JP2003130604A - Configuration measurement device - Google Patents

Configuration measurement device

Info

Publication number
JP2003130604A
JP2003130604A JP2001330767A JP2001330767A JP2003130604A JP 2003130604 A JP2003130604 A JP 2003130604A JP 2001330767 A JP2001330767 A JP 2001330767A JP 2001330767 A JP2001330767 A JP 2001330767A JP 2003130604 A JP2003130604 A JP 2003130604A
Authority
JP
Japan
Prior art keywords
measuring
stage
amount
distance
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001330767A
Other languages
Japanese (ja)
Inventor
Tadashi Kaneko
正 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001330767A priority Critical patent/JP2003130604A/en
Publication of JP2003130604A publication Critical patent/JP2003130604A/en
Pending legal-status Critical Current

Links

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a configuration measurement device which improves the accuracy of measurement while it makes contact force smaller and expands the width of a measuring object. SOLUTION: The configuration measurement device includes a gravimeter, a gauge head at the upper part of a gravimeter, a means to change the distance of the vertical direction between the gravimeter and the gauge head, a means to measure the variation of the distance of the vertical direction of the gravimeter and the gauge head, a means to change the horizontal distance of the gauge head and the measuring object and a means to measure the variation of the horizontal distance of the gauge head and the measuring object.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特に透明な非金属
多層膜形状の測定対象物の形状を測定するための形状測
定器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shape measuring instrument for measuring the shape of a measuring object having a transparent non-metal multilayer film shape.

【0002】[0002]

【従来の技術】従来、透明な非金属多層膜形状の測定対
象物の形状測定は、測定対象物に対して接触測定子を用
いるものが知られている。これらの接触力は、(株)ミ
ツトヨの精密測定機器・総合力タログNo.13.34
に記載された同社製のレバーヘッド型プローブMLH−
322や、同社ライトマチックヘッドVL−50、
(株)キーエンス製のホームページに記載された高精度
接触式変位センサAT2等、それぞれ0.02N、0.
01N、0.02Nであり、これより接触力が小さいも
のはなかった。
2. Description of the Related Art Conventionally, for measuring the shape of a transparent non-metal multilayer film-shaped measuring object, a contact measuring element is used for the measuring object. These contact forces are measured by Mitutoyo Co., Ltd.'s precision measuring equipment, total force tag No. 13.34
Lever head type probe MLH- manufactured by the same company described in
322, the company's lightmatic head VL-50,
High-precision contact type displacement sensor AT2 etc. described on the home page of Keyence Co., Ltd., 0.02 N, 0.
It was 01N and 0.02N, and none of them had a contact force smaller than this.

【0003】接触力が大きい場合は、測定対象物の表面
を傷付けたり、測定対象物を変形させることがあり、接
触力は小さい程良いことが知られている。
It is known that when the contact force is large, the surface of the object to be measured may be damaged or the object to be measured may be deformed. The smaller the contact force, the better.

【0004】[0004]

【発明が解決しようとする課題】ところが、従来の接触
測定子の接触力は0.02N、0.01N、0.02N
であり、これより接触力が小さいものはなかったため、
測定対象の幅が狭く、測定精度にも限界があった。
However, the contact force of the conventional contact probe is 0.02N, 0.01N, 0.02N.
Since there was no contact force smaller than this,
The width of the measurement target was narrow and the measurement accuracy was limited.

【0005】本発明は上記問題に鑑みてなされたもの
で、その目的とする処は、接触力をより小さくして測定
対象の幅を広げるとともに、測定精度の向上を図ること
ができる形状測定器を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to reduce the contact force to widen the width of the object to be measured and to improve the measurement accuracy. To provide.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、重量計と、該重量計の上部に配置された
測定子と、重量計と測定子との上下方向の距離を変化さ
せる手段と、重量計と測定子との上下方向の距離の変化
量を測定する手段と、測定子と測定対象物との水平方向
の距離を変化させる手段と、測定子と測定対象物との水
平方向の距離の変化量を測定する手段を含んで形状測定
器を構成したことを特徴とする。
In order to achieve the above object, the present invention changes a vertical scale distance between a weighing scale, a stylus placed above the weighing scale, and the weighing scale. Means for measuring the amount of change in the vertical distance between the weighing scale and the measuring element, a means for changing the horizontal distance between the measuring element and the measuring object, and the measuring element and the measuring object It is characterized in that the shape measuring instrument is configured to include means for measuring the amount of change in the horizontal distance.

