ、 r3:凹球面の曲率半径。
The second concave portion may be formed of a part of a concave spherical surface, and in this case, it is preferable that the concave spherical surface satisfies the following conditional expression (3). (3) 0.35h 0 <h <0.95r 3 where , h: height from the light source optical axis to the end of the second concave portion on the observation target side, h 0 : height from the light source optical axis of the light source, r 3 : radius of curvature of concave spherical surface.

【0013】また、上記第2凹部を凹円錐面からなるも
のとすることができ、さらに、上記凹円錐面の頂点を曲
面とすることができる。この場合は、上記凹円錐面が、
次の条件式(4)を満足するのが好ましい。 (4)90−sin-1(1/n)<α ただし、α:光源光軸と凹円錐面の母線がなす角度[単
位:deg]、 n:配光レンズの屈折率。
The second concave portion may be formed of a concave conical surface, and the apex of the concave conical surface may be a curved surface. In this case, the concave conical surface is
It is preferable that the following conditional expression (4) is satisfied. (4) 90-sin −1 (1 / n) <α where α is the angle [unit: deg] formed by the optical axis of the light source and the generatrix of the concave conical surface, and n is the refractive index of the light distributing lens.

【0014】また、上記配光レンズの第2の凹部を有す
る面に、平行平面板からなるカバーガラスを配置するこ
とができる。
Further, a cover glass made of a plane parallel plate can be arranged on the surface of the light distributing lens having the second recess.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態につい
て、電子内視鏡の例で図1乃至図10を参照しながら説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIGS. 1 to 10 as an example of an electronic endoscope.

【0016】電子内視鏡1は、体腔内に挿入される体内
挿入部2と、体内挿入部2に連結部3を介して接続され
た操作部4とを有している。体内挿入部2は、先端側か
ら順に硬性部5、湾曲部6及び可撓管部7を有してお
り、可撓管部7が連結部3を介して操作部4に接続して
いる。
The electronic endoscope 1 has an in-body inserting section 2 to be inserted into a body cavity and an operating section 4 connected to the in-body inserting section 2 via a connecting section 3. The body insertion part 2 has a rigid part 5, a bending part 6 and a flexible tube part 7 in this order from the distal end side, and the flexible tube part 7 is connected to the operation part 4 via the connecting part 3.

【0017】体内挿入部2先端の硬性部5には、対物レ
ンズ保持孔、配光レンズ保持孔、送気送水チャンネル出
口、処置具挿通チャンネル出口等(いずれも図示略)が
形成されている。対物レンズ保持孔と配光レンズ保持孔
には、結像用の対物レンズと照明用の配光レンズL1が
それぞれ嵌合保持されている。
An objective lens holding hole, a light distribution lens holding hole, an air / water feeding channel outlet, a treatment instrument insertion channel outlet and the like (all not shown) are formed in the rigid portion 5 at the tip of the body insertion portion 2. An objective lens for image formation and a light distribution lens L1 for illumination are fitted and held in the objective lens holding hole and the light distribution lens holding hole, respectively.

【0018】操作部4に設けた二つの湾曲操作ノブ8、
9をそれぞれ回転操作すると、湾曲部6が左右方向およ
び上下方向に湾曲する。
Two bending operation knobs 8 provided on the operation section 4,
When each of 9 is rotated, the bending portion 6 bends in the left-right direction and the up-down direction.

【0019】操作部4から延出するユニバーサルチュー
ブ10の端部には、図示を省略したプロセッサーに接続
されるコネクタ部11が設けられている。コネクタ部1
1には、電子内視鏡1とユニバーサルチューブ10の内
部に配設された信号伝送用ケーブル(図示略)と光ファ
イバーの照明用光ファイバ束12の端部、送気チューブ
と送水チューブ(いずれも図示略)の入口部等が設けら
れており、コネクタ部11をプロセッサーに接続するこ
とにより、これらの要素はプロセッサー側の画像処理装
置、光源、送気源及び送水源(いずれも図示略)に接続
される。
At the end of the universal tube 10 extending from the operation section 4, a connector section 11 connected to a processor (not shown) is provided. Connector part 1
1, a signal transmission cable (not shown) disposed inside the electronic endoscope 1 and the universal tube 10, an end portion of an optical fiber bundle 12 for illuminating optical fibers, an air supply tube and a water supply tube (both are shown). (Not shown) is provided, and by connecting the connector part 11 to the processor, these elements are connected to the image processing device, light source, air supply source, and water supply source (all not shown) on the processor side. Connected.

