JP2003130794A - Infrared gas analyzer - Google Patents

Infrared gas analyzer

Info

Publication number
JP2003130794A
JP2003130794A JP2001323614A JP2001323614A JP2003130794A JP 2003130794 A JP2003130794 A JP 2003130794A JP 2001323614 A JP2001323614 A JP 2001323614A JP 2001323614 A JP2001323614 A JP 2001323614A JP 2003130794 A JP2003130794 A JP 2003130794A
Authority
JP
Japan
Prior art keywords
detector
adhesive
hole
gas
gas analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001323614A
Other languages
Japanese (ja)
Inventor
Noriaki Kanamaru
訓明 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2001323614A priority Critical patent/JP2003130794A/en
Publication of JP2003130794A publication Critical patent/JP2003130794A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an infrared gas analyzer capable of performing curing treatments at low temperatures at assembly by the adhesion of a sensor, maintaining high sensitivity for a long period, and performing stable measurement. SOLUTION: The part of a multi-level (a) of a through hole 2 is formed by boring a hole of a diameter ϕf and a hole of a diameter ϕb (ϕf<ϕb) in a metal block 1 from both end surfaces toward its center. Window plates 7 and 8 of CaF2 are made to adhere to a multi-level of the interface of a hole 5 connected to the hole of the diameter ϕf, and a rear lid 9 is made to adhere to a countersunk part of the hole of the diameter ϕb each by a chemically stable and low-reactive adhesive BB2130 made of an American company, Tra- Con, to form a front chamber 10 and a rear chamber 11. A through hole 3 and an L-shaped tunnel 4 each connecting with the holes of the diameter ϕf and of the diameter ϕb vertically from a side surface of the block 1 are formed, and a membrane-heating-coil flow sensor 12 is made to adhere to a bottom of the through hole 3 by the adhesive BB2130.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、赤外活性な被測定
成分ガスの赤外線スペクトル吸収に伴うガス圧変動を利
用して特定ガス種の濃度を計測する赤外線ガス分析計に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared gas analyzer for measuring the concentration of a specific gas species by utilizing the gas pressure fluctuation associated with the infrared spectrum absorption of an infrared active component gas.

【0002】[0002]

【従来技術】2つ以上の異なる原子から成る異核分子の
多くは、波長1〜20μm の赤外光を照射すると、その化
学種に特有の振動および回転の運動エネルギー準位の遷
移がおこり、特定の赤外線スペクトルを吸収し、内部エ
ネルギーや体積あるいは圧力の増加など、熱力学的な変
化を引き起こす。非分散型赤外線ガス分析計(以下、ND
IRという)は、この様なガス成分の特性を利用して、そ
の濃度を計測する機器である。
2. Description of the Related Art Many heteronuclear molecules composed of two or more different atoms undergo kinetic energy level transitions of vibration and rotation peculiar to their chemical species when irradiated with infrared light having a wavelength of 1 to 20 μm. It absorbs a specific infrared spectrum and causes thermodynamic changes such as an increase in internal energy, volume or pressure. Non-dispersive infrared gas analyzer (hereinafter ND
IR) is a device that measures the concentration of such gas components by utilizing such characteristics.

【0003】検出器としてフローセンサを搭載したシン
グルビーム式NDIRの構成を図5に示す。図に示すように
この種のNDIRは、一般に、赤外光を発生するための光源
部20、被測定ガス(試料ガス)が導入されるセル部30、
セル部30を通過した赤外光の強度を計測することで最終
的に試料濃度を計測するディテクター(検出)部40の3
ユニットから構成されている。光源部20は赤外光の発生
を担い、赤外光を発生させるための発生源であるヒータ
ー(光源)21と、赤外光を断続してセル部30およびディ
テクター部40に入射させるためのチョッパー22とから構
成されている。
FIG. 5 shows the structure of a single beam NDIR having a flow sensor as a detector. As shown in the figure, this type of NDIR generally includes a light source section 20 for generating infrared light, a cell section 30 into which a gas to be measured (sample gas) is introduced,
The detector unit 40 of the detector unit 40 that finally measures the sample concentration by measuring the intensity of the infrared light that has passed through the cell unit 30.
It is composed of units. The light source unit 20 is responsible for generating infrared light, and is a heater (light source) 21 that is a generation source for generating infrared light, and for intermittently making infrared light incident on the cell unit 30 and the detector unit 40. It is composed of a chopper 22.

【0004】チョッパー22は、例えば、光源21からの光
の通過を許容するように、一部を切り欠いた切り欠き部
が形成された2枚羽根の回転円板23とこの回転円板23を
回転駆動するモータ24とで構成されており、回転円板23
をモータ24で回転させることで、回転円板23の未切り欠
き部(遮光部)が光源21の前に位置している際には光源
21からの赤外光を遮光し、切り欠き部が光源21の前に位
置している際には光源21からの赤外光が通過し、セル部
30に照射される。
The chopper 22 includes, for example, a two-blade rotary disk 23 and a rotary disk 23 having two notches formed by cutting out a part of the light source 21 to allow passage of light from the light source 21. It is composed of a rotating motor 24 and a rotating disk 23.
When the uncut portion (light-shielding portion) of the rotating disc 23 is located in front of the light source 21, the light source is rotated by rotating the motor 24 with the light source.
Infrared light from 21 is blocked, and when the cutout is located in front of the light source 21, the infrared light from the light source 21 passes,
Irradiate 30.

【0005】セル部30は、試料ガスが導入される部位で
あって、パイプ31の前後を赤外線が広いスペクトル域で
透過可能な赤外線透過性ガラスやCaF2等の窓板32で封止
し、パイプ31側面などに一端からもう一端へガスが流せ
るようガスの導出入孔33を備え、また、その内面は赤外
光を効率よく反射するために、鏡面仕上げや金などのコ
ーティングが施されている。
The cell part 30 is a part into which the sample gas is introduced, and the front and rear of the pipe 31 are sealed with an infrared permeable glass or a window plate 32 such as CaF 2 which can transmit infrared rays in a wide spectrum range. A gas inlet / outlet hole 33 is provided on the side surface of the pipe 31 so that the gas can flow from one end to the other end, and its inner surface is mirror-finished or coated with gold or the like to efficiently reflect infrared light. There is.

【0006】ディテクター部40は、通常、アルミなどの
金属製の前室となる前部ブロックと後室となる後部ブロ
ックで構成されている。これは、NDIRの原理上、検出部
は、被測定ガス(試料ガス)が導入されたセルを透過し
てきた測定すべき赤外光を入射させ、内封された受感ガ
スを昇圧させるための前後2室の形成と、前後室を連通
する連通路内に前後室の圧力差を検出するフローセンサ
等のセンサを配置するために必要な構成で、その構成を
図6に模式的に示す。
The detector section 40 is generally composed of a front block which is a front chamber and a rear block which is a rear chamber made of metal such as aluminum. This is because the detector uses the NDIR principle to inject the infrared light to be measured that has passed through the cell into which the gas to be measured (sample gas) has been introduced to boost the pressure of the enclosed sensitive gas. FIG. 6 schematically shows the configuration required to form two chambers in the front and rear and to arrange a sensor such as a flow sensor for detecting a pressure difference between the front and rear chambers in a communication passage that communicates the front and rear chambers.