【0007】[0007]

【発明の実施の形態】以下に本発明の実施の形態を添付
図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0008】測定対象物は重量計Aの上に常に載ってい
るものとする。Pを測定子Bに対する測定対象物の位置
ベクトルとすると、 P=αX+βY+γZ (α、β、γは実数) と定義できる。
It is assumed that the object to be measured is always placed on the weighing scale A. When P is the position vector of the measuring object with respect to the probe B, it can be defined as P = αX + βY + γZ (α, β, γ are real numbers).

【0009】ここで、Xを上下方向の単位量ベクトル、
Yを第1の水平方向の単位量ベクトル、Zを第2の水平
方向の単位量ベクトルとし、X,Y,Zは互いに直交す
るものとすると、重量計と測定子との上下方向の距離
は、αX 重量計と測定子との上下方向の距離の変化量は、ΔαX 測定子と測定対象物との水平方向の距離は、βY+γZ 測定子と測定対象物との水平方向の距離の変化量は、Δ
(βY+γZ)となる。
Where X is a unit quantity vector in the vertical direction,
If Y is a first horizontal unit quantity vector, Z is a second horizontal unit quantity vector, and X, Y, and Z are orthogonal to each other, the vertical distance between the weighing scale and the probe is , ΑX The amount of change in the vertical distance between the scale and the measuring element is the horizontal distance between the ΔαX measuring element and the measuring object, and the changing amount of the horizontal distance between the βY + γZ measuring element and the measuring object is , Δ
(ΒY + γZ).

【0010】重量計と測定子との上下方向の距離を変化
させる手段Cを用いて、重量計と該重量計の上部に配置
された測定子との距離を変化させて、重量計と測定子と
の上下方向の距離の変化量を測定する手段Dを用いて重
量計に載せた測定対象物と測定子との距離の変化量を測
定することは、測定対象物は重量計に載っているため、
手段Cを用いて距離αXを変化させ、手段Dを用いて距
離の変化量ΔαXを測定することと等しい。
The means C for changing the vertical distance between the weighing scale and the measuring element is used to change the distance between the weighing scale and the measuring element arranged on the upper part of the weighing scale to change the distance between the weighing scale and the measuring element. To measure the amount of change in the distance between the measuring object placed on the weighing scale and the probe using the means D for measuring the amount of change in the vertical distance between the measuring object and the stylus is measured. For,
This is equivalent to using the means C to change the distance αX and using the means D to measure the distance change amount ΔαX.

【0011】測定子と測定対象物との水平方向の距離を
変化させる手段Eを用いて測定子と測定対象物との水平
方向の距離を変化させ、測定子と測定対象物との水平方
向の距離の変化量を測定する手段Fと、測定子と測定対
象物との水平方向の距離の変化量を測定することは、即
ち、手段Eを用いて、距離(βY+γZ)を変化させ、
手段Fを用いて距離の変化量Δ(βY+γZ)を測定す
ることと等しい。
The means E for changing the horizontal distance between the measuring element and the measuring object is used to change the horizontal distance between the measuring element and the measuring object so as to change the horizontal distance between the measuring element and the measuring object. The means F for measuring the amount of change in the distance and the amount of change in the horizontal distance between the contact point and the measuring object are measured by changing the distance (βY + γZ) using the means E.
This is equivalent to measuring the change amount Δ (βY + γZ) of the distance using the means F.