【0020】硬性部5内において、対物レンズの背後に
はCCD(図示略)が設けられており、対物レンズから
CCDの受光面に入った観察対象の像は光電変換され、
CCDからユニバーサルチューブ10のコネクタ部11
まで配設された前述の信号伝送用ケーブルを介して、電
子画像としてプロセッサーに送られる。プロセッサーで
は、電子画像をモニタ(図示略)に表示したり画像記録
媒体に記録することができる。操作部には、画像処理関
連の遠隔操作を行うための複数のリモート操作ボタンス
イッチ13が設けられている。
In the rigid portion 5, a CCD (not shown) is provided behind the objective lens, and the image of the observation object entered from the objective lens into the light receiving surface of the CCD is photoelectrically converted.
From CCD to connector part 11 of universal tube 10
It is sent to the processor as an electronic image through the above-mentioned signal transmission cable provided up to. The processor can display an electronic image on a monitor (not shown) or record it on an image recording medium. The operation unit is provided with a plurality of remote operation button switches 13 for performing remote operations related to image processing.

【0021】操作部4には送気送水ボタン14が設けら
れており、送気送水ボタン14を押圧すると、プロセッ
サー側の送気源と送水源から送気チューブと送水チュー
ブに送り込まれた空気や液体が、硬性部5の送気送水チ
ャンネル出口から噴射される。
The operation unit 4 is provided with an air / water supply button 14, and when the air / water supply button 14 is pressed, air supplied from the processor-side air supply source and the water supply source to the air supply tube and the water supply tube, The liquid is jetted from the air / water supply channel outlet of the rigid portion 5.

【0022】連結部3には、鉗子や高周波焼灼処置具等
の処置具挿入用の処置具挿入口突起15が設けられてお
り、処置具挿入口突起15から電子内視鏡1の内部に挿
入された処置具(図示略)は、硬性部5に設けられた処
置具挿通チャンネル出口から観察対象側に突出する。
The connecting portion 3 is provided with a treatment instrument insertion port projection 15 for inserting a treatment instrument such as forceps or a high frequency cautery treatment instrument, and is inserted from the treatment instrument insertion port projection 15 into the electronic endoscope 1. The treated instrument (not shown) protrudes from the outlet of the instrument insertion channel provided in the rigid portion 5 to the observation target side.

【0023】図2、図5に示すように、硬性部5の内部
において、配光レンズL1、L2の背後には照明用光フ
ァイバ束12の光束出射端面12aが位置しており、プ
ロセッサーに設けた光源からの光は、照明用光ファイバ
束12の光束入射端面から入射して、該光束出射端面1
2aから出射される。この光束出射端面12aは、断面
(正面)略円形の光源である。光源は、照明用光ファイ
バ束12の光束出射端面12aの他、LED等の発光素
子としてもよい。
As shown in FIGS. 2 and 5, inside the rigid portion 5, the luminous flux exit end surface 12a of the illumination optical fiber bundle 12 is located behind the light distribution lenses L1 and L2 and is provided in the processor. The light from the light source enters from the light flux incident end surface of the illumination optical fiber bundle 12, and the light flux exit end surface 1
It is emitted from 2a. The light flux emission end face 12a is a light source having a substantially circular cross section (front face). The light source may be a light emitting element such as an LED, in addition to the light flux emission end face 12a of the illumination optical fiber bundle 12.

【0024】以下に説明する実施例1乃至実施例5の配
光レンズL1、L2、L3の光束出射端面12aとの対
向面には、第1の凹部L1a、L2a、L3aが形成さ
れている。配光レンズL1、L2、L3の観察対象側の
面は光源光軸Oに直交する平面となっており、この面に
は、第2の凹部L1b、L2b、L3bが形成されてい
る。
First concave portions L1a, L2a, L3a are formed on the surfaces of the light distributing lenses L1, L2, L3 of the first to fifth embodiments which will be described below, which face the light beam exit end surface 12a. The observation target side surfaces of the light distribution lenses L1, L2, L3 are planes orthogonal to the light source optical axis O, and second concave portions L1b, L2b, L3b are formed on this surface.

【0025】観察対象側の面に形成する凹部は次の条件
式を満たすのが好ましい。 (1)tan{90−sin-1(1/n)}<h/d3<11.5 (2)0.35<h/h0 ただし、 h:光源光軸から第2の凹部の観察対象側端部までの高
さ、 h0:光源の光源光軸からの高さ、 d3:第2の凹部の深さ、 である。
It is preferable that the concave portion formed on the surface on the side of the observation object satisfies the following conditional expression. (1) tan {90-sin −1 (1 / n)} <h / d 3 <11.5 (2) 0.35 <h / h 0 where h: observation of the second concave portion from the optical axis of the light source Height to target side end portion, h 0 : height from the light source optical axis of the light source, d 3 : depth of the second concave portion,

