JP2003130202A - Method for operating hybrid vehicle driving structure with transmission - Google Patents

Method for operating hybrid vehicle driving structure with transmission

Info

Publication number
JP2003130202A
JP2003130202A JP2001323931A JP2001323931A JP2003130202A JP 2003130202 A JP2003130202 A JP 2003130202A JP 2001323931 A JP2001323931 A JP 2001323931A JP 2001323931 A JP2001323931 A JP 2001323931A JP 2003130202 A JP2003130202 A JP 2003130202A
Authority
JP
Japan
Prior art keywords
transmission
speed
hybrid vehicle
gear
axle torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001323931A
Other languages
Japanese (ja)
Other versions
JP3757845B2 (en
Inventor
Masakiyo Kojima
正清 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001323931A priority Critical patent/JP3757845B2/en
Priority to US10/261,411 priority patent/US7223200B2/en
Priority to CA2704804A priority patent/CA2704804C/en
Priority to CA002406817A priority patent/CA2406817C/en
Priority to CA2704802A priority patent/CA2704802C/en
Priority to CA002548815A priority patent/CA2548815C/en
Priority to CA2632448A priority patent/CA2632448C/en
Priority to CA2704805A priority patent/CA2704805A1/en
Priority to EP02023460A priority patent/EP1304248B1/en
Priority to EP04028725A priority patent/EP1514716B1/en
Priority to ES04028726T priority patent/ES2308093T3/en
Priority to DE60227711T priority patent/DE60227711D1/en
Priority to DE60223850T priority patent/DE60223850T2/en
Priority to ES04028725T priority patent/ES2294422T3/en
Priority to EP04028726A priority patent/EP1520743B1/en
Priority to ES02023460T priority patent/ES2269583T3/en
Priority to DE60214104T priority patent/DE60214104T2/en
Priority to CNB021471347A priority patent/CN1286681C/en
Priority to KR10-2002-0064574A priority patent/KR100501062B1/en
Publication of JP2003130202A publication Critical patent/JP2003130202A/en
Application granted granted Critical
Publication of JP3757845B2 publication Critical patent/JP3757845B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)

Abstract

PROBLEM TO BE SOLVED: To renew a switching mode of a gear shift stage so that a characteristic of a hybrid vehicle driving structure is made the most of, when incorporating a transmission in mid-way of a wheel drive shaft to obtain a required speed to axle torque characteristic by keeping fuel economy of an internal combustion engine in an excellent state without increasing a second motor-generator in scale, in the hybrid vehicle driving structure connecting an output shaft of the internal combustion engine to a first motor-generator and the wheel drive shaft via a power distribution mechanism and connecting the second motor- generator to the wheel drive shaft. SOLUTION: A region corresponding to each gear shift stage is partitioned not according to a speed but according to the magnitude of axle torque from the viewpoint of a coordinate system of the speed to axle torque showing axle torque sharing by the internal combustion engine and the second motor- generator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関と電動機
の組合せにより車輪を駆動するハイブリッド車の駆動構
造の運転方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a drive structure of a hybrid vehicle in which wheels are driven by a combination of an internal combustion engine and an electric motor.

【0002】[0002]