【0012】「重量計Aの読み量Gが非ゼロの値gとな
るように、手段Cを用いて距離αXを変化させ、手段D
を用いて距離の変化量ΔαXを測定する」ことを、手段
Eを用いて距離(βY+γZ)を変化させ、手段Fを用
いて距離の変化量Δ(βY+γZ)を測定しながら繰り
返すことによって位置ベクトルPの軌跡が求まり、これ
は測定対象物の表面の形状である。即ち、形状測定器と
して作用する。
"Means C are used to change the distance αX so that the reading amount G of the weighing scale A becomes a non-zero value g, and the means D
Measuring the amount of change in distance ΔαX by using the means E to change the distance (βY + γZ) and measuring the amount of change in distance Δ (βY + γZ) using the means F. The locus of P is obtained, which is the shape of the surface of the measuring object. That is, it functions as a shape measuring instrument.

【0013】ここで、前記gを重量計Aの最小分解能Δ
Gに等しくなるようにすれば、測定対象物と接触する測
定子の部分の接触力はgとなる。
Where g is the minimum resolution Δ of the weighing scale A.
If it is made equal to G, the contact force of the portion of the probe contacting the object to be measured becomes g.

【0014】測定対象物と接触する測定子の部分が弾性
体で構成されない手段を用いた場合、測定子と接触する
測定対象物の部分が変形し、常に接触力g=ΔGとなる
ような形状測定が可能となる。この場合、ΔGが十分に
小さければ、測定子と接触する測定対象物の部分の変形
量は十分に小さく、形状測定精度に対して検出不可能な
誤差となる。
When a means in which the portion of the measuring element that contacts the measuring object is not made of an elastic body is used, the portion of the measuring object that contacts the measuring element is deformed and the contact force is always g = ΔG. It becomes possible to measure. In this case, if ΔG is sufficiently small, the amount of deformation of the portion of the measuring object that comes into contact with the measuring element is sufficiently small, which causes an undetectable error with respect to the shape measurement accuracy.

【0015】測定対象物と接触する測定子の部分が弾性
体で構成される手段を用いれば、測定対象物と接触する
測定子の部分が変形し、常に接触力g=ΔGとなるよう
な形状測定が可能となる。この場合、ΔGが十分に小さ
ければ、測定対象物と接触する測定子の部分の変形量は
十分に小さく、形状測定精度に対して検出不可能な誤差
となる。
By using a means in which the portion of the probe contacting the object to be measured is made of an elastic body, the portion of the probe contacting the object to be deformed is deformed so that the contact force is always g = ΔG. It becomes possible to measure. In this case, if ΔG is sufficiently small, the amount of deformation of the portion of the tracing stylus that comes into contact with the measuring object is sufficiently small, which causes an undetectable error with respect to the shape measurement accuracy.

【0016】<実施の形態1>図1は本発明に係る形状
測定器の構成図である。
<First Embodiment> FIG. 1 is a block diagram of a shape measuring instrument according to the present invention.

【0017】本発明に係る形状測定器は、図1に示すよ
うに、ベース台、Xステージ、Yステージ、Zステー
ジ、重量計、測定子、測定子指示部材1、測定子指示部
材2より成る。ベース台上に固定されたXステージは、
紙面内を左右方向に手動で移動可能であり、その移動量
を読み取る目盛が設けられている。Yステージは、Xス
テージ上部に固定され、紙面垂直方向に手動で移動可能
であり、その移動量を読み取る目盛が設けられている。
重量計はYステージ上部に固定され、その上に測定対象
物が載せてある。
As shown in FIG. 1, the shape measuring instrument according to the present invention comprises a base, an X stage, a Y stage, a Z stage, a weight scale, a tracing stylus, a tracing stylus pointing member 1, and a tracing stylus pointing member 2. . The X stage fixed on the base is
It is possible to manually move in the left-right direction on the paper surface, and a scale for reading the amount of movement is provided. The Y stage is fixed to the upper part of the X stage, can be manually moved in the direction perpendicular to the paper surface, and is provided with a scale for reading the amount of movement.
The weighing scale is fixed to the upper part of the Y stage, and an object to be measured is placed on it.