【0026】条件式(1)は第2の凹部L1b、L2
b、L3bの形状を規定するものであり、条件式(1)
の下限値を下回ると第2の凹部L1b、L2b、L3b
の径に対して深さが大きいため、第2の凹部L1b、L
2b、L3bの面で全反射する光線が多くなり光量が低
下してしまい、条件式(1)の上限値を上回ると第2の
凹部L1b、L2b、L3bが浅くなり、光量を広げる
効果が小さくなってしまう。また、条件式(2)は第2
の凹部L1b、L2b、L3bの大きさを規定するもの
であり、この条件式を満たさない場合には、第2の凹部
L1b、L2b、L3bの大きさが光源に比べて小さい
ため、配光を広げる効果が小さくなってしまう。
Conditional expression (1) is defined by the second recesses L1b and L2.
Conditional expression (1) that defines the shapes of b and L3b
Below the lower limit of the second recesses L1b, L2b, L3b
Since the depth is larger than the diameter of the second recess L2,
The amount of light rays totally reflected on the surfaces of 2b and L3b increases and the light amount decreases, and when the upper limit value of the conditional expression (1) is exceeded, the second recesses L1b, L2b, L3b become shallow and the effect of expanding the light amount is small. turn into. The conditional expression (2) is the second
The size of the recesses L1b, L2b, L3b is defined. If this conditional expression is not satisfied, the size of the second recesses L1b, L2b, L3b is smaller than that of the light source. The effect of spreading is reduced.

【0027】上記条件式(1)を満足する形状として
は、例えば球面の一部、非球面の一部、円錐等がある。
The shape satisfying the conditional expression (1) includes, for example, a part of a spherical surface, a part of an aspherical surface, a cone and the like.

【0028】図2に示すように、第2の凹部L1bを球
面の一部から構成する場合、この第2の凹部L1bは、
次の条件式(3)を満足することが好ましい。 (3)0.35h0<h<0.95r3 ただし、 h:光源光軸から第2の凹部の観察対象側端部までの高
さ、 h0:光源の光源光軸からの高さ、 r3:凹球面の曲率半径、 である。
As shown in FIG. 2, when the second recess L1b is composed of a part of the spherical surface, the second recess L1b is
It is preferable to satisfy the following conditional expression (3). (3) 0.35h 0 <h <0.95r 3 where , h: height from the light source optical axis to the end of the second concave portion on the observation target side, h 0 : height from the light source optical axis of the light source, r 3 is the radius of curvature of the concave spherical surface.

【0029】hが条件式(3)の下限値を下回ると、光
源の大きさに比べて第2の凹部L1bが小さすぎるため
配光特性の改善効果が小さくなってしまう。また、hが
条件式(3)の上限値を超えると、第2の凹部L1bの
へこみ量がhに比較して深くなるため、第2の凹部L1
bの周辺部で全反射する光線が増加し、光量が低下する
とともに、第2の凹部L1bの洗浄性が大きく低下す
る。
When h is less than the lower limit value of the conditional expression (3), the effect of improving the light distribution characteristic becomes small because the second recess L1b is too small as compared with the size of the light source. Further, when h exceeds the upper limit value of the conditional expression (3), the dent amount of the second recess L1b becomes deeper than h, so that the second recess L1
The light rays totally reflected at the peripheral portion of b increase, the light amount decreases, and the cleaning property of the second recess L1b significantly decreases.

【0030】図5に示すように、第2の凹部L2bを、
円錐形状としてもよい。第2の凹部L2bを円錐状にす
ると、光源光軸Oにほぼ平行な光線(光源からの射出角
の小さい光線)を外側へ強く屈折させることができる。
As shown in FIG. 5, the second recess L2b is
It may have a conical shape. When the second recess L2b has a conical shape, a light beam substantially parallel to the light source optical axis O (a light beam with a small exit angle from the light source) can be strongly refracted to the outside.

【0031】第2の凹部L2bを円錐状とする場合に
は、条件式(4)を満足することが望ましい。 (4)90−sin-1(1/n)<α ただし、 α:光源光軸と凹円錐面の母線がなす角度[単位:de
g]、 n:配光レンズの屈折率、 である。
When the second recess L2b has a conical shape, it is desirable to satisfy the conditional expression (4). (4) 90-sin −1 (1 / n) <α where α: angle formed by the optical axis of the light source and the generatrix of the concave conical surface [unit: de
g], n: refractive index of the light distribution lens.

