JP2003130240A - Fusable plug, manufacturing method thereof and freezer comprising it - Google Patents

Fusable plug, manufacturing method thereof and freezer comprising it

Info

Publication number
JP2003130240A
JP2003130240A JP2001330605A JP2001330605A JP2003130240A JP 2003130240 A JP2003130240 A JP 2003130240A JP 2001330605 A JP2001330605 A JP 2001330605A JP 2001330605 A JP2001330605 A JP 2001330605A JP 2003130240 A JP2003130240 A JP 2003130240A
Authority
JP
Japan
Prior art keywords
temperature
melting point
point metal
low melting
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001330605A
Other languages
Japanese (ja)
Other versions
JP3681060B2 (en
Inventor
Akira Maeda
晃 前田
Takuo Ozawa
拓生 小澤
Toshio Umemura
敏夫 梅村
Yasuaki Ogose
安陽 生越
Shiro Takatani
士郎 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001330605A priority Critical patent/JP3681060B2/en
Publication of JP2003130240A publication Critical patent/JP2003130240A/en
Application granted granted Critical
Publication of JP3681060B2 publication Critical patent/JP3681060B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fusable plug not containing a toxic substance such as Cd or Pd, being high in reliability, having a lower cost than a relief valve and correspondable to a next generation refrigerant, and to provide a manufacturing method thereof and a freezer comprising it. SOLUTION: This fusable plug comprises a plug member formed of a body having a relief hole penetrating the freezer and low melting point metal fixed on the relief hole so as to block the relief hole. The low melting point metal has a solidus line temperature higher than a temperature for the refrigerant included in the freezer and is formed by bismuth (Bi), indium (In) and tin (Sn).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍装置の安全装
置として用いられる可溶栓、可溶栓の製造方法及びこれ
を備えた冷凍装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fusible plug used as a safety device for a refrigeration system, a method for manufacturing the fusible plug, and a refrigeration system equipped with the same.

【0002】[0002]

【従来の技術】図1は、冷凍装置の一例を示すものであ
る。この冷凍装置は、高圧側の圧力容器として構成され
た圧縮機1、凝縮器2、液溜3、膨張弁4、及び熱交換
器5を順次接続して冷凍サイクルを構成している。凝縮
器2と液溜3の内部はほぼ同じ圧力、温度を示す。凝縮
器2の側壁又は液溜3には、何らかの原因で内部の冷媒
温度・圧力が上昇したときに、低融点金属をからなる栓
部材6が軟化溶融し、圧力容器としての凝縮器2及び液
溜3内の冷媒を外気中に放出することにより凝縮器2及
び液溜3の破裂を未然に防止する安全装置として、可溶
栓7が取り付けられている。
2. Description of the Related Art FIG. 1 shows an example of a refrigerating apparatus. This refrigeration system comprises a refrigeration cycle in which a compressor 1, which is configured as a high-pressure side pressure vessel, a condenser 2, a liquid reservoir 3, an expansion valve 4, and a heat exchanger 5 are sequentially connected. The insides of the condenser 2 and the liquid reservoir 3 show almost the same pressure and temperature. When the temperature or pressure of the refrigerant inside the side wall of the condenser 2 or the liquid reservoir 3 rises for some reason, the plug member 6 made of a low melting point metal is softened and melted, and the condenser 2 and the liquid as a pressure vessel A fusible plug 7 is attached as a safety device that prevents the condenser 2 and the liquid reservoir 3 from exploding by releasing the refrigerant in the reservoir 3 into the outside air.

【0003】図2及び図3は、この可溶栓7として、従
来一般的に使用されているものの概略構造を示す。すな
わち、図2はこの可溶栓7の斜視図的な模式説明図であ
り、図3は、凝縮器(以下の説明においては凝縮器又は
圧力容器と称する)2又は液溜5に取り付けられた状態
における図2記載の可溶栓7の断面図である。
FIG. 2 and FIG. 3 show a schematic structure of the fusible plug 7, which has been generally used in the past. That is, FIG. 2 is a perspective schematic view of the fusible plug 7, and FIG. 3 is attached to a condenser (hereinafter, referred to as a condenser or a pressure vessel) 2 or a liquid reservoir 5. It is sectional drawing of the fusible plug 7 of FIG. 2 in a state.

【0004】これら図に示されるように、可溶栓7は、
凝縮器(圧力容器)2の内外を導通する逃がし穴6a、
凝縮器又は液溜への取り付けネジ部6b、及び凝縮器2
又は液溜3への取り付け時の当たりを構成する鍔部(が
くぶ)6cを有する本体6と、この本体6における前記
逃がし穴6aを閉塞するように保持された栓部材8とか
らなる。この栓部材8は、逃がし穴6a内に溶融した低
融点金属を流し込み、この低融点金属を逃がし穴8a内
で冷却固化することにより固着保持されたものである。
As shown in these figures, the fusible plug 7 is
An escape hole 6a for conducting the inside and outside of the condenser (pressure vessel) 2,
Screw part 6b for attachment to condenser or liquid reservoir, and condenser 2
Alternatively, it is composed of a main body 6 having a collar portion 6c which constitutes a contact when it is attached to the liquid reservoir 3, and a plug member 8 held so as to close the escape hole 6a in the main body 6. The plug member 8 is fixed and held by pouring the melted low melting point metal into the escape hole 6a and cooling and solidifying the low melting point metal in the escape hole 8a.

【0005】この冷凍装置にあっては、圧縮機1で圧縮
された高温高圧のガス冷媒は、凝縮器2で空気あるいは
水と熱交換して凝縮され、高温高圧の液冷媒となり、そ
の一部は液溜3に溜められる。この液冷媒は、膨張弁4
に送られて減圧され、低温低圧の液ガス混合冷媒となっ
て熱交換器5に流入する。そして、この熱交換器5で、
水等の冷却対象物と熱交換して、気化した後、再び圧縮
機1で圧縮され、高温高圧のガス冷媒となり再び冷媒回
路内に循環される。
In this refrigeration system, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is condensed by exchanging heat with air or water in the condenser 2 to become a high-temperature and high-pressure liquid refrigerant, and a part thereof. Are stored in the liquid reservoir 3. This liquid refrigerant is used in the expansion valve 4
Is sent to the heat exchanger 5 to be decompressed and becomes a low temperature low pressure liquid-gas mixed refrigerant and flows into the heat exchanger 5. And with this heat exchanger 5,
After exchanging heat with a cooling object such as water and vaporizing, it is compressed again by the compressor 1 to become a high-temperature and high-pressure gas refrigerant, which is circulated again in the refrigerant circuit.

【0006】このとき、栓部材8の凝縮器(圧力容器)
2又は液溜3の空間にさらされている面(以下受圧面と
いう)8aには、高温高圧の冷媒が連流状態で接触しな
がら流れている。この冷媒の圧力P(この圧力は、図3
に矢印をもって示すように、受圧面8aに対して直角方
向に作用する)は冷媒によって決まっており、かつ、こ
の冷媒の圧力P及び温度は、冷凍機運転中不規則な変化
を繰り返している。従って栓部材8は、受圧面8aに不
規則な変化をする圧力が作用し、さらに、不規則な温度
変化をする冷媒により不規則に加熱されているため、比
較的短時間でクリープを生じ、栓部材8の一部が本体6
の外部に露出したり(“飛び出し”と称する)、さらに
は動作設計温度以下で図示Lの方向に栓部材9が飛び出
して冷媒漏れ(“気密漏れ“と称する)が発生するなど
のことが懸念されていた。
At this time, the condenser (pressure vessel) of the plug member 8
A high-temperature and high-pressure refrigerant flows in contact with a surface (hereinafter, referred to as a pressure receiving surface) 8a exposed to the space of 2 or the liquid reservoir 3 in a continuous flow state. The pressure P of this refrigerant (this pressure is
(Acting in a direction perpendicular to the pressure receiving surface 8a) is determined by the refrigerant, and the pressure P and temperature of the refrigerant repeatedly change irregularly during operation of the refrigerator. Therefore, the plug member 8 is subjected to an irregularly changing pressure on the pressure receiving surface 8a, and is further irregularly heated by the refrigerant having an irregular temperature change. A part of the stopper member 8 is the main body 6
There is a concern that it may be exposed to the outside of the container (referred to as "jumping out"), or that the plug member 9 may protrude in the direction of L in the drawing at a temperature below the operating design temperature to cause refrigerant leakage (referred to as "airtight leakage"). It had been.