【従来の技術】近年、ますます高まりつつある大気環境
保全と燃料資源の節約の重要性の認識の下に、内燃機関
と電動機の組合せにより車輪が駆動されるハイブリッド
車が脚光を浴びてきている。多様な回転数と駆動トルク
の組合せが求められる自動車の車輪を内燃機関と電動機
により駆動する場合に、その駆動態様をどのようにする
かについては、種々の態様が可能であろうが、自動車は
元来専ら内燃機関のみによって駆動されてきたものであ
り、また自動車の分野に於けるハイブリッド車は、従来
の内燃機関のみによる駆動の一部を状況が許す限り電動
駆動にて置き換えることから出発しているので、ハイブ
リッド車といえども、内燃機関のみによる駆動が可能と
なっていることは当然と考えられている。特開平11−
198669には、内燃機関のクランク軸に第一の電動
発電機を直列に接続して内燃機関または電動機のいずれ
か一方または両方により駆動される動力軸を構成し、か
かる動力軸と第二の電動発電機の出力軸とをそれぞれ遊
星歯車機構のリングギヤとサンギヤとに接続して組み合
わせ、遊星歯車機構のキャリアを出力軸として、これに
変速機を接続してなるハイブリッド車駆動構造が示され
ている。かかるハイブリッド車駆動構造によれば、内燃
機関のみを原動機として働かせても、変速機の変速機能
を得て、従来の内燃機関車と同様に自動車に求められる
多様な運行態様に対応できる。これは上記の如きハイブ
リッド車の由来を反映する一つの典型であると思われ
る。
2. Description of the Related Art In recent years, hybrid vehicles in which wheels are driven by a combination of an internal combustion engine and an electric motor have been in the limelight in recognition of the increasing importance of environmental protection and fuel resource saving. . When driving the wheels of an automobile, which require various combinations of rotational speed and driving torque, by an internal combustion engine and an electric motor, various driving modes may be possible. Originally, it was driven exclusively by an internal combustion engine, and hybrid vehicles in the field of automobiles started by replacing some conventional internal combustion engine-only drive with electric drive as far as the situation allows. Therefore, it is considered natural that even a hybrid vehicle can be driven only by the internal combustion engine. JP-A-11-
In 198669, a first motor / generator is connected in series to a crankshaft of an internal combustion engine to form a power shaft driven by either or both of the internal combustion engine and the electric motor. A hybrid vehicle drive structure is shown in which an output shaft of a generator is connected to and combined with a ring gear and a sun gear of a planetary gear mechanism, and a carrier of the planetary gear mechanism is used as an output shaft and a transmission is connected to the carrier. . According to such a hybrid vehicle drive structure, even if only the internal combustion engine is used as a prime mover, the shift function of the transmission is obtained, and it is possible to cope with various operating modes required for a vehicle, like a conventional internal combustion engine vehicle. This seems to be one of the typical examples reflecting the origin of the hybrid vehicle as described above.

【0003】しかし、一方、自動車の原動機として内燃
機関と電動機とを組み合わせる機会に、車輪に求められ
る回転数対駆動トルクと内燃機関より得られる回転数対
駆動トルクの間の乖離に起因する内燃機関出力軸と車軸
の間の回転数の差を電動機により差動的に吸収し、内燃
機関出力軸と車軸の間に従来から必要とされていた変速
機を無くすことが本件出願人と同一人により提案され
た。添付の図1は、そのようなハイブリッド車の駆動構
造を示す概略図である。
On the other hand, however, on the occasion of combining an internal combustion engine and an electric motor as a prime mover of an automobile, the internal combustion engine is caused by the difference between the rotational speed required for the wheels and the driving torque and the rotational speed obtained from the internal combustion engine versus the driving torque. By the same person as the applicant of the present application, it is possible to differentially absorb the difference in rotation speed between the output shaft and the axle by the electric motor and eliminate the transmission that has been conventionally required between the internal combustion engine output shaft and the axle. was suggested. FIG. 1 attached herewith is a schematic view showing a drive structure of such a hybrid vehicle.

