JP2003130982A - Boiling water reactor of natural circulation type - Google Patents

Boiling water reactor of natural circulation type

Info

Publication number
JP2003130982A
JP2003130982A JP2001330119A JP2001330119A JP2003130982A JP 2003130982 A JP2003130982 A JP 2003130982A JP 2001330119 A JP2001330119 A JP 2001330119A JP 2001330119 A JP2001330119 A JP 2001330119A JP 2003130982 A JP2003130982 A JP 2003130982A
Authority
JP
Japan
Prior art keywords
reactor
water
steam
cooling water
chimney
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001330119A
Other languages
Japanese (ja)
Other versions
JP4078057B2 (en
Inventor
Takao Kondo
貴夫 近藤
Hideo Soneda
秀夫 曽根田
Kimiaki Moriya
公三明 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001330119A priority Critical patent/JP4078057B2/en
Publication of JP2003130982A publication Critical patent/JP2003130982A/en
Application granted granted Critical
Publication of JP4078057B2 publication Critical patent/JP4078057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To separate two phases of gas and liquid, adequately remove the moisture of steam guided to a turbine and sufficiently lessen the entrainment of steam into a downcomer in a boiling water reactor of a natural circulation type. SOLUTION: This reactor has a shroud 25 surrounding a core 26 in a reactor pressure vessel 30, a chimney 24 communicating with the upper part of the shroud 25 and a downcomer part 34 formed between the chimney 24, the shroud 25 and the reactor pressure vessel 30. The internal diameter 20 of the chimney 24 is sufficiently wide, specifically 5.4 m or wider. The height 21 from the level of reactor water 6 to a main steam pipe 8 during the operation of the reactor is sufficiently large, specifically 2.5 m or larger. The width 22 of the downcomer part 34 is sufficiently wide, specifically 0.37 m or wider.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、冷却水の密度差に
より冷却水循環駆動力を得る自然循環型沸騰水型原子炉
に関わり、特にセパレータ及びドライヤを設けずに冷却
水から蒸気を分離することが出来る自然循環型沸騰水型
原子炉に関するものである。 【0002】 【従来の技術】自然循環型沸騰水型原子炉に関しては、
これまで特開平6−265665号公報,特開平8−9
4793号公報等を始め、多くの例示が成されている。
図6は、従来の自然循環型沸騰水型原子炉を示すもの
で、図6中、符号1は原子炉圧力容器であり、この原子
炉圧力容器1内には、炉心2が格納されているととも
に、炉心2を取囲むように円筒状のシュラウド5が設け
られ、さらにシュラウド5の上部にはこれにつながるか
たちで円筒状のチムニー3が設けられている。 【0003】これらシュラウド5及びチムニー3の内側
には冷却水の上昇流路が、外側には冷却水の下降流路と
してダウンカマ4が形成されている。そして冷却水(以
下、炉水6という。)は、ダウンカマ4,下部プレナム
7,炉心2およびチムニー3を自然循環している。 【0004】その循環途中で、炉水6が炉心2からの熱
を受けて発生した蒸気は、主蒸気管8を介し、図示しな
いタービンに送られるとともに、そのタービンで仕事を
した後の蒸気は、復水後、給水管9を介して原子炉圧力
容器1内に戻されるようになっている。 【0005】炉心2には制御棒10が挿脱して炉心2の
出力が制御される。しかして、上記構成の従来の自然循
環沸騰水型原子炉では原子炉圧力容器1内の炉心2を包
囲した円筒状のシュラウド5及び円筒状のチムニー3
と、シュラウド5及びチムニー3の外周部と原子炉圧力
容器1に囲まれ冷却水の流路となるダウンカマ4をも
ち、シュラウド5及びチムニー3内の水と蒸気の浮力に
よる上昇力およびダウンカマ4における水頭圧を駆動力
として冷却材を循環させている。 【0006】自然循環型沸騰水型原子炉は、現行の沸騰
水型原子炉から設備を簡素化し建設費低減を計るもので
あり、上記従来例は現行の沸騰水型原子炉に備わってい
るセパレータ及びドライヤを取り除いている構成が採用
される。 【0007】 【発明が解決しようとする課題】しかし、上記従来例に
は次のような課題が存在する。まず比較のため現行の沸
騰水型原子炉について説明する。現行の沸騰水型原子炉
は一般に図7に示すように構成されている。すなわち図
中、符号11で示す原子炉圧力容器内には中心部に炉心
12が配置され、この炉心12を覆うように筒状のシュ
ラウド13が配設されている。このシュラウド13と原
子炉圧力容器11との間隙のダウンカマ19の下部には
複数の再循環ポンプ14が配設されている。 【0008】炉心12における核反応によって生成した
熱エネルギーを得て、冷却水は高温高圧の蒸気となって
シュラウド13内を上方向に流れる。水と蒸気との混合
流は、セパレータ15によって水分が分離された後に、
さらにドライヤ16に導入され、ここで湿分が除去され
た後に、主蒸気管17を通り、タービンに導かれる。タ
ービンを駆動し仕事をしたのちの蒸気は復水となり、こ
の復水は主給水管18を通り、再びシュラウド13の外
側のダウンカマ19に流入する。 【0009】上記のように現行の沸騰水型原子炉では、
炉心12で加熱され気液2相となった冷却水をセパレー
タ15及びドライヤ16により気相,液相に分離するた
め、主蒸気管17を通りタービンに導かれる蒸気は充分
に湿分が除去されており、一方ダウンカマを下降する冷
却水への蒸気の巻き込みは充分小さく抑えられている。 【0010】ところが従来の自然循環型沸騰水型原子炉
においては、セパレータ及びドライヤが省略されてお
り、加熱された冷却水の気液2相への分離についても充
分考慮された従来例は無く、タービンに導かれる蒸気は
充分に湿分が除去されず、またダウンカマを下降する冷
却水への蒸気の巻き込みは充分小さく抑えられていな
い。 【0011】タービンに導かれる蒸気が充分に湿分が除
去されていないとエロージョン等によりタービンが劣化
するという不具合が生じる。またダウンカマを下降する
冷却水への蒸気の巻き込みが充分小さく抑えられていな
いと温度の高い冷却水が炉心に循環し炉心のヒートバラ
ンスに不具合が生じる。 【0012】本発明の目的は、セパレータ及びドライヤ
を省略しても、炉心で加熱された冷却水の気液2相への
分離を充分に行い、タービン側の劣化が起こらないよう
にタービンに導かれる蒸気の湿分を充分に除去し、炉心
のヒートバランスを保つためダウンカマを下降する冷却
水への蒸気の巻き込みを充分小さく抑えることのできる
自然循環型沸騰水型原子炉を提供することである。 【0013】 【課題を解決するための手段】本発明の原理は、原子炉
圧力容器内の中央部に冷却水の上昇流路を、前記上昇流
路の外周囲に前記冷却水の下降流路となるダウンカマ
を、原子炉運転時の前記冷却水水位より上方に前記原子
炉圧力容器に接続された主蒸気管の入口を備えた自然循
環型沸騰水型原子炉において、前記上昇流路として、気
液2相の自由界面の安定性を維持できる許容蒸気流速の
圧力に対する原子炉の運転圧力変化との関係から求めら
れた前記自由界面が安定する前記許容蒸気流速を前記上
昇流路内径に換算して得た値以上の上昇流路内径を有
し、前記冷却水水位から主蒸気管の入口までの高さとし
て、前記主蒸気管の入口での所望する蒸気の湿分を得る
に必要な前記運転圧力変化と前記冷却水位の主蒸気管の
入口までの高さとの関係から求められた前記許容蒸気流
速に対応する高さ以上の高さ有し、ダウンカマの幅とし
て、ダウンカマへの蒸気の巻き込み許容上限値とダウン
カマ冷却水流速との関係から求めたダウンカマ幅以上の
幅を有するようにしたものである。 【0014】このような原理は、発明の解決手段として
具体的な実施例に展開して説明すると、上記目的を達成
するために本発明の実施例では、圧力容器内にシュラウ
ドを有し、このシュラウド内に配置された炉心により冷
却材を加熱し、加熱された冷却材がシュラウド内及びシ
ュラウドの上部に続くチムニーを上昇し、さらに蒸気を
分離した冷却水がチムニー及びシュラウドと圧力容器の
間に形成されるダウンカマ部を下降しさらに炉心下部よ
り炉心内に上昇し循環し、シュラウド及びチムニー内外
の冷却水密度差による差圧を冷却水循環の駆動力とする
自然循環型沸騰水型原子炉であり、蒸気を水から分離す
るセパレータ及び蒸気を乾燥させるドライヤを配置しな
い自然循環型沸騰水型原子炉において、チムニーの内径
を充分大きくする。具体的には5.4m 以上とする。か
つ運転時の冷却水水位から主蒸気管までの高さを充分大
きくする。具体的には2.5m 以上とする。かつダウン
カマ部の幅を充分大きくする。具体的には0.37m 以
上とする。 【0015】セパレータ及びドライヤを省略した場合の
気液分離は重力によるものである。従ってタービンに導
かれる蒸気の湿分を充分に除去するためには、チムニー
から水面を通して上昇していく蒸気の流速を抑え水面を
安定させること、及び運転時の冷却水水位から主蒸気管