【0007】前後部ブロックB1、B2には同一径の貫通孔
が形成されおり、図示では、前部ブロックB1の貫通孔の
両端と、後部ブロックB2の前部ブロックB1との接合面と
反対側の貫通孔の一端が赤外光を透過する窓板43で封止
されており、前後部ブロックB1、B2を図示のように接合
して一体化した際に前部ブロックB1の貫通孔を封止する
後部ブロックB2に面する窓板43′が隔壁となって前室41
と後室42の2室とされる。
Through holes of the same diameter are formed in the front and rear blocks B1 and B2. In the figure, the opposite side of the joint surface between the through holes of the front block B1 and the front block B1 of the rear block B2 is shown. One end of the through hole is sealed with a window plate 43 that transmits infrared light, and when the front and rear blocks B1 and B2 are joined and integrated as shown in the figure, the through hole of the front block B1 is sealed. The window plate 43 'facing the rear block B2 to be stopped serves as a partition wall for the front chamber 41.
And the rear room 42.

【0008】また、前部ブロックB1と後部ブロックB2に
は、両ブロックを接合一体化した際に接続されて連通路
44を形成するL字型のチャンネル(トンネル)51、52が
形成されており、前部ブロックB1に形成されたL字を90
°左回転させたチャンネル51は、前部ブロックB1の端面
(図では左側面)の水平部チャンネル開口から挿入して
前室41に通じる図で垂直の細孔部へのセンサ60の接着に
よる配置作業が可能なサイズの開口とされており、該チ
ャンネル51は、センサ室を形成している。
The front block B1 and the rear block B2 are connected to each other when the blocks are joined and integrated to form a communication passage.
L-shaped channels (tunnels) 51 and 52 forming 44 are formed, and the L-shaped formed in the front block B1 is 90.
° The channel 51 rotated counterclockwise is inserted from the horizontal channel opening on the end surface (left side in the figure) of the front block B1 and communicates with the front chamber 41. Arrangement by bonding the sensor 60 to the vertical pore in the figure. The opening is sized to allow work, and the channel 51 forms a sensor chamber.

【0009】さらに、これら2室41、42には、受感ガス
と称する、NDIRの被測定対象となる反応性ガス、例え
ば、CO2、SO2、CO、NOX、NH3等の化学種のみ、あるい
は、この化学種をAr、He、N2等の不活性ガスで希釈され
たガスが充填(内封)されている。また、連通路44に配
置されるセンサ60としては、前後室の圧力差を検出でき
るものであればどのようなものでもよいが、センサが、
前後室の圧力差で連通路44内の内封ガスの流れを検出す
るフローセンサである場合には、一般に、小型で高精度
な薄膜技術で製作された薄膜型熱線式フローセンサが使
用されている。なお、前後部ブロックB1、B2への窓板43
の接合や前後部ブロックB1とB2の接合は接着剤、通常、
アラルタイトAV138(硬化剤HV998)(長瀬−Ciba社製)
などのエポキシ系接着剤を用いて接着される。
Further, in these two chambers 41 and 42, a reactive gas which is referred to as a sensitive gas and is an object to be measured by NDIR, for example, chemical species such as CO 2 , SO 2 , CO, NO X and NH 3 is used. Alternatively, or a gas obtained by diluting this chemical species with an inert gas such as Ar, He, or N 2 is filled (enclosed). Further, as the sensor 60 arranged in the communication passage 44, any sensor may be used as long as it can detect the pressure difference between the front and rear chambers.
In the case of a flow sensor that detects the flow of the enclosed gas in the communication passage 44 by the pressure difference between the front and rear chambers, generally, a thin film type hot wire type flow sensor manufactured by a small and highly accurate thin film technology is used. There is. In addition, the window plate 43 to the front and rear blocks B1, B2
Bonding of the front and rear blocks B1 and B2 is done with an adhesive,
Araltite AV138 (hardening agent HV998) (Nagase-Ciba)
It is adhered using an epoxy adhesive such as.

【0010】このような構成で、光源部20から発した赤
外光は、セル部30を通過してディテクター部40に入射す
る。この時、セル内部に被測定成分ガスが存在すると、
セル内のガス濃度に応じて、入射した赤外光の一部がセ
ル内のガスに吸収され、残りの赤外光はディテクター部
40に入射する。ディテクター部40の前室41の正面から入
射した赤外光は、前室41および後室42で吸収されるが、
その多くは前室41で吸収される。吸収された光エネルギ
ーは分子の並進運動に変換されることになり、前後室4
1、42間に圧力差が発生し、これによって両室を連通す
る連通路44内に内封ガスの流れが生る。
With such a structure, the infrared light emitted from the light source section 20 passes through the cell section 30 and is incident on the detector section 40. At this time, if the component gas to be measured is present inside the cell,
Depending on the gas concentration in the cell, part of the incident infrared light is absorbed by the gas in the cell, and the rest of the infrared light is detected by the detector unit.
Incident on 40. The infrared light incident from the front of the front chamber 41 of the detector unit 40 is absorbed by the front chamber 41 and the rear chamber 42,
Most of it is absorbed in the antechamber 41. The absorbed light energy will be converted into translational motion of the molecule, and
A pressure difference is generated between the first and the second pressure chambers 42, which causes a flow of the enclosed gas in the communication passage 44 that connects the two chambers.

【0011】このガス流の流速は、ディテクター部40へ
の入射光強度に依存するので、前後室41、42の連通路44
内に配置された薄膜型熱線式フローセンサ60の熱線抵抗
素子の抵抗値変化として計測することで、ディテクター
部40への入射前後の赤外光強度、すなわち、セル中の被
測定成分ガス濃度を計測することができる。
Since the flow velocity of this gas flow depends on the intensity of light incident on the detector section 40, the communication passage 44 between the front and rear chambers 41 and 42 is formed.
By measuring as the resistance value change of the heat ray resistance element of the thin film type heat ray type flow sensor 60 arranged inside, the infrared light intensity before and after entering the detector section 40, that is, the concentration of the component gas to be measured in the cell It can be measured.

【0012】図7は、前後室41、42の連通路44内に配置
されて連通路内を流れるガスの流速を検出する薄膜型熱
線式フローセンサ60の模式図で、同図(a)の平面図に示
すように、基本的な構成は、ベースとなるガラス基板
(長さ5mm×幅5mm×厚さ0.25mm)61の中央部に1mm四
方の開口62を形成し、このガラス板61の両面に、同図
(b)の側面図に示すように、開口62を横切って、Niなど
の抵抗温度係数の大きな金属からなる熱線抵抗素子とし
ての櫛形電極(長さ1.1mm、幅15〜25μm、厚さ2〜6
μm、表面耐食用Auコート)63、64を薄膜技術で対向形
成(配置)したもので、この櫛形電極(熱線抵抗素子)
63、64に2つの外部抵抗を組み合わせてブリッジ回路を
形成して流量計測を行う。
FIG. 7 is a schematic view of a thin-film hot wire type flow sensor 60 which is disposed in the communication passage 44 of the front and rear chambers 41 and 42 and detects the flow velocity of the gas flowing in the communication passage. As shown in the plan view, the basic structure is such that a glass substrate (length 5 mm × width 5 mm × thickness 0.25 mm) 61 serving as a base is formed with a 1 mm square opening 62 at the center, Same figure on both sides
As shown in the side view of (b), across the opening 62, a comb-shaped electrode (length 1.1 mm, width 15 to 25 μm, thickness 2 to 2 as a heat wire resistance element made of a metal having a large temperature coefficient of resistance such as Ni) is formed. 6
μm, surface anticorrosion Au coat) 63, 64 are formed (arranged) opposite to each other by thin film technology. This comb-shaped electrode (heat wire resistance element)
63 and 64 are combined with two external resistors to form a bridge circuit to measure the flow rate.