【0004】図1に於いて、1は内燃機関であり、図に
は示されていない車体に取り付けられている。2はその
出力軸(クランク軸)である。3は遊星歯車装置であ
り、4はそのサンギヤ、5はリングギヤ、6はプラネタ
リピニオン、7はキャリアである。クランク軸2はキャ
リア7に連結されている。8は第一の電動発電機(MG
1)であり、コイル9と回転子10と有し、回転子10
はサンギヤ4と連結されている。コイル9は車体より支
持されている。リングギヤ5にはプロペラ軸11の一端
が連結されている。かくして、遊星歯車装置3は、内燃
機関の出力軸2に現れる内燃機関の出力を第一の電動発
電機3と車輪駆動軸をなすプロペラ軸11とに分配する
動力分配機構を構成している。プロペラ軸11の途中に
は第二の電動発電機(MG2)12が連結されている。
第二の電動発電機12はコイル13と回転子14と有
し、コイル13は車体より支持されている。プロペラ軸
11に対する回転子14の連結は任意の構造であってよ
いが、図示の例では、プロペラ軸11に設けられた歯車
15に回転子14により支持されて回転する歯車16が
噛み合う構造とされている。プロペラ軸11の他端はデ
ィファレンシャル装置17を介して一対の車軸18に連
結されている。車軸18の各々には車輪19が取り付け
られている。
In FIG. 1, reference numeral 1 denotes an internal combustion engine, which is mounted on a vehicle body (not shown). Reference numeral 2 is its output shaft (crank shaft). 3 is a planetary gear device, 4 is its sun gear, 5 is a ring gear, 6 is a planetary pinion, and 7 is a carrier. The crankshaft 2 is connected to the carrier 7. 8 is the first motor generator (MG
1), which has the coil 9 and the rotor 10, and the rotor 10
Is connected to the sun gear 4. The coil 9 is supported by the vehicle body. One end of a propeller shaft 11 is connected to the ring gear 5. Thus, the planetary gear device 3 constitutes a power distribution mechanism that distributes the output of the internal combustion engine, which appears on the output shaft 2 of the internal combustion engine, to the first motor generator 3 and the propeller shaft 11 that serves as a wheel drive shaft. A second motor generator (MG2) 12 is connected in the middle of the propeller shaft 11.
The second motor generator 12 has a coil 13 and a rotor 14, and the coil 13 is supported by the vehicle body. The connection of the rotor 14 to the propeller shaft 11 may have any structure, but in the illustrated example, the structure is such that the gear 15 provided on the propeller shaft 11 meshes with the rotating gear 16 supported by the rotor 14. ing. The other end of the propeller shaft 11 is connected to a pair of axles 18 via a differential device 17. Wheels 19 are attached to each of the axles 18.

【0005】図示の駆動構造に於いて、クランク軸2の
回転とキャリア7の回転とは同じであり、今この回転数
をNcで表すものとする。また第一の電動発電機8の回
転とサンギヤ4の回転とは同じであり、今この回転数を
Nsで表すものとする。一方、リングギヤ5の回転と第
二の電動発電機12の回転と車輪19の回転とは互いに
対応し、最終的には車速に対応するものであるが、それ
ぞれの回転数は歯車15と16の間の歯数の比、ディフ
ァレンシャル装置17に於ける減速比、およびタイヤ径
によって異なる。しかし、今ここでは便宜上これらの部
分の回転数をリングギヤ5の回転数にて代表するものと
し、それをNrとする。そうすると、内燃機関と二つの
電動発電機とを遊星歯車装置にて図示の如く組み合わせ
たハイブリッド車駆動構造に於ける内燃機関と二つの電
動発電機MG1、MG2の回転数Nc、Ns、Nrの間
の関係は、遊星歯車装置の原理に基づき、図2に示す線
図により表される。図にてρはリングギヤの歯数に対す
るサンギヤの歯数である(ρ<1)。Ncは機関回転数
により定まり、Nrは車速により定まるので、Nsは機
関回転数と車速の如何により Ns=(1+1/ρ)Nc−(1/ρ)Nr として定まる。
In the illustrated drive structure, the rotation of the crankshaft 2 and the rotation of the carrier 7 are the same, and this rotation speed is now represented by Nc. Further, the rotation of the first motor generator 8 and the rotation of the sun gear 4 are the same, and this rotation speed is now represented by Ns. On the other hand, the rotation of the ring gear 5, the rotation of the second motor generator 12, and the rotation of the wheels 19 correspond to each other and finally correspond to the vehicle speed, but the respective rotation speeds are those of the gears 15 and 16. It depends on the ratio of the number of teeth between them, the speed reduction ratio in the differential device 17, and the tire diameter. However, here, for the sake of convenience, the rotational speed of these portions is represented by the rotational speed of the ring gear 5, and is represented by Nr. Then, between the internal combustion engine and the two motor generators MG1, MG2 in the hybrid vehicle drive structure in which the internal combustion engine and the two motor generators are combined by a planetary gear device as shown in the drawing, between the rotational speeds Nc, Ns, Nr. The relationship is expressed by the diagram shown in FIG. 2 based on the principle of the planetary gear device. In the figure, ρ is the number of teeth of the sun gear with respect to the number of teeth of the ring gear (ρ <1). Since Nc is determined by the engine speed and Nr is determined by the vehicle speed, Ns is determined as Ns = (1 + 1 / ρ) Nc− (1 / ρ) Nr depending on the engine speed and the vehicle speed.