までの高さを充分大きくすることが有効である。 【0016】さらにチムニーから水面を通して上昇して
いく蒸気の流速は、簡単には(蒸気発生量÷チムニー断
面積)で表されるため、チムニー内径を大きくすること
が有効となる。またダウンカマを下降する冷却水への蒸
気の巻き込みを充分小さく抑えるためには、ダウンカマ
部を下降していく冷却水の流速を抑えることが有効であ
る。この冷却水の流速は簡単には(総循環流量÷ダウン
カマ部面積)で表されるため、ダウンカマ部の幅を充分
大きくすることが有効である。 【0017】以上により、現行の沸騰水型原子炉からセ
パレータ及びドライヤを省略することによる建設費低減
を可能にし、かつ炉心で加熱された冷却水の気液2相へ
の分離を充分に行い、タービン側の劣化が起こらないよ
うにタービンに導かれる蒸気の湿分を充分に除去し、炉
心のヒートバランスを保つためダウンカマを下降する冷
却水への蒸気の巻き込みを充分小さく抑える自然循環型
沸騰水型原子炉が得られる。 【0018】 【発明の実施の形態】本発明の実施例を図面に基づいて
以下詳細に説明する。図1において、自然循環型沸騰水
型原子炉の原子炉圧力容器30の内側には、冷却水が炉
水6として入れられている。その原子炉圧力容器30内
には、炉水6の水面下において炉心26を囲む円筒状の
シュラウド25とそのシュラウド25の上方に連続する
円筒状のチムニー24とを内蔵する。 【0019】そのシュラウド25とチムニー24の内側
が炉水の上昇流路とされ、外側が原子炉圧力容器内壁面
との間で炉水の下降流路としてのダウンカマ34とされ
る。ダウンカマ34の流路断面は水平断面形状が環状の
形状を有する。 【0020】その炉水6の原子炉運転時の水位(冷却水
水位)から高さ21の位置には主蒸気管8の入口が接続
されている。また、炉水6の水位以下の高さには、給水
管9が接続されている。 【0021】シュラウド25に囲まれた領域内には、炉
心26が配備されている。その炉心26内に出入りでき
る制御棒27の上下動によって、その炉心26の出力が
制御される。 【0022】したがって、炉心26が制御棒27によっ
て制御された熱出力に相当する発熱を生じると、炉水6
は炉心26によって加熱されて気液2相流となってチム
ニー24内を上昇し、炉水6の水面から蒸気が上昇して
主蒸気管8の入口内に入りタービンへ供給され、タービ
ンで仕事をした蒸気は復水化されて給水管で再度原子炉
圧力容器30内のダウンカマ34内にチムニー24内の
炉水6より低い温度にて供給される。炉水6の水面から
蒸気が上昇して、その蒸気が主蒸気管8の入口に到達す
るまでに重力によってその蒸気中の湿分が炉水6の水面
に降下して主蒸気管8の入口内に流入する蒸気の湿分が
低下する。 【0023】このように、チムニー内の炉水とダウンカ
マ内の炉水とは温度差があるので、温度依存による密度
差で炉水がチムニー内では上昇流となって、炉水水面で
蒸気を上方に放出した後にダウンカマ内に入って下降流
となって再度炉心に下方から上方へと流入する循環が生
じ、その循環が継続される。 【0024】図1に示す本発明の第1実施例と従来の自
然循環型沸騰水型原子炉の図6との一見した違いはチ
ムニー24の内径20が大きく、炉水6(冷却水)の
水位から主蒸気管8までの高さ21が大きく、ダウン
カマ部の幅22が大きいことである。 【0025】本実施例において熱出力を約900MWと
した場合の、上記3つの設計寸法についての評価
結果を示す。図2は気液2相の自由界面の安定性を維持
できる許容蒸気流速の圧力に対する変化を示している。
図2のグラフ23より上の領域は気液2相の自由界面が
不安定となり主蒸気管8を経由してタービンに導かれる
蒸気の湿分が増加し、グラフ23より下の領域は気液2
相の自由界面が安定して主蒸気管8を経由してタービン
に導かれる蒸気の湿分が減少する。 【0026】ここで図2に示す通り沸騰水型原子炉の運
転圧力において許容蒸気流速は0.68m/sである。上記
に説明したように蒸気流速は簡単には(蒸気発生量÷チ
ムニー断面積)で表され、熱出力を約900MWとした
第1の実施例の条件ではチムニー24の内径、チムニー
内径20が5.4m に相当する。従って炉水6の上昇流
路の内径であるチムニー内径20が5.4m 以上であれ
ば安定した炉水6の水面が得られる。 【0027】図3は主蒸気管8の入口における蒸気の湿
分を0.1% とした時の、蒸気流速と炉水6の水位(冷
却水水位)から主蒸気管8までの高さ21の関係を表す
グラフである。ここでは現行と同じく蒸気の湿分0.1
% を許容上限値と考えた。図3は蒸気流速が増加する
程、蒸気の湿分を抑えるために必要な炉水6の水位(冷
却水水位)から主蒸気管8までの高さ21が増加するこ
とを示している。 【0028】ここで先に示した許容蒸気流速0.68m
/s の時の必要な炉水6の水位(冷却水水位)から主
蒸気管8までの高さ21は2.5m である。従って炉水
6の水位(冷却水水位)から主蒸気管21までの高さが
2.5m 以上であれば、上記の湿分を許容上限値以下に
抑えることが出来る。 【0029】図4はダウンカマ34部を下降する炉水6
(冷却水)の流速とダウンカマ34への蒸気の巻き込み
との関係を示すグラフである。図4はダウンカマ冷却水
流速が増加する程蒸気の巻き込みが増加することを示し
ている。ここで蒸気の巻き込みの許容上限値を0.25
%とすると対応するダウンカマ冷却水流速は0.24m
/sである。これは第1の実施例の条件においてダウン
カマ34の幅22が0.37mに相当する。従ってダウンカ
マ34の幅22が0.37m 以上であれば、蒸気の巻き
込みを許容上限値以下に抑えることが出来る。 【0030】以上に説明した3つの設計寸法について、
現行の熱出力が約3900MWの沸騰水型原子炉,従来
の自然循環型沸騰水型原子炉,本発明の自然循環型沸騰
水型原子炉の第1の実施例の間で比較する。 【0031】まずチムニー内径20に関しては、本発明
の第1の実施例は現行の沸騰水型原子炉のシュラウド内
径とおおよそ同等の大きさとなっている。これは熱出力
が1/4以下であることを考慮すると、大きなサイズで
ある。一方従来の自然循環型沸騰水型原子炉では、特に
詳細な設計例は無いが、現行と同様に炉心をちょうど包
むように炉心外径と同等のシュラウド内径を設定し、そ
れと同じ内径のチムニーを配置するのみである。本発明
の第1の実施例では大きなチムニー径20を確保するた
め、必ずしも炉心26の外径とシュラウド25及びチム
ニー24内径は一致させず、シュラウド25及びチムニ
ー24と炉心26の間に比較的大きな間隔が存在しても
よい。 【0032】次に炉水6の水位(冷却水水位)から主蒸
気管8までの高さ21に関しては、本発明の第1の実施
例は現行の沸騰水型原子炉とおおよそ同等の高さとなっ
ている。やはり熱出力を1/4以下としていることを考
慮すると、大きなサイズである。一方従来の自然循環型
沸騰水型原子炉では、特に詳細な設計例は無いが、現行
から出力に比例させてサイズを変更するのみである。 【0033】またダウンカマ34部の幅22に関して
は、本発明の第1の実施例は現行の沸騰水型原子炉より
も小さいが、やはり熱出力を1/4以下としていること
を考慮すると、大きなサイズと言える。従来の自然循環
型沸騰水型原子炉では、特に詳細な設計例は無いが、現
行から出力に比例させてサイズを変更するのみである。
これら3つの設計寸法は当然設計条件により変化する
が、簡単には原子炉の熱出力が増加すればこれらの設計
寸法も増加し、熱出力が減少すればこれらの設計寸法も
減少するという関係が主である。先に述べたように第1
の実施例は現行の熱出力3900MWの1/4以下であ
る900MWというかなり小さな熱出力を想定している
が、これ以上の場合、自然循環型沸騰水型原子炉の上記
3つの設計寸法はそれぞれ先に示した値以上の大きさが
必要であり、それによりタービンに導かれる蒸気の湿分
を充分に除去し、ダウンカマ34を下降する冷却水への
蒸気の巻き込みを充分小さく抑えることができる。 【0034】次に本発明の第2の実施例を図5により説
明する。図5は制御棒駆動機構等で制御棒28を炉心2
9の上方から挿入する実施例である。その他の構成は第
1の実施例と同じである。これにより、第1の実施例の
下から挿入する制御棒27に比べ、重力が挿入方向に働
くため安全性が向上する。 【0035】また緊急炉停止のため制御棒28を高速挿
入するスクラムの動力源として重力を用いることが出
来、さらに制御棒駆動機構等が炉心下部を貫通すること
によるシール構造も不要となることから設備の簡素化に
よる建設費低減が可能になる。 【0036】また同時に本実施例は現行の沸騰水型原子
炉からセパレータおよびドライヤが省略されており、制
御棒駆動機構等とこれらの取り合いの問題が無く、簡単
なシステム構成が可能である。 【0037】 【発明の効果】以上詳述したように、本発明によれば、
現行の沸騰水型原子炉からセパレータ及びドライヤを省
略することによる建設費低減を可能にし、かつセパレー
タ及びドライヤを省略したにもかかわらず、炉心で加熱
された冷却水の気液2相への分離を充分に行い、タービ
ン側の劣化が起こらないようにタービンに導かれる蒸気
の湿分を充分に除去し、炉心のヒートバランスを保つた
めダウンカマを下降する冷却水への蒸気の巻き込みを充
分小さく抑える自然循環型沸騰水型原子炉が提供でき
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a natural circulation type boiling water reactor which obtains a driving force for circulating cooling water by a difference in density of cooling water. The present invention relates to a natural circulation type boiling water reactor capable of separating steam from cooling water without using the same. [0002] Regarding a natural circulation boiling water reactor,
Until now, JP-A-6-265665, JP-A-8-9
Many examples have been made, such as the publication of No. 4793.