【0013】櫛形電極63、64を含むとブリッジ回路に一
定電圧を印加した状態で、内封ガスが2電極63、64を通
過すると、風上側の熱線抵抗素子としての電極の抵抗は
熱を奪われて温度が低下して抵抗値が減少し、他方風下
側の熱線抵抗素子としての電極の抵抗は風上側の抵抗素
子から奪った熱が与えられ温度が上昇して抵抗値の増加
がおこる。この抵抗のアンバランスによりブリッジ回路
に電位差が生じるので、この電位を測ることで連通路44
内を流れるガスの流速を計測することができる。
Including the comb-shaped electrodes 63 and 64, when a constant voltage is applied to the bridge circuit and the enclosed gas passes through the two electrodes 63 and 64, the resistance of the electrode serving as the heat ray resistance element on the windward side absorbs heat. As a result, the temperature decreases and the resistance value decreases. On the other hand, the resistance of the electrode as the heat ray resistance element on the leeward side is given the heat taken from the resistance element on the leeward side, and the temperature rises to increase the resistance value. An imbalance of this resistance causes a potential difference in the bridge circuit.
The flow velocity of the gas flowing inside can be measured.

【0014】図8は、NDIRにおける薄膜型熱線抵抗式フ
ローセンサ60の信号処理部のブロック図で、2つの熱線
抵抗素子に2つの外部抵抗を組み合わせてブリッジ回路
を形成し、センサとしての該ブリッジ回路から得られる
信号は、ディテクター部40に入射する赤外断続光から生
じるガス流パルスであるので、赤外光強度によって振幅
の異なる波形が生じることになる。NDIRでは一般に、被
測定対象物が存在する試料(=サンプルガス)測定時の
波形と、被測定対象物が存在しない不活性ガス(=ゼロ
ガス)での波形を整流し、差し引いた値を出力信号とし
て直流信号を出力している。
FIG. 8 is a block diagram of a signal processing portion of a thin film type heat ray resistance type flow sensor 60 in NDIR. Two heat ray resistance elements are combined with two external resistors to form a bridge circuit, and the bridge as a sensor is formed. Since the signal obtained from the circuit is a gas flow pulse generated from the infrared intermittent light incident on the detector unit 40, a waveform having a different amplitude will be generated depending on the infrared light intensity. NDIR generally rectifies the waveform when measuring a sample (= sample gas) with an object to be measured and the waveform with an inert gas (= zero gas) without the object to be measured, and outputs the subtracted value as the output signal. Is outputting a DC signal as.

【0015】[0015]

【発明が解決しようとする課題】上記の構成のこの種の
NDIRは、試料セルに被測定対象物が存在しないゼロガス
を導入した状態での長期連続運転(測定)であれば、本
来、ディテクター部の検出器(センサ)の出力は時間経
過に関わらず一定値、すなわち、検出感度は時間経過に
関わらず一定で、変化しないはずである。しかしなが
ら、出願人がゼロガス導入による長期連続運転を行い検
出器の出力データを採取したところ、検出器の出力信号
は時間経過とともに徐々に低下し、一定値を示さなかっ
た。
This type of the above configuration
NDIR is essentially a constant output from the detector (sensor) in the detector section during long-term continuous operation (measurement) with zero gas introduced into the sample cell. That is, the detection sensitivity should be constant over time and should not change. However, when the applicant carried out long-term continuous operation by introducing zero gas and collected output data of the detector, the output signal of the detector gradually decreased with the passage of time and did not show a constant value.

【0016】図9は検出器を搭載したNDIRを25℃の恒温
槽に入れて、ゼロガスとして、N2ガスを流速200ml/min
で測定セルに導入して連続運転した際における検出器の
出力信号の経時変化を示した特性図である。同図で分か
るように初期6時間の大きな出力変動が生じ、その後出
力信号の低下、すなわち、感度低下は収まらず、10日過
ぎても検出器出力は1mV/℃の割合で感度が低下し続け
た。
FIG. 9 shows an NDIR equipped with a detector placed in a constant temperature bath at 25 ° C., and zero gas, N 2 gas flow rate of 200 ml / min.
FIG. 3 is a characteristic diagram showing a change with time of an output signal of a detector when the device is introduced into the measurement cell and continuously operated. As can be seen in the figure, a large output fluctuation occurred for the first 6 hours, and then the output signal decline, that is, the sensitivity decline did not subside, and the sensitivity of the detector output continued to decline at a rate of 1 mV / ° C even after 10 days. It was

【0017】そこで、時間経過にともない検出器の出力
信号が減少、換言すれば、感度が時間経過とともに低下
する要因について、出願人が鋭利実験・検討を繰り返し
た結果、その原因が検出器の組み立てに際して、それの
構成部材であるブロック、窓材、センサ相互の接着に用
いる接着剤にあることを見出し、検出器の構成部材の接
着に酸性接着剤を用いることで、感度低下を著しく改善
でき、長期にわたり感度低下がなく安定した測定が可能
となることが実験的に確かめた。
Therefore, as a result of repeated sharp experiments and studies by the applicant regarding the factor that the output signal of the detector decreases with the passage of time, in other words, the factor of decreasing the sensitivity with the passage of time, the cause is the assembly of the detector. At that time, it was found that there is an adhesive used for adhering the block, the window material, and the sensor, which are the constituent members thereof, and by using an acidic adhesive for adhering the constituent members of the detector, the sensitivity decrease can be remarkably improved, It was experimentally confirmed that stable measurement can be performed without deterioration in sensitivity over a long period of time.

【0018】すなわち、NDIRにおける検出器の感度低下
の原因を探るために、まず、最初に薄膜型熱線式フロー
センサの変質(酸化、薄膜技術による製造過程での粒界
成長など)に起因するブリッジ回路出力の変化にあると
仮定し、各種分析やフローセンサのエージング(電気、
温度)を種々試みたがいずれも効果がなく、感度低下の
改善には至らなかった。そこで、検出器を組み立てるの
に、各構成部材、すなわち、検出器本体としてのブロッ
クの接着や窓材、センサ等をブロックに接着するのに使
用する接着材に着目した。
That is, in order to find out the cause of the decrease in the sensitivity of the detector in NDIR, first, the bridge caused by the alteration (oxidation, grain boundary growth in the manufacturing process by the thin film technology, etc.) of the thin film type hot wire type flow sensor. Assuming that there is a change in circuit output, various analyzes and aging of flow sensors (electricity,
Various attempts were made at various temperatures, but none of them had any effect, and the decrease in sensitivity was not improved. Therefore, in assembling the detector, attention was paid to each constituent member, that is, the adhesive used for adhering the block as the detector main body and adhering the window material, the sensor and the like to the block.

【0019】この種NDIRのディテクター部の検出部(デ
ィテクター部)は、前後室には、受感ガス(例えば、CO
2等の化学種のみ、あるいは、この化学種をAr、He、N2
等の不活性ガスで希釈されたガス)を内封することか
ら、前後ブロック同士の接合、ならびに、各ブロックと
窓板やセンサ等の接合には、気密性に優れ、且つ、常温
硬化が可能なエポキシ樹脂系の接着剤、通常、一般的な
工業用エポキシ系の接着剤アラルタイトAV138(硬化剤H
V998)(長瀬−Ciba社製)が用いられている。
The detector section (detector section) of the detector section of this type of NDIR has a sensitive gas (for example, CO 2) in the front and rear chambers.
2 chemical species only, or this chemical species as Ar, He, N 2
(Inert gas diluted with inert gas) is sealed, so the front and rear blocks are joined together, and each block is joined to the window plate, sensor, etc. Epoxy resin adhesive, usually a general industrial epoxy adhesive Arartite AV138 (hardener H
V998) (manufactured by Nagase-Ciba) is used.