【0032】αが条件式(4)の下限値を下回ると、第
2の凹部L2bがより尖った形状になり、光源光軸Oに
平行で観察対象側の面に達する光線が円錐面で全反射
し、射出する光量が低下してしまう。また、第2の凹部
L2bの深さが半径に比べて深くなるので加工性が悪化
し、また洗浄性が大きく低下する。
When α is less than the lower limit value of the conditional expression (4), the second concave portion L2b has a more pointed shape, and a ray parallel to the optical axis O of the light source and reaching the surface on the side of the observation object is a conical surface. The amount of light reflected and emitted decreases. Further, since the depth of the second recess L2b is deeper than the radius, the workability is deteriorated and the cleanability is greatly reduced.

【0033】次に配光レンズL1、L2、L3と光ファ
イバーの照明用光ファイバ束12の具体的な数値実施例
について説明する。図2乃至図4は実施例1と2を、図
5乃至図8は実施例3と4を、図9及び図10は実施例
5を示している。これらの実施例では第1・第2の凹部
は光源光軸に対して回転対称となるように配置されてい
る。また、配光レンズLが平凹レンズとなっている比較
例について、図11及び図12を参照しながら最後に説
明する。
Next, concrete numerical examples of the light distribution lenses L1, L2, L3 and the optical fiber bundle 12 for illuminating optical fibers will be described. 2 to 4 show Embodiments 1 and 2, FIGS. 5 to 8 show Embodiments 3 and 4, and FIGS. 9 and 10 show Embodiment 5. In these embodiments, the first and second recesses are arranged so as to be rotationally symmetrical with respect to the optical axis of the light source. A comparative example in which the light distribution lens L is a plano-concave lens will be finally described with reference to FIGS. 11 and 12.

【0034】[実施例1]次の表中、r1は第1の凹部L
1aの曲率半径[mm]、r2は配光レンズL1の観察対
象側の面の曲率半径[mm]、r3は第2の凹部L1bの
曲率半径[mm]、d1、d2、d3は配光レンズL1の
各部の厚さ[mm]、nは配光レンズL1のd線に対する
屈折率、νはアッベ数、h0は光ファイバーの照明用光
ファイバ束12の半径[mm]を示している。また、図3
と図4のグラフの縦軸の「強度比」は、配光角(横軸)
が0[deg]のときの光強度を1.0とした場合の各配
光角における光強度の比を示している。
[Example 1] In the following table, r1 is the first recess L
1a has a radius of curvature [mm], r2 has a radius of curvature [mm] of the surface of the light distribution lens L1 on the side to be observed, r3 has a radius of curvature [mm] of the second recess L1b, and d1, d2, and d3 denote light distribution lenses. The thickness [mm] of each part of L1, n is the refractive index of the light distribution lens L1 with respect to the d line, ν is the Abbe number, and h 0 is the radius [mm] of the optical fiber bundle 12 for illumination of the optical fiber. Also, FIG.
And "intensity ratio" on the vertical axis of the graph in Fig. 4 is the light distribution angle (horizontal axis)
Shows the ratio of the light intensity at each light distribution angle when the light intensity when 0 is 0 [deg] is 1.0.

【0035】[0035]

【表1】 r1=0.900 r2=∞ r3=0.300 d1=0.45 d2=0.20 d3=0.20 n=1.51633 ν=64.1 h0=0.75Table 1 r1 = 0.900 r2 = ∞ r3 = 0.300 d1 = 0.45 d2 = 0.20 d3 = 0.20 n = 1.51633 ν = 64.1 h 0 = 0.75

【0036】図3は実施例1の配光レンズL1の配光特
性を示すグラフである。このグラフから分かるように、
比較例に比べて、配光角が大きくなっても周辺部の光強
度が大きく低下しないので、照明範囲全体を比較的均一
に明るく照明することができる。
FIG. 3 is a graph showing the light distribution characteristics of the light distribution lens L1 of the first embodiment. As you can see from this graph,
Compared with the comparative example, even if the light distribution angle becomes large, the light intensity of the peripheral portion does not significantly decrease, so that the entire illumination range can be illuminated relatively uniformly and brightly.

【0037】[実施例2][Example 2]

【表2】 r1=0.900 r2=∞ r3=0.600 d1=0.45 d2=0.20 d3=0.20 n=1.51633 ν=64.1 h0=0.75Table 2 r1 = 0.900 r2 = ∞ r3 = 0.600 d1 = 0.45 d2 = 0.20 d3 = 0.20 n = 1.51633 ν = 64.1 h 0 = 0.75

【0038】図4は実施例2の配光レンズL1の配光特
性を示すグラフである。このグラフから分かるように、
配光角が大きくなっても、周辺部の光強度の低下を実施
例1よりも更に抑えることができるので、照明範囲全体
をより均一に明るく照明することができる。
FIG. 4 is a graph showing the light distribution characteristics of the light distribution lens L1 of the second embodiment. As you can see from this graph,
Even if the light distribution angle becomes large, the reduction of the light intensity in the peripheral portion can be further suppressed as compared with the first embodiment, so that the entire illumination range can be illuminated more uniformly and brightly.