【0006】一方、キャリアとサンギヤとリングギヤの
トルクをTc、Ts、Trとすると、これらは Ts:Tc:Tr=ρ/(1+ρ):1:1/(1+
ρ) の比にて互いに平衡し、従ってまた、これら3要素のい
ずれかがトルクを発生しあるいは吸収するときには、上
記の平衡が成り立つまで相互間にトルクのやりとりが行
なわれる。
On the other hand, if the torques of the carrier, sun gear, and ring gear are Tc, Ts, and Tr, these are Ts: Tc: Tr = ρ / (1 + ρ): 1: 1 / (1+
When a ratio of ρ) balances each other, and thus any of these three elements produces or absorbs torque, torque is exchanged between them until the above balance is established.

【0007】以上の如き駆動構造を備えたハイブリッド
車に於いて、内燃機関、MG1、MG2の作動は、図に
は示されていない車輌運転制御装置により、運転者から
の運転指令と車輌の運行状態とに基づいて制御される。
即ち、車輌運転制御装置はマイクロコンピュータを備
え、運転者からの運転指令と種々のセンサにより検出さ
れる車輌の運行状態とに基づいて目標車速および目標車
輪駆動トルクを計算すると共に、蓄電装置の充電状態に
基づいて蓄電装置に許される電流出力あるいは蓄電装置
の充電のために必要な発電量を計算し、これらの計算結
果に基づいて、内燃機関を休止を含む如何なる運転状態
にて運転すべきか、またMG1およびMG2をいかなる
電動状態あるいは発電状態にて運転すべきかを計算し、
その計算結果に基づいて内燃機関、MG1、MG2の作
動を制御する。
In the hybrid vehicle having the above-described drive structure, the internal combustion engines, MG1 and MG2 are operated by a vehicle operation control device (not shown) from the driver and operation of the vehicle. It is controlled based on the state and.
That is, the vehicle operation control device includes a microcomputer, calculates the target vehicle speed and the target wheel drive torque based on the operation command of the driver and the operation state of the vehicle detected by various sensors, and charges the power storage device. Based on the state, calculate the current output allowed for the power storage device or the amount of power generation required for charging the power storage device, and based on these calculation results, what operating state should the internal combustion engine operate in, including stoppage, In addition, calculate what kind of electric or electric power generation state MG1 and MG2 should be operated in,
The operation of the internal combustion engine, MG1 and MG2 is controlled based on the calculation result.

【0008】[0008]

【発明が解決しようとする課題】課題に関する関連出願
以上の如く内燃機関の出力軸が動力分配機構を経て第一
の電動発電機と車輪駆動軸とに連結され、該車輪駆動軸
に第二の電動発電機が連結されたハイブリッド車駆動構
造によれば、図2より理解される通り、内燃機関出力軸
の回転数Ncと車速に対応する回転数Nrの各々の値お
よびその間の相対関係は、その変化を第一の電動発電機
の回転数Nsにて吸収することにより大幅に変えること
ができるので、かかるハイブリッド車駆動構造に於いて
は、これまで変速機は不要とされていた。即ち、動力分
配機構の調節次第で、NcとNrの間の関係を自由に変
えることができ、また停車中(Nr=0)であっても機
関運転(Nc>0)すること、逆に、前進中(Nr>
0)であっても機関停止(Nc=0)すること、あるい
は機関の運転または停止(Nc≧0)にかかわらず後進
(Nr<0)することができる。
As described above, the output shaft of the internal combustion engine is connected to the first motor / generator and the wheel drive shaft through the power distribution mechanism, and the second shaft is connected to the wheel drive shaft. According to the hybrid vehicle drive structure in which the motor generator is connected, as understood from FIG. 2, the respective values of the rotation speed Nc of the internal combustion engine output shaft and the rotation speed Nr corresponding to the vehicle speed, and the relative relationship between them are as follows. Since the change can be drastically changed by absorbing the change in the number of revolutions Ns of the first motor-generator, a transmission has not been required in the hybrid vehicle drive structure. That is, the relationship between Nc and Nr can be freely changed depending on the adjustment of the power distribution mechanism, and the engine is operated (Nc> 0) even when the vehicle is stopped (Nr = 0). Moving forward (Nr>
Even if it is 0), the engine can be stopped (Nc = 0), or the engine can be moved backward (Nr <0) regardless of whether the engine is running or stopped (Nc ≧ 0).