FIG. 6 shows a conventional natural circulation type boiling water reactor. In FIG. 6, reference numeral 1 denotes a reactor pressure vessel, in which a reactor core 2 is stored. At the same time, a cylindrical shroud 5 is provided so as to surround the core 2, and a cylindrical chimney 3 is provided above the shroud 5 so as to be connected thereto. [0003] A downcomer 4 is formed inside the shroud 5 and the chimney 3 as an ascending flow path of cooling water, and outside the shroud 5 and the chimney 3 as a descending flow path of cooling water. Cooling water (hereinafter referred to as reactor water 6) naturally circulates through the downcomer 4, the lower plenum 7, the core 2, and the chimney 3. During the circulation, steam generated by the reactor water 6 receiving heat from the reactor core 2 is sent to a turbine (not shown) through a main steam pipe 8, and steam after working in the turbine is After the water is condensed, the water is returned to the reactor pressure vessel 1 via the water supply pipe 9. [0005] A control rod 10 is inserted into and removed from the core 2 to control the output of the core 2. Thus, in the conventional natural circulation boiling water reactor having the above configuration, the cylindrical shroud 5 and the cylindrical chimney 3 surrounding the core 2 in the reactor pressure vessel 1 are provided.
And a downcomer 4 serving as a cooling water flow path surrounded by the outer peripheral portions of the shroud 5 and the chimney 3 and the reactor pressure vessel 1, and a rising force due to the buoyancy of water and steam in the shroud 5 and the chimney 3 and the downcomer 4 The coolant is circulated using the head pressure as the driving force. The natural circulation type boiling water reactor is intended to simplify the equipment and reduce the construction cost from the existing boiling water reactor, and the above-mentioned conventional example is a separator provided in the current boiling water reactor. And a configuration in which the dryer is removed. [0007] However, the above-mentioned conventional example has the following problems. First, a current boiling water reactor will be described for comparison. Current boiling water reactors are generally configured as shown in FIG. That is, in the reactor pressure vessel indicated by reference numeral 11 in the drawing, a reactor core 12 is disposed at the center, and a cylindrical shroud 13 is disposed so as to cover the reactor core 12. A plurality of recirculation pumps 14 are disposed below the downcomers 19 in the gap between the shroud 13 and the reactor pressure vessel 11. [0008] The thermal energy generated by the nuclear reaction in the core 12 is obtained, and the cooling water flows upward in the shroud 13 as high-temperature and high-pressure steam. The mixed flow of water and steam, after the water is separated by the separator 15,
Further, it is introduced into a dryer 16, where moisture is removed therefrom, and then guided through a main steam pipe 17 to a turbine. The steam after driving and working the turbine is condensed, and this condensate passes through the main water supply pipe 18 and flows again into the downcomer 19 outside the shroud 13. As described above, in the current boiling water reactor,
Since the cooling water heated in the reactor core 12 and converted into a gas-liquid two phase is separated into a gas phase and a liquid phase by the separator 15 and the dryer 16, the steam guided to the turbine through the main steam pipe 17 is sufficiently removed of moisture. On the other hand, the entrainment of steam into the cooling water descending the downcomer is sufficiently small. However, in the conventional natural circulation type boiling water reactor, a separator and a dryer are omitted, and there is no conventional example in which separation of heated cooling water into two gas-liquid phases is sufficiently considered. Moisture is not sufficiently removed from the steam guided to the turbine, and the entrainment of the steam into the cooling water descending the downcomer is not sufficiently suppressed. If the steam guided to the turbine does not sufficiently remove moisture, the turbine may be deteriorated due to erosion or the like. Also, if the entrainment of steam into the cooling water descending the downcomer is not sufficiently suppressed, the high-temperature cooling water circulates through the core, causing a problem in the heat balance of the core. An object of the present invention is to sufficiently separate cooling water heated in a reactor core into two phases of gas and liquid even if a separator and a dryer are omitted, and to introduce the cooling water to a turbine so that deterioration on the turbine side does not occur. It is an object of the present invention to provide a natural circulation type boiling water reactor capable of sufficiently removing the moisture content of steam generated and keeping the entrainment of steam into cooling water descending downcomers sufficiently to maintain the heat balance of the core. . [0013] The principle of the present invention is that a cooling water ascending flow path is provided at a central portion in a reactor pressure vessel, and the cooling water ascending flow path is provided around an outer periphery