【0007】また従来の冷凍装置の可溶栓は、冷凍保安
規則関係基準(経済産業省令)並びにJIS B820
4に基づいて、使用冷媒に合わせて各社各様の設計が行
われている。冷凍装置に用いられる冷媒は、世界的なオ
ゾン破壊物質への規制から、オゾン破壊係数ゼロのHF
C(Hydro,Fluoro−Carbons)系冷
媒への代替えが進んでいる。
Further, the fusible stopper of the conventional refrigerating apparatus is a refrigeration safety regulation-related standard (Ordinance of the Ministry of Economy, Trade and Industry) and JIS B820.
Based on No. 4, each company's various designs are performed according to the refrigerant used. Refrigerants used in refrigeration equipment are HF with zero ozone depletion potential due to global regulations on ozone depleting substances.
Alternatives to C (Hydro, Fluoro-Carbons) -based refrigerants are in progress.

【0008】ここで冷凍装置に用いられる可溶栓は、前
記関係基準並びにJIS B8204に従いながら、
「冷媒の使用温度より高い固相線温度を有し、かつ臨界
温度よりも低い液相線温度を有する」合金を低融点合金
として、可溶栓本体に充填することが一般的に行われて
いるが、これらは可溶栓の動作温度が75℃以下の場合
であって、これを越える場合には別の条件を満たさなけ
ればならず、信頼性及びコスト的に不利となる。
The fusible plug used in the refrigerating apparatus is based on the above-mentioned relational standard and JIS B8204,
It is common practice to fill a fusible plug body with an alloy having a solidus temperature higher than the working temperature of the refrigerant and a liquidus temperature lower than the critical temperature as a low melting point alloy. However, these are the cases where the operating temperature of the fusible plug is 75 ° C. or lower, and when it exceeds this, another condition must be satisfied, which is disadvantageous in terms of reliability and cost.

【0009】しかしR404Aの他、現在冷媒として有
望視されている冷媒として挙げられている、R125、
R143a、R407B、R410A、R410B、R
507A等は、すべて臨界温度が75℃以下であり、か
つ冷媒の使用温度が57℃以上となり得るものである。
However, in addition to R404A, R125, which is mentioned as a refrigerant that is currently regarded as a promising refrigerant,
R143a, R407B, R410A, R410B, R
All of 507A and the like have a critical temperature of 75 ° C. or lower, and a refrigerant operating temperature of 57 ° C. or higher.

【0010】冷凍装置に用いられる可溶栓は、冷媒によ
り冷凍装置の設計圧力及び冷媒の臨界温度が異なるた
め、冷媒が切り替わった場合はその動作温度を再設計す
る必要がある。なお、冷凍装置の設計圧力とは、先に述
べた関係基準に従うものであり、一定の型式に対し、冷
媒選定と同時にほぼ一意的に決定されるものである。
Since the design pressure of the refrigeration system and the critical temperature of the refrigerant of the fusible plug used in the refrigeration system differ depending on the refrigerant, it is necessary to redesign the operating temperature when the refrigerant switches. Note that the design pressure of the refrigeration system complies with the above-mentioned relational standard, and is substantially uniquely determined at the same time as the selection of the refrigerant for a certain model.

【0011】例えば次世代のHFC系冷媒として有望視
されているものの一つであるR404A(HFC12
5、HFC143及びHFC134aの混合冷媒)を選
定した空気調和用冷凍装置の場合、その設計圧力は約3
MPa(この圧力における冷媒の飽和温度は約63℃)
であり、このR404Aの臨界温度は約72℃である。
この場合使用温度と臨界温度との差は9℃しかない。
For example, R404A (HFC12) which is one of the promising next-generation HFC refrigerants
5, a mixed refrigerant of HFC143 and HFC134a), in the case of an air conditioning refrigeration system, the design pressure is about 3
MPa (saturation temperature of the refrigerant at this pressure is about 63 ° C)
And the critical temperature of this R404A is about 72 ° C.
In this case, the difference between the operating temperature and the critical temperature is only 9 ° C.

【0012】表1に冷凍保安規則関係基準(経済産業省
令)から推測したR22(HCFC系)、R404A
(HFC系)、アンモニア(自然冷媒)の推定使用温度
(圧力)と、推定臨界温度(圧力)を示す。
Table 1 shows R22 (HCFC system) and R404A estimated from the standards related to the freezing and safety regulations (Ordinance of the Ministry of Economy, Trade and Industry).
(HFC system), estimated use temperature (pressure) of ammonia (natural refrigerant), and estimated critical temperature (pressure) are shown.

【表1】 [Table 1]

【0013】冷媒の使用温度と臨界温度との差が比較的
小さい場合には、臨界温度以下で可溶栓が作動する動作
性と、冷媒の使用温度及び使用圧力下で作動しない非動
作性(耐クリープ性と称する)とを両立させることが困
難であり、これを実現するために、可溶栓に用いる低融
点合金として、13.5重量%の錫(Sn)、27重量
%の鉛(Pb)、50重量%のビスマス(Bi)、9.
5重量%のカドミウム(Cd)を含有する合金等の如
く、有毒物質であるCdやPbを含有する合金を安易に
選択する傾向があった。
When the difference between the operating temperature of the refrigerant and the critical temperature is relatively small, the operability of the fusible plug operating below the critical temperature and the inoperability of not operating under the operating temperature and operating pressure of the refrigerant ( It is difficult to satisfy both the requirement for creep resistance) and in order to achieve this, as a low melting point alloy used for the fusible plug, 13.5 wt% tin (Sn) and 27 wt% lead ( Pb), 50 wt% bismuth (Bi), 9.
There was a tendency to easily select an alloy containing toxic substances such as Cd and Pb, such as an alloy containing 5% by weight of cadmium (Cd).

【0014】しかしながら、Cdの有害性は古くから知
られており、その使用は廃棄も含めて規制されている。
また、最近Pbの有害性についても問題になってきてお
り、世界的にその使用についての規制が検討されてい
る。
However, the harmfulness of Cd has been known for a long time, and its use is regulated including disposal.
Further, the harmfulness of Pb has recently become a problem, and regulations on its use are being studied worldwide.

【0015】ところが、有害物質であるCd、Pbを含
まない合金においては、その反応形態の詳細が未だ明確
になっていないため、使用する合金系によっては、低温
溶融相が出現して、通常の冷凍装置運転条件で軟化する
ものがあり、可溶栓に適用した場合に所定温度以下で誤
作動する虞がある。
However, in the alloy containing no harmful substances Cd and Pb, the details of the reaction form have not been clarified yet. Therefore, depending on the alloy system used, a low-temperature melting phase appears, and a usual low-temperature melting phase appears. Some of them soften under the operating conditions of the refrigeration system, and when applied to a fusible plug, they may malfunction at a predetermined temperature or lower.

【0016】有害物質であるCd、Pbを含まない合金
の例として、In−Bi−Sn系合金の公知例がある。
例えば、特開平8−154093号公報には、電子部品
を実装するためのはんだ材として、被接合材の耐熱温度
以下の液相線温度を有するIn−Bi−Sn系合金が開
示されている。しかし、この合金はあくまでも電子部品
とプリント基板等との接合を考慮したものに過ぎない。
As an example of an alloy containing no harmful substances Cd and Pb, there is a known example of In-Bi-Sn alloy.
For example, Japanese Patent Application Laid-Open No. 8-154093 discloses an In-Bi-Sn alloy having a liquidus temperature not higher than the heat resistant temperature of the materials to be joined as a solder material for mounting electronic components. However, this alloy is merely one that considers the joining of electronic components and printed circuit boards and the like.

【0017】本発明者らは、In−Bi−Sn系合金を
上記可溶栓へ適用すべく検討を行い、特許出願を行っ
た。具体的には、57℃以上65℃以下の温度範囲で使
用し、75℃以下の臨界温度を有する冷媒を封入した冷
凍装置に設けられる可溶栓であって、この可溶栓は、前
記冷凍装置の内外を貫通する逃がし穴を有する本体と、
前記逃がし穴を閉塞するように前記逃がし穴に固定され
た、低融点金属とからなる栓部材とを備え、前記低融点
金属の構成が、Sn:X重量%、In:Y重量%、残部
BiからなるXSn−YIn−(100−X−Y)Bi
であり、4≦X≦10、56≦Y≦63であることを特
徴とした可溶栓である。
The present inventors have studied to apply the In-Bi-Sn alloy to the fusible plug and applied for a patent. Specifically, it is a fusible plug used in a temperature range of 57 ° C. or higher and 65 ° C. or lower and provided in a refrigerating device in which a refrigerant having a critical temperature of 75 ° C. or lower is sealed. A main body having an escape hole that penetrates the inside and outside of the device,
A plug member made of a low melting point metal fixed to the escape hole so as to close the escape hole, wherein the composition of the low melting point metal is Sn: X wt%, In: Y wt%, balance Bi XSn-YIn- (100-XY) Bi
And 4 ≦ X ≦ 10 and 56 ≦ Y ≦ 63.