【0009】しかし、MG2の回転数は車速の如何によ
って左右され、蓄電装置の充電度は車速とは一応無関係
であるため、MG2が蓄電装置の充電のための発電機と
して作動するには大きな制約がある。そこで蓄電装置の
充電は専らMG1に頼ることとなり、逆に車輪の電動駆
動は専らMG2に頼ることとなる。そのため変速機を備
えない上記の如きハイブリッド車駆動構造に於いて、低
車速領域にても必要に応じて高い車輪駆動トルクを得る
ことができる車輌運転性能を確保しておくためには、畢
竟MG2は大型化せざるを得ない。
However, the number of revolutions of MG2 depends on the vehicle speed, and the degree of charge of the power storage device is irrelevant to the vehicle speed. Therefore, MG2 has a large limitation in operating as a generator for charging the power storage device. There is. Therefore, charging of the power storage device depends exclusively on MG1, and conversely, electric drive of the wheels depends exclusively on MG2. Therefore, in the hybrid vehicle drive structure as described above, which is not provided with a transmission, in order to secure the vehicle driving performance capable of obtaining a high wheel drive torque as necessary even in the low vehicle speed range, the quality MG2 Is inevitably larger.

【0010】このことを車軸トルクの要求値の大きさを
車速に対比させた車速対車軸トルクの座標系で示せば、
図3の通りである。即ち、今、車輌の内燃機関を広い車
速域に亙って高燃費にて運転し、しかも車輌の車速対車
軸トルク性能として望まれる限界性能として線Aにて示
す如き性能を車輌に持たせようとすれば、高燃費を得る
内燃機関の車速対車軸トルク性能は領域Bの如くほぼ平
らになるので、残りを専らMG2にて補わなければなら
ず、その車速対車軸トルク性能は領域Cを賄うものでな
ければなない。そのためMG2は低回転速度にて高トル
クを発生することができるよう、それ相当の大型のもの
とされなければならない。
If this is shown by the coordinate system of the vehicle speed versus the axle torque in which the magnitude of the required value of the axle torque is compared with the vehicle speed,
It is as shown in FIG. That is, now, the internal combustion engine of the vehicle should be operated with high fuel efficiency over a wide range of vehicle speeds, and the vehicle should have the performance shown by line A as the limit performance desired as the vehicle speed vs. axle torque performance. Then, since the vehicle speed versus axle torque performance of the internal combustion engine that obtains high fuel consumption becomes almost flat as in region B, the rest must be compensated exclusively with MG2, and the vehicle velocity versus axle torque performance covers region C. Must be something. Therefore, the MG2 must be large enough to generate high torque at a low rotation speed.

【0011】しかし、図3を吟味すれば、領域Cの深さ
は領域Bの深さに対比して些か深すぎるのではないかと
の疑問がもたれる。これは、観点を変えれば、内燃機関
と第一および第二の電動発電機なる三つの原動装置の大
きさの相対的釣合い、特に内燃機関と第二の電動発電機
の大きさの釣合いの問題である。かかる疑問に端を発
し、この点に関し上記の如きハイブリッド車輌駆動構造
を更に改良するものとして、本件出願人と同一人は、別
途出願に係わる特願2001−323578号にて内燃
機関の出力軸が動力分配機構を経て第一の電動発電機と
車輪駆動軸とに連結され、該車輪駆動軸に第二の電動発
電機が連結されたハイブリッド車駆動構造に於いて、前
記車輪駆動軸の途中または該車輪駆動軸への前記第二の
電動発電機の連結の途中の少なくとも一方に変速機を設
けたことを特徴とするハイブリッド車駆動構造を提案し
た。
However, when examining FIG. 3, it is doubted that the depth of the region C is a little too deep as compared with the depth of the region B. From a different point of view, this is a problem of the relative balance between the sizes of the internal combustion engine and the three prime movers, that is, the first and second motor-generators, and particularly the size balance between the internal combustion engine and the second motor-generator. Is. In order to further improve the hybrid vehicle drive structure as described above in view of this point, the same person as the applicant of the present invention has disclosed in Japanese Patent Application No. 2001-323578 relating to another application that the output shaft of the internal combustion engine is In a hybrid vehicle drive structure in which a first motor generator and a wheel drive shaft are connected via a power distribution mechanism, and a second motor generator is connected to the wheel drive shaft, in the middle of the wheel drive shaft or A hybrid vehicle drive structure characterized in that a transmission is provided at least on one side of the connection of the second motor generator to the wheel drive shaft.