【0039】次に配光レンズL2と光ファイバーの照明
用光ファイバ束12の具体的な数値実施例について説明
する。次の表中、r1は第1の凹部L2aの曲率半径
[mm]、r2は配光レンズL2の観察対象側の面の曲率
半径[mm]、d1、d2、d3は配光レンズL2の各部
の厚さ[mm]、αは光源光軸Oと第2の凹部L2bの周
面がなす角度[deg]、nは配光レンズL2のd線に対
する屈折率、νはアッベ数、h0は光ファイバーの照明
用光ファイバ束12の半径[mm]を示している。
Next, concrete numerical examples of the light distribution lens L2 and the optical fiber bundle 12 for illuminating optical fibers will be described. In the following table, r1 is the radius of curvature of the first recess L2a
[mm], r2 is the radius of curvature [mm] of the surface of the light distribution lens L2 on the observation target side, d1, d2, and d3 are the thicknesses [mm] of each part of the light distribution lens L2, and α is the light source optical axis O and The angle [deg] formed by the peripheral surface of the concave portion L2b of No. 2, n is the refractive index of the light distribution lens L2 with respect to the d line, ν is the Abbe number, and h 0 is the radius [mm] of the optical fiber bundle 12 for illumination of the optical fiber. ing.

【0040】[実施例3][Example 3]

【表3】 r1=0.900 r2=∞ d1=0.45 d2=0.25 d3=0.15 n=1.51633 ν=64.1 α=80 h0=0.75Table 3 r1 = 0.900 r2 = ∞ d1 = 0.45 d2 = 0.25 d3 = 0.15 n = 1.51633 ν = 64.1 α = 80 h 0 = 0.75

【0041】図6は実施例3の配光レンズの配光特性を
示すグラフである。このグラフから分かるように、比較
例に比べて、配光角が大きくなっても周辺部の光強度の
低下は小さいので、照明範囲全体を比較的均一に明るく
照明することができる。
FIG. 6 is a graph showing the light distribution characteristics of the light distribution lens of the third embodiment. As can be seen from this graph, compared to the comparative example, even if the light distribution angle is large, the decrease in the light intensity in the peripheral portion is small, so that the entire illumination range can be illuminated relatively uniformly and brightly.

【0042】[実施例4][Example 4]

【表4】 r1=0.900 r2=∞ d1=0.45 d2=0.15 d3=0.25 n=1.51633 ν=64.1 α=60 h0=0.75Table 4 r1 = 0.900 r2 = ∞ d1 = 0.45 d2 = 0.15 d3 = 0.25 n = 1.51633 ν = 64.1 α = 60 h 0 = 0.75

【0043】図7は実施例4の配光レンズの配光特性を
示すグラフである。このグラフから分かるように、配光
角が大きくなっても周辺部の光強度の低下を実施例3よ
りも更に抑えることができるので、照明範囲全体をより
均一に明るく照明することができる。
FIG. 7 is a graph showing the light distribution characteristics of the light distributing lens of the fourth embodiment. As can be seen from this graph, even if the light distribution angle becomes large, the reduction of the light intensity in the peripheral portion can be further suppressed as compared with the third embodiment, so that the entire illumination range can be illuminated more uniformly and brightly.

【0044】図8は実施例3、4の変形例を示してい
る。この変形例では、配光レンズL2の観察対象側の面
に平行平面板からなる透明なカバーガラスGを配置して
いる。
FIG. 8 shows a modification of the third and fourth embodiments. In this modification, a transparent cover glass G made of a plane parallel plate is arranged on the surface of the light distribution lens L2 on the observation target side.

【0045】このようなカバーガラスGを設けると、第
2の凹部L2bに体液やゴミ等が堆積することがないの
で、電子内視鏡1の硬性部5の洗浄を簡単に行うことが
できる。また本実施例の配光特性は、実施例3、実施例
4とほぼ同様になる。
By providing such a cover glass G, body fluid, dust, etc. do not accumulate in the second recess L2b, so that the rigid portion 5 of the electronic endoscope 1 can be easily washed. The light distribution characteristics of this embodiment are almost the same as those of the third and fourth embodiments.

【0046】次に本発明の実施例5を図9と図10を参
照しながら説明する。なお、他の実施例と同じ部材には
同じ符号を付すに止めて、その詳細な説明は省略する。
Next, a fifth embodiment of the present invention will be described with reference to FIGS. 9 and 10. The same members as those in the other embodiments are denoted by the same reference numerals and detailed description thereof will be omitted.

【0047】図9に示すように、本実施例の配光レンズ
L3の観察対象側の面には頂点が曲面をなす円錐状の第
2の凹部L3bが形成されている。
As shown in FIG. 9, a conical second recess L3b having a curved vertex is formed on the surface of the light distributing lens L3 of this embodiment on the side of the observation object.

【0048】次に配光レンズL3bと光ファイバーの照
明用光ファイバ束12の具体的な数値実施例について説
明する。次の表中、r1は第1の凹部L3aの曲率半径
[mm]、r2は配光レンズL3の観察対象側の面の曲率
半径[mm]、d1、d2、d3は配光レンズL3の各部
の厚さ[mm]、αは光源光軸Oと第2の凹部L3bの周
面がなす角度[deg]、nは配光レンズL3のd線に対
する屈折率、νはアッベ数、h0は光ファイバーの照明
用光ファイバ束12の半径[mm]を示している。
Next, concrete numerical examples of the light distribution lens L3b and the optical fiber bundle 12 for illuminating optical fibers will be described. In the following table, r1 is the radius of curvature of the first recess L3a
[mm], r2 is the radius of curvature [mm] of the surface of the light distribution lens L3 on the observation target side, d1, d2, d3 are the thicknesses [mm] of the respective parts of the light distribution lens L3, and α is the light source optical axis O and the The angle [deg] formed by the peripheral surface of the concave portion L3b of No. 2, n is the refractive index of the light distributing lens L3 with respect to the d line, ν is the Abbe number, and h 0 is the radius [mm] of the optical fiber bundle 12 for illumination of the optical fiber. ing.

【0049】[実施例5][Example 5]

【表5】 r1=0.820 r2=∞ d1=0.36 d2=0.20 d3=0.16 n=1.51633 ν=64.1 α=70 h0=0.65Table 5 r1 = 0.820 r2 = ∞ d1 = 0.36 d2 = 0.20 d3 = 0.16 n = 1.51633 ν = 64.1 α = 70 h 0 = 0.65

【0050】[比較例]図11に、比較例として、光束出
射端面12aとの対向面を凹面とした平凹レンズLを示
した。この平凹の配光レンズLのデータを表6に示し、
その配光特性を図12に示す。
Comparative Example FIG. 11 shows, as a comparative example, a plano-concave lens L having a concave surface on the surface facing the light beam exit end surface 12a. Table 6 shows the data of the plano-concave light distribution lens L,
The light distribution characteristics are shown in FIG.

【0051】[0051]

【表6】 r1=0.900 r2=∞ d1=0.45 d2=0.40 n=1.51633 ν=64.1 h0=0.75[Table 6] r1 = 0.900 r2 = ∞ d1 = 0.45 d2 = 0.40 n = 1.51633 ν = 64.1 h 0 = 0.75

【0052】図12のグラフから分かるように、従来の
平凹の配光レンズは、照明範囲の中心は明るいものの、
配光角が大きくなると周辺部の光強度が大きく低下して
しまうため(周囲が暗くなるため)、照明むらが生じて
しまう。
As can be seen from the graph of FIG. 12, the conventional plano-concave light distribution lens has a bright center in the illumination range,
When the light distribution angle becomes large, the light intensity in the peripheral portion largely decreases (because the surroundings become dark), so that uneven illumination occurs.

【0053】なお、実施例5の配光レンズL3の観察対
象側の面にカバーガラスGを配置してもよい。
The cover glass G may be arranged on the surface of the light distribution lens L3 of the fifth embodiment on the side of the observation target.

【0054】[0054]

【発明の効果】本発明によれば、単レンズからなる配光
レンズであって、配光角が大きくなっても周辺部の光強
度が大きく低下することのない内視鏡の配光レンズが得
られる。
According to the present invention, there is provided a light distribution lens of an endoscope, which is a light distribution lens composed of a single lens and in which the light intensity of the peripheral portion does not largely decrease even if the light distribution angle increases. can get.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態の全体図である。FIG. 1 is an overall view of an embodiment of the present invention.

【図2】実施例1及び2の電子内視鏡の先端部内部の拡
大側面図である。
FIG. 2 is an enlarged side view of the inside of the distal end portion of the electronic endoscope of Examples 1 and 2.

【図3】実施例1の配光レンズの配光特性を示すグラフ
である。
FIG. 3 is a graph showing the light distribution characteristics of the light distribution lens of Example 1.

【図4】実施例2の配光レンズの配光特性を示すグラフ
である。
FIG. 4 is a graph showing the light distribution characteristics of the light distribution lens of Example 2.

