JP2003130703A - Current meter - Google Patents

Current meter

Info

Publication number
JP2003130703A
JP2003130703A JP2001321999A JP2001321999A JP2003130703A JP 2003130703 A JP2003130703 A JP 2003130703A JP 2001321999 A JP2001321999 A JP 2001321999A JP 2001321999 A JP2001321999 A JP 2001321999A JP 2003130703 A JP2003130703 A JP 2003130703A
Authority
JP
Japan
Prior art keywords
fluid
light source
flow
molecular marker
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001321999A
Other languages
Japanese (ja)
Inventor
Keizo Saito
敬三 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001321999A priority Critical patent/JP2003130703A/en
Publication of JP2003130703A publication Critical patent/JP2003130703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To directly and high accurately measure the flow velocity of gas with a simple construction using a molecule marker. SOLUTION: The current meter is composed of a molecule marker substance 2 moving with the flow of the gas, a light source 3 for optical excitation arranged on the upstream of the flow, and a photodetector 4 arranged on the downstream in the passage 1 of the gas. The molecule marker substance moving with the flow of the gas in the passage 1 is irradiated with the light source 3 for the optical excitation to induce the molecule marker to emit light. The moving time of the marker from the light source side to the photodetector 4 side, that is, the flow velocity of the gas is measured by detecting the emission of the molecule marker by the photodetector 4 on the down stream with the emission of light from the marker as a trigger.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特定の空間を流れ
るガス等の流体内部に流体と共に移動する分子マーカー
の移動速度を直接検出して、流体の流速を測定するよう
にした流速測定方法およびその方法を実施する装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow velocity measuring method for measuring the flow velocity of a fluid by directly detecting the moving velocity of a molecular marker that moves with the fluid inside a fluid such as a gas flowing in a specific space. An apparatus for carrying out the method.

【0002】[0002]

【従来の技術】従来より、管内を流れるガス流速の測定
に、ラミナーフローメーター(層流型空気流量計)や、
オリフィスなどの絞り弁を有する流量計も一般に用いら
れてきた。また、特定空間に存在する流れ場の速度計測
に際しては、流れに混入したトレーサー粒子や、蛍光や
燐光あるいはフォトクロミック物質等の分子マーカーの
移動軌跡を可視化と画像処理の方法によって非接触での
速度場計測を行うのが一般的な手法であった。
2. Description of the Related Art Conventionally, a laminar flow meter (laminar flow type air flow meter) or a laminar flow meter has been used to measure the flow velocity of gas flowing in a pipe.
Flow meters with throttle valves such as orifices have also been commonly used. In addition, when measuring the velocity of a flow field existing in a specific space, the tracer particles mixed in the flow and the moving loci of molecular markers such as fluorescence, phosphorescence, or photochromic substances are visualized and image-processing methods are used to non-contact the velocity field. It was a general method to measure.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記ラ
ミナーフローメーターやオリフィスなど、ガスの流路内
に検出器を挿入する方式のものは、これに基づく圧力損
失が生じるなど流れ自体に擾乱を生じしめ、正確な計測
は困難である。
However, the laminar flow meter, the orifice, and the like in which the detector is inserted in the gas flow passage causes disturbances in the flow itself such as pressure loss due to this. , Accurate measurement is difficult.

【0004】また、従来のオリフィスなどの絞り弁を有
する流量計では、変動を伴う流れの速度を測定すること
が困難なため、応答性を犠牲にして平均流速を測定せざ
るを得なかった。更に、ラミナーフローメータではその
エレメント部の汚染により測定誤差を生じるため、不純
物を含有するような流れに対しては正確な測定が困難で
あった。
Further, in a conventional flow meter having a throttle valve such as an orifice, it is difficult to measure the velocity of a flow accompanied by fluctuations, and therefore the response has to be sacrificed to measure the average flow velocity. Further, in the laminar flow meter, since the measurement error occurs due to the contamination of the element portion, accurate measurement is difficult for the flow containing impurities.