【0012】上記別件特願2001−323578号に
よる変速機付きハイブリッド車駆動構造は、車輪駆動軸
の途中に変速機が設けられている場合にも、従来の変速
機付き内燃機関駆動車輌におけると同様に、低車速域に
ては変速機を減速比が大きい低速段に切り換え、高車速
域にては変速機を減速比が小さい高速段に切り換える要
領にて運転されてよい。
The hybrid vehicle drive structure with a transmission according to the above-mentioned another Japanese Patent Application No. 2001-323578 is the same as in a conventional internal combustion engine drive vehicle with a transmission even when a transmission is provided in the middle of a wheel drive shaft. In addition, in a low vehicle speed range, the transmission may be switched to a low speed stage having a large reduction ratio, and in a high vehicle speed range, the transmission may be switched to a high speed stage having a small reduction ratio.

【0013】本願発明の課題 上記別件特願2001−323578号にて、内燃機関
の出力軸が動力分配機構を経て第一の電動発電機と車輪
駆動軸とに連結され、該車輪駆動軸に第二の電動発電機
が連結されたハイブリッド車駆動構造に変速機を組み込
むことを提案したのは、特に高い車軸トルクが要求され
た場合に対する第二の電動発電機の必要容量を小さくす
るためである。しかし、一般の平地における自動車の運
行においては、車輌発進時であってもさほど高い車軸ト
ルクが要求されるわけではない。
Problem to be Solved by the Invention In the above Japanese Patent Application No. 2001-323578, the output shaft of the internal combustion engine is connected to the first motor generator and the wheel drive shaft via the power distribution mechanism, and the wheel drive shaft is The reason why the transmission is incorporated into the hybrid vehicle drive structure in which the second motor generator is connected is to reduce the required capacity of the second motor generator, especially when high axle torque is required. . However, in the operation of an automobile on a general flat land, a very high axle torque is not required even when the vehicle is started.

【0014】そこで、本発明は、上記の認識に基づき、
内燃機関の出力軸が動力分配機構を経て第一の電動発電
機と車輪駆動軸とに連結され、該車輪駆動軸に第二の電
動発電機が連結され、前記車輪駆動軸の途中に変速機を
設けたハイブリッド車駆動構造を、変速機の切換制御に
関し格別の考慮を払って運転する方法を提供することを
課題としている。
Therefore, the present invention is based on the above recognition.
An output shaft of an internal combustion engine is connected to a first motor generator and a wheel drive shaft via a power distribution mechanism, a second motor generator is connected to the wheel drive shaft, and a transmission is provided in the middle of the wheel drive shaft. It is an object of the present invention to provide a method for driving a hybrid vehicle drive structure provided with the above with special consideration given to transmission switching control.

【0015】[0015]

【課題を解決するための手段】かかる課題を解決するも
のとして、本発明は、内燃機関の出力軸が動力分配機構
を経て第一の電動発電機と車輪駆動軸とに連結され、該
車輪駆動軸に第二の電動発電機が連結され、前記車輪駆
動軸の途中に変速機が設けられたハイブリッド車駆動構
造の運転方法にして、前記変速機を所定の高速段に設定
し、前記内燃機関を高燃費にて運転して車軸トルク要求
値に対応できる限り、車速の変化に拘わらず該高速段を
保持して運転することを特徴とするハイブリッド車駆動
構造運転方法を提案するものである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides an output shaft of an internal combustion engine, which is connected to a first motor / generator and a wheel drive shaft through a power distribution mechanism to drive the wheel. A second motor / generator is connected to the shaft, and a method of operating a hybrid vehicle drive structure is provided in which a transmission is provided in the middle of the wheel drive shaft, the transmission is set to a predetermined high speed stage, and the internal combustion engine The present invention proposes a hybrid vehicle drive structure operating method characterized in that the vehicle is driven with high fuel consumption and the axle torque demand value can be met, and the vehicle is operated while maintaining the high speed stage regardless of changes in vehicle speed.