【0018】[0018]

【発明が解決しようとする課題】しかし、冷媒について
は今後オゾン破壊係数ゼロなだけでなく、地球温暖化係
数もゼロであるアンモニア等自然冷媒に置き換わる可能
性が高く、これについては57℃以上65℃以下の温度
範囲で使用するとは限らず、また75℃以下の臨界温度
を有するとも限らない。
However, it is highly possible that the refrigerant will be replaced by natural refrigerants such as ammonia, which has not only zero ozone depletion potential but also zero global warming potential in the future. It is not always used in a temperature range of ℃ or below, and it does not necessarily have a critical temperature of 75 ℃ or below.

【0019】また上記発明において同一組成の低融点金
属を用いて、同一製造プロセスで可溶栓を製造しても、
低融点金属の充填プロファイルのばらつきによって凝固
組織が変化し、これによって耐クリープ性(ここでは気
密漏れ発生までの時間ではなく、飛び出し発生までの時
間を称することとする)がばらつく。これによって気密
性もばらつく可能性が高くなり、より均一な凝固組織を
有する、より均質な上記冷媒対応の可溶栓が望まれてい
た。さらにこのため低融点金属の許容組成ばらつき範囲
も非常に小さく、低融点金属材料管理を厳しくする必要
があるため、原材料がコスト高になっていることが問題
であった。
Further, in the above invention, even if the fusible stopper is manufactured by the same manufacturing process by using the low melting point metal having the same composition,
The solidification structure changes due to variations in the filling profile of the low-melting-point metal, which causes variations in creep resistance (here, the time until the occurrence of airtight leakage is referred to, not the time until the occurrence of airtight leakage). As a result, the airtightness is likely to vary, and a more homogeneous meltable stopper corresponding to the above-mentioned refrigerant having a more uniform solidified structure has been desired. For this reason, the allowable composition variation range of the low melting point metal is also very small, and it is necessary to strictly control the low melting point metal material, so that there is a problem that the cost of the raw material is high.

【0020】本発明は、上記技術的課題に鑑みてなされ
たもので、その目的とすることころは、様々な冷媒に対
応可能で、有害物質であるCdやPbを含まず、耐クリ
ープ性ばらつきの小さい、次世代冷媒に対応した可溶栓
とその製造方法及びそれを備えた冷凍装置を提供するこ
とにある。
The present invention has been made in view of the above technical problems, and its purpose is to be compatible with various refrigerants, to contain no harmful substances such as Cd and Pb, and to have variations in creep resistance. To provide a fusible plug corresponding to a next-generation refrigerant having a small size, a manufacturing method thereof, and a refrigerating apparatus including the same.

【0021】[0021]

【課題を解決するための手段】発明者らは、先の発明を
ベースに研究を重ね、BiとInとSnを主成分として
低融点金属を作製し、組成及びこれを充填する時のプロ
セスを制御することにより、様々な冷媒に対応した可溶
栓及びそれを備えた冷凍装置を提供することが可能であ
ることを見出した。
Means for Solving the Problems The inventors of the present invention have conducted extensive research based on the above-mentioned invention to produce a low melting point metal containing Bi, In, and Sn as main components, and describe the composition and the process for filling the metal. By controlling, it has been found that it is possible to provide a fusible plug corresponding to various refrigerants and a refrigeration apparatus including the fusible plug.

【0022】本発明第1の可溶栓は、冷凍装置の内外を
貫通する逃がし穴を有する本体と、前記逃がし穴を閉塞
するように前記逃がし穴に固定された低融点金属とから
なる栓部材とを備え、前記低融点金属が、前記冷凍装置
に備えている冷媒の使用温度以上の固相線温度を有し、
ビスマス(Bi)、インジウム(In)及びスズ(S
n)からなることを特徴とする可溶栓である。
The first fusible plug of the present invention is a plug member made of a main body having an escape hole penetrating the inside and outside of a refrigerating apparatus, and a low melting point metal fixed to the escape hole so as to close the escape hole. And the low melting point metal has a solidus temperature equal to or higher than the working temperature of the refrigerant provided in the refrigerating apparatus,
Bismuth (Bi), indium (In) and tin (S
n) is a fusible plug.

【0023】本発明の第2の可溶栓は、上記Inの含有
量を50重量%を越えない含有量とした組成を有するこ
とを特徴とする可溶栓である。
The second fusible plug of the present invention is a fusible plug characterized by having a composition in which the above In content is not more than 50% by weight.

【0024】本発明の第3の可溶栓は、上記Biの含有
量を40重量%以上50重量%以下とし、Inの含有量
を30重量%以上45重量%以下とし、残部をSnとし
た組成を有することを特徴とする可溶栓である。
In the third fusible plug of the present invention, the Bi content is 40% by weight or more and 50% by weight or less, the In content is 30% by weight or more and 45% by weight or less, and the balance is Sn. A fusible plug having a composition.

【0025】本発明の第4の可溶栓は、上記低融点金属
に金属微粒子を添加したことを特徴とする可溶栓であ
る。
The fourth fusible plug of the present invention is a fusible plug characterized in that fine metal particles are added to the low melting point metal.

【0026】本発明の第5の可溶栓は、上記金属微粒子
がAg、Zn、Ni、Cu、Au、Sb、Pのうち、少
なくとも1種以上の物質からなることを特徴とする可溶
栓である。
A fifth soluble plug according to the present invention is characterized in that the fine metal particles are made of at least one substance selected from Ag, Zn, Ni, Cu, Au, Sb and P. Is.

【0027】本発明の第6の可溶栓の製造方法は、冷凍
装置の内外を貫通する逃がし穴を有する本体と、前記逃
がし穴を閉塞するように前記逃がし穴に固定された低融
点金属とからなる栓部材とを備える可溶栓を製造する方
法において、前記逃がし穴に、前記低融点金属からなる
栓部材を充填する際に、充填完了時の前記低融点金属の
温度が、前記低融点金属の液相線温度以上であることを
特徴とする可溶栓の製造方法である。
A sixth method for manufacturing a fusible plug according to the present invention comprises a main body having an escape hole penetrating the inside and outside of the refrigerating apparatus, and a low melting point metal fixed to the escape hole so as to close the escape hole. In the method for producing a fusible plug comprising a plug member made of, the escape hole is filled with a plug member made of the low melting point metal, the temperature of the low melting point metal at the time of completion of filling is the low melting point. It is a method for producing a fusible stopper, characterized in that the liquidus temperature of the metal is equal to or higher than the liquidus temperature.

【0028】本発明第7の可溶栓の製造方法は、上記低
融点金属を逃がし穴に充填する際、充填完了後の冷却速
度を50℃/分以下とすることを特徴とするものであ
る。
The seventh method for producing a fusible plug of the present invention is characterized in that, when the above-mentioned low melting point metal is filled into the escape hole, the cooling rate after completion of filling is set to 50 ° C./min or less. .

【0029】本発明第8の冷凍装置は、圧縮機、凝縮
器、液溜、膨張弁、熱交換機から構成され冷媒を循環す
る冷凍装置において、液溜及び/又は凝縮器に本発明の
第1〜5の可溶栓を備えたことを特徴とする冷凍装置で
ある。
An eighth refrigeration system of the present invention is a refrigeration system comprising a compressor, a condenser, a liquid reservoir, an expansion valve, and a heat exchanger, which circulates a refrigerant. The refrigerating apparatus is provided with the fusible plugs of 5 to 5.

【0030】本発明第9の冷凍装置は、上記冷媒として
75℃以下の臨界温度を有するものを用いることを特徴
とするものである。
The ninth refrigerating apparatus of the present invention is characterized in that a refrigerant having a critical temperature of 75 ° C. or lower is used as the refrigerant.