of the ascending flow path. In the natural circulation boiling water reactor having an inlet of a main steam pipe connected to the reactor pressure vessel above the cooling water level during the operation of the reactor, The allowable steam flow rate at which the free interface is stable, which is obtained from the relationship between the pressure of the allowable steam flow rate that can maintain the stability of the free interface of the gas-liquid two phase and the operating pressure of the reactor, is converted into the inner diameter of the rising channel Having an ascending flow path inner diameter equal to or larger than the value obtained as a height from the cooling water level to the inlet of the main steam pipe, necessary for obtaining the desired steam moisture at the inlet of the main steam pipe. Up to the inlet of the main steam pipe at the operating pressure change and the cooling water level Has a height equal to or higher than the height corresponding to the allowable steam flow rate determined from the relationship with the height, and as the width of the downcomer, determined from the relationship between the allowable upper limit of steam entrainment into the downcomer and the downcomer cooling water flow rate. The width is greater than the downcomer width. Such a principle is developed and described in a specific embodiment as a means for solving the invention. In order to achieve the above object, in the embodiment of the present invention, a shroud is provided in a pressure vessel, and The coolant is heated by the core arranged in the shroud, the heated coolant rises up the chimney following the inside of the shroud and the upper part of the shroud, and the cooling water separating the steam further flows between the chimney and the shroud and the pressure vessel. It is a natural circulation type boiling water reactor which descends the formed downcomer part, further ascends into the core from the lower part of the core, circulates, and uses the differential pressure due to the difference in cooling water density inside and outside the shroud and chimney as the driving force for cooling water circulation. In a natural circulation boiling water reactor without a separator for separating steam from water and a dryer for drying steam, the inner diameter of the chimney is made sufficiently large. Specifically, it is 5.4 m or more. In addition, the height from the cooling water level during operation to the main steam pipe is sufficiently increased. Specifically, the length is 2.5 m or more. And make the width of the downcomer part sufficiently large. Specifically, it is 0.37 m or more. Gas-liquid separation when the separator and the dryer are omitted is based on gravity. Therefore, in order to sufficiently remove the moisture of the steam guided to the turbine, the flow velocity of the steam rising from the chimney through the water surface must be suppressed to stabilize the water surface, and the water level from the cooling water level during operation to the main steam pipe It is effective to make the height sufficiently large. Further, the flow velocity of steam rising from the chimney through the water surface is simply represented by (steam generation amount / chimney cross-sectional area), so that it is effective to increase the inner diameter of the chimney. In order to sufficiently suppress the entrainment of steam into the cooling water descending the downcomer, it is effective to suppress the flow velocity of the cooling water descending the downcomer portion. Since the flow rate of the cooling water is simply represented by (total circulation flow rate / downcomer area), it is effective to make the width of the downcomer sufficiently large. As described above, it is possible to reduce the construction cost by omitting the separator and the dryer from the existing boiling water reactor, and to sufficiently separate the cooling water heated in the reactor core into two gas-liquid phases, Natural circulation type boiling water that sufficiently removes the moisture of the steam introduced to the turbine so that deterioration on the turbine side does not occur, and keeps the entrainment of the steam into the cooling water descending downcomers sufficiently low to maintain the heat balance of the core. -Type nuclear reactor is obtained. Embodiments of the present invention will be described below in detail with reference to the drawings. In FIG. 1, cooling water is supplied as reactor water 6 inside a reactor pressure vessel 30 of a natural circulation boiling water reactor. In the reactor pressure vessel 30, a cylindrical shroud 25 surrounding the reactor core 26 below the surface of the reactor water 6 and a cylindrical chimney 24 continuous above the shroud 25 are incorporated. The inside of the shroud 25 and the chimney 24 is an upflow channel for reactor water, and the outside is a downcomer 34 as a downflow channel for reactor water between