【0016】尚、電動発電機なる語は、電動機および発
電機の両機能を有する手段を指すが、本願発明は、内燃
機関の出力軸が動力分配機構を経て第一の電動発電機と
車輪駆動軸とに連結され、該車輪駆動軸に第二の電動発
電機が連結されたハイブリッド車駆動構造の、短期的車
輌駆動性能に関するものであり、換言すれば、車輌のハ
イブリッド駆動における内燃機関駆動と、電動駆動と、
蓄電装置に対する自己充電作用の相互関係が関与する長
期的車輌駆動性能に関するものではないので、本願発明
の作用および効果に関する限り、第一および第二の電動
発電機は、いずれも単なる電動機であってよいものであ
る。確かに、実働する車輌駆動装置としては、既に記し
た通り、第二の電動発電機は専ら電動機として作動せざ
るを得ず(しかし発電機として作動することも可能)、
従って長期的に作動可能な車輌駆動装置を構成するため
には、第一の電動発電機は発電機能を有している必要が
あるが、この必要性は本願発明の技術的思想とは関係な
いことである。従って、本発明の構成に於いて、電動発
電機と記載された手段は、発電機能を有しない電動機を
その均等物として含むものとする。
The term "motor generator" refers to means having both functions of an electric motor and a generator. In the present invention, however, the output shaft of the internal combustion engine goes through the power distribution mechanism to drive the first motor generator and the wheels. The present invention relates to a short-term vehicle drive performance of a hybrid vehicle drive structure in which a second motor / generator is connected to a shaft and the wheel drive shaft is connected, in other words, to an internal combustion engine drive in a hybrid drive of the vehicle. , Electric drive,
As far as the operation and effect of the present invention are concerned, both the first and second motor-generators are mere electric motors because they are not related to the long-term vehicle driving performance in which the mutual relationship of the self-charging action on the power storage device is involved. It's good. Certainly, as a vehicle drive device that actually works, as already mentioned, the second motor generator has to operate exclusively as an electric motor (but it can also operate as a generator),
Therefore, in order to construct a vehicle drive device that can operate for a long period of time, the first motor generator must have a power generation function, but this need is not related to the technical idea of the present invention. That is. Therefore, in the configuration of the present invention, the means described as a motor generator includes a motor having no power generation function as its equivalent.

【0017】上記の如きハイブリッド車駆動構造運転方
法は、更に変速機を前記高速段に設定した状態では車軸
トルク要求値に対応できないが、変速機を前記高速段に
次ぐ下の変速段に設定すれば車軸トルク要求値に対応で
きる限り、車速の変化に拘わらず変速機を該高速段に次
ぐ下の変速段に保持して運転することが追加されてよ
い。
Although the hybrid vehicle drive structure operating method as described above cannot meet the required axle torque value when the transmission is set to the high speed, the transmission can be set to the next lower speed after the high speed. For example, as long as it is possible to meet the required axle torque value, it may be added that the transmission is operated while being held at a gear next to the high speed regardless of changes in the vehicle speed.

【0018】上記の如きハイブリッド車駆動構造運転方
法は、更に変速機を前記高速段に次ぐ下の変速段に設定
した状態では車軸トルク要求値に対応できないが、変速
機を前記高速段に次ぐ下の変速段に次ぐ下の変速段に設
定すれば車軸トルク要求値に対応できる限り、車速の変
化に拘わらず変速機を該高速段に次ぐ下の変速段に次ぐ
下の変速段に保持して運転することが追加されてよい。
In the hybrid vehicle drive structure operating method as described above, the axle torque demand value cannot be met in a state in which the transmission is set to the gear next to the high-speed stage, but the transmission is set to the lower gear next to the high-speed stage. As long as it is possible to meet the axle torque demand value by setting the gear next to the gear next to, the transmission is held at the gear next to the gear next to the high gear regardless of changes in the vehicle speed. Driving may be added.

【0019】更にまた、上記の如きハイブリッド車駆動
構造運転方法は、変速機の速度段を切り換えたときに
は、所定の時間が経過するまで次の速度段の切換えを禁
止するようにされてよい。
Furthermore, in the hybrid vehicle drive structure operating method as described above, when the speed stage of the transmission is switched, the switching of the next speed stage may be prohibited until a predetermined time elapses.

