JP2003130625A - Method for managing wall thickness of instrumentation connecting piping insulated thermally - Google Patents

Method for managing wall thickness of instrumentation connecting piping insulated thermally

Info

Publication number
JP2003130625A
JP2003130625A JP2001327391A JP2001327391A JP2003130625A JP 2003130625 A JP2003130625 A JP 2003130625A JP 2001327391 A JP2001327391 A JP 2001327391A JP 2001327391 A JP2001327391 A JP 2001327391A JP 2003130625 A JP2003130625 A JP 2003130625A
Authority
JP
Japan
Prior art keywords
instrumentation
sheet metal
connecting piping
section
wall thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001327391A
Other languages
Japanese (ja)
Inventor
Akira Ochi
彰 越智
Katsuhiro Konno
勝広 今野
Masanori Tanno
正範 丹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2001327391A priority Critical patent/JP2003130625A/en
Publication of JP2003130625A publication Critical patent/JP2003130625A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for managing the wall thickness of an instrumentation connecting piping insulated thermally, which relates to the method for managing wall thickness of the instrumentation connecting piping covered by an insulating material having a sheet metal at the out side, by which the process is little affected during the operation, by which the working is carried out safely, by which the measurement is also carried out accurately and which is superior from the practical view point in particular. SOLUTION: The method which manages the wall thickness of the instrumentation connecting piping covered by the insulating material having the sheet metal at the outside, projects radioactive rays emitted by a radiation transmitting apparatus from the outside of the sheet metal toward a section to be measured. The section to be measured which is measured by the method for managing the wall thickness of the instrumentation connecting piping insulated thermally, includes a damaged section of the sheet metal, a rusted section of the sheet metal, a connected section of the sheet metal, a curved section of the instrumentation connecting piping, a section where the instrumentation connecting piping is in contact with another metal, and a flange section of the instrumentation connecting piping.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、断熱された計装導
圧配管の肉厚管理方法に関するものである。更に詳しく
は、本発明は、最外部に板金を有する断熱材で被覆され
た計装導圧配管の肉厚管理方法であって、運転中におい
てプロセスに影響を与えず安全に作業でき、さらに正確
な測定を行うことができ、よって実用的観点から特に優
れた断熱された計装導圧配管の肉厚管理方法に関するも
のである。 【0002】なお、計装導圧配管とは、化学プラント、
製鉄所等の工場等において多用されており、製造プロセ
スの流量、圧力および液面等の測定のため、プロセス流
体を計器に導くために用いられている配管である。 【0003】 【従来の技術】計装導圧配管は、通常、最外部に板金を
有する断熱材で被覆されており、材質としては炭素鋼等
が用いられている。該配管は屋外に設けられることが多
く、雨水等の侵入により外面が腐食される。従って、定
期的に腐食の進行を点検し、必要に応じて、修理した
り、更新したりする必要がある。 【0004】腐食の進行の点検には、断熱材を剥し、目
視点検後測定器等を用いて肉厚の計測を実施する方法が
ある。しかしながら、この方法によると、点検に際して
断熱材の解体、修復を行う必要があり、煩雑でプロセス
流体漏洩の危険性も伴う作業であった。 【0005】 【発明が解決しようとする課題】かかる状況の下、本発
明が解決しようとする課題は、断熱された計装導圧配管
の肉厚管理方法に関するものである。更に詳しくは、本
発明は、最外部に板金を有する断熱材で被覆された計装
導圧配管の肉厚管理方法であって、運転中においてプロ
セスに影響を与えず安全に作業でき、さらに正確な測定
を行うことができ、よって実用的観点から特に優れた断
熱された計装導圧配管の肉厚管理方法を提供する点にあ
る。 【0006】 【課題を解決するための手段】すなわち、本発明は、最
外部に板金を有する断熱材で被覆された計装導圧配管の
肉厚管理方法であって、放射線透過装置から放射された
放射線を板金の外部から測定部位に向けて照射し、かつ
該測定部位が、板金の破損部、板金の発錆部及び板金の
接合部並びに計装導圧配管の曲り部、計装導圧配管と他
の金属との接触部及び計装導圧配管のフランジ部を含む
断熱された計装導圧配管の肉厚管理方法に係るものであ
る。 【0007】 【発明の実施の形態】本発明の対象は、最外部に板金を
有する断熱材で被覆された計装導圧配管である。計装導
圧配管とは、化学プラント、製鉄所等の工場等において
多用されており、製造プロセスの流量、圧力および液面
等の測定のため、プロセス流体を計器に導くために用い
られている配管である。配管の材質は、通常、炭素鋼で
ある。配管の外径は、通常17.3〜34.0mm(呼
び径10〜25A)であり、配管の肉厚は、通常3.2
〜4.7mmである。 【0008】本発明においては、放射線透過装置から放
射された放射線を板金の外部から測定部位に向けて照射
して配管の像を得る方法であり、この方法に適用可能な
装置システムが市販されている。 【0009】本発明における測定部位は、板金の破損
部、板金の発錆部及び板金の接合部並びに計装導圧配管
の曲り部、計装導圧配管と他の金属との接触部及び計装
導圧配管のフランジ部を含む部分である。かかる特定の
部位を測定することにより、配管全体の腐食の進行状況
を判断することが可能である。 【0010】撮影の方向は、腐食が生じ易いスポット、
言い換えれば水が滞留し易いスポットの位置と計装導圧
配管に接触若しくは近接する構造物との画像のかぶりを
考慮しなければならない。基本として計装導圧配管が写
る面積を広く撮れる方向を正面に置くが、他の金属との
接触部に対しては前述に加えて接触部が正面に見える方
向を0度とした場合、その方向から30〜90度までの
方向の画像をプラスした2方向からの撮影を実施する事
が望ましい。また撮影された写真の濃淡により錆の有無
を確認する事が出来る。従って、構造物の陰や他の金属
との接触部に錆の発生が確認された場合、部分的に断熱
を解体し、錆の部分を特定後再撮影する。 【0011】 【実施例】次に、本発明を実施例により説明する。 実施例1 図1に示す測定箇所を検査した。配管としては、石油化
学プラントに設置された流量計の測定に使用されている
形状を用いた。使用した放射性同位元素は密封γ線原Ir
192であり、感光材は富士フィルム製イメージングプレ
ート(基本サイズ12×10インチ)であり、画像処理装置