【0020】したがって、図9に示す特性図は、検出器
の各構成部材(検出器本体としてのブロック、窓材、セ
ンサ)をアラルタイトAV138で接着して組み立てた検出
器を搭載したNDIRの連続運転したさいの検出器の出力信
号の経時変化を示す特性図である。
Therefore, the characteristic diagram shown in FIG. 9 is the continuous operation of NDIR equipped with a detector assembled by adhering each component of the detector (block as detector body, window material, sensor) with Arartite AV138. It is a characteristic view which shows the time-dependent change of the output signal of the detector at the time of carrying out.

【0021】アラルタイトAV138は、典型的なポリアミ
ドアミン系硬化剤を使用する接着剤で、ポリアミドアミ
ンはアルカリ性であるので、硬化させた際の未反応硬化
剤に、検出器に内封された受感ガスであるCO2が接着剤
のアルカリ成分と吸着、あるいは、反応し、CO2ガス濃
度を低下させ、検出器の感度をも低下させているのでは
ないかと想定した。
Araltite AV138 is an adhesive that uses a typical polyamidoamine-based curing agent. Since polyamidoamine is alkaline, the unreacted curing agent when it is cured is sensitive to the inside of the detector. It is assumed that CO 2 which is a gas may adsorb or react with the alkaline component of the adhesive agent, lowering the CO 2 gas concentration and lowering the sensitivity of the detector.

【0022】そこで、このような観点から、酸性接着剤
として、米国Tra-Con社製の接着剤F202で検出器構成部
材を接着して検出器を組み立て、該検出器をNDIRに搭載
し試料セルにゼロガスを導入して長期連続運転を行った
ところ、長期にわたり検出器出力が変化せず、換言すれ
ば感度低下がなく、安定した測定ができることが判明
し、このことは実験的に確認できた。図10は前述の米国
Tra-Con社製の接着剤F202で検出器構成部材を接着して
組み立てた後に、受感ガス(CO2+Ar )の内封された検出
器を搭載したNDIRを、図9と同様に25℃の恒温槽に入れ
て、ゼロガスとして、N2ガスを流速200ml/minで測定セ
ルに導入して検出器を作動させて連続運転した際におけ
る検出器の出力信号の経時変化を示す特性図である。
From this point of view, therefore, the detector components are bonded by an adhesive F202 manufactured by Tra-Con, Inc., USA, as an acidic adhesive to assemble the detector, and the detector is mounted on the NDIR to prepare a sample cell. When zero gas was introduced into the device for long-term continuous operation, it was found that the detector output did not change over a long period of time, in other words, there was no sensitivity decrease and stable measurement was possible, which was confirmed experimentally. . Figure 10 shows the aforementioned US
After the detector components were bonded and assembled with the adhesive F202 made by Tra-Con, an NDIR equipped with a detector containing a sensitive gas (CO 2 + Ar) was placed at 25 ° C as in Fig. 9. FIG. 4 is a characteristic diagram showing a change with time of an output signal of the detector when the N 2 gas is introduced as a zero gas into the measurement cell at a flow rate of 200 ml / min and the detector is operated to continuously operate in the constant temperature bath of FIG. .

【0023】同図で分かるように6時間の初期遷移の後
安定しており、その後測定を行った10日間にわたっても
出力変化はなく、一定の高い感度を維持した。これは、
酸性接着剤を用いることで、接着剤も検出器の内封ガス
であるCO2もともに酸性であることから、CO2の吸着、
反応を抑制し、CO2ガス濃度低下を防ぐことができる
ものと考えられる。特に、使用した米国Tra-Con社製の
接着剤F202の硬化剤はカルボン酸である無水マレイン酸
や無水フルタ酸等の無水カルボン酸は炭酸、すなわち、
受感ガスであるCO2より強い酸であるので、弱酸を強酸
に混ぜた際に弱酸が遊離する性質から、CO2が接着剤中
に吸収(浸透)され難い特性が作用しているものと考え
られる。
As can be seen from the figure, the temperature was stable after the initial transition of 6 hours, and there was no change in the output for 10 days after the measurement, and a constant high sensitivity was maintained. this is,
By using an acidic adhesive, since the adhesive is also CO 2 also both acidic is an internal seal gas detectors, CO 2 adsorption,
It is considered that the reaction can be suppressed and a decrease in CO 2 gas concentration can be prevented. In particular, the curing agent for the adhesive F202 manufactured by US Tra-Con Co., which is used, is carboxylic acid such as maleic anhydride or fluteic acid anhydride, which is a carboxylic acid, that is, carbonic acid, that is,
Since it is an acid that is stronger than CO 2 which is a sensing gas, CO 2 is difficult to be absorbed (penetrated) in the adhesive due to the property that weak acid is released when weak acid is mixed with strong acid. Conceivable.

【0024】これにより、接着剤のアルカリ成分とCO2
の吸着/反応でCO2ガス濃度を低下させて検出器の感度
低下をもたらす、との先の想定に誤りのないことが分か
る。なお、検出器構成部材を酸性接着剤で接着してなる
NDIRについては、同出願人は特願2000-383169号として
既に提案している。
As a result, the alkaline component of the adhesive and CO 2
It can be seen that there is no error in the previous assumption that the CO 2 gas concentration is reduced by the adsorption / reaction of and the sensitivity of the detector is reduced. It should be noted that the detector components are bonded with an acidic adhesive.
The applicant has already proposed NDIR as Japanese Patent Application No. 2000-383169.

【0025】[0025]

【発明が解決しようとする課題】検出器の各構成部材を
酸性接着剤で接着して組み立てれば前後室に内封した受
感ガスの接着剤との吸着反応による濃度変化(濃度低
下)がなく、その結果、検出器の感度低下なく、長期間
にわたって高感度を維持でき、安定した測定ができる赤
外線ガス分析計が得られるものの、次の問題がある。CO
2ガス濃度を低下
When the constituent members of the detector are assembled by bonding with an acidic adhesive, there is no change in the concentration (decrease in concentration) due to the adsorption reaction of the sensitive gas enclosed in the front and rear chambers with the adhesive. As a result, although an infrared gas analyzer capable of maintaining high sensitivity for a long period of time and stable measurement can be obtained without lowering the sensitivity of the detector, there are the following problems. CO
2 Decrease gas concentration

【0026】すなわち、硬化剤がカルボン酸系などの酸
性硬化剤の接着剤では、硬化処理に100℃以上の高温を
必要とするので、常温で硬化できるアルカリ性のアミン
系硬化剤より作業性が低下する。特に、厚さ数μmの金
属薄膜からなるフローセンサではその耐久性の面で好ま
しくなく、熱膨張によるダメージを受けてセンサが破壊
する可能性が高く、ディテクターとしての歩留まりを低
下させている。
That is, in the case of an adhesive which is an acidic curing agent such as a carboxylic acid curing agent, the curing process requires a high temperature of 100 ° C. or higher, and therefore the workability is lower than that of an alkaline amine curing agent that can be cured at room temperature. To do. In particular, a flow sensor made of a metal thin film having a thickness of several μm is not preferable in terms of durability, and there is a high possibility that the sensor will be damaged by thermal expansion and destroyed, and the yield as a detector is reduced.