the shroud 25 and the inner wall surface of the reactor pressure vessel. The horizontal cross-sectional shape of the flow path cross section of the downcomer 34 has an annular shape. An inlet of the main steam pipe 8 is connected to a position of the reactor water 6 at a height 21 from a water level (cooling water level) during the operation of the reactor. A water supply pipe 9 is connected to the reactor water 6 at a level lower than the water level. A core 26 is provided in an area surrounded by the shroud 25. The output of the core 26 is controlled by the vertical movement of a control rod 27 that can enter and exit the core 26. Therefore, when the core 26 generates heat corresponding to the heat output controlled by the control rod 27, the reactor water 6
Is heated by the reactor core 26 and rises in the chimney 24 as a gas-liquid two-phase flow, and the steam rises from the water surface of the reactor water 6 and enters the inlet of the main steam pipe 8 to be supplied to the turbine. The steam which has been condensed is condensed and supplied again to the downcomer 34 in the reactor pressure vessel 30 at a lower temperature than the reactor water 6 in the chimney 24 by a water supply pipe. The steam rises from the water surface of the reactor water 6, and by the time the steam reaches the inlet of the main steam pipe 8, the moisture in the steam drops to the water surface of the reactor water 6 and the inlet of the main steam pipe 8 The moisture of the steam flowing into the inside decreases. As described above, since there is a temperature difference between the reactor water in the chimney and the reactor water in the downcomer, the reactor water becomes an upward flow in the chimney due to a temperature-dependent density difference, and steam is generated at the reactor water level. After being discharged upward, a circulation enters the downcomer and becomes a downward flow, and flows into the core again from below, and the circulation is continued. The difference between the first embodiment of the present invention shown in FIG. 1 and the conventional natural circulation type boiling water reactor shown in FIG. 6 is that the inner diameter 20 of the chimney 24 is large and that the reactor water 6 (cooling water) is not used. The height 21 from the water level to the main steam pipe 8 is large, and the width 22 of the downcomer portion is large. The evaluation results for the above three design dimensions when the thermal output is about 900 MW in the present embodiment are shown. FIG. 2 shows the change in the allowable vapor flow rate with respect to the pressure that can maintain the stability of the free interface between the two phases.
In the region above the graph 23 in FIG. 2, the free interface of the gas-liquid two-phase becomes unstable and the moisture of the steam guided to the turbine via the main steam pipe 8 increases, and the region below the graph 23 is the gas-liquid 2
The free interface of the phases is stabilized, and the moisture of the steam guided to the turbine via the main steam pipe 8 is reduced. As shown in FIG. 2, the allowable steam flow rate at the operating pressure of the boiling water reactor is 0.68 m / s. As described above, the steam flow rate is simply represented by (steam generation amount / chimney sectional area). Under the conditions of the first embodiment in which the heat output is about 900 MW, the inner diameter of the chimney 24 and the inner diameter 20 of the chimney are 5 .4m. Therefore, if the chimney inner diameter 20, which is the inner diameter of the ascending flow path of the reactor water 6, is 5.4 m or more, a stable water surface of the reactor water 6 can be obtained. FIG. 3 shows the steam flow rate and the height 21 from the water level (cooling water level) of the reactor water 6 to the main steam pipe 8 when the steam moisture at the inlet of the main steam pipe 8 is set to 0.1%. 6 is a graph showing the relationship of. Here, as in the current case, the steam moisture is 0.1
% Was considered the upper limit. FIG. 3 shows that as the steam flow rate increases, the height 21 from the water level of the reactor water 6 (cooling water level) necessary for suppressing the moisture content of the steam to the main steam pipe 8 increases. Here, the allowable steam flow rate of 0.68 m shown above.
The height 21 from the necessary water level (cooling water level) of the reactor water 6 to the main steam pipe 8 at the time of / s is 2.5 m 2. Therefore, if the height from the water level of the reactor water 6 (cooling water level) to the main steam pipe 21 is 2.5 m or more, the above moisture can be suppressed to the allowable upper limit or less. FIG. 4 shows the reactor water 6 descending the downcomer 34 part.
It is a graph which shows the relationship between the flow velocity of (cooling water), and the entrainment of steam in the downcomer. FIG. 4 shows that steam entrainment increases as the downcomer cooling water flow rate increases. Here, the allowable upper limit value of steam entrainment is 0.25.