は富士フィルム製 FCR(Fuji ComputedRadiography)
であった。図1に示すシステムを用いて検査した。照射
時間は1分程度であり、コンピュータ処理された画像か
ら腐食状況を確認した。結果を表1に示した。表1中、
「元肉厚」欄には元の(配管を新設した当時の)配管の
肉厚を示し、「本測定」欄には本発明による上記の測定
結果を示し、「比較測定」欄には配管の断熱材を除去
し、配管を切断した後、ケレン処理を行い、最小残肉厚
をノギスで測定した結果を示した。また、「誤差」欄に
は「本測定」の結果と「比較測定」の結果の差を示し
た。表1から、誤差範囲は−0.3〜0.8の範囲であ
り、誤差は±30%RD以内であり、「本測定」の結果
は「比較測定」の結果と計装導圧管を管理する上で満足
すべき一致を示していることがわかる。 【0012】 【表1】 【0013】 【発明の効果】以上説明したとおり、本発明により、断
熱された計装導圧配管の肉厚管理方法に関するものであ
る。更に詳しくは、本発明は、最外部に板金を有する断
熱材で被覆された計装導圧配管の肉厚管理方法であっ
て、運転中においてプロセスに影響を与えず安全に作業
でき、さらに正確な測定を行うことができ、よって実用
的観点から特に優れた断熱された計装導圧配管の肉厚管
理方法を提供することができた。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the thickness of an insulated instrumentation pressure guiding pipe. More specifically, the present invention relates to a method for controlling the thickness of an instrumentation impulse piping covered with a heat insulating material having a sheet metal on the outermost side, which can safely operate without affecting the process during operation, and further improve accuracy. The present invention relates to a method for controlling the thickness of an insulated instrumentation and pressure-inducing pipe which is particularly excellent from a practical point of view. [0002] Instrumentation and impulse piping is a chemical plant,
It is a piping that is frequently used in factories such as steel mills and is used to guide a process fluid to an instrument for measuring a flow rate, a pressure, a liquid level, and the like in a manufacturing process. [0003] An instrumentation pressure guiding pipe is usually covered with a heat insulating material having a sheet metal on the outermost side, and carbon steel or the like is used as a material. The piping is often provided outdoors, and the outer surface is corroded by rainwater or the like. Therefore, it is necessary to periodically check the progress of corrosion and repair or renew as necessary. In order to check the progress of corrosion, there is a method in which the heat insulating material is peeled off and the thickness is measured using a measuring instrument or the like after visual inspection. However, according to this method, it is necessary to disassemble and repair the heat insulating material at the time of inspection, and the operation is complicated and involves a risk of process fluid leakage. [0005] Under such circumstances, an object to be solved by the present invention relates to a method for managing the thickness of an insulated instrumentation pressure guiding pipe. More specifically, the present invention relates to a method for controlling the thickness of an instrumentation impulse piping covered with a heat insulating material having a sheet metal on the outermost side, which can safely operate without affecting the process during operation, and further improve accuracy. It is an object of the present invention to provide a method for controlling the thickness of an insulated instrumentation and pressure guiding pipe which is particularly excellent from a practical point of view. [0006] That is, the present invention relates to a method for controlling the thickness of an instrumentation pressure guiding pipe covered with a heat insulating material having an outermost sheet metal. Radiated from the outside of the sheet metal to the measurement site, and the measurement site is damaged by the sheet metal, the rusted part of the sheet metal and the joint of the sheet metal, the bent part of the instrumentation pressure introduction pipe, the instrumentation pressure The present invention relates to a method for managing the thickness of an insulated instrumentation and pressure guiding pipe including a contact portion between the pipe and another metal and a flange portion of the instrumentation and pressure guiding pipe. An object of the present invention is an instrumentation pressure guiding pipe covered with a heat insulating material having a sheet metal on the outermost side. Instrumentation and pressure guiding pipes are widely used in factories such as chemical plants and steel mills, and are used to guide process fluids to instruments for measuring flow rates, pressures, and liquid levels in manufacturing processes. Piping. The material of the pipe is usually carbon steel. The outer diameter of the pipe is usually 17.3 to 34.0 mm (nominal diameter 10 to 25 A), and the thickness of the pipe is usually 3.2.