【0027】本発明は、上記の課題を解決するために創
案されたものであって、検出器の接着剤を用いての接着
による組み立て(製造)時の硬化処理に高温を必要とせ
ず、且つ、時間経過とともに感度が低下することがな
く、ディテクター部の感度を長期間にわたり一定の高感
度に維持でき、安定した測定が可能な赤外線ガス分析計
を提供することを目的とする。
The present invention was devised to solve the above-mentioned problems, and does not require a high temperature for the curing process during assembly (manufacturing) by bonding the detector with an adhesive, and It is an object of the present invention to provide an infrared gas analyzer capable of maintaining the sensitivity of the detector part at a high constant level for a long period of time without lowering the sensitivity with time and enabling stable measurement.

【0028】[0028]

【課題を解決するための手段】上記課題を解決するため
に、本発明の赤外線ガス分析計では、ディテクター部の
検出器を構成する各構成部材、すなわち、ディテクター
本体としてのブロックやブロックへの窓材、センサ等を
化学的に安定な低反応性接着剤で接着して組み立てるこ
とを特徴としている。なお、接着剤は、硬化剤が低温で
硬化処理が可能なポリアミドアミン系化合物であるエポ
キシ樹脂系接着剤であることが好ましく、また、前記2
室の圧力差に基づく連通路内の封入ガス流の流速(流
量)を測定する熱線式フローセンサであることが好まし
く、さらに、前記前後2室に封入されるガスが、酸性ガ
スであることが好ましい。
In order to solve the above-mentioned problems, in the infrared gas analyzer of the present invention, each component constituting the detector of the detector, that is, the block as the detector main body or the window to the block. The feature is that the materials, sensors, etc. are assembled by bonding with a chemically stable low-reactivity adhesive. The adhesive is preferably an epoxy resin adhesive whose curing agent is a polyamidoamine compound that can be cured at low temperature.
It is preferable that the hot wire type flow sensor measures the flow velocity (flow rate) of the enclosed gas flow in the communication path based on the pressure difference between the chambers, and further that the gas enclosed in the front and rear two chambers is an acid gas. preferable.

【0029】このように、化学的に安定な低反応性接着
剤を用いれば硬化処理が比較的低温で行えるので、セン
サに熱膨張等の熱的なダメージを与えないので、ディテ
クターの歩留まりと生産性の向上が図れる。また、低温
硬化が可能なポリアミドアミン系接着剤であっても、酸
やアルカリに対して化学的に安定であるものを用いるこ
とで、前後室に内封した受感ガスと接着剤との吸着反応
による濃度変化(感度低下)、すなわち、検出器の感度
低下がなく、長期間にわたって高感度を維持でき、安定
した測定ができる赤外線ガス分析計を得ることができ
る。
As described above, when the chemically stable low-reactivity adhesive is used, the curing process can be performed at a relatively low temperature, and therefore thermal damage such as thermal expansion is not given to the sensor. It is possible to improve the sex. In addition, even if it is a polyamidoamine-based adhesive that can be cured at low temperature, by using one that is chemically stable to acids and alkalis, adsorption of the sensitive gas and adhesive inside the front and rear chambers It is possible to obtain an infrared gas analyzer capable of maintaining high sensitivity for a long period of time without causing a concentration change (reduction in sensitivity) due to a reaction, that is, a decrease in sensitivity of a detector, and performing stable measurement.

【0030】[0030]

【発明の実施の形態】以下、本発明の実施の態様を実験
結果に基づいて説明する。なお、NDIR自体は、図5で説
明したように、赤外光を発生するための光源部、試料が
導入されるセル部、セル部を通過した赤外光の強度を計
測することで最終的に試料濃度を計測するディテクター
(検出)部の3ユニットから構成されおり、また、ディ
テクター部は、図6で説明したように、熱線抵抗素子を
備えた薄膜型熱線式フローセンサが配置される連通路で
連結された前後2室とで構成されており、さらに、薄膜
型熱線式フローセンサは、図7で説明したように、中央
部に開口が形成されたガラス基板と、このガラス板の両
面に、開口を横切って薄膜技術で対向形成(配置)され
た抵抗温度係数の大きな金属からなる熱線抵抗素子(抵
抗体)としての櫛形電極とで構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below based on experimental results. Note that the NDIR itself, as described in FIG. 5, finally determines by measuring the intensity of infrared light that has passed through the light source part for generating infrared light, the cell part into which the sample is introduced, and the cell part. 3 is composed of a detector (detection) unit for measuring the sample concentration, and the detector unit is, as described in FIG. 6, connected with a thin-film heat wire type flow sensor having a heat wire resistance element. The thin-film hot-wire flow sensor is composed of two chambers connected to each other by a passage, and, as described with reference to FIG. 7, a glass substrate having an opening in the center and both surfaces of the glass plate. And a comb-shaped electrode as a heat ray resistance element (resistor) made of a metal having a large resistance temperature coefficient and formed (arranged) facing each other by a thin film technique across the opening.

【0031】図1は、本発明の主要部をなすディテクタ
ー部の構成を示すもので、(A)は組み立て前の各構成
部品を展開して示した断面図、(B)は組み立て後の断
面図である。アルミニュウム等の金属製の円柱体(ブロ
ック)1の左側端面からは径φfの孔が、右側端面から
は径φfより径が大きいφb(φf<φb)の皿ぐりさ
れた孔が中央部に向けて穿孔されて貫通孔2が形成さ
れ、ブロック1の貫通孔2の中央部の内周壁に、両端面
から穿孔される孔の径が異なることにより必然的に段差
aが形成される。
FIG. 1 shows a structure of a detector part which is a main part of the present invention. (A) is a sectional view showing each constituent part before assembly, and (B) is a sectional view after assembly. It is a figure. From the left end face of the cylindrical body (block) 1 made of metal such as aluminum, a hole with a diameter φf is directed, and from the right end face, a countersunk hole with a diameter φf (φf <φb) larger than the diameter φf is directed toward the center. To form the through hole 2, and the step a is inevitably formed on the inner peripheral wall of the central portion of the through hole 2 of the block 1 due to the different diameters of the holes drilled from both end surfaces.

【0032】また、段差a部を境にしてブロック1の側
面から垂直に径φfの孔に連通する3段階に径の異なる
通孔3と、径φbの孔を通孔3の2段目に連通するL字
型のトンネル4とが穿孔形成されている。なお、実施例
では、ブロック1がセル部の一部を形成するように、セ
ルを構成するパイプ(図5の31)の内径と同径の径φf
の孔に通じる孔5と、該孔5に連通する被測定ガス導入
出孔(図5における33)となる挿入孔6が形成されてい
る。
Further, in the second stage of the through holes 3 having different diameters in three stages, which are vertically communicated with the hole of diameter φf from the side surface of the block 1 with the step a portion as a boundary, and the hole 3 of diameter φb. An L-shaped tunnel 4 that communicates is formed by perforation. In the embodiment, the diameter φf is the same as the inner diameter of the pipe (31 in FIG. 5) forming the cell so that the block 1 forms a part of the cell portion.
5, a hole 5 communicating with the hole 5 and an insertion hole 6 serving as a measured gas introducing / extracting hole (33 in FIG. 5) communicating with the hole 5 are formed.