【図5】実施例3及び4の電子内視鏡の先端部内部の拡
大側面図である。
FIG. 5 is an enlarged side view of the inside of the distal end portion of the electronic endoscope of Examples 3 and 4.

【図6】実施例3の配光レンズの配光特性を示すグラフ
である。
FIG. 6 is a graph showing the light distribution characteristics of the light distribution lens of Example 3.

【図7】実施例4の配光レンズの配光特性を示すグラフ
である。
FIG. 7 is a graph showing the light distribution characteristics of the light distribution lens of Example 4.

【図8】実施例3及び4の変形例の電子内視鏡の先端部
内部の拡大側面図である。
FIG. 8 is an enlarged side view of the inside of the distal end portion of the electronic endoscope of a modified example of Examples 3 and 4.

【図9】実施例5の電子内視鏡の先端部内部の拡大側面
図である。
FIG. 9 is an enlarged side view of the inside of the distal end portion of the electronic endoscope of Example 5.

【図10】実施例5の配光レンズの配光特性を示すグラ
フである。
FIG. 10 is a graph showing the light distribution characteristics of the light distribution lens of Example 5.

【図11】比較例の内視鏡の先端部内部の拡大側面図で
ある。
FIG. 11 is an enlarged side view of the inside of the distal end portion of the endoscope of the comparative example.

【図12】比較例の配光レンズの配光特性を示すグラフ
である。
FIG. 12 is a graph showing a light distribution characteristic of a light distribution lens of a comparative example.

【符号の説明】[Explanation of symbols]

1 電子内視鏡 2 体内挿入部 12 照明用光ファイバ束 12a 出射端面(光源) L1 配光レンズ L1a 第1の凹部 L1b 第2の凹部 L2 配光レンズ L2a 第1の凹部 L2b 第2の凹部 G カバーガラス L3 配光レンズ L3a 第1の凹部 L3b 第2の凹部 O 光源光軸 1 Electronic endoscope 2 Internal insertion section 12 Optical fiber bundle for illumination 12a Emitting end face (light source) L1 light distribution lens L1a first recess L1b second recess L2 light distribution lens L2a first recess L2b second recess G cover glass L3 light distribution lens L3a first recess L3b second recess O light source optical axis

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 内視鏡の体内挿入部の先端部に位置し、
光源の光を観察対象に向けて照射する単レンズからなる
配光レンズであって、 上記光源との対向面に形成した第1の凹部と、 上記観察対象側の面に形成した第2の凹部と、を有する
ことを特徴とする内視鏡の配光レンズ。
1. The endoscope is located at the tip of the insertion portion of the endoscope,
A light distributing lens comprising a single lens for irradiating light from a light source toward an observation target, wherein a first recess formed on a surface facing the light source and a second recess formed on a surface on the observation target side. And a light distribution lens for an endoscope.
【請求項2】 請求項1記載の内視鏡の配光レンズにお
いて、上記光源は、照明用光ファイバ束の光束出射端面
である内視鏡の配光レンズ。
2. The light distribution lens for an endoscope according to claim 1, wherein the light source is a light flux emitting end surface of a bundle of optical fibers for illumination.
【請求項3】 請求項1記載の内視鏡の配光レンズにお
いて、上記光源は、発光素子である内視鏡の配光レン
ズ。
3. The endoscope light distributing lens according to claim 1, wherein the light source is a light emitting element.
【請求項4】 請求項1ないし3のいずれか1項記載の
内視鏡の配光レンズにおいて、上記第2の凹部が次の条
件式(1)(2)を満足する内視鏡の配光レンズ。 (1)tan{90−sin-1(1/n)}<h/d3<11.5 (2)0.35<h/h0 ただし、 h:光源光軸から第2の凹部の観察対象側端部までの高
さ、 h0:光源の光源光軸からの高さ、 d3:第2の凹部の深さ。
4. The endoscope light distributing lens according to claim 1, wherein the second concave portion satisfies the following conditional expressions (1) and (2). Light lens. (1) tan {90-sin −1 (1 / n)} <h / d 3 <11.5 (2) 0.35 <h / h 0 where h: observation of the second concave portion from the optical axis of the light source Height to target end, h 0 : Height from light source optical axis of light source, d 3 : Depth of second recess.
【請求項5】 請求項1ないし4のいずれか1項記載の
内視鏡の配光レンズにおいて、上記第2の凹部が凹球面
の一部からなる内視鏡の配光レンズ。
5. The light distribution lens for an endoscope according to claim 1, wherein the second concave portion is a part of a concave spherical surface.
【請求項6】 請求項5記載の内視鏡の配光レンズにお
いて、上記凹球面が次の条件式(3)を満足する内視鏡
の配光レンズ。 (3)0.35h0<h<0.95r3 ただし、 h:光源光軸から第2の凹部の観察対象側端部までの高
さ、 h0:光源の光源光軸からの高さ、 r3:凹球面の曲率半径。
6. The light distributing lens for an endoscope according to claim 5, wherein the concave spherical surface satisfies the following conditional expression (3). (3) 0.35h 0 <h <0.95r 3 where , h: height from the light source optical axis to the end of the second concave portion on the observation target side, h 0 : height from the light source optical axis of the light source, r 3 : radius of curvature of concave spherical surface.
【請求項7】 請求項1ないし4のいずれか1項記載の
内視鏡の配光レンズにおいて、上記第2凹部が凹円錐面
からなる内視鏡の配光レンズ。
7. The light distributing lens for an endoscope according to claim 1, wherein the second concave portion is a concave conical surface.
【請求項8】 請求項7記載の内視鏡の配光レンズにお
いて、上記凹円錐面の頂点は曲面からなっている内視鏡
の配光レンズ。
8. The light distribution lens for an endoscope according to claim 7, wherein the apex of the concave conical surface is a curved surface.
【請求項9】 請求項7または8記載の内視鏡の配光レ
ンズにおいて、上記凹円錐面が、次の条件式(4)を満
足する内視鏡の配光レンズ。 (4)90−sin-1(1/n)<α ただし、α:光源光軸と凹円錐面の母線がなす角度[単
位:deg]、 n:配光レンズの屈折率。
9. The light distribution lens for an endoscope according to claim 7 or 8, wherein the concave conical surface satisfies the following conditional expression (4). (4) 90-sin −1 (1 / n) <α where α is the angle [unit: deg] formed by the optical axis of the light source and the generatrix of the concave conical surface, and n is the refractive index of the light distributing lens.
【請求項10】 請求項1ないし9のいずれか1項記載
の内視鏡の配光レンズにおいて、上記配光レンズの第2
の凹部を有する面に、平行平面板からなるカバーガラス
が配置されている内視鏡の配光レンズ。
10. The light distribution lens for an endoscope according to claim 1, wherein the second light distribution lens is a second lens.
A light distribution lens for an endoscope in which a cover glass made of a plane parallel plate is arranged on a surface having a concave portion.
JP2002185609A 2001-08-10 2002-06-26 Light distribution lens of endoscope Withdrawn JP2003131144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002185609A JP2003131144A (en) 2001-08-10 2002-06-26 Light distribution lens of endoscope