44.7 mm. In the present invention, a method of irradiating radiation emitted from a radiation transmitting apparatus from the outside of a sheet metal to a measurement site to obtain an image of a pipe, and an apparatus system applicable to this method is commercially available. I have. In the present invention, the measurement site includes a broken portion of the sheet metal, a rusted portion of the sheet metal and a joint portion of the sheet metal, a bent portion of the instrumentation pressure guiding pipe, a contact portion between the instrumentation pressure guiding pipe and another metal, and a measuring part. This is a portion including the flange portion of the pressure guiding piping. By measuring such a specific portion, it is possible to determine the progress of corrosion of the entire pipe. [0010] The direction of photographing is a spot where corrosion is likely to occur,
In other words, it is necessary to consider the position of the spot where water is likely to stay and the fogging of the image of the structure that is in contact with or close to the instrumentation pressure guiding pipe. As a rule, the direction in which the area where the instrumentation impulse piping is imaged is wide is placed in the front, but if the direction in which the contact part can be seen from the front is 0 degrees in addition to the above, It is desirable to perform photographing from two directions in which images in directions from 30 to 90 degrees from the direction are added. In addition, the presence or absence of rust can be confirmed by the density of the photograph taken. Therefore, when the occurrence of rust is confirmed in the shadow of the structure or the contact portion with another metal, the heat insulation is partially dismantled, and the rusted portion is identified and re-photographed. Next, the present invention will be described with reference to examples. Example 1 The measurement points shown in FIG. 1 were inspected. The shape used for the measurement of the flow meter installed in the petrochemical plant was used as the piping. The radioisotope used was sealed gamma ray Ir
192, the photosensitive material is an imaging plate made by Fuji Film (basic size 12 x 10 inches), and the image processing device is FCR (Fuji Computed Radiography) made by Fuji Film
Met. Inspection was performed using the system shown in FIG. The irradiation time was about 1 minute, and the corrosion state was confirmed from the image processed by the computer. The results are shown in Table 1. In Table 1,
The column "Original wall thickness" shows the wall thickness of the original pipe (at the time of the new construction of the pipe), the column "Main measurement" shows the results of the above measurement according to the present invention, and the column "Comparative measurement" shows the piping After removing the heat insulating material and cutting the pipe, a kelen treatment was performed, and the result of measuring the minimum remaining thickness with a caliper was shown. Further, the difference between the result of “main measurement” and the result of “comparison measurement” is shown in the “error” column. From Table 1, the error range is in the range of -0.3 to 0.8, the error is within ± 30% RD, and the result of “main measurement” manages the result of “comparison measurement” and the instrumentation impulse line. It can be seen that they show a satisfactory match. [Table 1] As described above, the present invention relates to a method for managing the thickness of an insulated instrumentation pressure guiding pipe according to the present invention. More specifically, the present invention relates to a method for controlling the thickness of an instrumentation impulse piping covered with a heat insulating material having a sheet metal on the outermost side, which can safely operate without affecting the process during operation, and further improve accuracy. Thus, it was possible to provide a method for controlling the thickness of the insulated instrumentation pressure guiding pipe, which is particularly excellent from a practical viewpoint.