【0031】本発明第10の冷凍装置は、上記冷媒とし
て57℃以上65℃以下で使用し得るものを用いること
を特徴とするものである。
The tenth refrigerating apparatus of the present invention is characterized in that it uses, as the refrigerant, one that can be used at 57 ° C. or higher and 65 ° C. or lower.

【0032】本発明の第11の冷凍装置は、上記冷媒と
して、R125、R143a、R404A、R407
B、R410A、R410B、R507Aの少なくとも
一つを用いたことを特徴とするものである。
An eleventh refrigerating apparatus of the present invention uses R125, R143a, R404A, R407 as the refrigerant.
At least one of B, R410A, R410B, and R507A is used.

【0033】[0033]

【発明の実施の形態】以下、本発明の実施の形態を、表
を参照しながら説明するが、本発明はこれら実施の形態
に限定されるものではない。以下の実施例において、動
作性及び耐クリ−プ性の試験は、以下の方法で行なっ
た。 (試験用可溶栓の調製)各可溶栓は、動作性及び耐クリ
−プ性の試験のため、可溶栓7の圧力容器側8a(図3
参照)に、圧力計及び減圧弁を備えた窒素ボンベを配管
により接続し、この圧力計の目盛りが3MPaの圧力を
指したところで前記配管を封じ切り、栓部材8にこの圧
力(3MPa)が作用する状態とした。 (温度制御)温度制御は、水温可変の水槽を用いた。ま
た、水温可変の水槽は、幅約300mm、長さ約500
mm、高さ約25mmの大きさであって、その内部の水
温度を任意に可変としたものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to tables, but the present invention is not limited to these embodiments. In the following examples, operability and creep resistance were tested by the following methods. (Preparation of Soluble Plug for Test) Each fusible plug was subjected to a test of operability and creep resistance so that the fusible plug 7 had a pressure vessel side 8a (see FIG. 3).
To a nitrogen cylinder equipped with a pressure gauge and a pressure reducing valve, and when the scale of the pressure gauge indicates a pressure of 3 MPa, the pipe is sealed off, and this pressure (3 MPa) acts on the plug member 8. It was in a state to do. (Temperature Control) For temperature control, a water tank with variable water temperature was used. In addition, the water tank with variable water temperature has a width of about 300 mm and a length of about 500.
It has a size of mm and a height of about 25 mm, and the water temperature inside thereof is arbitrarily variable.

【0034】(動作性の試験)動作性の試験は、上記の
ように圧力をかけた可溶栓を所定水温に保った前記水槽
に1分間漬け、気泡が観察されれば動作したものと判断
し、気泡が観察されなければ動作しなかったと判断し
た。そして、動作設計温度以下の温度で動作したときは
合格の印として○、動作しなかったときは不合格の印と
して×とした。
(Operational test) In the operational test, it was determined that the fusible stopper, which had been pressurized as described above, was immersed in the water tank kept at a predetermined water temperature for 1 minute, and if bubbles were observed, the operation was performed. However, if no bubbles were observed, it was determined that the operation did not occur. Then, when it operated at a temperature equal to or lower than the operation design temperature, it was marked as a pass, and when it did not operate, it was marked as a fail.

【0035】(耐クリープ性の試験)また、耐クリープ
性の試験は、上記の圧力をかけた可溶栓を所定水温に保
った水槽に所定時間漬け、気泡若しくは低融点金属の飛
び出しが観察されれば動作したものと判断し、観察され
なければ動作しなかったと判断した。そして目標温度で
動作しなければ合格とし、動作したときは不合格とし
た。試験時間は最高2000時間としたが、500時間
をクリアしたものを合格とした。各組成10個ずつ試験
を行い、全て合格の場合のみ○とした。
(Creep resistance test) Further, in the creep resistance test, the fusible plug under the above pressure was immersed in a water tank kept at a predetermined water temperature for a predetermined time, and bubbles or low-melting metal protrusions were observed. If so, it was judged that it worked, and if it was not observed, it was judged that it did not work. If it did not operate at the target temperature, it was judged to be acceptable, and if it operated, it was judged to be unacceptable. The test time was set to 2000 hours at maximum, but the test which passed 500 hours was regarded as passing. Each composition was tested by 10 pieces, and was marked as “◯” only when all the compositions passed.

【0036】なお、試験は、可溶栓を複数個ずつ用意
し、1つの可溶栓につき上記動作性又は耐クリープ性の
試験をいずれか1回限り行い、窒素ガス圧力が栓部材8
に繰り返し作用することによる栓部材8の強度への影響
を回避した。
In the test, a plurality of fusible plugs were prepared, and the above-mentioned operability or creep resistance test was conducted only once for each fusible plug.
The influence on the strength of the plug member 8 due to the repeated action on the above was avoided.

【0037】(固相線・液相線温度)示差熱分析により
得られた曲線において、昇温時に得られた最初のピーク
の最低温側の端部の温度を固相線温度とし、冷却時に得
られた最初のピークの最高温側の端部の温度を液相線温
度とした。
(Solid-line / Liquid-line temperature) In the curve obtained by the differential thermal analysis, the temperature of the lowest temperature side end of the first peak obtained at the time of temperature rise is taken as the solidus temperature, and at the time of cooling The temperature of the highest temperature side end of the obtained first peak was defined as the liquidus temperature.

【0038】実施の形態1.(実施例1〜3) (可溶栓の製造)可溶栓は、250℃まで加熱した銅製
可溶栓本体6を石膏ボードの上に置き、2mmφ×30
0mmの表2に示す組成、固相線温度、液相線温度の低
融点金属棒の先端にフラックスを塗布し、可溶栓本体内
壁に低融点金属棒を接触させることにより充填した。得
られた可溶栓の動作性及び耐クリ−プ性を測定した。動
作性試験の温度は71℃、耐クリ−プ性は63℃で評価
した。その結果、表2に示すように動作性及び耐クリー
プ性ともに合格することを確認した。
Embodiment 1. (Examples 1 to 3) (Production of fusible plug) The fusible plug was prepared by placing the copper fusible plug body 6 heated to 250 ° C. on a gypsum board and 2 mmφ × 30.
Flux was applied to the tip of a low-melting metal rod having a composition, solidus temperature, and liquidus temperature of 0 mm shown in Table 2, and the inner wall of the fusible stopper body was brought into contact with the low-melting metal rod to fill it. The operability and creep resistance of the obtained fusible plug were measured. The operability test temperature was 71 ° C, and the creep resistance was 63 ° C. As a result, as shown in Table 2, it was confirmed that both the operability and the creep resistance passed.

【0039】[0039]

【表2】 [Table 2]

【0040】この他の、HCFC系、HFC系、自然冷
媒の推定使用温度(圧力)、推定臨界温度についても同
様に、Bi、In、Sn比を調整して検討を行ったが、
2O(水)とCO2(二酸化炭素)以外の全ての冷媒に
対して、Bi、In、Snの有効量を、冷媒使用温度以
上固相線温度を有する有効量とすることが可能であり、
これを行うことによって動作性、耐クリープ性を満足し
得る合金が設計できることを確認した。
Other than this, the estimated use temperature (pressure) and estimated critical temperature of the HCFC system, the HFC system, and the natural refrigerant were similarly examined by adjusting the Bi, In, and Sn ratios.
For all refrigerants other than H 2 O (water) and CO 2 (carbon dioxide), the effective amount of Bi, In, and Sn can be set to an effective amount having a solidus temperature equal to or higher than the refrigerant use temperature. Yes,
By doing this, it was confirmed that an alloy that satisfies the operability and creep resistance could be designed.

【0041】また、同様の融点、耐クリープ性を有する
可能性がある合金として様々な金属を混ぜて実験を行っ
たが、有害なPb、Cdを含有しない組成は見出せなか
った。特に本発明合金は、Pb、Cdよりも低有害性で
あり、かつ57℃近傍の低融点を実現し、銅合金からな
ることの多い可溶栓本体6に対して十分な濡れ性を示
し、さらには最も重要である耐クリープ性を有するもの
である。以上によって、請求項1に記載の本発明合金の
有意性が明確となった。
Experiments were carried out by mixing various metals as an alloy having the same melting point and creep resistance, but no composition containing no harmful Pb or Cd was found. In particular, the alloy of the present invention is less harmful than Pb and Cd, achieves a low melting point near 57 ° C., and exhibits sufficient wettability to the fusible plug body 6 which is often made of a copper alloy, Furthermore, it has the most important creep resistance. From the above, the significance of the alloy of the present invention according to claim 1 has been clarified.