【0033】このように穿孔加工されたブロック1の段
差a部に、段差aを貼りしろとして前後室の隔壁となる
CaF2の窓板7を、低温硬化が可能なポリアミドアミン系
接着剤であっても酸やアルカリに対して化学的に安定な
接着剤、例えば、米国Tra-Con社製のエポキシ接着剤BB2
130で接着し、その後、孔5と径φfの孔との境界部の
段差部に該段差を貼りしろとしてセルの後窓となるCaF2
の窓板8と、径φbの孔の皿ぐり部に後蓋9を化学的に
安定な低反応性接着剤BB2130で接着する。これにより、
貫通孔2内が前室10と後室11とに画成される。
The step a is attached to the step a portion of the block 1 perforated in this way to form a partition wall of the front and rear chambers.
The CaF 2 window plate 7 is a low temperature curable polyamidoamine-based adhesive that is chemically stable against acids and alkalis, for example, epoxy adhesive BB2 manufactured by Tra-Con of the United States.
Adhesion at 130, and then CaF 2 which becomes a rear window of the cell by attaching the step to the step at the boundary between the hole 5 and the hole of diameter φf
The window cover 8 and the rear cover 9 are bonded to the countersunk portion of the hole of diameter φb with the chemically stable low-reactivity adhesive BB2130. This allows
The inside of the through hole 2 is divided into a front chamber 10 and a rear chamber 11.

【0034】ついで、通孔3の底部に薄膜型熱線式フロ
ーセンサ12を化学的に安定な低反応性接着剤BB2130で接
着して配置し、通孔3の開口3′に蓋部材14を化学的に
安定な低反応性接着剤BB2130で接着して固定して密閉閉
鎖する。これにより、前室10と後室11の連通路15が形成
されて、同図(B)に示すディテクター部となる。な
お、接着剤BB2130の硬化条件は、空気中で65℃、4hであ
る。また、窓板7・8、後蓋9の接着と、薄膜型熱線式
フローセンサ12を配置した上での蓋部材14による通孔3
の開口3′への接着による閉鎖は、何れを先に行っても
よい。また、組み立てられたディテクター部のブロック
1の左端面がセルを構成する不図示のパイプ端と位置合
わせされて接合される。
Then, the thin-film hot-wire type flow sensor 12 is bonded to the bottom of the through hole 3 with a chemically stable low-reactivity adhesive BB2130, and the lid member 14 is chemically attached to the opening 3'of the through hole 3. Adhesively fixed with a low-reactivity adhesive BB2130 that is stable and closed tightly. As a result, the communication passage 15 between the front chamber 10 and the rear chamber 11 is formed to form the detector portion shown in FIG. The curing conditions for the adhesive BB2130 are 65 ° C. in air for 4 hours. Further, the window plate 7, 8 and the rear lid 9 are adhered to each other, and the through hole 3 is formed by the lid member 14 after the thin film type hot wire type flow sensor 12 is arranged.
Any of the adhesive closure to the opening 3'may be performed first. Further, the left end surface of the assembled block 1 of the detector unit is aligned with and joined to the end of a pipe (not shown) that constitutes a cell.

【0035】図2は他の実施例を示すもので、ブロック
1に径φfと径φb(φf>φb)の孔を穿孔して有底
孔16を形成し、段差部に窓板7、8を化学的に安定な
低反応性接着剤(例えば、米国Tra-Con社製のエポキシ
接着剤BB2130)で接着して前後室10、11としたものであ
り、この構成によれば、図1における後蓋9は不要にな
る。なお、図1、図2における貫通孔2、有底孔16、孔
5の内面は、赤外光を効率よく反射するために、バフ研
磨による鏡面仕上げや金などのコーティングを施すのが
好ましい。また、図1、図2にいて、17は、挿入孔6に
挿入固定されたセルのガス導出入孔(図5における33)
となる細管である。
FIG. 2 shows another embodiment. Holes having a diameter φf and a diameter φb (φf> φb) are bored in the block 1 to form a bottomed hole 16, and the window plates 7 and 8 are formed at the step portions. Are bonded to each other with a chemically stable low-reactivity adhesive (for example, epoxy adhesive BB2130 manufactured by Tra-Con Inc. in the US) to form the front and rear chambers 10 and 11. According to this configuration, in FIG. The rear lid 9 is unnecessary. The inner surfaces of the through hole 2, the bottomed hole 16 and the hole 5 in FIGS. 1 and 2 are preferably buffed to a mirror finish or coated with gold or the like in order to efficiently reflect infrared light. Further, in FIGS. 1 and 2, 17 is a gas lead-in / out hole of the cell inserted and fixed in the insertion hole 6 (33 in FIG. 5).
It is a thin tube.

【0036】つぎに、各構成部材を化学的に安定な低反
応性接着剤で接着したことによる作用を実験による実測
結果に基づいて説明する。図3は前述の米国Tra-Con社
製の接着剤BB2130で検出器構成部材を接着して組み立て
て後に、受感ガス(CO2+Ar)を封入した検出器を搭載
したNDIRを図9、図10の特性図の取得と同様、25℃の恒
温槽に入れて、ゼロガスとしてN2ガスを流速200ml/min
で測定セルに導入した後、検出器を作動させ、10日間に
わたって連続運転した際の検出器の出力変化を示す特性
図である。同図で分かるように約80hの遷移時間の後、
安定しており、その後測定を行なった10日間にわたって
も出力変化はなく、一定の高い感度を維持した。
Next, the action of bonding the respective constituent members with the chemically stable low-reactivity adhesive will be described based on the experimentally measured results. Fig. 3 shows the NDIR equipped with the detector in which the sensing gas (CO 2 + Ar) is enclosed after the detector components are assembled by bonding with the above-mentioned adhesive BB2130 manufactured by Tra-Con, USA. Similar to the acquisition of the characteristic chart of 10, put it in a constant temperature bath at 25 ℃ and use N 2 gas as zero gas at a flow rate of 200 ml / min.
FIG. 4 is a characteristic diagram showing a change in output of the detector when the detector is operated after being introduced into the measurement cell in 1. and continuously operated for 10 days. As you can see in the figure, after a transition time of about 80h,
The output was stable, and there was no change in output over the 10 days after the measurement, and a high level of sensitivity was maintained.

【0037】図4、図11、図12は、時間経過とともに、
検出器の出力が低下する要因を見極めるために行った接
着剤組成の分析結果を示す分析波形図で、図4は実施例
で使用した米国Tra-Con社製の接着剤BB2130の接着剤組
成の分析結果を、図11は長瀬−Ciba社製のアラルタイト
AV138の接着剤組成の分析結果を、図12酸性接着剤であ
る米国Tra-Con社製の接着剤F202の接着剤組成の分析結
果をそれぞれ示している。これらの波形図で明らかなよ
うに、接着剤F202は波長1732cm−1に酸性エポキシ樹脂
接着剤の特徴であるエステル結合のピークが観察でき、
また、接着剤AV138は典型的なポリアミドアミン系硬化
剤を使用する接着剤の分析波形を示している。
FIGS. 4, 11, and 12 show that with the passage of time,
FIG. 4 is an analysis waveform diagram showing the analysis result of the adhesive composition performed in order to determine the cause of the decrease in the output of the detector. FIG. 4 shows the adhesive composition of the adhesive BB2130 manufactured by US Tra-Con Co. used in the examples. The analysis results are shown in Figure 11: Nagase-Ciba Araltite
FIG. 12 shows the results of analysis of the adhesive composition of AV138, and FIG. 12 shows the results of analysis of the adhesive composition of adhesive F202 manufactured by Tra-Con, Inc., which is an acidic adhesive. As is clear from these waveform diagrams, in the adhesive F202, the peak of the ester bond, which is a characteristic of the acidic epoxy resin adhesive, can be observed at a wavelength of 1732 cm −1 .
Adhesive AV138 shows an analytical waveform of an adhesive using a typical polyamidoamine-based curing agent.