%, The corresponding downcomer cooling water flow velocity is 0.24m
/ S. This corresponds to the width 22 of the downcomer 34 of 0.37 m under the conditions of the first embodiment. Therefore, when the width 22 of the downcomer 34 is 0.37 m or more, the entrainment of steam can be suppressed to the allowable upper limit or less. Regarding the three design dimensions described above,
A comparison will be made between a boiling water reactor having a current heat output of about 3900 MW, a conventional natural circulation boiling water reactor, and the first embodiment of the natural circulation boiling water reactor of the present invention. First, as for the chimney inner diameter 20, the first embodiment of the present invention has a size approximately equal to the shroud inner diameter of the existing boiling water reactor. This is a large size considering that the heat output is less than 1/4. On the other hand, in the conventional natural circulation type boiling water reactor, there is no specific detailed design example. Just do it. In the first embodiment of the present invention, in order to secure a large chimney diameter 20, the outer diameter of the core 26 and the inner diameters of the shroud 25 and the chimney 24 do not necessarily match, and a relatively large diameter is provided between the shroud 25 and the chimney 24 and the core 26. There may be intervals. Next, with respect to the height 21 from the water level of the reactor water 6 (cooling water level) to the main steam pipe 8, the first embodiment of the present invention has the same height as that of the existing boiling water reactor. Has become. Considering that the heat output is set to 1/4 or less, the size is large. On the other hand, in the conventional natural circulation type boiling water reactor, there is no particularly detailed design example, but only the size is changed in proportion to the output from the present. Regarding the width 22 of the downcomer 34, the first embodiment of the present invention is smaller than that of the existing boiling water reactor, but it is also large considering that the heat output is reduced to 1/4 or less. Say size. In the conventional natural circulation type boiling water reactor, there is no particularly detailed design example, but only the size is changed in proportion to the power from the present.
Although these three design dimensions naturally vary depending on the design conditions, there is a simple relationship that if the heat output of the reactor increases, these design dimensions also increase, and if the heat output decreases, these design dimensions also decrease. Lord. As mentioned earlier, the first
Although the embodiment of the present invention assumes a considerably small heat output of 900 MW, which is 1/4 or less of the current heat output of 3900 MW, the above three design dimensions of the natural circulation boiling water reactor are respectively larger than this. It is necessary that the size is equal to or larger than the value shown above, whereby the moisture of the steam guided to the turbine can be sufficiently removed, and the entrainment of the steam into the cooling water descending the downcomer 34 can be suppressed to a sufficiently small value. Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 5 shows that the control rod 28 is
9 is an embodiment of inserting from above. Other configurations are the same as those of the first embodiment. Thus, compared to the control rod 27 inserted from below in the first embodiment, the safety is improved because gravity acts in the insertion direction. In addition, gravity can be used as a power source of the scram for inserting the control rod 28 at a high speed for emergency furnace shutdown, and a seal structure by a control rod drive mechanism penetrating the lower part of the core becomes unnecessary. Construction costs can be reduced by simplifying the equipment. At the same time, in the present embodiment, the separator and the dryer are omitted from the existing boiling water reactor, and there is no problem of the interlocking with the control rod drive mechanism and the like, and a simple system configuration is possible. As described in detail above, according to the present invention,
Separation of the cooling water heated in the core into two gas-liquid phases despite the elimination of the separator and dryer, enabling the reduction of construction costs by eliminating the separator and dryer from the current boiling water reactor To sufficiently remove the moisture of the steam led to the turbine so that deterioration on the turbine side does not occur, and keep the steam entrained in the cooling water descending the downcomer to keep the heat balance of the core sufficiently small. A natural circulation boiling water reactor can be provided.