【図面の簡単な説明】 【図1】本発明の測定箇所の例を示す図である。 【図2】本発明の測定システムの例を示す図である。 【符号の説明】 1 放射線同位元素 2 感光材 3 測定配管 4 断熱材 5 操作器[Brief description of the drawings] FIG. 1 is a diagram showing an example of a measurement location according to the present invention. FIG. 2 is a diagram showing an example of a measurement system of the present invention. [Explanation of symbols] 1 radioisotope 2 Photosensitive material 3 Measurement piping 4 Thermal insulation 5 Actuator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丹野 正範 千葉県市原市姉崎海岸5の1 住友化学工 業株式会社内 Fターム(参考) 2F067 AA27 BB06 CC06 DD02 HH05 JJ04 KK06 LL18    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Masanori Tanno             5-1, Anesaki Beach, Ichihara City, Chiba Prefecture Sumitomo Chemical             Industry Co., Ltd. F term (reference) 2F067 AA27 BB06 CC06 DD02 HH05                       JJ04 KK06 LL18

Claims (1)

【特許請求の範囲】 【請求項1】 最外部に板金を有する断熱材で被覆され
た計装導圧配管の肉厚管理方法であって、放射線透過装
置から放射された放射線を板金の外部から測定部位に向
けて照射し、かつ該測定部位が、板金の破損部、板金の発
錆部及び板金の接合部並びに計装導圧配管の曲り部、計
装導圧配管と他の金属との接触部及び計装導圧配管のフ
ランジ部を含む断熱された計装導圧配管の肉厚管理方
法。
Claims: 1. A method for controlling the thickness of an instrumentation pressure guiding pipe covered with a heat insulating material having a sheet metal at the outermost part, wherein radiation radiated from a radiation transmitting device is transmitted from outside the sheet metal. Irradiate toward the measurement site, and the measurement site is damaged part of sheet metal, rusted part of sheet metal and joint part of sheet metal and bent part of instrumentation pressure guiding pipe, A method for controlling the thickness of an insulated instrumentation and pressure guiding pipe including a contact portion and a flange portion of the instrumentation and pressure guiding pipe.
JP2001327391A 2001-10-25 2001-10-25 Method for managing wall thickness of instrumentation connecting piping insulated thermally Withdrawn JP2003130625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001327391A JP2003130625A (en) 2001-10-25 2001-10-25 Method for managing wall thickness of instrumentation connecting piping insulated thermally