【0005】一方、可視化と画像処理による方法は、速
度ベクトルや三次元測定など流れ場に対する高度な解析
を目的とするため、装置が複雑となる傾向があり、しか
も実時間での測定には不向きである。
On the other hand, the method of visualization and image processing is intended for sophisticated analysis of the flow field such as velocity vector and three-dimensional measurement, so that the device tends to be complicated and is not suitable for real-time measurement. Is.

【0006】また、従来の実時間流速測定の殆どは速度
変動に基づく圧力変化やドップラー信号など間接測定を
行うものが主であり、誤差要因を生じさせる原因となっ
ていた。
Further, most of the conventional real-time flow velocity measurements are mainly those that perform indirect measurement such as pressure change and Doppler signal based on velocity fluctuation, which causes an error factor.

【0007】以上のような理由から、簡単な装置で流れ
自体に何らの擾乱も与えない、ガス等の流速測定を実時
間で直接測定の行える装置の開発が望まれてきた。した
がって本発明は上記課題を解決することを目的とする。
For the above reasons, it has been desired to develop a device which can directly measure the flow velocity of a gas or the like in real time with a simple device without causing any disturbance to the flow itself. Therefore, an object of the present invention is to solve the above problems.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、請求項1に係る発明は、流体の流路内部において、
流体と共に流れる分子トレーサーと、流れの上流側に配
置された光励起用光源と、下流側に配置された光検出器
とを有し、前記流路内の流体と共に移動する分子マーカ
ー物質に、光励起用光源を照射し分子マーカーを発光さ
せ、これをトリガーとして下流側光検出器において分子
マーカーの発光を検出し、マーカーの光源側から検出器
側までの移動時間を計測して流体の流速を測定すること
を特徴とする流速測定方法としたものである。
In order to solve the above-mentioned problems, the invention according to claim 1 is
A molecular tracer flowing with the fluid, a light source for photoexcitation arranged on the upstream side of the flow, and a photodetector arranged on the downstream side, for the molecular marker substance that moves with the fluid in the channel, for photoexcitation. The molecular marker is made to emit light by irradiating the light source, and the light emission of the molecular marker is detected by the downstream photodetector using this as a trigger, and the moving time from the light source side of the marker to the detector side is measured to measure the fluid flow velocity. This is a flow velocity measuring method characterized by the above.

【0009】また、請求項2に係る発明は、流体の流路
内部において、流体と共に流れる分子トレーサーの移動
速度を測定して流体の流速を測定する方法において、前
記流路内の流体と共に移動する分子マーカー物質に、光
励起用光源を照射し分子マーカーを発光させ、これを移
動開始位置の検出トリガーとして、一定距離を隔てた下
流側光検出器において分子マーカーの発光を検出し、マ
ーカーの光源側から検出器側までの移動時間を計測して
流体の流速を測定するようにしたことを特徴とする流速
測定方法としたものである。
The invention according to claim 2 is a method for measuring the flow velocity of a fluid by measuring the moving speed of a molecular tracer flowing with the fluid inside the flow passage of the fluid, and moving with the fluid within the flow passage. The molecular marker substance is irradiated with a light source for photoexcitation to cause the molecular marker to emit light, and this is used as a detection trigger of the movement start position, and the light emission of the molecular marker is detected by a downstream side photodetector separated by a certain distance, and the light source side of the marker is detected. The flow velocity measuring method is characterized in that the flow velocity of the fluid is measured by measuring the moving time from the detector to the detector side.