【0018】ベース台の上には、別途、Zステージが固
定され、該Zステージ上面は、紙面内上下方向に移動可
能であり、その移動量を読み取る目盛が設けられてい
る。Zステージ上面には測定子指示部材1が固定され、
測定子指示部材1に測定子指示部材2が固定され、測定
子指示部材2に測定子が固定され、Zステージ上面が上
下動すると測定子が同量の上下動するように構成されて
いる。
A Z stage is separately fixed on the base table, and the upper surface of the Z stage is movable in the vertical direction in the plane of the drawing, and a scale for reading the amount of movement is provided. The tracing stylus indicating member 1 is fixed to the upper surface of the Z stage,
The tracing stylus indicating member 2 is fixed to the tracing stylus indicating member 1, the tracing stylus is fixed to the tracing stylus indicating member 2, and the tracing stylus is configured to move up and down by the same amount when the upper surface of the Z stage moves up and down.

【0019】各部の詳細な仕様は、重量計は、最小読み
取り分解能100mg、最大測定重量100g、Xステ
ージは最大ストローク±6.5mm、最小送り量分解能
10μm、紙面右側に移動すると移動量は正値となる。
The detailed specifications of each part are as follows: the weighing scale has a minimum reading resolution of 100 mg, the maximum measurement weight of 100 g, the X stage has a maximum stroke of ± 6.5 mm, a minimum feed amount resolution of 10 μm, and the movement amount is a positive value when moved to the right side of the paper. Becomes

【0020】Yステージは、最大ストローク±6.5m
m、最小送り量分解能10μm、紙面手前に移動すると
移動量は正値となる。
The maximum stroke of the Y stage is ± 6.5 m
m, the minimum feed amount resolution is 10 μm, and the amount of movement becomes a positive value when moving to the front side of the paper surface.

【0021】Zステージは、最大ストローク±2.5m
m、最小送り量分解能1μm、紙面下側に移動すると移
動量は正値となる。測定子は、直径1mm、材質ウレタ
ン(ショアA50)である。
Z stage has a maximum stroke of ± 2.5 m
m, the minimum feed amount resolution is 1 μm, and the movement amount becomes a positive value when moving to the lower side of the paper surface. The probe has a diameter of 1 mm and is made of urethane (Shore A50).

【0022】一方、測定対象物として、表面にシリコン
膜(膜厚500μm)を施したS45C鉄板(厚さ10
mm、X軸移動方向長さ20mm、Y軸移動方向長さ2
0mm)を用意し、重量計の上に固定し、その重量を測
定した結果は33.7gであった。
On the other hand, as an object to be measured, an S45C iron plate (thickness: 10 μm) having a silicon film (film thickness: 500 μm) on its surface is used.
mm, X-axis moving direction length 20 mm, Y-axis moving direction length 2
0 mm) was prepared and fixed on a weighing scale, and the weight was measured, and the result was 33.7 g.

【0023】図2は本発明に係る形状測定器による測定
の初期設定の状態を説明するための図である。
FIG. 2 is a view for explaining the initial setting state of measurement by the shape measuring instrument according to the present invention.

【0024】先ず、図2に示すように、測定対象物を形
状測定器の重量計の上部に固定し、測定子を測定対象物
の上部で測定対象物と非接触の状態になるようにする。
First, as shown in FIG. 2, the object to be measured is fixed to the upper part of the weight scale of the shape measuring instrument so that the probe is not in contact with the object to be measured on the upper part of the object to be measured. .

【0025】X軸ステージの目盛の読みは±0.000
mm、Y軸ステージの目盛の読みは±0.000mm、
Z軸ステージの目盛の読みは−0.300mmである。
The scale reading of the X-axis stage is ± 0.000
mm, Y-axis stage scale reading is ± 0.000 mm,
The Z-axis stage graduation reading is -0.300 mm.