【0042】実施の形態2.(実施例4〜7) 図2、3に示す構造の可溶栓7であって、栓部材8を構
成するBi−In−Sn系低融点金属の組成比が表3に
示すものである可溶栓を実施例1と同様の方法で製造し
た。また、固相線温度、液相線温度、動作性及び耐クリ
−プ性を測定し、その結果を表3に示す。動作性の測定
は、R404Aの臨界温度にほぼ等しい71℃で行なっ
た。耐クリープ性の測定は、R404Aの設計圧力(約
3MPa)下の冷媒温度にほぼ等しい63℃で行なっ
た。また耐クリープ試験については各組成10個ずつ試
験を行い、全て合格の場合のみ○とした。また、最短寿
命と最長寿命との耐クリープ時間差を示した。
Embodiment 2. (Examples 4 to 7) In the fusible plug 7 having the structure shown in FIGS. 2 and 3, the composition ratio of the Bi—In—Sn-based low melting point metal that constitutes the plug member 8 may be as shown in Table 3. The melt stopper was manufactured in the same manner as in Example 1. The solidus temperature, liquidus temperature, operability and creep resistance were measured, and the results are shown in Table 3. The operability was measured at 71 ° C., which is approximately equal to the critical temperature of R404A. The creep resistance was measured at 63 ° C., which is almost equal to the refrigerant temperature under the design pressure of R404A (about 3 MPa). As for the creep resistance test, 10 pieces of each composition were tested, and when all passed, they were marked with "◯". Also, the difference in creep resistance between the shortest life and the longest life is shown.

【0043】[0043]

【表3】 [Table 3]

【0044】実施例4において、低融点金属の充填完了
時の温度を68℃とした場合と130℃との場合の耐ク
リープ性を比較したところ、充填完了時の温度が68℃
の場合は、耐クリープ性にばらつきがあった。
In Example 4, the creep resistance when the temperature at the time of completion of filling the low melting point metal was set to 68 ° C. was compared with that at 130 ° C. As a result, the temperature at the time of completion of filling was 68 ° C.
In the case of, there was variation in creep resistance.

【0045】実施例4は、R404Aを想定した場合、
固相線温度が冷媒使用温度である63℃よりも高く、液
相線温度が臨界温度71℃よりも低い。比較例1は、R
404Aの液相線温度は臨界温度以下であるが、固相線
温度がR404Aの使用温度よりも低い。実施例5〜7
及び比較例2は、Inが50重量%以下のもので、実施
例5〜7は、63℃よりも高い固相線温度及び71℃以
下の液相線温度を有する。表3に示した通り、実施例4
のInが50重量%より多く含有した本発明の可溶栓に
おいては、動作性、耐クリープ性ともに合格している
が、500時間を越えた時間における栓部材8の飛び出
し状況に差が1500時間も生じており、実施例5のI
n有効量が50重量%以下の本発明の可溶栓の500時
間と比較して非常にバラツキが大きいことがわかる。
In Example 4, assuming R404A,
The solidus temperature is higher than the refrigerant use temperature of 63 ° C, and the liquidus temperature is lower than the critical temperature of 71 ° C. In Comparative Example 1, R
The liquidus temperature of 404A is below the critical temperature, but the solidus temperature is lower than the working temperature of R404A. Examples 5-7
And Comparative Example 2 has In of 50 wt% or less, and Examples 5 to 7 have a solidus temperature higher than 63 ° C. and a liquidus temperature of 71 ° C. or less. As shown in Table 3, Example 4
In the fusible stopper of the present invention containing more than 50% by weight of In, both the operability and the creep resistance are passed, but there is a difference of 1500 hours in the pop-out condition of the stopper member 8 when the time exceeds 500 hours. Has also occurred, and I of Example 5
It can be seen that the variability is very large in comparison with 500 hours of the fusible plug of the present invention having an effective n amount of 50% by weight or less.

【0046】一方、実施例5〜7の結果から、Inが5
0重量%以下の組成域においては、動作性及び耐クリー
プ性をともに満たす組成範囲が、Inを50重量%より
多く含有している組成域よりも大きいことがわかる。こ
れはIn含有量を50重量%以下にすることにより、今
回の試作プロセスにおいては可溶栓充填後の低融点金属
の組織がより均質であり、これによって耐クリープ性に
優れたものと組織観察から確認した。従って、In含有
量を50重量%以下にすることにより許容組成ばらつき
範囲の広い、均質性に優れ、耐クリープ性に優れる可溶
栓が得られることが分かる。
On the other hand, from the results of Examples 5 to 7, In was 5
It can be seen that in the composition range of 0 wt% or less, the composition range satisfying both the operability and the creep resistance is larger than the composition range containing In in an amount of more than 50 wt%. This is because by setting the In content to 50% by weight or less, the structure of the low melting point metal after filling the fusible plug was more homogeneous in the trial manufacturing process of this time, and the structure was observed to be excellent in creep resistance. Confirmed from. Therefore, it is understood that when the In content is 50% by weight or less, a fusible plug having a wide allowable composition variation range, excellent homogeneity, and excellent creep resistance can be obtained.

【0047】また比較例2は、固相線温度がR404A
の使用温度63℃以下で、液相線温度がR404Aの臨
界温度71℃以上のものであるが、3MPaの圧力下で
あるため、動作性を満足した。しかし、動作温度ばらつ
きが大きいため、低融点金属の液相線温度は、使用冷媒
の臨界温度以下であることが望ましい。さらに現在使用
されている冷媒が、使用温度が57℃〜63℃、かつ臨
界温度が75℃以下のものが多いこと、前記関係基準並
びにJIS B8204に従うと、「75℃よりも高い
動作温度の場合には別の条件を満たさなければならず、
信頼性及びコスト的に不利になる」ことから 、液相線
温度は75℃以下であることが望ましい。これらのこと
と表2に示した結果から、本開発可溶栓として、Biの
含有量を40重量%以上50重量%以下、Inの含有量
を35重量%以上45重量%以下とすることにより、さ
らに高信頼で低コストな可溶栓を提供できることがわか
る。
In Comparative Example 2, the solidus temperature is R404A.
Although the liquidus temperature was less than the critical temperature of R404A of 71 ° C or higher at the operating temperature of 63 ° C or lower, the operability was satisfied because the pressure was 3 MPa. However, since the operating temperature varies widely, it is desirable that the liquidus temperature of the low melting point metal be equal to or lower than the critical temperature of the refrigerant used. Further, most of the refrigerants currently used have operating temperatures of 57 ° C to 63 ° C and critical temperatures of 75 ° C or less. According to the above-mentioned relational criteria and JIS B8204, "when operating temperature is higher than 75 ° C. Must meet another condition,
The liquidus temperature is preferably 75 ° C. or lower because it is disadvantageous in terms of reliability and cost. From these facts and the results shown in Table 2, the content of Bi of 40 wt% or more and 50 wt% or less and In content of 35 wt% or more and 45 wt% or less of It can be seen that a more reliable and low cost fusible plug can be provided.

【0048】以上より、上記開発可溶栓を備えた冷凍装
置は、有害性の低い、高信頼で、安全弁を備えるよりも
低コストなものとなる。その設置位置は、圧縮機又は液
溜のいずれか1カ所以上であればよい。本装置は冷媒を
75℃以下とすることにより高信頼、低コストとなり、
かつ冷媒使用温度を57℃以上65℃以下にすることに
よりさらに高信頼となり、規格化されており性能が把握
されている、R125、R143a、R404A、R4
07B、R410A、R410B、R507Aの少なく
とも一つから選択された冷媒を用いることにより、一層
の高信頼化が可能となる。
As described above, the refrigerating apparatus provided with the developed fusible plug is less harmful, highly reliable, and lower in cost than the safety valve provided. The installation position may be at least one of the compressor and the liquid reservoir. This device has high reliability and low cost by keeping the refrigerant temperature below 75 ° C.
In addition, R125, R143a, R404A, R4, which have higher reliability and have been standardized and whose performance has been ascertained by setting the refrigerant use temperature to 57 ° C. or higher and 65 ° C. or lower,
By using a refrigerant selected from at least one of 07B, R410A, R410B, and R507A, higher reliability can be achieved.