【0010】また、請求項3に係る発明は、流体の流路
内部において、流体と共に流れる分子トレーサーと、流
れの上流側に配置された光励起用光源および下流側に配
置された光検出器から構成され、前記流路内の流体と共
に移動する分子マーカー物質に、光励起用光源を照射し
分子マーカーを発光させる手段と、これをトリガーとし
て下流側光検出器において分子マーカーの発光を検出す
る手段とを備え、マーカーの光源側から検出器側までの
移動時間を計測して流体の流速を測定することを特徴と
する流速測定装置としたものである。
Further, the invention according to claim 3 comprises a molecular tracer which flows with the fluid inside the fluid flow path, an optical excitation light source arranged on the upstream side of the flow and a photodetector arranged on the downstream side. The molecular marker substance that moves with the fluid in the flow channel is irradiated with a light source for photoexcitation to emit light from the molecular marker, and a means to detect the light emission of the molecular marker in the downstream photodetector using this as a trigger. The flow velocity measuring device is characterized in that the flow velocity of the fluid is measured by measuring the moving time of the marker from the light source side to the detector side.

【0011】また、請求項4に係る発明は、流体の流路
内部において、流体と共に流れる分子トレーサーの移動
速度を測定して流体の流速を測定する装置において、前
記流路内の流体と共に移動する分子マーカー物質に、光
励起用光源を照射し分子マーカーを発光させる手段と、
これを移動開始位置の検出トリガーとして、一定距離を
隔てた下流側光検出器において分子マーカーの発光を検
出しする手段とを備え、マーカーの光源側から検出器側
までの移動時間を計測して流体の流速を測定することを
特徴とする流速測定装置としたものである。
The invention according to claim 4 is an apparatus for measuring the flow velocity of a fluid by measuring the moving speed of a molecular tracer flowing with the fluid inside the flow passage of the fluid, and moving with the fluid inside the flow passage. A means for irradiating a molecular marker substance with a light source for photoexcitation to cause the molecular marker to emit light,
Using this as a detection trigger for the movement start position, a means for detecting the light emission of the molecular marker in the downstream photodetector separated by a certain distance is provided, and the movement time from the light source side of the marker to the detector side is measured. The flow velocity measuring device is characterized by measuring the flow velocity of the fluid.

【0012】[0012]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。図1は本発明の実施の形態を示す
概略図、図2は同上の概念図である。また、図3は同上
の一応用例を示す概略図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing an embodiment of the present invention, and FIG. 2 is a conceptual diagram of the same. FIG. 3 is a schematic diagram showing an application example of the above.

【0013】図1において、ガス等の流路1には、ガス
の流れ方向に対して直列状に上流側から噴射ノズル2、
照射光源3および受光器4を設けることにより、全体と
して分子マーカー物質5の移動速度を計測する装置を構
成する。噴射ノズル2からは、分子マーカー物質5を噴
出しガス流れと共に下流側に移流する。ここで、本分子
マーカー物質5の粒径はガス流れ速度とほぼ同一となる
よう十分小さいものとする。信号処理装置6は照射光源
部と受光器部との信号から分子マーカー物質5の移動速
度を計測する。
In FIG. 1, in a flow path 1 for gas or the like, injection nozzles 2 are arranged in series in the flow direction of gas from the upstream side,
By providing the irradiation light source 3 and the light receiver 4, a device for measuring the moving speed of the molecular marker substance 5 as a whole is configured. The molecular marker substance 5 is ejected from the ejection nozzle 2 and is admitted to the downstream side together with the gas flow. Here, the particle size of the molecular marker substance 5 is sufficiently small so as to be almost the same as the gas flow velocity. The signal processing device 6 measures the moving speed of the molecular marker substance 5 from the signals of the irradiation light source unit and the light receiving unit.

【0014】上記構成において、流路1にガス等が流れ
ている場合に、噴射ノズル2から分子マーカー物質5を
噴出しガス流に混入する。ガス流と共に下流側に移動す
る分子マーカー物質5が照射光源部3が発光する刹那に
照射光路中を通過すれば、分子マーカー物質5は蛍光な
いし燐光等の光を発しながら、さらに下流側に移動す
る。
In the above structure, when the gas or the like flows in the flow path 1, the molecular marker substance 5 is jetted from the jet nozzle 2 and mixed into the gas flow. When the molecular marker substance 5 moving to the downstream side together with the gas flow passes through the irradiation optical path to the moment where the irradiation light source unit 3 emits light, the molecular marker substance 5 moves further downstream while emitting light such as fluorescence or phosphorescence. To do.