【図面の簡単な説明】 【図1】本発明による第1の実施例の自然循環型沸騰水
型原子炉の概略図である。 【図2】気液2相の自由界面の安定性を維持できる許容
蒸気流速の圧力に対する変化を示すグラフ図である。 【図3】蒸気流速と冷却水水位から主蒸気管までの高さ
の関係を示すグラフ図である。 【図4】ダウンカマ部を下降する冷却水の流速とダウン
カマへの蒸気の巻き込みとの関係を示すグラフ図であ
る。 【図5】本発明による第2の実施例の自然循環型沸騰水
型原子炉の概略図である。 【図6】従来の自然循環型沸騰水型原子炉の概略図であ
る。 【図7】現行の沸騰水型原子炉の概略図である。 【符号の説明】 6…炉水、8…主蒸気管、9…給水管、20…チムニー
内径、21…冷却水水位から主蒸気管までの高さ、22
…ダウンカマ部の幅、24…チムニー、25…シュラウ
ド、26,29…炉心、27,28…制御棒、30…原
子炉圧力容器、34…ダウンカマ。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a natural circulation boiling water reactor according to a first embodiment of the present invention. FIG. 2 is a graph showing a change in allowable vapor flow rate with respect to pressure which can maintain the stability of a free interface between two phases of gas and liquid. FIG. 3 is a graph showing a relationship between a steam flow rate and a height from a cooling water level to a main steam pipe. FIG. 4 is a graph showing a relationship between a flow rate of cooling water descending a downcomer portion and entrainment of steam in the downcomer. FIG. 5 is a schematic diagram of a natural circulation boiling water reactor of a second embodiment according to the present invention. FIG. 6 is a schematic view of a conventional natural circulation boiling water reactor. FIG. 7 is a schematic diagram of a current boiling water reactor. [Description of Signs] 6 ... reactor water, 8 ... main steam pipe, 9 ... water supply pipe, 20 ... chimney inner diameter, 21 ... height from cooling water level to main steam pipe, 22
... width of downcomer part, 24 ... chimney, 25 ... shroud, 26, 29 ... core, 27, 28 ... control rod, 30 ... reactor pressure vessel, 34 ... downcomer.