【0049】実施の形態3.(実施例8) 上記実施例5の42Bi−42In−16Sn(重量
%)の低融点金属を用いた可溶栓作製時に、20〜40
μmのNi粉末を0.02重量%添加したものと無添加
の可溶栓サンプルを各10個ずつ作製して、上記同様の
動作性、耐クリープ性試験を行った。その結果、各可溶
栓サンプルの動作性は合格であった。また、全サンプル
について耐クリープ性は合格であったが、Ni添加サン
プルの方が優れていた。また、Niの代わりに、Ag、
Zn、Cu、Au、Sb、Pの各粉末を使用して、動作
性、耐クリープ性試験を行った。その結果、同様の効果
を確認した。また、粉末を2種以上混ぜて添加しても同
様の結果が得られた。
Embodiment 3. (Example 8) 20-40 at the time of producing the fusible plug using the low melting point metal of 42Bi-42In-16Sn (wt%) of the above-mentioned Example 5.
Ten solubilized stopper samples containing 0.02% by weight of Ni powder of 0.02% and no additive were prepared and subjected to the same operability and creep resistance test as described above. As a result, the operability of each soluble stopper sample was acceptable. The creep resistance was acceptable for all the samples, but the Ni-added sample was superior. Also, instead of Ni, Ag,
Using each powder of Zn, Cu, Au, Sb, and P, operability and creep resistance test were conducted. As a result, the same effect was confirmed. Similar results were obtained even if two or more kinds of powders were mixed and added.

【0050】実施の形態4.(実施例9) 上記実施例7の、45Bi−40In−15Sn(重量
%)の低融点金属を用いた可溶栓作製時に充填完了温度
を、液相線温度以下の69℃であったものと、液相線温
度以上である100℃で各10個ずつ作製し、耐クリー
プ性について評価を行った。その結果、液相線温度以下
で作ったサンプルは、全て液相線温度以上で作ったサン
プルよりも短寿命であった。
Fourth Embodiment (Example 9) It was assumed that the filling completion temperature was 69 ° C, which was lower than the liquidus temperature, when the fusible plug was manufactured using the low melting point metal of 45Bi-40In-15Sn (wt%) in the above Example 7. Each of 10 pieces was prepared at 100 ° C., which is higher than the liquidus temperature, and the creep resistance was evaluated. As a result, all of the samples prepared below the liquidus temperature had a shorter life than the samples prepared above the liquidus temperature.

【0051】実施の形態5.(実施例10) 表4は、実施例4の可溶栓である34Bi−61In−
5Sn(重量%;表3中実施例4参照)を可溶栓本体に
充填する際、最高冷却速度を変えて作製し、上記同様の
耐クリープ性試験を行った結果を示したものである。冷
却速度は、以下の3通りについて実験を行った。なお、
冷却速度は可溶栓本体に穴をあけ、K熱電対を挿入後銀
ペーストで埋め込み、十分乾燥したものを用いて連続温
度測定したチャートから算出した。可溶栓本体の加熱
は、ホットプレートで本体の温度が250℃になる温度
に調整したものを用いた。 A:低融点金属を充填後水冷(約300℃/分) B:低融点金属を充填後空冷(約50℃/分) C:低融点金属を充填後、電源を切ったホットプレート
上で冷却(約0.3℃/分)
Embodiment 5. (Example 10) Table 4 shows 34Bi-61In- which is the fusible plug of Example 4.
5 shows the results of the same creep resistance test as that described above, in which 5Sn (% by weight; see Example 4 in Table 3) was filled in the fusible plug body at different maximum cooling rates. The cooling rate was tested in the following three ways. In addition,
The cooling rate was calculated from a chart in which a hole was formed in the body of the fusible plug, a K thermocouple was inserted, embedded with a silver paste, and sufficiently dried, and the temperature was continuously measured using a fully dried product. The fusible plug body was heated with a hot plate adjusted to a temperature of 250 ° C. A: Water cooling after filling low melting point metal (about 300 ° C / min) B: Air cooling after filling low melting point metal (about 50 ° C / min) C: Cooling on hot plate with power turned off after filling low melting point metal (Approx. 0.3 ° C / min)

【0052】[0052]

【表4】 その結果、耐クリープ性は、低融点金属充填時の最大冷
却速度が小さいほど優れる傾向を示す。特に50℃/分
以下で、顕著に効果を示すことがわかる。
[Table 4] As a result, the creep resistance tends to be superior as the maximum cooling rate at the time of filling the low melting point metal is smaller. It can be seen that particularly at 50 ° C./min or less, a remarkable effect is exhibited.

【0053】実施の形態6.(実施例11、12) (実施例11)圧縮機、凝縮器、膨張弁、熱交換器、液
溜を有する一般的な冷凍装置の液溜に実施例2の可溶栓
を設置し、冷媒としてR404Aを使用して、63℃で
運転した。可溶栓に異常なく5000時間の運転が可能
であった。
Sixth Embodiment (Embodiments 11 and 12) (Embodiment 11) The fusible plug of Embodiment 2 is installed in a liquid reservoir of a general refrigerating machine having a compressor, a condenser, an expansion valve, a heat exchanger, and a liquid reservoir, and a refrigerant is used. Was operated at 63 ° C. using R404A as It was possible to operate for 5000 hours without any abnormality in the fusible plug.

【0054】(実施例12)実施例11と同じ冷凍装置
の液溜に実施例1の可溶栓を設置し、冷媒としてR22
を使用して、64℃で運転した。可溶栓に異常なく50
00時間の運転が可能であった。
(Embodiment 12) The fusible plug of Embodiment 1 is installed in the liquid reservoir of the same refrigerating machine as in Embodiment 11, and R22 is used as a refrigerant.
Operated at 64 ° C. No problem with the soluble plug 50
It was possible to operate for 00 hours.

【0055】[0055]

【発明の効果】請求項1の発明は、冷凍装置の内外を貫
通する逃がし穴を有する本体と、前記逃がし穴を閉塞す
るように前記逃がし穴に固定された、低融点金属とから
なる栓部材とを備え、前記低融点金属の主たる構成が、
ビスマス(Bi)と、インジウム(In)、スズ(S
n)であり、その有効量が冷凍装置に備えている冷媒の
使用温度以上の固相線温度を有する有効量とされている
ことを特徴とする可溶栓であるので、有害物質であるC
dやPbを含まず、信頼性が高く、安全弁より低コスト
な、次世代冷媒に対応した可溶栓が提供される。
According to the first aspect of the present invention, there is provided a plug member composed of a main body having an escape hole penetrating the inside and outside of the refrigeration system, and a low melting point metal fixed to the escape hole so as to close the escape hole. And a main constitution of the low melting point metal,
Bismuth (Bi), indium (In), tin (S
n), which is a fusible stopper characterized in that its effective amount is an effective amount having a solidus temperature which is equal to or higher than the working temperature of the refrigerant provided in the refrigerating apparatus, and is therefore a harmful substance C
Provided is a fusible plug that does not contain d or Pb, is highly reliable, and is lower in cost than a safety valve and that is compatible with next-generation refrigerants.

【0056】請求項2の発明は、上記Inの含有量を5
0重量%以下とした組成を有することを特徴とする請求
項1に記載の可溶栓であるので、耐クリープ性のバラツ
キが小さくなり、信頼性が一層高くなる。また、許容組
成バラツキ範囲を大きくすることや、高価なInの含有
量を減らすことができるので、一層低コストな可溶栓が
提供される。
According to a second aspect of the invention, the In content is 5
Since the fusible plug according to claim 1 has a composition of 0% by weight or less, variations in creep resistance are reduced and reliability is further enhanced. Further, since the allowable composition variation range can be widened and the expensive In content can be reduced, a fusible stopper at a lower cost can be provided.

【0057】請求項3の発明は、上記Biの含有量を4
0重量%以上50重量%以下とし、Inの含有量を30
重量%以上45重量%以下とし、残部Snとすることを
特徴とする請求項1又は2いずれかに記載の可溶栓であ
るので、特に75℃以下で動作させることができるため
に、別途追加試験を行う必要が無く、一層高信頼、低コ
ストな可溶栓が提供できる。
According to the invention of claim 3, the content of Bi is 4
The content of In should be 30% or more and 50% by weight or less.
The soluble plug according to claim 1 or 2, wherein the content is at least 45% by weight and at most 45% by weight, and the balance is Sn. Therefore, since it can be operated particularly at 75 ° C or less, it is added separately. It is not necessary to carry out a test, and it is possible to provide a highly reliable and low cost fusible plug.