【0015】分子マーカー物質としてはレーザー光源等
の短パルス光の照射を受けて蛍光ないし燐光等の光を発
する物質が選択される。一例としては、紫外光レーザー
の照射で発光するフォトクロミック染料を用いることも
可能である。
As the molecular marker substance, a substance which emits light such as fluorescence or phosphorescence upon irradiation with short pulse light such as a laser light source is selected. As an example, it is also possible to use a photochromic dye that emits light when irradiated with an ultraviolet laser.

【0016】更に具体的には、本発明における流速計測
概念図である図2に示したように、流路1の内部を流れ
るガス等の流速をV、照射光源3と受光器4との距離を
Lとし、照射タイミングパルスが発せられてから受光部
パルスを検出するまでに要する時間をΔTとすれば、V=
L/ΔTであって、分子マーカー物質の移動速度を直接計
測することによりガス等の流速を測定することができ
る。ここで、分子マーカー物質の移動速度とガス等の流
速は、使用する分子マーカー物質の粒径からほぼ等しい
と考えられる。なお、図1においてガス流が高速である
場合のように、照射光源3から受光器4迄の距離が充分
でないときには、図示の距離LよりもL’下流の位置に
受光器4を配置する。
More specifically, as shown in FIG. 2, which is a conceptual view of the flow velocity measurement in the present invention, the flow velocity of gas or the like flowing in the flow path 1 is V, the distance between the irradiation light source 3 and the light receiver 4 is To
If L and ΔT is the time required from the emission of the irradiation timing pulse to the detection of the light receiving section pulse, then V =
It is L / ΔT, and the flow velocity of gas or the like can be measured by directly measuring the moving speed of the molecular marker substance. Here, it is considered that the moving speed of the molecular marker substance and the flow velocity of gas etc. are almost equal from the particle diameter of the molecular marker substance used. When the distance from the irradiation light source 3 to the light receiver 4 is not sufficient as in the case where the gas flow is high speed in FIG. 1, the light receiver 4 is arranged at a position L ′ downstream of the illustrated distance L.

【0017】図3は本発明の実施の形態における一応用
例を示したもので、流路1を流れる物質がディーゼル自
動車のエンジンの排気ガスなどの物質の場合には、予め
ガス中にマーカー物質となるべき粒子が含まれているた
め、照射光源を省くことが可能となる。この場合には、
例えばレーザー誘起蛍光を発するカーボン粒子がマーカ
ー物質となる。
FIG. 3 shows an application example of the embodiment of the present invention. When the substance flowing through the flow path 1 is a substance such as exhaust gas of an engine of a diesel vehicle, a marker substance is previously contained in the gas. The irradiation light source can be omitted because the particles to be formed are contained. In this case,
For example, carbon particles that emit laser-induced fluorescence serve as a marker substance.

【0018】以上、本発明を図面に記載された実施の形
態に基づいて説明したが、本発明は上記した実施の形態
だけではなく、特許請求の範囲に記載した構成を変更し
ない限り種々の態様で実施することができる。
The present invention has been described above based on the embodiments shown in the drawings. However, the present invention is not limited to the above-mentioned embodiments, but can be modified in various modes as long as the configuration described in the claims is not changed. Can be implemented in.