【0026】この状態からZ軸ステージを移動させ、図
1に示すように測定子がS45C鉄板のシリコン膜を施
した表面に接触し、重量計が33.8gになった時点で
のZ軸ステージの移動量を測定したところ、目盛は+
0.833mmであった。
From this state, the Z-axis stage is moved, and as shown in FIG. 1, the probe contacts the surface of the S45C iron plate coated with the silicon film, and the Z-axis stage at the time when the weight scale reaches 33.8 g. When the movement amount of is measured, the scale is +
It was 0.833 mm.

【0027】次に、Z軸ステージの目盛の読みが−0.
300mmになるように測定子を戻し、測定子がS45
C鉄板から離れたところでXステージの目盛は+1.0
00mmとし、Z軸ステージを移動させ、図1に示すよ
うに測定子がS45C鉄板の表面に接触し、重量計が3
3.8gになった時点でのZ軸ステージの移動量を測定
したところ、目盛は+0.7900mmであった。
Next, the reading of the scale of the Z-axis stage is -0.
Return the probe to 300 mm, and the probe is S45.
The scale of the X stage is +1.0 away from the C iron plate
Then, the Z-axis stage is moved, and the probe contacts the surface of the S45C iron plate as shown in FIG.
When the amount of movement of the Z-axis stage at the time of reaching 3.8 g was measured, the scale was +0.7900 mm.

【0028】以下、同様に測定子をS45C鉄板から離
し、Xステージ及び/又はYステージを1mm刻みで2
mm四方内部で移動させ、それぞれの位置でZ軸ステー
ジとYステージを移動させ、図1に示すように測定子が
S45C鉄板のシリコン膜を施した表面に接触し、重量
計が33.8gになった時点でのZ軸ステージの移動量
を測定していき、表1の結果を得た。表1はS45C鉄
板のシリコン膜を施した表面2mm四方内の形状を示し
ている。
Thereafter, similarly, the probe is separated from the S45C iron plate, and the X stage and / or the Y stage is moved in 2 mm increments of 1 mm.
mm inside the square, move the Z-axis stage and the Y stage at each position, and as shown in Fig. 1, the contact point comes into contact with the surface of the S45C iron plate on which the silicon film is applied, and the weight scale weighs 33.8 g. The amount of movement of the Z-axis stage at that time was measured, and the results shown in Table 1 were obtained. Table 1 shows the shape within a 2 mm square of the surface of the S45C iron plate coated with the silicon film.

【0029】 尚、重量計に電子天秤等を用いることによって、読み取
り分解能を例えば0.1mg程度にし、表面接触部の変
形量を更に軽減し、表面形状の測定誤差を更に小さくす
ることが可能である。尚、Zステージの移動量をレーザ
測長器で測定することによって、移動量測定分解能を例
えば0.1μm程度とし、表面形状の測定誤差を更に小
さくすることが可能である。
[0029] By using an electronic balance or the like as the weighing scale, it is possible to set the reading resolution to, for example, about 0.1 mg, further reduce the deformation amount of the surface contact portion, and further reduce the measurement error of the surface shape. By measuring the moving amount of the Z stage with a laser length measuring device, the moving amount measuring resolution can be set to about 0.1 μm, and the measurement error of the surface shape can be further reduced.

【0030】<実施の形態2>次に、本発明の実施の形
態2について説明する。
<Second Embodiment> Next, a second embodiment of the present invention will be described.

【0031】図3は本発明の実施の形態2に係る形状測
定器の構成図である。本実施の形態と前記実施の形態1
との違いは、本実施の形態では重量計の上にXステージ
とYステージを載せ、常に測定対象物の重量とXステー
ジとYステージの重量を合わせて測定することである。
FIG. 3 is a block diagram of the shape measuring instrument according to the second embodiment of the present invention. This Embodiment and the First Embodiment
The difference from this is that in the present embodiment, the X stage and the Y stage are placed on the weighing scale, and the weight of the object to be measured and the weights of the X stage and the Y stage are constantly measured.