【0058】請求項4の発明は、金属微粒子を添加した
ことを特徴とする請求項1〜3のいずれかに記載の可溶
栓であるので、より一層高信頼な可溶栓を提供できる。
Since the invention of claim 4 is the fusible plug according to any one of claims 1 to 3, which is characterized in that metal fine particles are added, a more reliable fusible plug can be provided.

【0059】請求項5の発明は上記金属微粒子が、銀
(Ag)、亜鉛(Zn)、ニッケル(Ni)、銅(C
u)、金(Au)、アンチモン(Sb)、リン(P)の
うち、少なくとも1種以上の物質からなることを特徴と
する請求項4に記載の可溶栓であるので、信頼性が一層
高まる。
According to a fifth aspect of the invention, the metal fine particles are silver (Ag), zinc (Zn), nickel (Ni), copper (C).
u), gold (Au), antimony (Sb), phosphorus (P), the fusible plug according to claim 4, which is made of at least one or more kinds of substances, so that the reliability is further improved. Increase.

【0060】請求項6の発明は、上記低融点金属を逃が
し穴に充填する際、充填完了時の低融点金属の温度が、
低融点金属の液相線温度以上であることを特徴とする可
溶栓の製造方法であるので、信頼性が向上した可溶栓を
提供することができる。
According to a sixth aspect of the present invention, when the escape metal is filled with the low melting point metal, the temperature of the low melting point metal at the time of completion of filling is
Since it is a method for producing a fusible plug, which is characterized by being at or above the liquidus temperature of the low melting point metal, it is possible to provide a fusible plug with improved reliability.

【0061】請求項7の発明は、上記低融点金属を逃が
し穴に充填する際、充填完了後の冷却速度を50℃/分
以下とすることを特徴とする請求項6に記載の可溶栓の
製造方法であるので、信頼性が一層高まる可溶栓を提供
することができる。
The invention according to claim 7 is characterized in that, when the escape hole is filled with the low melting point metal, the cooling rate after completion of filling is 50 ° C./minute or less. Since it is the manufacturing method described above, it is possible to provide a fusible stopper with further improved reliability.

【0062】請求項8の発明は、圧縮機、凝縮器、液
溜、膨張弁、熱交換機から構成され冷媒を循環する冷凍
装置において、液溜及び/又は凝縮器に請求項1〜5い
ずれか一項に記載の可溶栓を備えたことを特徴とする冷
凍装置なので、Cd、Pbを取り除いた、環境に優し
い、信頼性の高い冷凍装置を供給することができる。
According to the eighth aspect of the present invention, in a refrigerating apparatus comprising a compressor, a condenser, a liquid reservoir, an expansion valve, and a heat exchanger for circulating a refrigerant, the liquid reservoir and / or the condenser is any one of the first to fifth aspects. Since the refrigerating apparatus is provided with the fusible plug according to the item (1), it is possible to supply an environment-friendly and highly reliable refrigerating apparatus from which Cd and Pb have been removed.

【0063】請求項9の発明は、上記冷媒が75℃以下
の臨界温度を有することを特徴とする請求項8に記載の
冷凍装置なので、信頼性が高まる。
According to a ninth aspect of the present invention, the refrigerant has a critical temperature of 75 ° C. or lower.

【0064】請求項10の発明は、上記冷媒の使用温度
が57℃以上65℃以下であることを特徴とする請求項
8又は9に記載の冷凍装置なので、一層信頼性が高ま
る。
According to a tenth aspect of the present invention, the refrigerant is used at a temperature of 57 ° C. or higher and 65 ° C. or lower.

【0065】請求項11の発明は、上記冷媒が、R12
5、R143a、R404A、R407B、R410
A、R410B及びR507Aからなる群から選ばれる
少なくとも一種であることを特徴とする請求項8〜10
いずれかに記載の冷凍装置なので、信頼性がより一層高
まる。
In the invention of claim 11, the refrigerant is R12.
5, R143a, R404A, R407B, R410
It is at least 1 sort (s) selected from the group which consists of A, R410B, and R507A, It is characterized by the above-mentioned.
Since it is the refrigerating apparatus according to any one, the reliability is further enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 冷凍装置の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of a refrigeration system.

【図2】 一般的な可溶栓の斜視図的構造説明図であ
る。
FIG. 2 is a perspective view of the structure of a general fusible plug.

【図3】 図2に記載した従来の可溶栓についての断面
図である。
FIG. 3 is a cross-sectional view of the conventional fusible plug shown in FIG.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 凝縮器、3 液溜、4 膨張弁、5
熱交換器、6 可溶栓本体、7 可溶栓、8 栓部材。
1 compressor, 2 condenser, 3 liquid reservoir, 4 expansion valve, 5
Heat exchanger, 6 fusible plug body, 7 fusible plug, 8 plug member.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅村 敏夫 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 生越 安陽 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 高谷 士郎 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 3H061 AA07 BB13 DD01 EA32 FA16 GG20    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshio Umemura             2-3 2-3 Marunouchi, Chiyoda-ku, Tokyo             Inside Ryo Electric Co., Ltd. (72) Inventor Yakuyo Ango             2-3 2-3 Marunouchi, Chiyoda-ku, Tokyo             Inside Ryo Electric Co., Ltd. (72) Inventor Shiro Takatani             2-3 2-3 Marunouchi, Chiyoda-ku, Tokyo             Inside Ryo Electric Co., Ltd. F term (reference) 3H061 AA07 BB13 DD01 EA32 FA16                       GG20

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 冷凍装置の内外を貫通する逃がし穴を有
する本体と、前記逃がし穴を閉塞するように前記逃がし
穴に固定された低融点金属とからなる栓部材とを備え、
前記低融点金属が、前記冷凍装置に備えている冷媒の使
用温度以上の固相線温度を有し、ビスマス(Bi)、イ
ンジウム(In)及びスズ(Sn)からなることを特徴
とする可溶栓。
1. A refrigeration apparatus comprising: a main body having an escape hole penetrating the inside and outside of the refrigeration apparatus; and a plug member made of a low melting point metal fixed to the escape hole so as to close the escape hole.
The low melting point metal has a solidus temperature equal to or higher than a working temperature of a refrigerant included in the refrigerating apparatus and is composed of bismuth (Bi), indium (In) and tin (Sn), which is characterized by being soluble. plug.
【請求項2】 上記低融点金属のインジウム(In)含
有量が、50重量%以下であることを特徴とする請求項
1に記載の可溶栓。
2. The fusible plug according to claim 1, wherein the low melting point metal has an indium (In) content of 50% by weight or less.
【請求項3】 上記低融点金属のビスマス(Bi)の含
有量が40重量%以上50重量%以下で、インジウム
(In)の含有量が30重量%以上45重量%以下で、
残部がスズ(Sn)であることを特徴とする請求項1又
は2に記載の可溶栓。
3. The low-melting-point metal bismuth (Bi) content is 40% by weight or more and 50% by weight or less, and the indium (In) content is 30% by weight or more and 45% by weight or less,
The soluble plug according to claim 1 or 2, wherein the balance is tin (Sn).
【請求項4】 上記低融点金属に、金属微粒子を添加し
たことを特徴とする請求項1〜3いずれか一項に記載の
可溶栓。
4. The fusible plug according to claim 1, wherein fine metal particles are added to the low melting point metal.
【請求項5】 上記金属微粒子が、銀(Ag)、亜鉛
(Zn)、ニッケル(Ni)、銅(Cu)、金(A
u)、アンチモン(Sb)及びリン(P)からなる群よ
り選ばれる少なくとも一種の物質からなることを特徴と
する請求項4に記載の可溶栓。
5. The metal fine particles are silver (Ag), zinc (Zn), nickel (Ni), copper (Cu), gold (A).
The fusible stopper according to claim 4, which is made of at least one substance selected from the group consisting of u), antimony (Sb), and phosphorus (P).
【請求項6】 冷凍装置の内外を貫通する逃がし穴を有
する本体と、前記逃がし穴を閉塞するように前記逃がし
穴に固定された低融点金属とからなる栓部材とを備える
可溶栓を製造する方法において、前記逃がし穴に、前記
低融点金属からなる栓部材を充填する際に、充填完了時
の前記低融点金属の温度が、前記低融点金属の液相線温
度以上であることを特徴とする可溶栓の製造方法。
6. A fusible plug, comprising: a main body having an escape hole penetrating the inside and outside of a refrigeration system; and a plug member made of a low melting point metal fixed to the escape hole so as to close the escape hole. In the method, the temperature of the low melting point metal at the time of completion of filling when filling the plug member made of the low melting point metal into the escape hole is equal to or higher than the liquidus temperature of the low melting point metal. And a method for producing a soluble stopper.
【請求項7】 上記低融点金属を逃がし穴に充填する際
に、充填完了後の冷却速度を50℃/分以下とすること
を特徴とする請求項6に記載の可溶栓の製造方法。
7. The method for producing a fusible plug according to claim 6, wherein a cooling rate after completion of the filling is set to 50 ° C./minute or less when the escape hole is filled with the low melting point metal.
【請求項8】 圧縮機、凝縮器、液溜、膨張弁、熱交換
機から構成され冷媒を循環する冷凍装置において、液溜
及び/又は凝縮器に請求項1〜5いずれか一項に記載の
可溶栓を備えたことを特徴とする冷凍装置。
8. A refrigerating apparatus comprising a compressor, a condenser, a liquid reservoir, an expansion valve, and a heat exchanger, which circulates a refrigerant, wherein the liquid reservoir and / or the condenser is one of claims 1 to 5. A refrigerating apparatus comprising a fusible plug.
【請求項9】 上記冷媒が、75℃以下の臨界温度を有
することを特徴とする請求項8に記載の冷凍装置。
9. The refrigerating apparatus according to claim 8, wherein the refrigerant has a critical temperature of 75 ° C. or lower.
【請求項10】 上記冷媒の使用温度が、57℃以上6
5℃以下であることを特徴とする請求項8又は9に記載
の冷凍装置。
10. The operating temperature of the refrigerant is 57 ° C. or higher and 6
It is 5 degrees C or less, The freezer of Claim 8 or 9 characterized by the above-mentioned.
【請求項11】 上記冷媒が、R125、R143a、
R404A、R407B、R410A、R410B及び
R507Aからなる群から選ばれる少なくとも一種であ
ることを特徴とする請求項8〜10のいずれか一項に記
載の冷凍装置。
11. The refrigerant is R125, R143a,
The refrigerating apparatus according to claim 8, wherein the refrigerating apparatus is at least one selected from the group consisting of R404A, R407B, R410A, R410B, and R507A.
JP2001330605A 2001-10-29 2001-10-29 Soluble plug, method for producing the same, and refrigeration apparatus provided with the same Expired - Lifetime JP3681060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001330605A JP3681060B2 (en) 2001-10-29 2001-10-29 Soluble plug, method for producing the same, and refrigeration apparatus provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001330605A JP3681060B2 (en) 2001-10-29 2001-10-29 Soluble plug, method for producing the same, and refrigeration apparatus provided with the same