【0019】[0019]

【発明の効果】以上要するに、本発明はガス等の流体流
路の内部において、流体と共に流れる分子マーカー物質
と、流れの上流側に配置された光励起用光源と下流側に
配置された光検出器とから構成され、前記流路内の流体
と共に移動する分子マーカー物質に、光励起用光源を照
射し分子マーカーを発光させ、これをトリガーとして下
流側光検出器において分子マーカーの発光を検出するこ
とで、マーカーの光源側から検出器側までの移動時間す
なわちガス等の流速を測定するようにしたので、ガス等
の流体の流れの中を流体と一緒に移動する分子マーカー
物質の移動速度を直接測定することができ、測定するガ
ス流の流量が大きく変化していたり温度変化が激しい場
合でも、しかも排気ガスに多量の水分や油分、微粒子等
の不純物が含有している場合でも、確実に、正確に、流
量や流速を測定することができる。また照射光源や受光
器等は、ガス等の流に何らの擾乱を与えることがなく、
他の検出方法のように圧力損失等を生じることがないな
ど多大な実用的効果を奏するものである。
In summary, according to the present invention, a molecular marker substance that flows with a fluid, a photoexcitation light source arranged on the upstream side of the flow, and a photodetector arranged on the downstream side of the flow are provided inside a fluid channel such as a gas. And a molecular marker substance that moves together with the fluid in the channel, is irradiated with a light source for photoexcitation to cause the molecular marker to emit light, and the emission of the molecular marker is detected in the downstream photodetector by using this as a trigger. Since the moving time of the marker from the light source side to the detector side, that is, the flow velocity of gas, etc. is measured, the moving speed of the molecular marker substance that moves with the fluid in the flow of fluid such as gas is directly measured. Even when the flow rate of the gas flow to be measured is greatly changed or the temperature is drastically changed, the exhaust gas contains a large amount of water, oil, fine particles, or other impurities. Even if they are, certainly, it can be accurately measured flow rate and flow velocity. In addition, the irradiation light source, the light receiver, etc. do not give any disturbance to the flow of gas,
It has a great practical effect such as no pressure loss unlike other detection methods.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態を示す概略図である。FIG. 1 is a schematic diagram showing an embodiment of the present invention.

【図2】本発明の実施の形態における概念図である。FIG. 2 is a conceptual diagram in the embodiment of the present invention.