【0032】<実施の形態3>次に、本発明の実施の形
態3について説明する。
<Third Embodiment> Next, a third embodiment of the present invention will be described.

【0033】図4は本発明の実施の形態3に係る形状測
定器の構成図である。
FIG. 4 is a block diagram of a shape measuring instrument according to the third embodiment of the present invention.

【0034】本実施の形態では、測定対象物は重量計の
上に固定され、重量計はXステージの上に固定され、X
ステージはYステージの上に固定され、Yステージはベ
ース台に固定されている。
In the present embodiment, the object to be measured is fixed on the scale, and the scale is fixed on the X stage.
The stage is fixed on the Y stage, and the Y stage is fixed on the base.

【0035】一方、測定子は指示部材を介してZ軸ステ
ージに固定され、Z軸ステージはベース台に固定されて
いる。
On the other hand, the tracing stylus is fixed to the Z-axis stage via the indicating member, and the Z-axis stage is fixed to the base.

【0036】本実施の形態では、X軸ステージ、Y軸ス
テージ、Z軸ステージとも自動制御ステージを採用し、
パソコンに繋がっている。又、重量計もパソコンに繋が
り、測定値の読み取りが可能である。
In this embodiment, the X-axis stage, the Y-axis stage, and the Z-axis stage each employ an automatic control stage.
It is connected to a computer. In addition, the weighing scale can also be connected to a personal computer to read the measured values.

【0037】又、本実施の形態では、重量計の値をパソ
コンで読み取りながらZステージの移動量を制御し、一
定重量のところでXステージ、Yステージ、Zステージ
の値を読み取る。Xステージ、Yステージを移動制御中
は測定子が測定対象物に接触しないようにZステージの
値を制御する。これにより、Xステージ、Yステージの
各値に対して測定子が一定接触力で測定対象物に接触す
る場合のZステージの値を読み取り、これによって測定
対象物の表面形状の自動測定を行う。
Further, in the present embodiment, the amount of movement of the Z stage is controlled while reading the value of the weighing scale with a personal computer, and the values of the X stage, Y stage, and Z stage are read at a constant weight. During the movement control of the X stage and the Y stage, the value of the Z stage is controlled so that the tracing stylus does not contact the measurement object. As a result, the value of the Z stage when the probe contacts the measurement object with a constant contact force with respect to each value of the X stage and the Y stage is read, and thereby the surface shape of the measurement object is automatically measured.

【0038】[0038]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、重量計と、該重量計の上部に配置された測定子
と、重量計と測定子との上下方向の距離を変化させる手
段と、重量計と測定子との上下方向の距離の変化量を測
定する手段と、測定子と測定対象物との水平方向の距離
を変化させる手段と、測定子と測定対象物との水平方向
の距離の変化量を測定する手段を含んで形状測定器を構
成したため、接触力をより小さくして測定対象の幅を広
げるとともに、測定精度の向上を図ることができるとい
う効果が得られる。
As is apparent from the above description, according to the present invention, the weighing scale, the measuring element arranged above the weighing scale, and the vertical distance between the weighing scale and the measuring scale are changed. Means for measuring the amount of change in the vertical distance between the weighing scale and the measuring element, a means for changing the horizontal distance between the measuring element and the measuring object, and the measuring element and the measuring object Since the shape measuring instrument is configured to include means for measuring the amount of change in the horizontal distance, it is possible to obtain an effect that the contact force can be further reduced to widen the width of the measurement object and the measurement accuracy can be improved. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1に係る形状測定器の構成
図である。
FIG. 1 is a configuration diagram of a shape measuring instrument according to a first embodiment of the present invention.

【図2】本発明の実施の形態1に係る形状測定器による
測定の初期設定の状態を説明するための図である。
FIG. 2 is a diagram for explaining a state of initial setting of measurement by the shape measuring instrument according to the first embodiment of the present invention.

【図3】本発明の実施の形態2に係る形状測定器の構成
図である。
FIG. 3 is a configuration diagram of a shape measuring instrument according to a second embodiment of the present invention.

【図4】本発明の実施の形態3に係る形状測定器の構成
図である。
FIG. 4 is a configuration diagram of a shape measuring instrument according to a third embodiment of the present invention.

【符号の説明】 1 測定子支持部材 2 測定子支持部材[Explanation of symbols] 1 Stylus support member 2 Stylus support member

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量計と、該重量計の上部に配置された
測定子と、重量計と測定子との上下方向の距離を変化さ
せる手段と、重量計と測定子との上下方向の距離の変化
量を測定する手段と、測定子と測定対象物との水平方向
の距離を変化させる手段と、測定子と測定対象物との水
平方向の距離の変化量を測定する手段とを有する形状測
定器。
1. A weighing scale, a stylus located above the weighing scale, means for changing the vertical distance between the weighing scale and the stylus, and a vertical distance between the weighing scale and the stylus. Shape having means for measuring the amount of change in the horizontal distance between the probe and the measurement object, and means for measuring the amount of change in the horizontal distance between the probe and the measurement object Measuring instrument.
【請求項2】 測定対象物と接触する測定子の部分を弾
性体で構成したことを特徴とする請求項1記載の形状測
定器。
2. The shape measuring instrument according to claim 1, wherein the portion of the measuring element that comes into contact with the measuring object is made of an elastic body.
JP2001330767A 2001-10-29 2001-10-29 Configuration measurement device Pending JP2003130604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001330767A JP2003130604A (en) 2001-10-29 2001-10-29 Configuration measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001330767A JP2003130604A (en) 2001-10-29 2001-10-29 Configuration measurement device

Publications (1)

Publication Number Publication Date
JP2003130604A true JP2003130604A (en) 2003-05-08

Family

ID=19146444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001330767A Pending JP2003130604A (en) 2001-10-29 2001-10-29 Configuration measurement device

Country Status (1)

Country Link
JP (1) JP2003130604A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019168356A (en) * 2018-03-23 2019-10-03 株式会社東京精密 Surface shape measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019168356A (en) * 2018-03-23 2019-10-03 株式会社東京精密 Surface shape measuring device
JP7259198B2 (en) 2018-03-23 2023-04-18 株式会社東京精密 Surface shape measuring device

Similar Documents

Publication Publication Date Title
JP5069106B2 (en) Sensor module for detection head of tactile 3D coordinate measuring machine
US6789327B2 (en) Touch probe with deflection measurement and inspection optics
JP2625333B2 (en) Linear measuring device
JP2988588B2 (en) Position measuring device
US5287629A (en) Machine stand, particularly for so-called coordinate measuring machines, and a method for constructing the stand
JP2010266438A (en) Dimension measuring instrument and height gauge
US5806201A (en) Multi-coordinate touch probe
Cao et al. Recent developments in dimensional metrology for microsystem components
JPH07260471A (en) Measuring apparatus of surface shape
JP4747029B2 (en) Hardness tester
Oiwa et al. Three-dimensional touch probe using three fibre optic displacement sensors
JP2003130604A (en) Configuration measurement device
JP2002022401A (en) Instrument for measuring bend/warp size of long part
EP2385342B1 (en) Apparatus and method for calibrating a coordinate measuring apparatus
JP2003050118A (en) Measuring method and measuring apparatus
KR0151993B1 (en) Measuring device of thickness and measuring method using it
JP6923126B1 (en) Coating equipment and blade measuring instrument
JP2579726B2 (en) Contact probe
JPH0798221A (en) Method for calibrating flatness measurement device
JP2001235304A (en) Method of measuring accuracy of straight motion using straightness measuring apparatus
Watson Calibration techniques for extensometry: possible standards of strain measurement
JP2513581Y2 (en) Extensometer calibration device inspection device
JP2586633Y2 (en) Flatness measuring machine
JP2005017020A (en) Three-dimensional shape measuring instrument
Bütefisch et al. Tactile metrology for active microsystems