フロントページの続き (72)発明者 守屋 公三明 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所原子力事業部内Continuation of front page    (72) Inventor Komaki Moriya             3-1-1, Sachimachi, Hitachi City, Ibaraki Pref.             Within the Nuclear Power Division of Hitachi, Ltd.

Claims (1)

【特許請求の範囲】 【請求項1】原子炉圧力容器に内蔵した円筒状のチムニ
ーによって内側の冷却水上昇流路と外側の冷却水の下降
流路とを有する循環流路を形成するとともに、主蒸気管
の入口が前記原子炉圧力容器内の冷却水よりも上方の前
記原子炉圧力容器部位に接続されている自然循環型沸騰
水型原子炉において、 前記チムニーの内径が5.4m 以上であり、前記冷却水
の運転時の水位から主蒸気管の入口までの高さが2.5
m 以上であり、前記下降流路の幅が0.37m以上であ
ることを特徴とする自然循環型沸騰水型原子炉。
Claims: 1. A circulation path having an inner cooling water ascending flow path and an outer cooling water descending flow path is formed by a cylindrical chimney incorporated in a reactor pressure vessel. In a natural circulation boiling water reactor in which an inlet of a main steam pipe is connected to a part of the reactor pressure vessel above cooling water in the reactor pressure vessel, an inner diameter of the chimney is 5.4 m or more. The height from the water level during the operation of the cooling water to the inlet of the main steam pipe is 2.5.
m, and the width of the descending flow path is 0.37 m or more.
JP2001330119A 2001-10-29 2001-10-29 Natural circulation boiling water reactor Expired - Fee Related JP4078057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001330119A JP4078057B2 (en) 2001-10-29 2001-10-29 Natural circulation boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001330119A JP4078057B2 (en) 2001-10-29 2001-10-29 Natural circulation boiling water reactor

Publications (2)

Publication Number Publication Date
JP2003130982A true JP2003130982A (en) 2003-05-08
JP4078057B2 JP4078057B2 (en) 2008-04-23

Family

ID=19145898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001330119A Expired - Fee Related JP4078057B2 (en) 2001-10-29 2001-10-29 Natural circulation boiling water reactor

Country Status (1)

Country Link
JP (1) JP4078057B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122143A (en) * 2006-11-09 2008-05-29 Hitachi-Ge Nuclear Energy Ltd Boiling-water reactor of natural circulation type

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122143A (en) * 2006-11-09 2008-05-29 Hitachi-Ge Nuclear Energy Ltd Boiling-water reactor of natural circulation type
JP4504343B2 (en) * 2006-11-09 2010-07-14 日立Geニュークリア・エナジー株式会社 Natural circulation boiling water reactor

Also Published As

Publication number Publication date
JP4078057B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
JP5285212B2 (en) Steam separator
JP4422690B2 (en) Natural circulation boiling water reactor
JPH10221480A (en) Steam separator, atomic power plant and boiler device
US4912733A (en) Steam-water separating system for boiling water nuclear reactors
JPH0395496A (en) Method for applying natural circulation type boiling water reactor of free surface vapor separation system with load following faculty
US5885333A (en) Low pressure drop steam separators
JP4568238B2 (en) Natural circulation boiling water reactor
JP2003130982A (en) Boiling water reactor of natural circulation type
US5106573A (en) BWR Natural steam separator
JPH02268294A (en) Boiling water reactor comprising offset chimney
JP3971146B2 (en) Steam separator and boiling water reactor
JP2012058113A (en) Steam separation facility for nuclear reactor
JP2007198997A (en) Super-critical pressure water cooled reactor and super-critical pressure water cooled fuel assembly
JPH04231897A (en) Boiling water reactor whose steam separating system is improved
JP4504343B2 (en) Natural circulation boiling water reactor
JP2007232392A (en) Feed water control system of natural circulation type boiling water reactor, and nuclear power plant
US5180546A (en) Boiling water reactor with downcomer steam release channel
EP0859368A1 (en) Low pressure drop steam separators
JP2972162B2 (en) Furnace wall cooling protection structure of fast reactor
KR19990023666A (en) Boiler with external rich fluidized bed
JP2005233704A (en) Natural circulation reactor
JPH02268293A (en) Natural circulation type boiling water nuclear reactor
JPH04230896A (en) Output adjustable natural-circulation type boiling water reactor
JP2004245656A (en) Steam separator
JPH01119798A (en) Natural circulation reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Ref document number: 4078057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees