JP2003131125A - Objective lens for optical pickup, condensing optical system for optical pickup and optical pickup device - Google Patents

Objective lens for optical pickup, condensing optical system for optical pickup and optical pickup device

Info

Publication number
JP2003131125A
JP2003131125A JP2001332117A JP2001332117A JP2003131125A JP 2003131125 A JP2003131125 A JP 2003131125A JP 2001332117 A JP2001332117 A JP 2001332117A JP 2001332117 A JP2001332117 A JP 2001332117A JP 2003131125 A JP2003131125 A JP 2003131125A
Authority
JP
Japan
Prior art keywords
optical
objective lens
temperature
axis
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001332117A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Mori
伸芳 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2001332117A priority Critical patent/JP2003131125A/en
Publication of JP2003131125A publication Critical patent/JP2003131125A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Optical Head (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an objective lens, a condensing optical system and an optical pickup device in which the variation in the wavefront aberration due to temperature distribution caused by heat given from a heat source during use is suppressed to a level which is practically free from problems. SOLUTION: The objective lens 20 for the optical pickup is composed of a material of which the absolute value of the temperature coefficient dn/dT of refractive index in the vicinity of a used wavelength is 50×10<-6> or greater, and is used for the optical pickup of which the numerical aperture on the image side is 0.5 or greater. The objective lens 20 has a refraction face which is not a rotating body face having an optical axis as a rotary axis, corresponding to a temperature distribution so that the condition WFE<0.05 λ(λ: used wavelength) is satisfied where WFE stands for the RMS value of a wavefront aberration when the difference between the maximum and the minimum values of the temperature distribution is 1 deg.C, when the objective lens is used in an environment in which an aerotropic temperature distribution, which is not a rotational body having the optical axis as a rotational axis, is generated in the lens. Thus, the wavefront aberration is substantially canceled out by the structure which is not a rotational body having the optical axis of the objective lens as the rotational axis when the temperature difference is 1 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光ピックアップ装
置、それに用いられる集光光学系および対物レンズに関
し、特に、温度分布の変化による光学系の集光特性を効
果的に補正することができる光ピックアップ装置、集光
光学系および対物レンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical pickup device, a condensing optical system and an objective lens used therefor, and more particularly, to an optical system capable of effectively correcting the condensing characteristic of the optical system due to a change in temperature distribution. The present invention relates to a pickup device, a condensing optical system, and an objective lens.

【0002】[0002]

【従来の技術】近年、光ピックアップ装置において記憶
容量を増大させるために、使用される対物レンズの開口
数が大きくなってきている。このため、対物レンズをプ
ラスティック製とすると、プラスティックレンズの温
度、湿度などの環境変化によるレンズの結像性能への影
響が非常に重要な問題となる。特に、近年、光ピックア
ップ装置をコンパクトに構成するために、対物レンズの
フォーカシングやトラッキングのためのアクチュエータ
が対物レンズに近接して配置される。このため、アクチ
ュエータの発する熱の影響はプラスティック対物レンズ
を利用する際に重要な問題となる。
2. Description of the Related Art In recent years, the numerical aperture of an objective lens used in an optical pickup device has been increased in order to increase the storage capacity. For this reason, if the objective lens is made of plastic, the influence of environmental changes such as temperature and humidity of the plastic lens on the imaging performance of the lens becomes a very important problem. Particularly, in recent years, in order to make the optical pickup device compact, an actuator for focusing and tracking of the objective lens is arranged close to the objective lens. Therefore, the influence of heat generated by the actuator becomes an important problem when using the plastic objective lens.

【0003】[0003]

【発明が解決しようとする課題】上記光ピックアップ装
置のアクチュエータは、対物レンズの周りに同心的に配
置されるわけではなく、例えば対物レンズを中心に矩形
で囲むか、または、2つの部材で挟み込むように配置さ
れる。この結果、対物レンズはアクチュエータを熱源と
して温度が上昇するが、その対物レンズ内の温度分布が
不均一となってしまう。対物レンズがプラスティックな
ど線膨張係数の大きい素材でできている場合、温度分布
による屈折率分布が発生してしまう。この影響は対物レ
ンズの開口数が大きくなると顕著となる。
The actuator of the above optical pickup device is not arranged concentrically around the objective lens, but is surrounded by, for example, a rectangle around the objective lens or sandwiched by two members. Is arranged as. As a result, the temperature of the objective lens rises using the actuator as a heat source, but the temperature distribution in the objective lens becomes non-uniform. When the objective lens is made of a material having a large linear expansion coefficient such as plastic, a refractive index distribution due to the temperature distribution occurs. This effect becomes remarkable as the numerical aperture of the objective lens increases.

【0004】図4は、NA0.85の2枚構成の対物レ
ンズの第1レンズに非対称性の温度分布が発生している
様子を模式的に示す図であるが、縦軸は基準温度からの
変位量である。直交する2方向で、レンズの周辺部φ
4.8mmで1℃の温度差が発生している。温度差はわ
ずかであるが、レンズ材料がプラスティックレンズなど
線膨張係数の大きい素材でできている場合には、1E−
05(=1×10−5)の程度の屈折率差が発生し、N
Aが0.85の場合には波面収差、特に非点収差成分と
して0.034λRMSが発生する。温度差が大きい場
合には、比例して非点収差が増加する。光ピックアップ
中の対物レンズ周囲の温度分布は、トラッキングの頻度
に応じてアクチュエータから発生する熱により変化し、
対物レンズの周辺部の温度異方性も増減し、最も大きい
温度異方性が発生すると、その非点収差成分によるスポ
ットの増大は無視できずに、光ディスクの記録マークを
適切に読み込めなくなってしまう。このような温度分布
に起因する屈折率分布による波面収差は、任意の熱源の
配置に対応して上述の非点収差の他にもいろいろな形態
がある。
FIG. 4 is a diagram schematically showing how an asymmetrical temperature distribution is generated in the first lens of the objective lens having a two-lens structure of NA 0.85, and the vertical axis is from the reference temperature. The amount of displacement. Peripheral part φ of the lens in two orthogonal directions
A temperature difference of 1 ° C. occurs at 4.8 mm. Although the temperature difference is small, if the lens material is made of a material with a large linear expansion coefficient such as a plastic lens, 1E-
A refractive index difference of about 05 (= 1 × 10 −5 ) occurs, and N
When A is 0.85, wavefront aberration, especially 0.034λRMS, occurs as an astigmatism component. When the temperature difference is large, astigmatism increases proportionally. The temperature distribution around the objective lens in the optical pickup changes due to the heat generated from the actuator according to the tracking frequency,
If the temperature anisotropy in the peripheral part of the objective lens also increases or decreases and the largest temperature anisotropy occurs, the increase in spot due to the astigmatism component cannot be ignored and the recording mark on the optical disk cannot be read properly. . The wavefront aberration due to the refractive index distribution due to such temperature distribution has various forms other than the above-mentioned astigmatism corresponding to the arbitrary arrangement of the heat source.

【0005】本発明は、上記温度分布に起因する波面収
差変化を実用上間題の無いレベルに抑えることができる
対物レンズ、集光光学系及び光ピックアップ装置を提供
することを目的とする。
It is an object of the present invention to provide an objective lens, a condensing optical system and an optical pickup device capable of suppressing a change in wavefront aberration caused by the temperature distribution to a practically satisfactory level.

【0006】[0006]

【課題を解決するための手段】一般に、対物レンズの材
料にプラスティックを用いると、熱伝導率と対物レンズ
のおおよその大きさ、光ピックアップ装置に使用される
際のアクチュエータの発熱量など、いろいろな場合を検
討すると、プラスティックレンズの外周部に発生する可
能性のある温度差は最大で2℃〜3℃であることが、実
験より推定された。
In general, when plastic is used as the material of the objective lens, various factors such as thermal conductivity, the approximate size of the objective lens, and the amount of heat generated by the actuator when used in an optical pickup device are considered. When the case was examined, it was estimated from experiments that the maximum temperature difference that could occur in the outer peripheral portion of the plastic lens was 2 ° C to 3 ° C.

【0007】そこで、請求項1の光ピックアップ用対物
レンズは、使用波長近傍での屈折率の温度係数dn/d
Tの絶対値が50×10−6以上の材料で構成され、像
側開口数が0.5以上の光ピックアップに用いられる対
物レンズにおいて、レンズ内部に光軸を回転軸とする回
転体状でない非等方性の温度分布が生ずるような環境下
で使用されるときに、前記温度分布の最大値と最小値の
差が1℃あるときの波面収差のRMS(二乗平均平方
根)をWFEとすると、次の条件式(1)を満足するよ
うに前記温度分布に対応した光軸を回転軸とする回転体
面でない屈折面を有することを特徴とする。これによ
り、温度差が1℃のときに対物レンズの光軸を回転軸と
する回転体でない構造により波面収差がほぼ相殺され
る。
Therefore, in the objective lens for an optical pickup according to claim 1, the temperature coefficient dn / d of the refractive index in the vicinity of the used wavelength is used.
An objective lens used in an optical pickup having an absolute value of T of 50 × 10 −6 or more and having an image-side numerical aperture of 0.5 or more is not a rotating body having an optical axis as a rotation axis inside the lens. WFE is the RMS (root mean square) of the wavefront aberration when the difference between the maximum value and the minimum value of the temperature distribution is 1 ° C. when used in an environment where an anisotropic temperature distribution occurs. It is characterized in that it has a refracting surface which is not a rotating body surface having an optical axis corresponding to the temperature distribution as a rotation axis so as to satisfy the following conditional expression (1). Thus, when the temperature difference is 1 ° C., the wavefront aberration is almost canceled by the structure that is not the rotating body having the optical axis of the objective lens as the rotation axis.

【0008】WFE<0.05λ (1) ただし、λ:使用波長WFE <0.05λ (1) Where λ: wavelength used

【0009】上述の条件式(1)を満足するように対物
レンズの波面収差が0.05λrms以下に補正されて
いるので、温度差が2℃あるいは3℃と大きくなる場
合、あるいは温度差が0°となる場合など、温度差によ
る影響が最大となる場合でも十分な波面収差を得ること
ができ、低コストのプラスティック対物レンズを特別な
熱対策用の機構を光ピックアップ装置に設けることなく
使用することができる。
Since the wavefront aberration of the objective lens is corrected to 0.05 λrms or less so as to satisfy the above-mentioned conditional expression (1), when the temperature difference becomes as large as 2 ° C. or 3 ° C., or the temperature difference becomes 0. Even if the effect of temperature difference is maximum, such as when the angle becomes °, sufficient wavefront aberration can be obtained, and a low-cost plastic objective lens is used without providing a special heat countermeasure mechanism in the optical pickup device. be able to.

【0010】また、請求項2の光ピックアップ用対物レ
ンズは、レンズの外周部での温度の極大値と極小値が回
転角約90°ごとに交互に並び、前記温度の極大値と極
小値の温度の差が1℃あるときの3次アス波面収差成分
のRMSをWAS1とすると、次の条件式(2)を満足
することを特徴とする。
Further, in the objective lens for an optical pickup according to a second aspect, the maximum value and the minimum value of the temperature at the outer peripheral portion of the lens are alternately arranged at every rotation angle of about 90 °, and the maximum value and the minimum value of the temperature are set. When the RMS of the third-order astigmatic wavefront aberration component when the temperature difference is 1 ° C. is WAS1, the following conditional expression (2) is satisfied.

【0011】 WAS1<0.03λ (2) ただし、λは使用波長[0011] WAS1 <0.03λ (2) Where λ is the wavelength used

【0012】対物レンズの使用中に対物レンズを挟んで
発熱体となるアクチュエータなどが配置されることによ
って、対物レンズの対向する外周部分とそれと直交して
対向する外周部分との問に温度差が発生するが、上述の
請求項2のように構成すると、その影響を小さくするこ
とができる。このような使用状態ではレンズ内部に鞍形
の屈折率分布が発生し、その結果3次アス成分を主とす
る波面収差が生ずるが、発生しうる温度差の最大値は2
℃程度なので、その中間の1℃の温度差が発生している
ときの波面収差が条件式(2)を満足するようにする
と、変化しうる温度範囲全域に渡って、波面収差の劣化
度は大きくなり過ぎない。
By disposing an actuator or the like serving as a heating element with the objective lens in between while the objective lens is being used, there is a temperature difference between the outer peripheral portion facing the objective lens and the outer peripheral portion facing orthogonally thereto. Although it occurs, if it is configured as in the above-mentioned claim 2, its influence can be reduced. In such a state of use, a saddle-shaped refractive index distribution is generated inside the lens, and as a result, wavefront aberration mainly due to a third-order astigmatism component is generated, but the maximum temperature difference that can occur is 2
Since it is about ℃, if the wavefront aberration when the temperature difference of 1 ° C in the middle is satisfied so as to satisfy the conditional expression (2), the degree of deterioration of the wavefront aberration over the entire temperature range that can change. It doesn't grow too big.

【0013】また、請求項3の光ピックアップ用対物レ
ンズは、レンズの内部の温度がほとんど均一であると
き、即ち、温度差が0.1℃以下のときの3次アス波面
収差成分のRMSをWAS0とし、レンズの外周部での
温度の極大値と極小値が回転角約90°ごとに交互に並
び、前記温度の極大値と極小値の温度の差が1℃あると
きと2℃あるときの3次アス波面収差成分のRMSをそ
れぞれWAS1、WAS2とするとき、以下の条件式
(3)、(4)を満足することを特徴とする。
Further, in the objective lens for an optical pickup according to a third aspect, the RMS of the third-order asth wavefront aberration component when the temperature inside the lens is almost uniform, that is, when the temperature difference is 0.1 ° C. or less. As WAS0, the maximum value and the minimum value of the temperature at the outer peripheral portion of the lens are alternately arranged at every rotation angle of about 90 °, and the difference between the maximum value and the minimum value of the temperature is 1 ° C. and 2 ° C. When the RMSs of the third-order asth wavefront aberration components of are WAS1 and WAS2, respectively, the following conditional expressions (3) and (4) are satisfied.

【0014】WAS1<WAS0 (3)WAS1 <WAS0 (3)

【0015】WAS1<WAS2 (4)WAS1 <WAS2 (4)

【0016】上述のように、条件式(3)、(4)を満
足し、温度差2℃のときや、温度差が無いときより、温
度差1℃のときの波面収差のRMSが小さいように対物
レンズを構成すると、温度差2℃のときの波面収差が大
きく成り過ぎない。
As described above, the conditional expressions (3) and (4) are satisfied, and the RMS of the wavefront aberration when the temperature difference is 1 ° C. is smaller than when the temperature difference is 2 ° C. or when there is no temperature difference. When the objective lens is configured as described above, the wavefront aberration does not become too large when the temperature difference is 2 ° C.

【0017】また、請求項4の光ピックアップ用対物レ
ンズは、レンズの内部の温度がほとんど均一であると
き、即ち、温度差が0.1℃以下のときの3次アス波面
収差成分のRMSをWAS0とし、3次アス成分を除い
た残りの波面収差のRMSをWTとすると、以下の条件
式(5)、(6)を満足することを特徴とする。
Further, in the objective lens for an optical pickup of claim 4, the RMS of the third-order astigmatic wave aberration component when the temperature inside the lens is almost uniform, that is, when the temperature difference is 0.1 ° C. or less. When WAS is 0 and RMS of the remaining wavefront aberration excluding the third-order astigmatism component is WT, the following conditional expressions (5) and (6) are satisfied.

【0018】 0.02<WAS0<0.05λ (5)[0018] 0.02 <WAS0 <0.05λ (5)

【0019】WT<0.05λ (6)WT <0.05λ (6)

【0020】対物レンズ内の温度分布が一様のとき、上
述のように、波面収差の3次アス成分のRMSが条件式
(5)となるようにし、3次アス成分を除いた残りの波
面収差をを条件式(6)を満足するようにすると、温度
分布が生じ、アスが発生しても対物レンズに存在する波
面収差の3次アス成分とが相殺し、総合的な波面収差が
常に良好に保たれる。
When the temperature distribution in the objective lens is uniform, as described above, the RMS of the third-order astigmatism component of the wavefront aberration is made to satisfy the conditional expression (5), and the remaining wavefront excluding the third-order astigmatism component is satisfied. When the aberration is made to satisfy the conditional expression (6), a temperature distribution is generated, and even if astigmatism occurs, the third-order astigmatism component of the wavefront aberration existing in the objective lens is canceled out, and the total wavefront aberration is always Keeps good.

【0021】たとえば、後述の実施例1の表1の対物レ
ンズにおける係数Aが全て0で表される通常の回転体状
のレンズに前述のような温度分布が発生し、レンズ外周
部に約2℃の温度差があるとき、屈折率分布により0.
067λRMSの3次アス波面収差が発生する。しか
し、対物レンズの3次アス成分を除いた波面収差が0.
04λとされ、対物レンズに予めたとえば、0.03λ
RMSの3次アス成分が付与されているとすると、この
3次アス成分と温度分布によるものとが相殺し、総合的
な波面収差は、√{0.04+(0.067−0.0
3)}=0.054λRMSとなる。逆に、温度分布
が全く無い場合も、総合的な波面収差は、√{0.04
+0.03}=0.05λRMSとなり、外周部の
温度差が0℃〜2℃の間で発生しても、波面収差は良好
に補正される。この例では3次アス成分を除いた波面収
差を0.04λRMSと比較的大きめに見積もってお
り、これが更に小さく抑えられていれば更に良好な総合
的波面収差を得られることは言うまでも無い。
For example, the temperature distribution as described above occurs in a normal rotating lens in which the coefficient A in the objective lens of Table 1 of Example 1 described later is all 0, and about 2 is generated in the outer peripheral portion of the lens. When there is a temperature difference of 0.
A third-order asth wavefront aberration of 067λRMS occurs. However, the wavefront aberration excluding the third-order astigmatism component of the objective lens is 0.
04λ, and the objective lens has, for example, 0.03λ in advance.
When tertiary astigmatic component of the RMS has been granted, killing and by the third-order astigmatism component and the temperature distribution phase, overall wavefront aberration, √ {0.04 2 + (0.067-0 . 0
3) 2 } = 0.054λRMS. On the contrary, even if there is no temperature distribution, the total wavefront aberration is √ {0.04
2 + 0.03 2 } = 0.05λRMS, and the wavefront aberration is satisfactorily corrected even if the temperature difference in the outer peripheral portion occurs between 0 ° C and 2 ° C. In this example, the wavefront aberration excluding the third-order astigmatism component is estimated to be relatively large at 0.04λRMS, and it goes without saying that a better overall wavefront aberration can be obtained if this is further suppressed.

【0022】また、請求項5のように対物レンズに付加
させた3次アス波面収差の分布と、対物レンズに生ずる
温度分布とを一致させるように配置することで、十分な
効果が得られる。
Further, by arranging so that the distribution of the third-order As wavefront aberration added to the objective lens and the temperature distribution generated in the objective lens coincide with each other, a sufficient effect can be obtained.

【0023】また、対物レンズに3次アスの波面収差成
分を付加させるには、請求項6に記載したように、対物
レンズの屈折面の1面を光軸を回転軸とする回転体でな
い曲面とすると比較的容易に作製することができる。
Further, in order to add the wavefront aberration component of the third-order astigmatism to the objective lens, as described in claim 6, one of the refracting surfaces of the objective lens is a curved surface which is not a rotating body having the optical axis as the rotation axis. Then, it can be manufactured relatively easily.

【0024】また、更に前記光軸を回転軸とする回転体
でない面は、請求項7に記載にようなアナモフィック面
とすることで、有効に波面収差のアス成分を発生させる
ことができる。即ち、上述の対物レンズにおいて、屈折
面の少なくとも1面が光軸を回転軸とする回転体面でな
い非回転体面であり、前記非回転体面上の有効径上の点
を有効半径ρと、角度座標θで表し、(ρ、θ)の位置
での前記非回転体面の光軸方向の変位量をX(ρ、θ)
で表し、有効径上の1回転での変位量の平均値をXav
(ρ)と表し、前記非回転面前後の屈折率をそれぞれ
n、n’とすると、条件式(7)を満足するθの領域θ
+と、条件式(8)を満足するθの領域θ−とが、有効
径上で略90°ごとに交互に並ぶことが好ましい。
Further, the non-rotating surface having the optical axis as the rotation axis is an anamorphic surface as described in claim 7, whereby the astigmatism component of the wavefront aberration can be effectively generated. That is, in the above-mentioned objective lens, at least one of the refracting surfaces is a non-rotating body surface which is not a rotating body surface having the optical axis as a rotation axis, and a point on the effective diameter on the non-rotating body surface is an effective radius ρ and an angular coordinate. Denote by θ, the displacement amount of the non-rotating body surface in the optical axis direction at the position of (ρ, θ) is X (ρ, θ)
Xav is the average value of the amount of displacement in one rotation on the effective diameter.
(Ρ) and the refractive indexes before and after the non-rotational surface are n and n ′, respectively, a region θ of θ that satisfies the conditional expression (7).
It is preferable that + and regions θ− of θ that satisfy the conditional expression (8) are alternately arranged at every 90 ° on the effective diameter.

【0025】 (n−n’){X(ρ、θ)−Xav(ρ)}>0 (7)[0025]   (N−n ′) {X (ρ, θ) −Xav (ρ)}> 0 (7)

【0026】 (n−n’){X(ρ、θ)−Xav(ρ)}<0 (8)[0026]   (N−n ′) {X (ρ, θ) −Xav (ρ)} <0 (8)

【0027】また、請求項8のように、対物レンズに付
加させたアス波面収差の分布と、対物レンズに生ずる温
度分布とを一致させるように配置することで、十分な効
果が得られる。
Further, as described in claim 8, by arranging so as to match the distribution of the astigmatic wave aberration added to the objective lens and the temperature distribution generated in the objective lens, a sufficient effect can be obtained.

【0028】更に、請求項9に記載のように、上述の条
件式(7)を満たす角度領域と条件式(8)を満たす角
度領域とを光ピックアップ内で温度分布に合わせて配置
することで、温度分布で発生するアス成分を良好に相殺
することができる。
Further, as described in claim 9, by arranging the angular region satisfying the conditional expression (7) and the angular region satisfying the conditional expression (8) according to the temperature distribution in the optical pickup. As a result, it is possible to satisfactorily cancel out the asbestos components generated in the temperature distribution.

【0029】また、温度分布が均一な状態で対物レンズ
に3次アス成分を付加させるもう1つの方法として、請
求項10に記載のように対物レンズに非等方的な屈折率
分布をもたせることで容易に得ることができる。
As another method of adding a third-order astigmatism component to the objective lens in a state where the temperature distribution is uniform, the objective lens is provided with an anisotropic refractive index distribution. Can be easily obtained with.

【0030】更に、前記屈折率分布は、請求項11に記
載のように、光軸からの距離に応じて屈折率が変化する
ラジアル型とし、その屈折率分布の係数が1つの方向と
それと直交する方向について異なり、条件式(9)を満
足するように与えることで対物レンズにアス成分を付加
することができる。即ち、前記光軸を回転軸とする回転
体状でない非等方性の屈折率分布を有するレンズが前記
光軸と直交するある方向をx軸とよび、このx軸に沿っ
た前記光軸からの変位をxとし、その位置でのレンズ媒
質の屈折率をn(x)とし、前記光軸と直交しかつ前記
x軸と直交する方向をy軸とし、このy軸に沿った前記
光軸からの変位をyとし、その位置でのレンズ媒質の屈
折率をn(y)するとき、以下の条件式(9)を満足す
ることが好ましい。
Furthermore, as described in claim 11, the refractive index distribution is of a radial type in which the refractive index changes according to the distance from the optical axis, and the coefficient of the refractive index distribution is in one direction and orthogonal to it. The astigmatism component can be added to the objective lens by giving conditional expression (9) so as to satisfy the condition. That is, a certain direction in which a lens having a non-rotary anisotropic refractive index distribution with the optical axis as the axis of rotation is orthogonal to the optical axis is called the x axis, and from the optical axis along the x axis Is x, the refractive index of the lens medium at that position is n (x), the direction orthogonal to the optical axis and orthogonal to the x axis is the y axis, and the optical axis along the y axis is When y is the displacement from and the refractive index of the lens medium at that position is n (y), it is preferable to satisfy the following conditional expression (9).

【0031】 dn(x)/dx > dn(y)/dy (9)D 2 n (x) / dx 2 > d 2 n (y) / dy 2 (9)

【0032】また、上述の各対物レンズでは、対物レン
ズに温度によって発生するアス成分を補正するための構
造を対物レンズ自体に持たせたが、かかる構造を請求項
12乃至22のいずれか1項に記載のように対物レンズ
とは別の光学素子に持たせ、それを含む集光光学系とす
ることで、上述の対物レンズの作用を同様に得ることが
でき、温度分布の変化による光学系の集光特性を効果的
に補正することができる。
Further, in each of the above-mentioned objective lenses, the objective lens itself has a structure for correcting the astigmatism component generated by the temperature. The objective lens itself has such a structure. As described above, by providing an optical element different from the objective lens and forming a condensing optical system including the same, the above-described operation of the objective lens can be similarly obtained, and the optical system based on the change of the temperature distribution can be obtained. It is possible to effectively correct the light condensing characteristic of.

【0033】即ち、請求項12の光ピックアップ用集光
光学系は、使用波長近傍での屈折率の温度係数dn/d
Tの絶対値が50×10−6以上の材料で構成され、像
側開口数が0.5以上でかつ対物レンズ内部に光軸を回
転軸とする回転体状でない非等方性の屈折率分布が生ず
るような環境下で使用される対物レンズを備え、光源か
らの光束を光情報記録媒体上に集光させる光ピックアッ
プ用集光光学系であって、前記対物レンズの温度分布の
最大値と最小値の差が1℃のときの波面収差のRMSを
WFEとすると、上述の条件式(1)を満足するように
前記温度分布に対応した光軸を回転軸とする回転体でな
い構造を有する光学素子を含むことを特徴とする。
That is, in the condensing optical system for an optical pickup according to claim 12, the temperature coefficient dn / d of the refractive index in the vicinity of the used wavelength.
An anisotropic refractive index that is made of a material having an absolute value of T of 50 × 10 −6 or more, has an image-side numerical aperture of 0.5 or more, and is not a rotating body having an optical axis as a rotation axis inside the objective lens. A condensing optical system for an optical pickup, which is provided with an objective lens used in an environment in which a distribution is generated and condenses a light flux from a light source onto an optical information recording medium, and has a maximum value of a temperature distribution of the objective lens. If the RMS of the wavefront aberration when the difference between the minimum value and the minimum value is 1 ° C. is WFE, a structure that is not a rotating body having the optical axis corresponding to the temperature distribution as the rotation axis is satisfied so as to satisfy the above-mentioned conditional expression (1). It is characterized by including an optical element having.

【0034】また、請求項13の光ピックアップ用集光
光学系は、前記対物レンズの外周部での温度の極大値と
極小値が回転角約90°ごとに交互に並び、前記温度の
極大値と極小値の温度の差が1℃あるときの全光学系に
おける波面収差の3次アス成分のRMSをWAS1とす
ると、上述の条件式(2)を満足するように温度分布に
対応した光軸を回転軸とする回転体でない構造を有する
光学素子を含むことを特徴とする。
Further, in the condensing optical system for an optical pickup according to a thirteenth aspect, the maximum value and the minimum value of the temperature at the outer peripheral portion of the objective lens are alternately arranged at every rotation angle of about 90 °, and the maximum value of the temperature is obtained. When the RMS of the third-order astigmatism component of the wavefront aberration in the entire optical system when the temperature difference between the minimum value and the minimum value is 1 ° C is WAS1, the optical axis corresponding to the temperature distribution is satisfied so as to satisfy the above conditional expression (2). It is characterized in that it includes an optical element having a structure which is not a rotating body having a rotation axis of.

【0035】また、請求項14の光ピックアップ用集光
光学系は、前記対物レンズの内部の温度がほとんど均一
であるとき、即ち、温度差が0.1℃以下のときの全光
学系における波面収差の3次アス成分のRMSをWAS
0とし、前記対物レンズの外周部での温度の極大値と極
小値が回転角約90°ごとに交互に並び、前記温度の極
大値と極小値の温度の差が1℃あるときと2℃あるとき
の全光学系における波面収差の3次アス成分のRMSを
それぞれWAS1、WAS2とするとき、上述の条件式
(3)、(4)を満足するように温度分布に対応した光
軸を回転軸とする回転体でない構造を有する光学素子を
含むことを特徴とする。
According to a fourteenth aspect of the present invention, there is provided a converging optical system for an optical pickup, wherein the wavefront in the entire optical system when the temperature inside the objective lens is almost uniform, that is, when the temperature difference is 0.1 ° C. or less. RMS of third-order astigmatism component of aberration is WAS
0, the maximum value and the minimum value of the temperature at the outer peripheral portion of the objective lens are alternately arranged at every rotation angle of about 90 °, and the difference between the maximum value and the minimum value of the temperature is 1 ° C. and 2 ° C. When the RMS of the third-order astigmatism component of the wavefront aberration in a given optical system is WAS1 and WAS2, respectively, the optical axis corresponding to the temperature distribution is rotated so as to satisfy the above conditional expressions (3) and (4). It is characterized in that it includes an optical element having a structure which is not a rotating body having an axis.

【0036】また、請求項15の光ピックアップ用集光
光学系は、前記対物レンズの内部の温度がほとんど均一
であるとき、即ち、温度差が0.1℃以下のときの全光
学系における波面収差の3次アス成分のRMSをWAS
0とし、3次アス成分を除いた残りの波面収差のRMS
をWTとすると、上述の条件式(5)、(6)を満足す
るように温度分布に対応した光軸を回転軸とする回転体
でない構造を有する光学素子を含むことを特徴とする。
According to a fifteenth aspect of the present invention, there is provided a converging optical system for an optical pickup, wherein the wavefront in the entire optical system when the temperature inside the objective lens is almost uniform, that is, when the temperature difference is 0.1 ° C. or less. RMS of third-order astigmatism component of aberration is WAS
RMS of the remaining wavefront aberration which is set to 0 and the third-order astigmatism component is removed
Is represented by WT, an optical element having a structure that is not a rotating body having an optical axis corresponding to the temperature distribution as a rotation axis so as to satisfy the above conditional expressions (5) and (6) is included.

【0037】また、上述の各対物レンズまたは上述の各
集光光学系を請求項23乃至25のように光ピックアッ
プ装置が含むことで、フォーカシング用の第1のアクチ
ュエータやトラッキング用の第2のアクチュエータ等に
より対物レンズや光学素子に温度分布が生じても、かか
る温度分布に起因する波面収差変化を実用上問題の無い
レベルに抑えることができる。
In addition, since the optical pickup device includes each of the above-mentioned objective lenses or each of the above-mentioned condensing optical systems, the first actuator for focusing and the second actuator for tracking are provided. Even if a temperature distribution occurs in the objective lens or the optical element due to the above reasons, the change in the wavefront aberration caused by the temperature distribution can be suppressed to a level at which there is no practical problem.

【0038】更に、請求項26に記載のように、光軸に
対し非回転対称の屈折率分布を生じせしめる屈折率分布
可変素子を含み、前記対物レンズに生ずる非回転対称の
温度分布によって発生する波面収差を前記屈折率分布可
変素子で補正するような光ピックアップ装置とすること
で、大きな温度差が生ずるような使用状態においても対
物レンズで発生する屈折率分布を補正し、光情報記録媒
体に常に良好なスポットを結び、信号特性が良好な光ピ
ックアップ装置を得ることができる。
Further, according to a twenty-sixth aspect, a refractive index distribution variable element for producing a rotationally asymmetric refractive index distribution with respect to the optical axis is included, and the aforesaid non-rotationally symmetrical temperature distribution is generated in the objective lens. By using an optical pickup device in which the wavefront aberration is corrected by the refractive index distribution variable element, the refractive index distribution generated in the objective lens is corrected even in a usage state where a large temperature difference occurs, and an optical information recording medium is obtained. It is possible to obtain an optical pickup device which always connects good spots and has good signal characteristics.

【0039】なお、上述の「光軸を回転軸とする回転体
状でない非等方性の温度分布」とは、レンズを光軸を含
むように光軸方向に切断して見た場合の断面における温
度分布が切断方向において異なることを意味する。ま
た、「光軸を回転軸とする回転体面ではない非回転体
面」とは、レンズ等の光学素子を光軸を含むように光軸
方向に切断して見た場合の断面における面形状が切断方
向において異なることを意味する。
The above-mentioned "non-rotary anisotropic temperature distribution with the optical axis as the axis of rotation" means a cross section when the lens is cut along the optical axis so as to include the optical axis. It means that the temperature distribution at is different in the cutting direction. Further, "a non-rotating body surface that is not a rotating body surface having the optical axis as a rotation axis" means that a surface shape in a cross section when an optical element such as a lens is cut along the optical axis direction so as to include the optical axis is cut. It means different in direction.

【0040】[0040]

【発明の実施の形態】以下、本発明による実施の形態に
ついて図面を用いて説明する。図1は本発明の実施の形
態による光ピックアップ装置の対物レンズ及びアクチュ
エータを示す斜視図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing an objective lens and an actuator of an optical pickup device according to an embodiment of the present invention.

【0041】図1に示すアクチュエータは、二軸電磁式
対物レンズアクチュエータの内、最も一般的なムービン
グコイル形のアクチュエータであり、図の上方向は光デ
ィスク側であり、下部より対物レンズ20へ光源からレ
ーザ光が入射するようになっている。対物レンズ20は
第1レンズ21と第2レンズ22とから構成されてい
る。第1レンズ21を取り囲むようにフォーカシングコ
イル31が支持体38に取り付けられて配置されるとと
もに、第1レンズ21の外周部を挟むように両側にトラ
ッキングコイル32,33がそれぞれ支持体38に取り
付けられて配置されている。また、トラッキングコイル
32,33と対向するようにアクチュエータの支持体3
9側にマグネット34,36を介して第1ヨーク35
a,37aがそれぞれ配置され、トラッキングコイル3
2,33と第1レンズ21の外周部との間に第2ヨーク
35b、37bがそれぞれ配置されている。
The actuator shown in FIG. 1 is the most common moving coil type actuator among the two-axis electromagnetic objective lens actuators. The upward direction of the drawing is the optical disk side, and the lower part is from the light source to the objective lens 20. Laser light is incident. The objective lens 20 is composed of a first lens 21 and a second lens 22. The focusing coil 31 is attached to the support 38 so as to surround the first lens 21, and the tracking coils 32 and 33 are attached to both sides of the support 38 so as to sandwich the outer periphery of the first lens 21. Are arranged. In addition, the support 3 of the actuator is arranged so as to face the tracking coils 32 and 33.
The first yoke 35 through the magnets 34 and 36 on the 9 side.
a and 37a are arranged respectively, and the tracking coil 3
The second yokes 35b and 37b are arranged between the second and third portions 33 and 33 and the outer peripheral portion of the first lens 21, respectively.

【0042】対物レンズ20は、支持体38に取り付け
られたフォーカシングコイル31及びトラッキングコイ
ル32,33と一体に、フォーカシングコイル31への
通電による作動により図の方向Fに変位し、トラッキン
グコイル32,33への通電による作動により図の方向
Tに図の上下一対のバネ40の長手方向に沿って変位す
る。
The objective lens 20, together with the focusing coil 31 and the tracking coils 32 and 33 attached to the support 38, is displaced in the direction F of the drawing by the operation by energizing the focusing coil 31, and the tracking coils 32 and 33 are provided. By the actuation by energizing, the pair of upper and lower springs 40 in the drawing are displaced in the direction T in the drawing along the longitudinal direction.

【0043】上述のように、対物レンズ20に対しトラ
ッキングコイル32,33が偏って配置されているた
め、第1レンズ21のトラッキングコイル32,33に
近い部分がアクチュエータの作動時に、特に温度上昇
し、レンズ内部に鞍型のような屈折率勾配が生ずる(図
4参照)。また、コイルが固定されマグネットが対物レ
ンズ側に取付けられるムービングマグネット形のアクチ
ュエータの場合でも同様の屈折率勾配が生ずる。このよ
うなアクチュエータの使用時に対物レンズに発生する屈
折率分布を補正するための対物レンズ及び集光光学系に
ついて以下、実施例により具体的に説明する。
As described above, since the tracking coils 32 and 33 are eccentrically arranged with respect to the objective lens 20, the portion of the first lens 21 close to the tracking coils 32 and 33 particularly rises in temperature when the actuator operates. , A saddle-shaped refractive index gradient occurs inside the lens (see FIG. 4). Also, in the case of a moving magnet type actuator in which the coil is fixed and the magnet is attached to the objective lens side, a similar refractive index gradient occurs. The objective lens and the condensing optical system for correcting the refractive index distribution generated in the objective lens when using such an actuator will be specifically described below with reference to examples.

【0044】[0044]

【実施例】本実施例における集光光学系の対物レンズ等
の屈折面は次の数1で表すことができる。
EXAMPLE A refracting surface such as an objective lens of the condensing optical system in this example can be expressed by the following formula 1.

【0045】[0045]

【数1】 [Equation 1]

【0046】〈実施例1〉<Example 1>

【0047】実施例1は2枚のレンズより構成されたN
A0.85の対物レンズを含む集光光学系であるが、こ
の対物レンズは、温度による線膨張係数が7×l0−5
/度で、温度変化に伴う屈折率変化の係数がdn/dT
=−12×10−5/度のプラスティック材料により構
成されている。このためレンズ内で1℃の温度差がある
とき、12×10−5の屈折率差が生ずる。光ピックア
ップ装置の中では対物レンズの周りに、図1のように対
物レンズのフォーカシングやトラッキングのためのアク
チュエータが配置されるが、アクチュエータの構造上、
対物レンズの周囲を一様に取り囲むようなリング状とす
ることが難しく、アクチュエータが連続駆動するとき非
一様な熱が発生する。このため、対物レンズ中にも温度
分布が生じ、屈折率勾配が鞍型のような屈折率分布が発
生する。
The first embodiment is an N lens composed of two lenses.
This is a condensing optical system including an A0.85 objective lens, but this objective lens has a linear expansion coefficient of 7 × 10 −5 depending on temperature.
/ Degree, the coefficient of change in refractive index with temperature change is dn / dT
It is made of a plastic material of -12 × 10 -5 / degree. Therefore, when there is a temperature difference of 1 ° C. in the lens, a refractive index difference of 12 × 10 −5 occurs. In the optical pickup device, an actuator for focusing and tracking of the objective lens is arranged around the objective lens as shown in FIG. 1, but due to the structure of the actuator,
It is difficult to form a ring shape that uniformly surrounds the periphery of the objective lens, and non-uniform heat is generated when the actuator is continuously driven. For this reason, a temperature distribution also occurs in the objective lens, and a refractive index gradient-like refractive index distribution occurs.

【0048】実施例1の対物レンズのレンズデータを次
の表1に示し、その光路図を図2に示す。図2のよう
に、光源側から第1レンズ、第2レンズの順に配置され
ており、光源側から1〜6の各符号で表1の面NO.を
示している。
Lens data of the objective lens of Example 1 are shown in Table 1 below, and its optical path diagram is shown in FIG. As shown in FIG. 2, the first lens and the second lens are arranged in this order from the light source side. Is shown.

【0049】[0049]

【表1】 [Table 1]

【0050】実施例1の対物レンズの屈折面は上記数1
及び表1の係数によって表すことができ、その第1面は
係数Aが0でないアナモフィック面で構成されている。
レンズ内部に温度差が無い場合の波面収差は、WAS0
=0.033λRMSであり、3次アス成分を除いた残
りの波面収差は、Wr=0.007λRMSとされてい
る。また、x軸方向はトラッキングコイルに向かう方向
と略一致するように組み込んで使用する。
The refracting surface of the objective lens according to the first embodiment has the above-mentioned numerical formula 1.
And the first surface thereof is composed of an anamorphic surface whose coefficient A is not zero.
When there is no temperature difference inside the lens, the wavefront aberration is WAS0.
= 0.033λRMS, and the remaining wavefront aberration excluding the third-order astigmatism component is Wr = 0.007λRMS. In addition, the x-axis direction is installed so that it is substantially aligned with the direction toward the tracking coil.

【0051】前記鞍型の屈折率勾配を以下に示す数2の
モデルで表すと、第1レンズの外周部(径φ4.8)で
屈折率変化のPV値が温度差1℃相当の12×10−5
だけ生ずるとき、屈折率分布の係数は、n2=1.04
2E−05となり、屈折率分布によるアス成分と、回転
非対称面によるアス成分とが相殺し、対物レンズで発生
する波面収差は最小値、WAS1=0.007λRMS
をとる(λ:使用波長)。また、温度差が2℃のときと
0℃のとき波面収差のアス成分が相殺できずに残存する
ことになるが、波面収差は、WAS0=WAS2=0.
033λRMSとなり、充分に使用することができる。
このように実施例1では、対物レンズの外周部の温度差
が0℃〜2℃の間で波面収差は0.033λRMS以下
に抑えることができる。
When the saddle type refractive index gradient is expressed by the following model of Equation 2, the PV value of the refractive index change at the outer peripheral portion (diameter φ4.8) of the first lens is 12 × corresponding to a temperature difference of 1 ° C. 10-5
, The coefficient of the refractive index distribution is n2 = 1.04.
2E-05, the astigmatism component due to the refractive index distribution cancels out the astigmatism component due to the rotationally asymmetric surface, and the wavefront aberration generated in the objective lens is the minimum value, WAS1 = 0.007λRMS.
(Λ: wavelength used). Further, when the temperature difference is 2 ° C. and 0 ° C., the astigmatism component of the wavefront aberration cannot be offset and remains, but the wavefront aberration is WAS0 = WAS2 = 0.
It becomes 033λRMS and can be used sufficiently.
As described above, in Example 1, the wavefront aberration can be suppressed to 0.033λRMS or less when the temperature difference of the outer peripheral portion of the objective lens is between 0 ° C and 2 ° C.

【0052】[0052]

【数2】 [Equation 2]

【0053】実施例1では温度分布による3次AS成分
を相殺させるために、対物レンズの第1面を係数Aが0
でないアナモフィック面としているが、A=0の回転体
面とし、例えば、第1レンズに温度分布によって発生す
る屈折率分布を相殺するような屈折率分布を予め持たせ
ておくことでも同様の効果を得ることができる。この場
合も、第1レンズ外形φ4.8での温度差が1℃のとき
の屈折率分布を相殺するように温度差が無いときの屈折
率分布の係数を、n2=−1.042E−05となるよ
うにすると良い。
In the first embodiment, in order to cancel the third-order AS component due to the temperature distribution, the coefficient A is 0 on the first surface of the objective lens.
Although it is not an anamorphic surface, the same effect can be obtained by using a rotating body surface with A = 0 and providing the first lens with a refractive index distribution that cancels the refractive index distribution generated by the temperature distribution in advance. be able to. Also in this case, the coefficient of the refractive index distribution when there is no temperature difference is set to n2 = -1.042E-05 so as to cancel out the refractive index distribution when the temperature difference in the first lens outer shape φ4.8 is 1 ° C. Should be

【0054】〈実施例2〉<Example 2>

【0055】実施例2は、2枚構成の対物レンズとは別
体のアナモフィック面を有する補正板を光学系の光軸上
で対物レンズのアクチュエータの熱の影響を受けない位
置に配置した集光光学系である。光ピックアップ装置に
適用可能な集光光学系のうち、補正板及び対物レンズに
ついてのレンズデータを表2に示し、その光路図を図3
に示す。図3のように、光源側から補正板、第1レン
ズ、第2レンズが順に配置されており、光源側から1〜
8の各符号で表2の面NO.を示している。
In the second embodiment, a correction plate having an anamorphic surface, which is separate from the two-element objective lens, is arranged at a position on the optical axis of the optical system that is not affected by the heat of the actuator of the objective lens. It is an optical system. Table 2 shows lens data of the correction plate and the objective lens of the condensing optical system applicable to the optical pickup device, and its optical path diagram is shown in FIG.
Shown in. As shown in FIG. 3, the correction plate, the first lens, and the second lens are arranged in this order from the light source side.
No. 8 of the surface No. Is shown.

【0056】[0056]

【表2】 [Table 2]

【0057】実施例2の対物レンズは、実施例1と同様
に、温度による線膨張係数が7×10−5/度で、温度
変化に伴う屈折率変化の係数がdn/dT=−12×1
/度のプラスティック材料により構成されてい
る。補正板の第1面は、数1と表2の係数によって定ま
るような鞍型のアナモフィック面となっている。
The objective lens of Example 2 has a coefficient of linear expansion with temperature of 7 × 10 −5 / degree and a coefficient of change of refractive index with temperature change of dn / dT = −12 ×, similarly to Example 1. 1
0 - is formed by 5 / of the plastic material. The first surface of the correction plate is a saddle-shaped anamorphic surface that is determined by the equation 1 and the coefficient of Table 2.

【0058】実施例2では、対物レンズに温度差が発生
していないとき、補正板と対物レンズを合成したときの
波面収差は3次のアス成分が主で、WAS0=0.03
3λRMSであり、3次アスを除いた波面収差はWT=
0.007λRMSである。対物レンズの外周部(径が
φ4.8)で温度差が1℃発生したとき、実施例1と同
様に、屈折率分布の係数n2=1.042E−05のよ
うに上記数2で表される鞍型の屈折率分布が生じ、これ
によって発生する3次アス成分と、補正板が有している
3次アス波面収差とが相殺し、ほぼWAS1=0.00
7λRMSとなる。温度差が0℃、2℃のときもWAS
0=WAS2=0.033λRMSとなり、0℃から2
℃の温度差が生じても良好なスポットを得ることができ
る。
In the second embodiment, when the temperature difference does not occur in the objective lens, the wavefront aberration when the correction plate and the objective lens are combined is mainly the third-order astigmatism component, and WAS0 = 0.03.
3λRMS, and the wavefront aberration excluding the third-order astigmatism is WT =
It is 0.007λ RMS. When a temperature difference of 1 ° C. occurs at the outer peripheral portion (diameter φ4.8) of the objective lens, the coefficient n2 of the refractive index distribution is n2 = 1.04E-05, which is expressed by the above mathematical expression 2 as in Example 1. A saddle-shaped refractive index distribution is generated, and the third-order astigmatic component generated thereby cancels out the third-order astigmatic wavefront aberration possessed by the correction plate, and approximately WAS1 = 0.00.
It becomes 7λRMS. WAS even when the temperature difference is 0 ° C or 2 ° C
0 = WAS2 = 0.033λRMS, and 0 ° C to 2
A good spot can be obtained even if a temperature difference of ° C occurs.

【0059】実施例2も屈折面を上記数1においてAが
0でないアナモフィック面とすることで、3次アス成分
を補正板に持たせているが、補正板に屈折率分布を持た
せることでも同様の効果を得ることができる。
In Example 2 as well, the refracting surface is an anamorphic surface in which A is not 0 in the above mathematical expression 1 so that the correcting plate has a third-order astigmatic component, but it is also possible to give the correcting plate a refractive index distribution. The same effect can be obtained.

【0060】なお、上述の温度差に起因する屈折率分布
を液晶素子などの屈折率分布可変素子で形成し、スポッ
トの形状をモニターしながら屈折率分布を電気的にコン
トロールすることで、複雑に変化する温度分布、屈折率
分布を適切に補正するようにしてもよい。
The refractive index distribution due to the above-mentioned temperature difference is formed by a variable refractive index distribution element such as a liquid crystal element, and the refractive index distribution is electrically controlled while monitoring the shape of the spot, thereby making it complicated. The changing temperature distribution and refractive index distribution may be appropriately corrected.

【0061】また、本明細書では、10のべき乗の表現
にE(またはe)を用いて、例えば、E−02(=10
−2)のように表す場合がある。
Further, in the present specification, E (or e) is used to express the power of 10, and for example, E-02 (= 10
-2 ).

【0062】[0062]

【発明の効果】本発明の対物レンズ、集光光学系及び光
ピックアップ装置によれば、使用中に熱源からの熱によ
り生じる温度分布に起因する波面収差変化を実用上間題
の無いレベルに抑えることができる。
According to the objective lens, the condensing optical system, and the optical pickup device of the present invention, the wavefront aberration change caused by the temperature distribution generated by the heat from the heat source during use can be suppressed to a practically satisfactory level. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態による光ピックアップ装置
の対物レンズ及びアクチュエータを示す斜視図であり、
実施例1及び2に示す集光光学系を用いることのできる
光ピックアップ装置のアクチュエータの構成例を示す図
である。
FIG. 1 is a perspective view showing an objective lens and an actuator of an optical pickup device according to an embodiment of the present invention,
FIG. 6 is a diagram showing a configuration example of an actuator of an optical pickup device that can use the condensing optical system shown in Examples 1 and 2.

【図2】実施例1の集光光学系の光路図である。2 is an optical path diagram of the condensing optical system of Example 1. FIG.

【図3】実施例2の集光光学系の光路図である。FIG. 3 is an optical path diagram of a condensing optical system of Example 2.

【図4】アクチュエータの熱によりレンズ内に発生する
温度分布の例を示す図である。
FIG. 4 is a diagram showing an example of temperature distribution generated in a lens by heat of an actuator.

【符号の説明】[Explanation of symbols]

20 対物レンズ 21 第1レンズ 22 第2レンズ 31 フォーカシングコイル 32,33 トラッキングコイル 20 Objective lens 21 First lens 22 Second lens 31 Focusing coil 32,33 tracking coil

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H087 KA13 NA01 NA08 PA02 PA17 PB02 QA02 QA12 QA41 RA05 RA07 RA12 RA42 UA01 5D119 AA32 BA01 EC01 JA09 JA43 JB03 5D789 AA32 BA01 EC01 JA09 JA43 JB03    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2H087 KA13 NA01 NA08 PA02 PA17                       PB02 QA02 QA12 QA41 RA05                       RA07 RA12 RA42 UA01                 5D119 AA32 BA01 EC01 JA09 JA43                       JB03                 5D789 AA32 BA01 EC01 JA09 JA43                       JB03

Claims (26)