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001244318 2001-08-10
JP2001-244318 2001-08-10
JP2002185609A JP2003131144A (en) 2001-08-10 2002-06-26 Light distribution lens of endoscope

Publications (1)

Publication Number Publication Date
JP2003131144A true JP2003131144A (en) 2003-05-08

Family

ID=26620409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002185609A Withdrawn JP2003131144A (en) 2001-08-10 2002-06-26 Light distribution lens of endoscope

Country Status (1)

Country Link
JP (1) JP2003131144A (en)

Similar Documents

Publication Publication Date Title
US7585274B2 (en) Optical system for endoscopes
US9622652B2 (en) Endoscope objective optical system
US6852079B2 (en) Light guide and endoscope
WO2012137737A1 (en) Endoscope and lighting device for endoscope
CN101426414B (en) Endoscope
CN106211753B (en) Light source optical system and light supply apparatus
WO2015015996A1 (en) Illumination optical system for endoscope
JP2019056722A (en) Oblique-viewing endoscope and imaging system
US11278186B2 (en) Endoscope system and optical adaptor for endoscope
JP6184642B2 (en) Endoscope illumination optical system
JP2009276502A (en) Illumination optical system for endoscope
WO2016027634A1 (en) Endscope device
JP2003131144A (en) Light distribution lens of endoscope
JP2010051606A (en) Illumination optical system and endoscope using the same
CN211348827U (en) Endoscopic imaging device with lens and hyperspectral
JP4147037B2 (en) Illumination system and endoscope having the same
TW202312931A (en) Optical imaging lens assembly and endoscopic optical device
CN113616142A (en) 4K paranasal sinuscope
CN111095068B (en) Objective lens unit for endoscope and endoscope
US10111579B2 (en) Endoscope having an illumination system shifted with respect to an imaging system to reduce generation of heat at a front-end portion of the endoscope
JP3477314B2 (en) Endoscope lighting system
CN211348828U (en) Endoscopic imaging device with lens and hyperspectral
WO2021214873A1 (en) Imaging optical system, endoscope, and imaging device
WO2022246980A1 (en) Endoscope lighting system and lens thereof, and endoscope device
JP6501995B1 (en) Imaging optical system and endoscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080703