【0038】これに対して、接着剤BB2130は、AV138と
類似のポリアミドアミン系硬化剤を使用する接着剤と類
似の組成を有するポリアミドアミン系の接着剤であるに
も係わらず、低温硬化が可能で、化学的に安定な低反応
性であることが分かる。これにより、接着剤BB2130で検
出器の各構成部品(ディテクター本体としてのブロック
やブロックへの窓材、センサ等)を接着して組み立てる
こととで、低温硬化が可能で、前後室に内封した受感ガ
スと接着剤との吸着反応による濃度変化(感度低下)、
すなわち、図3に示す特性図に示すように、検出器の感
度低下がなく、長期間にわたって高感度を維持でき、安
定した測定ができる赤外線ガス分析計が得られる。
On the other hand, although the adhesive BB2130 is a polyamidoamine-based adhesive having a composition similar to the adhesive using the polyamidoamine-based curing agent similar to AV138, it can be cured at a low temperature. It can be seen that it is chemically stable and has low reactivity. This enables low-temperature curing by adhering and assembling each component of the detector (block as detector body, window material to block, sensor, etc.) with adhesive BB2130, and sealed in the front and rear chambers. Concentration change (decreased sensitivity) due to adsorption reaction between sensitive gas and adhesive,
That is, as shown in the characteristic diagram of FIG. 3, it is possible to obtain an infrared gas analyzer capable of maintaining a high sensitivity for a long period of time without degrading the sensitivity of the detector and performing stable measurement.

【0039】なお、実施例はシングルビーム式NDIRであ
ったが、本発明は、ダブルビーム式NDIRにも適用できる
ものである。また、実施例では、単一のブロックの穿孔
加工と窓板等の接着で前後2室と、2室を連通する連通
路を形成したが、図6に示す従来例のように、前後2ブ
ロックを接合一体化した検出器にも適用しても同様の効
果が得られる。しかしながら、実施例のように単一のブ
ロックの穿孔加工で前後2室を有する検出器を構成すれ
ば、2ブロックを接合一体化したものに比し気密性が確
保でき、また、部品点数が少なく加工性に優れ、加工や
接着による組み立て工数が低減できる。
Although the embodiment is the single-beam type NDIR, the present invention can be applied to the double-beam type NDIR. Further, in the embodiment, the front and rear two chambers and the communication passage that connects the two chambers are formed by perforating a single block and adhering a window plate or the like, but as in the conventional example shown in FIG. The same effect can be obtained even when applied to a detector in which is joined and integrated. However, if a detector having two chambers, front and rear, is constructed by punching a single block as in the embodiment, the airtightness can be secured and the number of parts can be reduced as compared with the case where two blocks are joined and integrated. It has excellent workability and can reduce the number of assembly steps due to processing and adhesion.

【0040】さらに、実施例では、前後2室の圧力差を
検出するセンサとして、ガス圧変動を内封受感ガスの流
量として検出するフローセンサを用いたが、前後2室の
圧力差を圧力として検出するメンブレンコンデンサなど
の圧力検知素子であってもよい。この場合においても、
硬化処理が低温で行えるので、センサに熱膨張等による
熱的ダメージを与えることがなく、また、化学的に安定
であることから、実施例における薄膜型熱線式フローセ
ンサを用いるのと同等の効果が得られる。しかしなが
ら、薄膜型熱線式フローセンサを用いれば、検出器を小
型化できる。
Further, in the embodiment, as the sensor for detecting the pressure difference between the front and rear chambers, the flow sensor for detecting the fluctuation of the gas pressure as the flow rate of the internal sensitive gas is used. It may be a pressure sensing element such as a membrane capacitor for detecting as. Even in this case,
Since the curing process can be performed at a low temperature, the sensor is not thermally damaged due to thermal expansion and the like, and is chemically stable. Therefore, the same effect as using the thin-film hot-wire flow sensor in the embodiment is obtained. Is obtained. However, the detector can be downsized by using the thin-film hot-wire flow sensor.

【0041】[0041]

【発明による効果】本発明によれば、検出器の各構成部
材の接着による組み立てに、化学的に安定な低反応性接
着剤を用いているので、硬化処理を低温度で行えること
から、センサに熱的なダメージを与えることがないの
で、センサを破壊することがなく、ディテクターの歩留
まりと生産性の向上が図れる。また、前後室に内封した
受感ガスの接着剤との吸着反応による濃度変化(濃度低
下)がない。その結果、センサの検出感度低下がないの
で、ディテクター部の感度を長期間にわたって高感度を
維持でき、安定した測定ができる赤外線ガス分析計が得
られる。
According to the present invention, since a chemically stable low-reactivity adhesive is used for assembling the constituent members of the detector by bonding, the sensor can be cured at a low temperature. Since it does not cause thermal damage to the detector, the yield of the detector and the productivity can be improved without destroying the sensor. Further, there is no change in concentration (decrease in concentration) due to the adsorption reaction of the sensitive gas sealed in the front and rear chambers with the adhesive. As a result, since the detection sensitivity of the sensor does not decrease, it is possible to obtain an infrared gas analyzer capable of maintaining high sensitivity of the detector section for a long period of time and performing stable measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の主要部であるディテクター部の構成
を模式的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a configuration of a detector part which is a main part of the present invention.

【図2】 他の実施例に係るディテクター部の構成を模
式的に示す断面図である。
FIG. 2 is a sectional view schematically showing a configuration of a detector section according to another embodiment.

【図3】 図1のディテクター部を搭載したNDIRの検出
器の出力特性図である。
FIG. 3 is an output characteristic diagram of an NDIR detector equipped with the detector unit of FIG.

【図4】 図1におけるディテクター部の接着組み立て
に使用する化学的に安定な低反応性接着剤BB2130のFTIR
による分析結果の波形図である。
FIG. 4 FTIR of the chemically stable low-reactivity adhesive BB2130 used for adhesive assembly of the detector part in FIG.
It is a waveform diagram of the analysis result by.

【図5】 シングルビーム式NDIRの構成を模式的に示す
断面図である。
FIG. 5 is a cross-sectional view schematically showing the configuration of a single beam type NDIR.

【図6】 図5におけるNDIRのセンサ部の構成を模式的
に示す断面図である。
6 is a cross-sectional view schematically showing a configuration of a sensor unit of NDIR in FIG.

【図7】 薄膜型熱線式フローセンサの構成を示す模式
図である。
FIG. 7 is a schematic diagram showing a configuration of a thin-film hot-wire flow sensor.

【図8】 熱線式フローセンサのセンサ出力信号処理部
のブロック図である。
FIG. 8 is a block diagram of a sensor output signal processing unit of the hot-wire flow sensor.

【図9】 従来のディテクター部を搭載したNDIRの検出
器の出力特性図である。
FIG. 9 is an output characteristic diagram of a detector of an NDIR equipped with a conventional detector unit.

【図10】 従来の他のディテクター部を搭載したNDIRの
検出器の出力特性図である。
FIG. 10 is an output characteristic diagram of an NDIR detector equipped with another conventional detector unit.