【特許請求の範囲】[Claims] 【請求項1】 使用波長近傍での屈折率の温度係数dn
/dTの絶対値が50×10−6以上の材料で構成さ
れ、像側開口数が0.5以上の光ピックアップに用いら
れる対物レンズにおいて、 レンズ内部に光軸を回転軸とする回転体状でない非等方
性の温度分布が生ずるような環境下で使用されるとき
に、前記温度分布の最大値と最小値の差が1℃あるとき
の波面収差のRMSをWFEとすると、次の条件式を満
足するように前記温度分布に対応した光軸を回転軸とす
る回転体面でない屈折面を有することを特徴とする光ピ
ックアップ用対物レンズ。 WFE<0.05λ ただし、λ:使用波長
1. A temperature coefficient dn of a refractive index near a wavelength used.
In an objective lens used in an optical pickup with an image-side numerical aperture of 0.5 or more, the objective lens is made of a material with an absolute value of / dT of 50 × 10 −6 or more, and is a rotating body with the optical axis as the axis of rotation. If the RMS of the wavefront aberration when the difference between the maximum value and the minimum value of the temperature distribution is 1 ° C. is WFE when used in an environment where a non-isotropic temperature distribution occurs, the following conditions An objective lens for an optical pickup, which has a refracting surface which is not a rotating body surface having an optical axis corresponding to the temperature distribution as a rotation axis so as to satisfy the expression. WFE <0.05λ where λ: wavelength used
【請求項2】 使用波長近傍での屈折率の温度係数dn
/dTの絶対値が50×10−6以上の材料で構成さ
れ、像側開口数が0.5以上の光ピックアップに用いら
れる対物レンズにおいて、 レンズの外周部での温度の極大値と極小値が回転角約9
0°ごとに交互に並び、前記温度の極大値と極小値の温
度の差が1℃あるときの3次アス波面収差成分のRMS
をWAS1とすると、次の条件式を満足することを特徴
とする光ピックアップ用対物レンズ。 WAS1<0.03λ ただし、λは使用波長
2. The temperature coefficient dn of the refractive index near the wavelength used.
In an objective lens used in an optical pickup with an absolute value of / dT of 50 × 10 −6 or more and an image-side numerical aperture of 0.5 or more, the maximum and minimum values of the temperature at the outer periphery of the lens Rotation angle is about 9
RMS of third-order astigmatic wavefront aberration component when the difference between the maximum value and the minimum value of the temperature is 1 ° C. arranged alternately every 0 °.
Where WAS1 is satisfied, an objective lens for an optical pickup which satisfies the following conditional expression. WAS1 <0.03λ where λ is the wavelength used
【請求項3】 使用波長近傍での屈折率の温度係数dn
/dTの絶対値が50×10−6以上の材料で構成さ
れ、像側開口数が0.5以上の光ピックアップに用いら
れる対物レンズにおいて、 レンズの内部の温度がほとんど均一であり温度差が0.
1℃以下のときの3次アス波面収差成分のRMSをWA
S0とし、レンズの外周部での温度の極大値と極小値が
回転角約90°ごとに交互に並び、前記温度の極大値と
極小値の温度の差が1℃あるときと2℃あるときの3次
アス波面収差成分のRMSをそれぞれWAS1、WAS
2とするとき、以下の条件式を満足することを特徴とす
る光ピックアップ用対物レンズ。 WAS1<WAS0 WAS1<WAS2
3. A temperature coefficient dn of the refractive index near the wavelength used.
In an objective lens used in an optical pickup with an absolute value of / dT of 50 × 10 −6 or more and an image-side numerical aperture of 0.5 or more, the temperature inside the lens is almost uniform and the temperature difference is 0.
WA of the RMS of the third-order astigmatic wavefront aberration component at 1 ° C or less
S0, the maximum value and the minimum value of the temperature at the outer peripheral portion of the lens are alternately arranged at every rotation angle of about 90 °, and the difference between the maximum value and the minimum value of the temperature is 1 ° C. and 2 ° C. RMS of the third-order ass wavefront aberration component of WAS1, WAS
An objective lens for an optical pickup which satisfies the following conditional expression when the number is 2. WAS1 <WAS0 WAS1 <WAS2
【請求項4】 使用波長近傍での屈折率の温度係数dn
/dTの絶対値が50×10−6以上の材料で構成さ
れ、像側開口数が0.5以上の光ピックアップに用いら
れる対物レンズにおいて、 レンズの内部の温度がほとんど均一であり温度差が0.
1℃以下のときの3次アス波面収差成分のRMSをWA
S0とし、3次アス成分を除いた残りの波面収差のRM
SをWTとすると、以下の条件式を満足することを特徴
とする光ピックアップ用対物レンズ。 0.02<WAS0<0.05λ WT<0.05λ
4. The temperature coefficient dn of the refractive index near the wavelength used.
In an objective lens used in an optical pickup with an absolute value of / dT of 50 × 10 −6 or more and an image-side numerical aperture of 0.5 or more, the temperature inside the lens is almost uniform and the temperature difference is 0.
WA of the RMS of the third-order astigmatic wavefront aberration component at 1 ° C or less
RM of the remaining wavefront aberration with S0 excluded
An objective lens for an optical pickup, characterized in that the following conditional expression is satisfied, where S is WT. 0.02 <WAS0 <0.05λ WT <0.05λ
【請求項5】 請求項4に記載の対物レンズにおいて、 使用時の環境下において前記対物レンズ外周部に温度の
極大値と極小値が回転角約90°ごとに交互に並び、前
記波面収差を波面に対して参照面が進んでいるとき、正
と定義すると、前記3次アス成分の波面収差が正となる
角度範囲と前記温度の極大値がある方向とが略一致する
ように配置して使用されることを特徴とする対物レン
ズ。
5. The objective lens according to claim 4, wherein the maximum value and the minimum value of the temperature are alternately arranged on the outer peripheral portion of the objective lens at every rotation angle of about 90 ° under the environment of use, and the wavefront aberration is reduced. When the reference surface is advanced with respect to the wave front, if it is defined as positive, it is arranged so that the angular range in which the wave aberration of the third-order astigmatism component is positive and the direction in which the maximum value of the temperature is substantially coincide. An objective lens characterized by being used.
【請求項6】 請求項1乃至5のいずれか1項に記載の
対物レンズにおいて、屈折面の少なくとも1面が光軸を
回転軸とする回転体面でない曲面であることを特徴とす
る対物レンズ。
6. The objective lens according to any one of claims 1 to 5, wherein at least one of the refracting surfaces is a curved surface which is not a rotating body surface having an optical axis as a rotation axis.
【請求項7】 請求項2乃至6のいずれか1項に記載の
対物レンズにおいて、屈折面の少なくとも1面が光軸を
回転軸とする回転体面でない非回転体面であり、前記非
回転体面上の有効径上の点を有効半径ρと、角度座標θ
で表し、(ρ、θ)の位置での前記非回転体面の光軸方
向の変位量をX(ρ、θ)で表し、有効径上の1回転で
の変位量の平均値をXav(ρ)と表し、前記非回転面
前後の屈折率をそれぞれn、n’とすると、 条件式 (n−n’){X(ρ、θ)−Xav(ρ)}>0 を満足するθの領域θ+と、 条件式 (n−n’){X(ρ、θ)−Xav(ρ)}<0 を満足するθの領域θ−とが、有効径上で略90°ごと
に交互に並ぶことを特徴とする対物レンズ。
7. The objective lens according to any one of claims 2 to 6, wherein at least one of the refracting surfaces is a non-rotating body surface that is not a rotating body surface having an optical axis as a rotation axis, and is on the non-rotating body surface. The point on the effective radius of is the effective radius ρ and the angle coordinate θ
The displacement amount of the non-rotating body surface in the optical axis direction at the position (ρ, θ) is represented by X (ρ, θ), and the average displacement amount per rotation on the effective diameter is Xav (ρ ), And the refractive indexes before and after the non-rotational surface are n and n ′, respectively, a region of θ that satisfies the conditional expression (n−n ′) {X (ρ, θ) −Xav (ρ)}> 0. θ + and a region θ− of θ satisfying the conditional expression (n−n ′) {X (ρ, θ) −Xav (ρ)} <0 are alternately arranged at every 90 ° on the effective diameter. Objective lens characterized by.
【請求項8】 請求項7に記載の対物レンズにおいて、
使用時の環境下において前記対物レンズ外周部に温度の
極大値と極小値が回転角約90°ごとに交互に並び、前
記温度の極大値がある方向と、前記角度領域θ+の方向
とが略一致するように配置して使用されることを特徴と
する対物レンズ。
8. The objective lens according to claim 7, wherein
Under the environment of use, the maximum value and the minimum value of the temperature are alternately arranged on the outer peripheral portion of the objective lens at every rotation angle of about 90 °, and the direction in which the maximum value of the temperature is and the direction of the angle region θ + are substantially An objective lens characterized by being used so as to be aligned.
【請求項9】 請求項1記載の対物レンズにおいて、屈
折面の少なくとも1面が光軸を回転軸とする回転体面で
ない非回転体面であり、前記非回転体面上の有効径上の
点を有効半径ρと、角度座標θで表し、(ρ、θ)の位
置での前記非回転体面の光軸方向の変位量をx(ρ、
θ)で表し、有効径上の1回転での変位量の平均値をX
av(ρ)と表し、前記非回転体面前後の屈折率をそれ
ぞれn、n’とすると、 条件式 (n−n’){X(ρ、θ)−Xav(ρ)}>0 を満足するθの領域θ+と、 条件式 (n−n’){X(ρ、θ)−Xav(ρ)}<0 を満足するθの領域θ−とがあり、 前記温度分布の最大値の方向と前記領域θ+とが略一致
するようにして使用されることを特徴とする対物レン
ズ。
9. The objective lens according to claim 1, wherein at least one of the refracting surfaces is a non-rotating body surface which is not a rotating body surface having an optical axis as a rotation axis, and a point on an effective diameter on the non-rotating body surface is effective. The displacement amount in the optical axis direction of the non-rotating body surface at the position (ρ, θ) is represented by a radius ρ and an angular coordinate θ, and x (ρ,
θ), and the average value of the amount of displacement in one rotation on the effective diameter is X
av (ρ) and the refractive indices before and after the non-rotating body surface are n and n ′, respectively, the following conditional expression (n−n ′) {X (ρ, θ) −Xav (ρ)}> 0 is satisfied. There is a region θ + of θ and a region θ− of θ that satisfies the conditional expression (n−n ′) {X (ρ, θ) −Xav (ρ)} <0, and the direction of the maximum value of the temperature distribution An objective lens, which is used such that the region θ + substantially coincides with the region θ +.
【請求項10】 請求項1乃至5のいずれか1項に記載
の対物レンズにおいて、前記対物レンズを構成する少な
くとも1つのレンズ成分が光軸を回転軸とする回転体状
でない非等方性の屈折率分布を有していることを特徴と
する対物レンズ。
10. The objective lens according to claim 1, wherein at least one lens component forming the objective lens is not a non-rotary anisotropic body having an optical axis as a rotation axis. An objective lens having a refractive index distribution.
【請求項11】 請求項10に記載の対物レンズにおい
て、前記光軸を回転軸とする回転体状でない非等方性の
屈折率分布を有するレンズが前記光軸と直交するある方
向をx軸とよび、このx軸に沿った前記光軸からの変位
をxとし、その位置でのレンズ媒質の屈折率をn(x)
とし、 前記光軸と直交しかつ前記x軸と直交する方向をy軸と
し、このy軸に沿った前記光軸からの変位をyとし、そ
の位置でのレンズ媒質の屈折率をn(y)するとき、以
下の条件式を満足することを特徴とする対物レンズ。 dn(x)/dx > dn(y)/dy
11. The objective lens according to claim 10, wherein a lens having an anisotropic refractive index distribution which is not a rotary body having the optical axis as a rotation axis is a direction perpendicular to the optical axis in an x-axis direction. That is, x is the displacement from the optical axis along the x-axis, and the refractive index of the lens medium at that position is n (x).
Let y be the direction orthogonal to the optical axis and orthogonal to the x axis, and let y be the displacement from the optical axis along the y axis, and let the refractive index of the lens medium at that position be n (y ), An objective lens characterized by satisfying the following conditional expression. d 2 n (x) / dx 2 > d 2 n (y) / dy 2
【請求項12】 使用波長近傍での屈折率の温度係数d
n/dTの絶対値が50×10−6以上の材料で構成さ
れ、像側開口数が0.5以上でかつ対物レンズ内部に光
軸を回転軸とする回転体状でない非等方性の屈折率分布
が生ずるような環境下で使用される対物レンズを備え、
光源からの光束を光情報記録媒体上に集光させる光ピッ
クアップ用集光光学系であって、 前記対物レンズの温度分布の最大値と最小値の差が1℃
のときの波面収差のRMSをWFEとすると、次の条件
式を満足するように前記温度分布に対応した光軸を回転
軸とする回転体でない構造を有する光学素子を含むこと
を特徴とする光ピックアップ用集光光学系。 WFE<0.05λ ただし、λは使用波長
12. The temperature coefficient d of the refractive index near the wavelength used.
It is made of a material having an absolute value of n / dT of 50 × 10 −6 or more, has an image-side numerical aperture of 0.5 or more, and is a non-isotropic non-rotary body having an optical axis as a rotation axis inside the objective lens. Equipped with an objective lens used in an environment where a refractive index distribution occurs,
A condensing optical system for an optical pickup that condenses a light flux from a light source onto an optical information recording medium, wherein the difference between the maximum value and the minimum value of the temperature distribution of the objective lens is 1 ° C.
When the RMS of the wavefront aberration at that time is WFE, an optical element including an optical element having a structure that is not a rotating body having an optical axis corresponding to the temperature distribution as a rotation axis so as to satisfy the following conditional expression: Condensing optical system for pickup. WFE <0.05λ where λ is the wavelength used
【請求項13】 使用波長近傍での屈折率の温度係数d
n/dTの絶対値が50×10−6以上の材料で構成さ
れ、像側開口数が0.5以上の対物レンズを備え、光源
からの光束を光情報記録媒体上に集光させる光ピックア
ップ用集光光学系であって、 前記対物レンズの外周部での温度の極大値と極小値が回
転角約90°ごとに交互に並び、前記温度の極大値と極
小値の温度の差が1℃あるときの全光学系における波面
収差の3次アス成分のRMSをWAS1とすると、次の
条件式を満足するように温度分布に対応した光軸を回転
軸とする回転体でない構造を有する光学素子を含むこと
を特徴とする光ピックアップ用集光光学系。 WAS1<0.03λ ただし、λは使用波長
13. The temperature coefficient d of the refractive index near the wavelength used.
An optical pickup which is made of a material having an absolute value of n / dT of 50 × 10 −6 or more, and has an objective lens having an image-side numerical aperture of 0.5 or more, and focuses a light flux from a light source on an optical information recording medium. And a maximum value and a minimum value of the temperature at the outer peripheral portion of the objective lens are alternately arranged at every rotation angle of about 90 °, and a difference between the maximum value and the minimum value of the temperature is 1 Assuming that the RMS of the third-order astigmatism component of the wavefront aberration in the all optical system at a temperature of ℃ is WAS1, the optical structure has a structure that is not a rotating body whose rotation axis is the optical axis corresponding to the temperature distribution so as to satisfy the following conditional expression A condensing optical system for an optical pickup, which includes an element. WAS1 <0.03λ where λ is the wavelength used
【請求項14】 使用波長近傍での屈折率の温度係数d
n/dTの絶対値が50×10−6以上の材料で構成さ
れ、像側開口数が0.5以上の対物レンズを備え、光源
からの光束を光情報記録媒体上に集光させる光ピックア
ップ用集光光学系であって、 前記対物レンズの内部の温度がほとんど均一であり温度
差が0.1℃以下のときの全光学系における波面収差の
3次アス成分のRMSをWAS0とし、 前記対物レンズの外周部での温度の極大値と極小値が回
転角約90°ごとに交互に並び、前記温度の極大値と極
小値の温度の差が1℃あるときと2℃あるときの全光学
系における波面収差の3次アス成分のRMSをそれぞれ
WAS1、WAS2とするとき、 次の条件式を満足するように温度分布に対応した光軸を
回転軸とする回転体でない構造を有する光学素子を含む
ことを特徴とする光ピックアップ用集光光学系。 WAS1<WAS0 WAS1<WAS2
14. A temperature coefficient d of a refractive index in the vicinity of a used wavelength.
An optical pickup which is made of a material having an absolute value of n / dT of 50 × 10 −6 or more, and has an objective lens having an image-side numerical aperture of 0.5 or more, and focuses a light flux from a light source on an optical information recording medium. RMS of the third-order astigmatism component of the wavefront aberration in the entire optical system when the temperature inside the objective lens is almost uniform and the temperature difference is 0.1 ° C. or less is WAS0, The maximum value and the minimum value of the temperature at the outer peripheral portion of the objective lens are alternately arranged at every rotation angle of about 90 °, and the difference between the maximum value and the minimum value of the temperature is 1 ° C and 2 ° C. When the RMS of the third-order astigmatism component of the wavefront aberration in the optical system is WAS1 and WAS2, respectively, an optical element having a structure that is not a rotating body having an optical axis corresponding to the temperature distribution as a rotation axis so as to satisfy the following conditional expression: Optical pick, characterized by including Up for the converging optical system. WAS1 <WAS0 WAS1 <WAS2
【請求項15】 使用波長近傍での屈折率の温度係数d
n/dTの絶対値が50×10−6以上の材料で構成さ
れ、像側開口数が0.5以上の対物レンズを備え、光源
からの光束を光情報記録媒体上に集光させる光ピックア
ップ用集光光学系であって、 前記対物レンズの内部の温度がほとんど均一であり温度
差が0.1℃以下のときの全光学系における波面収差の
3次アス成分のRMSをWAS0とし、3次アス成分を
除いた残りの波面収差のRMSをWTとすると、次の条
件式を満足するように温度分布に対応した光軸を回転軸
とする回転体でない構造を有する光学素子を含むことを
特徴とする光ピックアップ用集光光学系。 0.02λ<WAS0<0.05λ WT<0.05λ ただし、λは使用波長。
15. The temperature coefficient d of the refractive index near the wavelength used.
An optical pickup which is made of a material having an absolute value of n / dT of 50 × 10 −6 or more, and has an objective lens having an image-side numerical aperture of 0.5 or more, and focuses a light flux from a light source on an optical information recording medium. Is a condensing optical system for use, wherein the RMS of the third-order astigmatism component of the wavefront aberration in the entire optical system when the temperature inside the objective lens is almost uniform and the temperature difference is 0.1 ° C. or less is WAS0, 3 Letting WT be the RMS of the remaining wavefront aberration excluding the secondary astigmatism component, it is possible to include an optical element having a structure that is not a rotating body whose rotation axis is the optical axis corresponding to the temperature distribution so as to satisfy the following conditional expression. Characterizing optical system for optical pickup. 0.02λ <WAS0 <0.05λ WT <0.05λ where λ is the wavelength used.
【請求項16】 請求項15記載の光ピックアップ用集
光光学系において、 使用時の環境下において前記対物レンズ外周部に温度の
極大値と極小値が回転角約90°ごとに交互に並び、前
記波面収差を波面に対して参照面が進んでいるとき正と
定義するときに、前記3次アス成分の波面収差が正とな
る角度範囲と前記温度の極大値があると方向が略一致す
るように前記温度分布に対応した光軸を回転軸とする回
転体でない構造を有する光学素子を配置したことを特徴
とする光ピックアップ用集光光学系。
16. The condensing optical system for an optical pickup according to claim 15, wherein the maximum value and the minimum value of the temperature are alternately arranged at rotation angles of about 90 ° on the outer peripheral portion of the objective lens under the environment of use. When the wavefront aberration is defined as positive when the reference surface is advanced with respect to the wavefront, the directions substantially coincide with each other when the angular range in which the wavefront aberration of the tertiary astigmatism component is positive and the maximum value of the temperature are present. Thus, the condensing optical system for an optical pickup is characterized in that an optical element having a structure that is not a rotating body having an optical axis corresponding to the temperature distribution as a rotation axis is arranged.
【請求項17】 請求項12乃至16のいずれか1項に
記載の光ピックアップ用集光光学系において、前記温度
分布に対応した光軸を回転軸とする回転体でない構造を
有する光学素子が屈折面の少なくとも1面が光軸に対し
て回転体面でない曲面を有することを特徴とする光ピッ
クアップ用集光光学系。
17. The converging optical system for an optical pickup according to claim 12, wherein an optical element having a structure which is not a rotating body having an optical axis corresponding to the temperature distribution as a rotation axis is refracted. A condensing optical system for an optical pickup, wherein at least one of the surfaces has a curved surface that is not a rotating body surface with respect to the optical axis.
【請求項18】 請求項13乃至17のいずれか1項に
記載の光ピックアップ用集光光学系において、前記温度
分布に対応した光軸を回転軸とする回転体でない構造を
有する光学素子の屈折面の少なくとも1面が光軸を回転
軸とする回転体面でない非回転体面であり、 前記非回転体面上の有効径上の点を有効半径ρと、角度
座標θで表し、(ρ、θ)の位置での前記非回転体面の
光軸方向の変位量をx(ρ、θ)で表し、有効径上の1
回転での変位量の平均値をXav(ρ)と表し、前記非
回転体面前後の屈折率をそれぞれn、n’とすると、 条件式 (n−n’){X(ρ、θ)−Xav(ρ)}>0 を満足するθの領域θ+と、 条件式 (n−n’){X(ρ、θ)−Xav(ρ)}<0 を満足するθの領域θ−とが、有効径上で略90°ごと
に交互に並ぶことを特徴とする光ピックアップ用集光光
学系。
18. The condensing optical system for an optical pickup according to claim 13, wherein the refraction of an optical element having a structure that is not a rotating body having an optical axis corresponding to the temperature distribution as a rotation axis. At least one of the surfaces is a non-rotating body surface that is not a rotating body surface having the optical axis as a rotation axis, and a point on the effective diameter on the non-rotating body surface is represented by an effective radius ρ and an angular coordinate θ, (ρ, θ) The displacement amount of the non-rotating body surface in the optical axis direction at the position of is represented by x (ρ, θ), and is 1 on the effective diameter.
When the average value of the displacement amount during rotation is represented as Xav (ρ) and the refractive indices before and after the non-rotating body surface are n and n ′, respectively, the conditional expression (n−n ′) {X (ρ, θ) −Xav The region θ + of θ satisfying (ρ)}> 0 and the region θ− of θ satisfying the conditional expression (n−n ′) {X (ρ, θ) −Xav (ρ)} <0 are effective. A condensing optical system for an optical pickup, characterized in that they are arranged alternately every approximately 90 ° on the diameter.
【請求項19】 請求項18に記載の光ピックアップ用
集光光学系において、前記光学素子が使用時の環境下で
前記対物レンズ外周部に温度の極大値と極小値が回転角
約90°ごとに交互に並び、前記温度の極大値がある方
向と、前記角度領域θ+の方向とが略一致するように配
置して使用されることを特徴とする光ピックアップ用集
光光学系。
19. The converging optical system for an optical pickup according to claim 18, wherein the maximum value and the minimum value of the temperature at the outer peripheral portion of the objective lens are about 90 ° of rotation angle under the environment when the optical element is used. 2. The condensing optical system for an optical pickup, wherein the condensing optical system is arranged alternately so that the direction in which the maximum value of the temperature is present and the direction in the angular region θ + are substantially aligned and used.
【請求項20】 請求項12に記載の光ピックアップ用
集光光学系において、前記温度分布に対応した光軸を回
転軸とする回転体でない構造を有する光学素子の屈折面
の少なくとも1面が光軸を回転軸とする回転体でない非
回転体面であり、 前記非回転体面上の有効径上の点を有効半径ρと、角度
座標θで表し、(ρ、θ)の位置での前記非回転体面の
光軸方向の変位量をX(ρ、θ)で表し、有効径上の1
回転での変位量の平均値をXav(ρ)と表し、前記非
回転体面前後の屈折率をそれぞれn、n’とすると、 条件式 (n−n’){X(ρ、θ)−Xav(ρ)}>0 を満足するθの領域θ+と、 条件式 (n−n’){X(ρ、θ)−Xav(ρ)}<0 を満足するθの領域θ−とがあり、 前記光学素子が前記温度分布の最大値の方向と前記領域
θ+とが略一致するようにして使用されることを特徴と
する光ピックアップ用集光光学系。
20. The converging optical system for an optical pickup according to claim 12, wherein at least one of refraction surfaces of an optical element having a structure which is not a rotating body having an optical axis corresponding to the temperature distribution as a rotation axis is an optical element. It is a non-rotating body surface that is not a rotating body having an axis as a rotation axis, and points on the effective diameter on the non-rotating body surface are represented by an effective radius ρ and angular coordinates θ, and the non-rotation at the position (ρ, θ) The amount of displacement of the body surface in the optical axis direction is expressed as X (ρ, θ), and is 1 on the effective diameter.
When the average value of the displacement amount during rotation is represented as Xav (ρ) and the refractive indices before and after the non-rotating body surface are n and n ′, respectively, the conditional expression (n−n ′) {X (ρ, θ) −Xav There is a region θ + of θ that satisfies (ρ)}> 0, and a region θ− of θ that satisfies the conditional expression (n−n ′) {X (ρ, θ) −Xav (ρ)} <0, A condensing optical system for an optical pickup, wherein the optical element is used such that the direction of the maximum value of the temperature distribution and the region θ + are substantially coincident with each other.
【請求項21】 請求項12乃至16のいずれか1項に
記載の光ピックアップ用集光光学系において、前記温度
分布に対応した光軸を回転軸とする回転体でない構造を
有する光学素子を構成する少なくとも1つの構成要素が
光軸を回転軸とする回転体状でない非等方性の屈折率分
布を有していることを特徴とする光ピックアップ用集光
光学系。
21. The converging optical system for an optical pickup according to claim 12, wherein an optical element having a structure that is not a rotating body having an optical axis corresponding to the temperature distribution as a rotation axis is configured. A condensing optical system for an optical pickup, wherein at least one of the constituent elements has a non-rotary anisotropic refractive index distribution having an optical axis as a rotation axis.
【請求項22】 請求項21に記載の光ピックアップ用
集光光学系において、 前記光軸を回転軸とする回転体状でない非等方性の屈折
率分布を有する構成要素が光軸と直交するある方向をx
軸とよび、このx軸に沿った前記光軸からの変位をxと
し、その位置でのレンズ媒質の屈折率をn(x)とし、 前記光軸と直交し、かつ前記x軸と直交する方向をy軸
とし、このy軸に沿った前記光軸からの変位をyとし、
その位置でのレンズ媒質の屈折率をn(y)とすると
き、 以下の条件式を満足することを特徴とする光ピックアッ
プ用集光光学系。 dn(x)/dx > dn(y)/dy
22. The condensing optical system for an optical pickup according to claim 21, wherein the constituent element having an anisotropic refractive index distribution that is not in the form of a rotating body and has the optical axis as a rotation axis is orthogonal to the optical axis. X in a direction
The axis is called, and the displacement along the x-axis from the optical axis is x, the refractive index of the lens medium at that position is n (x), and is orthogonal to the optical axis and orthogonal to the x-axis. The direction is the y-axis, and the displacement from the optical axis along the y-axis is y,
A condensing optical system for an optical pickup, characterized in that the following conditional expression is satisfied, where n (y) is the refractive index of the lens medium at that position. d 2 n (x) / dx 2 > d 2 n (y) / dy 2
【請求項23】 光源と、前記光源からの光束を光情報
記録媒体上に集光させるための、対物レンズを含む集光
光学系と、前記光源からの光束を光情報記録媒体上にフ
ォーカシングさせるために前記対物レンズを駆動する第
1のアクチュエータと、トラッキングのための第2のア
クチュエータと、前記光情報記録媒体からの反射光を検
出する検出手段と、を含む光ピックアップ装置におい
て、 前記対物レンズとして、請求項1乃至11のいずれか1
項に記載の対物レンズを用いることを特徴とする光ピッ
クアップ装置。
23. A light source, a condensing optical system including an objective lens for condensing a light beam from the light source onto the optical information recording medium, and a light beam from the light source to be focused on the optical information recording medium. An optical pickup device comprising: a first actuator for driving the objective lens, a second actuator for tracking, and a detection unit for detecting reflected light from the optical information recording medium. As any one of claims 1 to 11.
An optical pickup device using the objective lens described in the item 1.
【請求項24】 光源と、前記光源からの光束を光情報
記録媒体上に集光させるための、対物レンズを含む集光
光学系と、前記光源からの光束を光情報記録媒体上にフ
ォーカシングさせるために前記対物レンズを駆動する第
1のアクチュエータと、トラッキングのための第2のア
クチュエータと、前記光情報記録媒体からの反射光を検
出する検出手段と、を含む光ピックアップ装置におい
て、 前記集光光学系として、請求項12乃至22のいずれか
1項に記載の集光光学系を用いることを特徴とする光ピ
ックアップ装置。
24. A light source, a condensing optical system including an objective lens for condensing a light beam from the light source on the optical information recording medium, and a light beam from the light source is focused on the optical information recording medium. An optical pickup device including a first actuator for driving the objective lens, a second actuator for tracking, and a detection unit for detecting reflected light from the optical information recording medium. An optical pickup device comprising the condensing optical system according to any one of claims 12 to 22 as an optical system.
【請求項25】 光源と、前記光源からの光束を光情報
記録媒体上に集光させるための、対物レンズを含む集光
光学系と、前記光源からの光束を光情報記録媒体上にフ
ォーカシングさせるための前記対物レンズを駆動する第
1のアクチュエータと、トラッキングのための第2のア
クチュエータと、前記光情報記録媒体からの反射光を検
出する検出手段と、を含む光ピックアップ装置におい
て、 前記集光光学系が請求項1乃至11のいずれか1項に記
載の対物レンズを用いることを特徴とする光ピックアッ
プ装置。
25. A light source, a condensing optical system including an objective lens for condensing a light beam from the light source on the optical information recording medium, and a light beam from the light source is focused on the optical information recording medium. An optical pickup device including a first actuator for driving the objective lens for tracking, a second actuator for tracking, and a detection unit for detecting reflected light from the optical information recording medium. An optical pickup device, wherein an optical system uses the objective lens according to any one of claims 1 to 11.
【請求項26】 光源と、前記光源からの光束を光情報
記録媒体上に集光させるための、対物レンズを含む集光
光学系と、前記対物レンズの周りに光軸を回転軸とする
回転体状と異なるように配置された発熱体と、前記光情
報記録媒体からの反射光を検出する検出手段と、を含む
光ピックアップ装置において、 前記対物レンズが使用波長近傍での屈折率の温度係数d
n/dTの絶対値が50×10−6以上の材料で構成さ
れ、かつその像側開口数がが0.5以上であり、前記集
光光学系が、光軸を回転軸とする回転体状でない非等方
性の屈折率分布を 生じせしめる屈折率分布可変素子を
含み、 前記対物レンズに生ずる温度分布によって発生する波面
収差を前記屈折率分布可変素子で補正することを特徴と
する光ピックアップ装置。
26. A light source, a condensing optical system including an objective lens for condensing a light flux from the light source onto an optical information recording medium, and rotation around the objective lens with an optical axis as a rotation axis. In an optical pickup device including a heating element arranged differently from the body shape, and a detection means for detecting reflected light from the optical information recording medium, the objective lens has a temperature coefficient of a refractive index in the vicinity of a used wavelength. d
A rotating body made of a material having an absolute value of n / dT of 50 × 10 −6 or more, having an image-side numerical aperture of 0.5 or more, and the condensing optical system having an optical axis as a rotation axis. An optical pickup including a refractive index distribution variable element that produces a non-isotropic anisotropic refractive index distribution, and the wavefront aberration generated by the temperature distribution generated in the objective lens is corrected by the refractive index distribution variable element. apparatus.
JP2001332117A 2001-10-30 2001-10-30 Objective lens for optical pickup, condensing optical system for optical pickup and optical pickup device Pending JP2003131125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001332117A JP2003131125A (en) 2001-10-30 2001-10-30 Objective lens for optical pickup, condensing optical system for optical pickup and optical pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001332117A JP2003131125A (en) 2001-10-30 2001-10-30 Objective lens for optical pickup, condensing optical system for optical pickup and optical pickup device

Publications (1)

Publication Number Publication Date
JP2003131125A true JP2003131125A (en) 2003-05-08

Family

ID=19147585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001332117A Pending JP2003131125A (en) 2001-10-30 2001-10-30 Objective lens for optical pickup, condensing optical system for optical pickup and optical pickup device

Country Status (1)

Country Link
JP (1) JP2003131125A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2535752B1 (en) * 2011-06-14 2021-02-24 Carl Zeiss AG Anamorphic objective

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2535752B1 (en) * 2011-06-14 2021-02-24 Carl Zeiss AG Anamorphic objective

Similar Documents

Publication Publication Date Title
KR100527069B1 (en) Objective lens and optical pickup
JP3534363B2 (en) Crystal lens and optical pickup optical system using the same
JPH0833525B2 (en) Method for reducing aberration of diffractive optical element for image formation and optical system therefor
JP2002333575A (en) Objective lens, condensing optical system, optical pickup device, and recording and reproducing device
JP2002303787A (en) Objective lens, method for correcting its manufacturing error and optical pickup device using the objective lens
JP3608333B2 (en) Optical pickup and method of assembling objective lens for optical pickup
US6650469B2 (en) Objective lens formed of a single lens and having high numerical aperture and an optical pickup apparatus adopting the same
EP1271495A2 (en) Objective lens, optical pickup apparatus, and recording and/or reproducing apparatus
JP3104780B2 (en) Objective lens and optical head device using the same
EP1494225A2 (en) Optical system, optical pickup device, recording or/and reproducing apparatus
JPH0314324B2 (en)
JP2003131125A (en) Objective lens for optical pickup, condensing optical system for optical pickup and optical pickup device
JP3918331B2 (en) Reflective micro-optical system
JPH08136801A (en) Recording and reproducing device for optical information recording medium and objective lens for recording and reproduction of optical information recording medium
JPH0477708A (en) Single condenser lens for high-density recording optical disk driving device
JPH09185836A (en) Optical system for recording and reproducing optical information recording medium
JP2003272213A (en) Optical pickup device
Sun et al. Ophthalmic lens design with the optimization of the aspherical coeffiecients
EP2239599A2 (en) Aspherical object lens
JPH11258497A (en) Objective lens optical system
JP2000285500A5 (en)
JP2009282391A (en) Large-sized optical plate
JP2000266996A (en) Optical system using refraction factor distribution lens
JPH11183794A (en) Optical lens
JPH11149038A (en) Optical system using refractive index distribution lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071220