【図3】本発明の実施の形態における応用例である。FIG. 3 is an application example in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 流路 2 噴射ノズル 3 照射光源 4 受光器 5 分子マーカー物質 6 信号処理装置 1 flow path 2 injection nozzles 3 irradiation light source 4 light receiver 5 molecular marker substances 6 Signal processing device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 流体の流路内部において、流体と共に流
れる分子トレーサーと、流れの上流側に配置された光励
起用光源と、下流側に配置された光検出器とを有し、 前記流路内の流体と共に移動する分子マーカー物質に、
光励起用光源を照射し分子マーカーを発光させ、 これをトリガーとして下流側光検出器において分子マー
カーの発光を検出し、 マーカーの光源側から検出器側までの移動時間を計測し
て流体の流速を測定することを特徴とする流速測定方
法。
1. Inside the flow path of the fluid, a molecular tracer flowing with the fluid, a light source for photoexcitation arranged on the upstream side of the flow, and a photodetector arranged on the downstream side are provided. Molecular marker substance that moves with the fluid of
The molecular marker is made to emit light by irradiating the light source for photoexcitation, and the light emission of the molecular marker is detected in the downstream photodetector by using this as a trigger, and the movement time from the light source side of the marker to the detector side is measured to determine the flow velocity of the fluid. A method for measuring flow velocity, which comprises measuring.
【請求項2】 流体の流路内部において、流体と共に流
れる分子トレーサーの移動速度を測定して流体の流速を
測定する方法において、 前記流路内の流体と共に移動する分子マーカー物質に、
光励起用光源を照射し分子マーカーを発光させ、 これを移動開始位置の検出トリガーとして、一定距離を
隔てた下流側光検出器において分子マーカーの発光を検
出し、 マーカーの光源側から検出器側までの移動時間を計測し
て流体の流速を測定するようにしたことを特徴とする流
速測定方法。
2. A method for measuring the moving velocity of a molecular tracer flowing with a fluid inside a fluid channel to measure the flow velocity of the fluid, wherein the molecular marker substance moving with the fluid within the fluid channel comprises:
The light source for photoexcitation is irradiated to cause the molecular marker to emit light, and this is used as a detection trigger for the movement start position, and the light emission of the molecular marker is detected by the downstream photodetector that is separated by a certain distance, and from the light source side of the marker to the detector side. A flow velocity measuring method, characterized in that the flow velocity of the fluid is measured by measuring the moving time of the fluid.
【請求項3】 流体の流路内部において、流体と共に流
れる分子トレーサーと、流れの上流側に配置された光励
起用光源および下流側に配置された光検出器から構成さ
れ、 前記流路内の流体と共に移動する分子マーカー物質に、
光励起用光源を照射し分子マーカーを発光させる手段
と、 これをトリガーとして下流側光検出器において分子マー
カーの発光を検出する手段とを備え、 マーカーの光源側から検出器側までの移動時間を計測し
て流体の流速を測定することを特徴とする流速測定装
置。
3. A fluid in the flow path, which comprises a molecular tracer flowing along with the fluid inside the flow path of the fluid, a photoexcitation light source arranged on the upstream side of the flow, and a photodetector arranged on the downstream side. A molecular marker substance that moves with
Equipped with a means for irradiating a light source for photoexcitation to cause the molecular marker to emit light, and a means for detecting the light emission of the molecular marker in the downstream photodetector by using this as a trigger, and measures the movement time from the light source side of the marker to the detector side. A flow velocity measuring device characterized by measuring the flow velocity of the fluid.
【請求項4】 流体の流路内部において、流体と共に流
れる分子トレーサーの移動速度を測定して流体の流速を
測定する装置において、 前記流路内の流体と共に移動する分子マーカー物質に、
光励起用光源を照射し分子マーカーを発光させる手段
と、 これを移動開始位置の検出トリガーとして、一定距離を
隔てた下流側光検出器において分子マーカーの発光を検
出しする手段とを備え、 マーカーの光源側から検出器側までの移動時間を計測し
て流体の流速を測定することを特徴とする流速測定装
置。
4. An apparatus for measuring the moving velocity of a molecular tracer flowing with a fluid inside a fluid channel to measure the flow velocity of the fluid, wherein the molecular marker substance that moves with the fluid within the fluid channel comprises:
A means for illuminating a molecular marker by irradiating a light source for photoexcitation and a means for detecting the light emission of the molecular marker in a downstream photodetector separated by a certain distance by using this as a trigger for detecting the movement start position, A flow velocity measuring device, characterized in that a flow velocity of a fluid is measured by measuring a moving time from a light source side to a detector side.
JP2001321999A 2001-10-19 2001-10-19 Current meter Pending JP2003130703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001321999A JP2003130703A (en) 2001-10-19 2001-10-19 Current meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001321999A JP2003130703A (en) 2001-10-19 2001-10-19 Current meter

Publications (1)

Publication Number Publication Date
JP2003130703A true JP2003130703A (en) 2003-05-08

Family

ID=19139118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001321999A Pending JP2003130703A (en) 2001-10-19 2001-10-19 Current meter

Country Status (1)

Country Link
JP (1) JP2003130703A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067281A1 (en) * 2010-11-16 2012-05-24 박정익 Gas flow meter and method for measuring velocity of gas
JP2012189492A (en) * 2011-03-11 2012-10-04 Seiko Instruments Inc Particle counter
CN105571663A (en) * 2016-02-16 2016-05-11 安徽理工大学 Single gas extraction borehole small flow testing device based on smoke particle migration
CN108332940A (en) * 2018-02-09 2018-07-27 青岛科技大学 A kind of two phase flow rises bubble fluid FLOW VISUALIZATION experimental method and experimental provision
CN109030296A (en) * 2018-08-08 2018-12-18 清华大学 A kind of phosphor particle tracer multi-point measurement system and method
JP2019164012A (en) * 2018-03-19 2019-09-26 京セラ株式会社 Fluid measuring device, fluid measuring method, and program
US10663444B2 (en) 2017-02-22 2020-05-26 Denso Corporation Method for evaluating exhaust gas simulation
CN111486913A (en) * 2020-04-26 2020-08-04 上海集迦电子科技有限公司 Optical fiber flowmeter with fluorescent material and control method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067281A1 (en) * 2010-11-16 2012-05-24 박정익 Gas flow meter and method for measuring velocity of gas
CN103221828A (en) * 2010-11-16 2013-07-24 朴正翼 Gas flow meter and method for measuring velocity of gas
JP2013542449A (en) * 2010-11-16 2013-11-21 パク・ジョンイク Gas flow rate measuring device and gas flow rate measuring method
US9157778B2 (en) 2010-11-16 2015-10-13 Jeong-Ik Park Gas flow meter and method for measuring velocity of gas
JP2012189492A (en) * 2011-03-11 2012-10-04 Seiko Instruments Inc Particle counter
CN105571663A (en) * 2016-02-16 2016-05-11 安徽理工大学 Single gas extraction borehole small flow testing device based on smoke particle migration
US10663444B2 (en) 2017-02-22 2020-05-26 Denso Corporation Method for evaluating exhaust gas simulation
CN108332940A (en) * 2018-02-09 2018-07-27 青岛科技大学 A kind of two phase flow rises bubble fluid FLOW VISUALIZATION experimental method and experimental provision
JP2019164012A (en) * 2018-03-19 2019-09-26 京セラ株式会社 Fluid measuring device, fluid measuring method, and program
JP2021107841A (en) * 2018-03-19 2021-07-29 京セラ株式会社 Fluid measuring device, fluid measuring method, and program
JP7011097B2 (en) 2018-03-19 2022-01-26 京セラ株式会社 Fluid measuring device, fluid measuring method, and program
CN109030296A (en) * 2018-08-08 2018-12-18 清华大学 A kind of phosphor particle tracer multi-point measurement system and method
CN111486913A (en) * 2020-04-26 2020-08-04 上海集迦电子科技有限公司 Optical fiber flowmeter with fluorescent material and control method

Similar Documents

Publication Publication Date Title
FI70481C (en) FOER FARING PROCESSING OF CELLVOLYMEN
Kähler et al. Generation and control of tracer particles for optical flow investigations in air
Durst et al. Forced laminar-to-turbulent transition of pipe flows
JP2007057532A (en) Measurement of aerosol by dilution and particle count
JPH01500060A (en) Particulate counter air intake assembly
JP2003130703A (en) Current meter
Meier New optical tools for fluid mechanics
CN108761126A (en) A kind of speed measuring device and method based on femtosecond laser photochemical luminescence
JPH05506503A (en) Diversion for uniform multi-sensor detection
US4212190A (en) Acoustical particle detector and method
JP2004340619A (en) Atomization measuring method and instrument
CN112924135B (en) Trace gas throwing method, tracer gas throwing device and trace system
WO2014193899A1 (en) Spray droplet sizer
JPH11504719A (en) Dew point determination method and appropriate equipment
US6433861B1 (en) Method and apparatus for a non-invasive measurement of the velocity of a gas or a fluid medium
JP2004163180A (en) Simultaneous measuring method and instrument for temperature, pressure and velocity distributions in flow field
Hewitt Disturbance waves in annular two-phase flow
Petrosky et al. Particle image velocimetry applications using fluorescent dye-doped particles
Krüger et al. Gas-phase velocity field measurements in dense sprays by laser-based flow tagging
CN108603816A (en) For check with chamber machine part especially casting, cylinder head channel system method and apparatus
Cutler et al. Analysis of intermittency and probe data in a supersonic flow with injection
JP2005049204A (en) Measuring method of flow velocity of fluid
JP2005140756A (en) Flow velocity meter for fine channel, microchip, and microfluid operating apparatus
Billeter et al. Gas concentration over an underwater gas release
Delfos et al. Measurement of the recoalescence flux into the rear of a Taylor bubble

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050426