【図11】 アルカリ性エポキシ接着剤AV138BB2130のFTI
Rによる分析結果の波形図である。
[Figure 11] FTI of alkaline epoxy adhesive AV138BB2130
It is a waveform diagram of the analysis result by R.

【図12】 酸性接着剤F202のFTIRによる分析結果の波形
図である。
FIG. 12 is a waveform diagram of the FTIR analysis result of the acidic adhesive F202.

【符号の説明】[Explanation of symbols]

1:ブロック 2:貫通孔 3:通孔(3′…開口) 4:トンネ
ル 5:孔 6:挿入孔 7、8:窓板 9:後
蓋 10:前室 11:後室 12:薄膜型熱線式フローセンサ 13:蓋部材 14:蓋部材 15:連通路 16:有底孔 17:細管
1: Block 2: Through hole 3: Through hole (3 '... opening) 4: Tunnel 5: Hole 6: Insertion hole 7, 8: Window plate 9: Rear lid 10: Front chamber 11: Rear chamber 12: Thin film type heat wire Flow sensor 13: Lid member 14: Lid member 15: Communication passage 16: Bottomed hole 17: Capillary tube

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 測定セルと、測定セルの一端側に配置さ
れた光源部と、測定セルを通過した赤外光の強度を検出
する測定セルの他端側に配置された検出部とを備え、検
出部がガスの封入された前後2室と、これら2室を連通
する連通路と、連通路内に配置されて前記2室の圧力差
を検出するセンサとで構成された赤外線ガス分析計であ
って、前記検出部の構成部材を化学的に安定な低反応性
接着剤で接着して組み立てたことを特徴とする赤外線ガ
ス分析計。
1. A measurement cell, a light source section arranged on one end side of the measurement cell, and a detection section arranged on the other end side of the measurement cell for detecting the intensity of infrared light passing through the measurement cell. An infrared gas analyzer having two detector front and rear chambers filled with gas, a communication passage communicating these two chambers, and a sensor arranged in the communication passage for detecting a pressure difference between the two chambers. In addition, an infrared gas analyzer characterized in that the constituent members of the detection unit are bonded and assembled with a chemically stable low-reactivity adhesive.
【請求項2】 請求項1に記載の赤外線ガス分析計であ
って、前記接着剤が、硬化剤が低温で硬化処理が可能な
ポリアミドアミン系化合物であるエポキシ樹脂系接着剤
であることを特徴とする赤外線ガス分析計。
2. The infrared gas analyzer according to claim 1, wherein the adhesive is an epoxy resin adhesive in which the curing agent is a polyamidoamine compound capable of curing at low temperature. Infrared gas analyzer.
【請求項3】 請求項1、または、請求項2に記載の赤
外線ガス分析計であって、センサが、前記2室の圧力差
に基づく連通路内のガス流の流速を測定する熱線式フロ
ーセンサであることを特徴とする赤外線ガス分析計。
3. The infrared gas analyzer according to claim 1 or 2, wherein the sensor measures the flow velocity of the gas flow in the communication passage based on the pressure difference between the two chambers. An infrared gas analyzer characterized by being a sensor.
【請求項4】 請求項1から請求項3のいずれかに記載
の赤外線ガス分析計であって、前記前後2室の封入ガス
が、酸性ガスであることを特徴とする赤外線ガス分析
計。
4. The infrared gas analyzer according to claim 1, wherein the gas enclosed in the front and rear chambers is an acid gas.
JP2001323614A 2001-10-22 2001-10-22 Infrared gas analyzer Pending JP2003130794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001323614A JP2003130794A (en) 2001-10-22 2001-10-22 Infrared gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001323614A JP2003130794A (en) 2001-10-22 2001-10-22 Infrared gas analyzer

Publications (1)

Publication Number Publication Date
JP2003130794A true JP2003130794A (en) 2003-05-08

Family

ID=19140480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001323614A Pending JP2003130794A (en) 2001-10-22 2001-10-22 Infrared gas analyzer

Country Status (1)

Country Link
JP (1) JP2003130794A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012517605A (en) * 2009-02-12 2012-08-02 センスエア アーベー Structural unit with photodetector and process for assembling the structural unit to a carrier such as a printed circuit card
JP2020139867A (en) * 2019-02-28 2020-09-03 富士電機株式会社 Gas analyser and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641245U (en) * 1979-09-05 1981-04-16
JPH08198950A (en) * 1995-01-26 1996-08-06 Mitsui Toatsu Chem Inc Curing agent for epoxy resin
JPH08253556A (en) * 1995-01-17 1996-10-01 Mitsui Toatsu Chem Inc Curing agent for epoxy resin
JPH093156A (en) * 1995-06-15 1997-01-07 Yuka Shell Epoxy Kk Modified epoxy resin, its production, and coating composition
JP2001281139A (en) * 2000-03-29 2001-10-10 Shimadzu Corp Infrared gas analyzer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641245U (en) * 1979-09-05 1981-04-16
JPH08253556A (en) * 1995-01-17 1996-10-01 Mitsui Toatsu Chem Inc Curing agent for epoxy resin
JPH08198950A (en) * 1995-01-26 1996-08-06 Mitsui Toatsu Chem Inc Curing agent for epoxy resin
JPH093156A (en) * 1995-06-15 1997-01-07 Yuka Shell Epoxy Kk Modified epoxy resin, its production, and coating composition
JP2001281139A (en) * 2000-03-29 2001-10-10 Shimadzu Corp Infrared gas analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012517605A (en) * 2009-02-12 2012-08-02 センスエア アーベー Structural unit with photodetector and process for assembling the structural unit to a carrier such as a printed circuit card
JP2020139867A (en) * 2019-02-28 2020-09-03 富士電機株式会社 Gas analyser and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US6635875B1 (en) Infrared gas analyzer and method for operating said analyzer
US8695402B2 (en) Integrated IR source and acoustic detector for photoacoustic gas sensor
US4740086A (en) Apparatus for the photoacoustic detection of gases
CN1950693B (en) Method and system for detecting one or more gases or gas mixtures and/or for measuring the concentration of one or more gases or gas mixtures
CN110146460B (en) High-sensitivity multi-gas concentration detection system with constant temperature control function and control method
CA1186402A (en) Flow type photoacoustic detector
US20090183552A1 (en) Gas detector having an acoustic measuring cell and selectively adsorbing surface
WO2004053467A3 (en) Optical sensor for determining the concentrations of dyes and/or particles in liquid or gaseous media and method for operating the same
JP2003130794A (en) Infrared gas analyzer
CN106959171A (en) Temperature and humidity measurement method based on ultrasonic wave, laser absorption spectroscopy
JP5919895B2 (en) Detector for infrared gas analyzer
WO2002040981A1 (en) Chip member for micro chemical system, and micro chemical system using the chip member
JP2003139701A (en) Infrared gas analyzer
JPH11183372A (en) Spr sensor device, analysis system and detecting method using it
US20190195834A1 (en) Apparatuses and methods for using the photoacoustic effect
JP2002181704A (en) Infrared gas analyser
JP3909396B2 (en) Infrared gas analyzer
JP3567848B2 (en) Infrared gas analyzer
CN105588815B (en) A kind of infrared gas detector based on Tiny pore
JP2004028952A (en) Gas detector
JP3610870B2 (en) Infrared gas analyzer
JP2855841B2 (en) Infrared analyzer
Theuss et al. Miniaturized photoacoustic gas sensor for CO 2
CN219957333U (en) Micro infrared light source and photoacoustic gas sensor for multi-gas measurement
JP4380087B2 (en) Flow cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051018