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001327391A JP2003130625A (en) 2001-10-25 2001-10-25 Method for managing wall thickness of instrumentation connecting piping insulated thermally

Publications (1)

Publication Number Publication Date
JP2003130625A true JP2003130625A (en) 2003-05-08

Family

ID=19143629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001327391A Withdrawn JP2003130625A (en) 2001-10-25 2001-10-25 Method for managing wall thickness of instrumentation connecting piping insulated thermally

Country Status (1)

Country Link
JP (1) JP2003130625A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076072A (en) * 2006-09-19 2008-04-03 Hitachi Engineering & Services Co Ltd Method for inspecting surface rust of cylindrical member with its surface coated and device therefor
JP2008076074A (en) * 2006-09-19 2008-04-03 Hitachi Engineering & Services Co Ltd Method for inspecting surface rust of cylindrical member with its surface coated and device therefor
JP2020128920A (en) * 2019-02-08 2020-08-27 日立Geニュークリア・エナジー株式会社 Sealing function check-up device for used fuel storage container

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076072A (en) * 2006-09-19 2008-04-03 Hitachi Engineering & Services Co Ltd Method for inspecting surface rust of cylindrical member with its surface coated and device therefor
JP2008076074A (en) * 2006-09-19 2008-04-03 Hitachi Engineering & Services Co Ltd Method for inspecting surface rust of cylindrical member with its surface coated and device therefor
JP2020128920A (en) * 2019-02-08 2020-08-27 日立Geニュークリア・エナジー株式会社 Sealing function check-up device for used fuel storage container
JP2022185113A (en) * 2019-02-08 2022-12-13 日立Geニュークリア・エナジー株式会社 Containment function confirmation method for spent fuel storage container

Similar Documents

Publication Publication Date Title
JP2019523418A (en) Measuring method of geometric parameters and / or material state of the object to be investigated by radiation transmission test
WO2015063483A1 (en) Radiographic pipe inspection method and apparatus
JP2003130625A (en) Method for managing wall thickness of instrumentation connecting piping insulated thermally
CN201780451U (en) High-temperature resistance film for radiographic inspection of high-temperature pipeline
US3108186A (en) Method of determining the wall thicknesses of hollow bodies
JP2009047424A (en) Radiographic inspection device and piping inspection method using the device
Vaidya et al. Radiographic evaluation of corrosion and deposits in pipelines: Results of an IAEA co-ordinated research programme
JP2008096291A (en) Inspection method for stress corrosion crack of member comprising austenite stainless steel
US11119057B2 (en) Trip avoidance x-ray inspection
Harara Pit-depth measurement on large diameter pipes by tangential radiography using a Co-60 gamma-ray source
US4692936A (en) Method and apparatus for radiographic inspection
KR101382589B1 (en) A inspection apparatus corrosion Pipeline and the method thereof using Radiographic testing Methode
JPH09229655A (en) Inspection method for pipeline and inspection apparatus therefor
Pechacek Advanced NDE methods of inspecting insulated vessels and piping for ID corrosion and corrosion under insulation (CUI)
Galbraith et al. Through-Wall Radiography To Locate And Evaluate Internal Corrosion In Piplnc
Zscherpel et al. Corrosion Inspection of Pipelines by Digital Industrial Radiology(DIR).
Amoah et al. Investigation of Wall Thickness, Corrosion, and Deposits in Industrial Pipelines Using Radiographic Technique
JP3465561B2 (en) Under-film corrosion inspection method
Mbizani et al. Reduction of gas and oil pipeline failures using radiography inspection technique
Czerwinski et al. Tangential Radiographic Testing
CN105571538A (en) Method for gamma-ray programmed partitioning scanning detection of wall thickness of LNG heat insulation coating pipe
CZ19772U1 (en) Device for measuring wall thickness of large dimension objects
Cobanoglu et al. Wall Thickness Measurement of Pipes by Using Digital Radiography
Jensen et al. X-ray K-edge analysis of drain lines in Wilhelm Hall, Ames Laboratory
Zscherpel et al. Radiographic evaluation of corrosion and deposits: IAEA co-ordinated research project on large diameter steel pipes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061106