Publications (2)

Publication Number Publication Date
JP2003130240A true JP2003130240A (en) 2003-05-08
JP3681060B2 JP3681060B2 (en) 2005-08-10

Family

ID=19146312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001330605A Expired - Lifetime JP3681060B2 (en) 2001-10-29 2001-10-29 Soluble plug, method for producing the same, and refrigeration apparatus provided with the same

Country Status (1)

Country Link
JP (1) JP3681060B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057029A1 (en) * 2004-11-24 2006-06-01 Senju Metal Industry Co., Ltd Alloy for fusible plug and fusible plug
WO2006112015A1 (en) * 2005-04-14 2006-10-26 Senju Metal Industry Co., Ltd Alloy for fusible plug and fusible plug
JP2008298162A (en) * 2007-05-31 2008-12-11 Canon Inc Microprocessing one-shot valve and its manufacturing method
JP2010002137A (en) * 2008-06-20 2010-01-07 Daikin Ind Ltd Air conditioner
JP2010117065A (en) * 2008-11-12 2010-05-27 Mitsubishi Electric Corp Method of manufacturing soluble plug
JP2011202874A (en) * 2010-03-25 2011-10-13 Mitsubishi Electric Corp Alloy for fusible plug, fusible plug using the same, and refrigeration device
KR101285165B1 (en) 2005-08-02 2013-07-11 센주긴조쿠고교 가부시키가이샤 Sprinkler head
US20220243872A1 (en) * 2021-01-29 2022-08-04 Nippon Piston Ring Co., Ltd. Fusible plug

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108759072B (en) * 2018-04-13 2020-09-29 魏爱国 Temperature-limiting explosion-proof bolt and water storage type electric water heater with same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080131309A1 (en) * 2004-11-24 2008-06-05 Rikiya Kato Alloy For A Fusible Plug And A Fusible Plug
WO2006057029A1 (en) * 2004-11-24 2006-06-01 Senju Metal Industry Co., Ltd Alloy for fusible plug and fusible plug
KR100957736B1 (en) 2004-11-24 2010-05-12 센주긴조쿠고교 가부시키가이샤 Alloy for fusible plug and fusible plug
US9175782B2 (en) 2004-11-24 2015-11-03 Senju Metal Industry Co., Ltd. Alloy for a fusible plug and a fusible plug
JP4811672B2 (en) * 2005-04-14 2011-11-09 千住金属工業株式会社 Soluble stopper alloy and fusible stopper
WO2006112015A1 (en) * 2005-04-14 2006-10-26 Senju Metal Industry Co., Ltd Alloy for fusible plug and fusible plug
JPWO2006112015A1 (en) * 2005-04-14 2008-11-27 千住金属工業株式会社 Soluble stopper alloy and fusible stopper
US20090148338A1 (en) * 2005-04-14 2009-06-11 Senju Metal Industry Co., Ltd. Alloy for a Fusible Plug and a Fusible Plug
US10036479B2 (en) 2005-04-14 2018-07-31 Senju Metal Industry Co., Ltd. Alloy for a fusible plug and a fusible plug
KR101285165B1 (en) 2005-08-02 2013-07-11 센주긴조쿠고교 가부시키가이샤 Sprinkler head
JP2008298162A (en) * 2007-05-31 2008-12-11 Canon Inc Microprocessing one-shot valve and its manufacturing method
JP2010002137A (en) * 2008-06-20 2010-01-07 Daikin Ind Ltd Air conditioner
JP2010117065A (en) * 2008-11-12 2010-05-27 Mitsubishi Electric Corp Method of manufacturing soluble plug
JP2011202874A (en) * 2010-03-25 2011-10-13 Mitsubishi Electric Corp Alloy for fusible plug, fusible plug using the same, and refrigeration device
US20220243872A1 (en) * 2021-01-29 2022-08-04 Nippon Piston Ring Co., Ltd. Fusible plug
US11859766B2 (en) * 2021-01-29 2024-01-02 Nippon Piston Ring Co., Ltd. Fusible plug

Also Published As

Publication number Publication date
JP3681060B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
JP6912519B2 (en) Solder composition
Lee et al. Thermodynamic prediction of interface phases at Cu/solder joints
EP0847829B1 (en) Lead-free solder composition
US20170304955A1 (en) High Impact Solder Toughness Alloy
Zhongmin et al. Study on microstructure and property of brazed joint of AgCuZn-X (Ga, Sn, In, Ni) brazing alloy
WO1998034755A1 (en) Lead-free solder
JP2003130240A (en) Fusable plug, manufacturing method thereof and freezer comprising it
CA2183135A1 (en) Solder flux having low melting point
JP4811672B2 (en) Soluble stopper alloy and fusible stopper
CN102500949B (en) Medium-temperature zinc-based brazing filler metal for brazing copper and steel and preparation method thereof
WO1995034401A1 (en) High-strength solder alloy
EP2623826B1 (en) Fusible Plug
JP3630400B2 (en) Low temperature melting alloy for fusible stopper, fusible stopper using this alloy, and refrigeration apparatus using this fusible stopper
JP4032094B2 (en) Soluble stopper alloy and fusible stopper
KR100620368B1 (en) Copper phosphorus brazing alloy containing ni-sn element
JP3630409B2 (en) Soluble stopper and method for producing the same
JP2011202874A (en) Alloy for fusible plug, fusible plug using the same, and refrigeration device
Najib et al. SOLDERING CHARACTERISTICS AND THERMO-MECHANICAL PROPERTIES OF Pb-FREE SOLDER PASTE FOR REFLOW SOLDERING
Kudyba Perspektywy i kierunki rozwoju bezołowiowych stopów lutowniczych nowej generacji oraz możliwość ich aplikacji w technologii bezołowiowego lutowania elektroniki użytkowej
KR20070084517A (en) Alloy for fusible plug and fusible plug

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050512

R150 Certificate of patent or registration of utility model

Ref document number: 3681060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term