【0020】更にまた、上記の如きハイブリッド車駆動
構造運転方法は、車軸トルクの要求値に対応するのに変
速段の変更を要するとき、所定の時間以内に限り変速段
の変更に代えて前記第一および第二の電動発電機の少な
くとも一方の出力変更により対応するようにされてよ
い。
Furthermore, in the hybrid vehicle drive structure operating method as described above, when it is necessary to change the shift speed in order to correspond to the required value of the axle torque, the shift speed is changed within a predetermined time instead of the change of the shift speed. It may be made to respond by changing the output of at least one of the first and second motor generators.

【0021】更にまた、上記の如きハイブリッド車駆動
構造運転方法は、運転方法がノーマル運転モードとスポ
ーツ運転モードとの間に切り換えられ、スポーツ運転モ
ードに切り替えられたときには、変速機を車速の変化に
拘わらず前記高速段に保持することは解除されるように
なっていてよい。
Furthermore, in the hybrid vehicle drive structure driving method as described above, the driving method is switched between the normal driving mode and the sports driving mode, and when the sports driving mode is switched, the transmission is changed to change the vehicle speed. Regardless, holding at the high speed stage may be released.

【0022】[0022]

【発明の作用及び効果】内燃機関の出力軸が動力分配機
構を経て第一の電動発電機と車輪駆動軸とに連結され、
該車輪駆動軸に第二の電動発電機が連結されたハイブリ
ッド車駆動構造では、全車速域にわたって車速の変化や
内燃機関の運転状態の変化による車軸回転数と内燃機関
回転数の各々およびその間の相対関係の変化は、第一の
電動発電機回転数の調節にて吸収されるので、その車輪
駆動軸の途中に変速機が設けられていても、かかるハイ
ブリッド車駆動構造を運転するにあたっては、変速機を
所定の高速段に設定し、内燃機関を高燃費にて運転して
車軸トルク要求値に対応できる限り、車速の変化に拘わ
らず該高速段を保持して運転するようにすれば、一般の
平地における自動車の運行の場合の如く、車輌発進時に
もさほどの車軸トルクは必要とされないとき、変速機が
設けられていても、それを所定の高速段に保ったままと
し、全車速域にわたって変速機切り換え制御を要するこ
となく、必要に応じて内燃機関を高燃費にて運転して、
変速ショックや変速遅れのないハイブリッド車の運転を
行うことができる。
The output shaft of the internal combustion engine is connected to the first motor generator and the wheel drive shaft via the power distribution mechanism,
In the hybrid vehicle drive structure in which the second motor generator is connected to the wheel drive shaft, each of the axle speed and the internal combustion engine speed due to the change in the vehicle speed and the change in the operating state of the internal combustion engine over the entire vehicle speed range, and between them Since the change in the relative relationship is absorbed by the adjustment of the first motor / generator rotation speed, even if a transmission is provided in the middle of the wheel drive shaft, when operating such a hybrid vehicle drive structure, As long as the transmission is set to a predetermined high speed and the internal combustion engine can be operated at high fuel efficiency to meet the axle torque required value, the high speed can be maintained and operated regardless of changes in the vehicle speed. When a vehicle does not require a large amount of axle torque, such as when driving a car on a level ground, even if a gearbox is installed, keep it at a predetermined high speed and keep it in the entire vehicle speed range. garden Without requiring the transmission switching control I, by operating an internal combustion engine at a high fuel efficiency as required,
It is possible to drive a hybrid vehicle without a shift shock or a shift delay.

【0023】更に、変速機を前記高速段に設定した状態
では車軸トルク要求値に対応できないが、変速機を前記
高速段に次ぐ下の変速段に設定すれば車軸トルク要求値
に対応できる限り、車速の変化に拘わらず変速機を該高
速段に次ぐ下の変速段に保持して車輌の運転を行い、ま
た同様に、変速機を前記高速段に次ぐ下の変速段に設定
した状態では車軸トルク要求値に対応できないが、変速
機を前記高速段に次ぐ下の変速段に次ぐ下の変速段に設
定すれば車軸トルク要求値に対応できる限り、車速の変
化に拘わらず変速機を該高速段に次ぐ下の変速段に次ぐ
下の変速段に保持して車輌の運転を行うことにより、変
速回数を減らし、変速ショックや変速遅れのないハイブ
リッド車の運転を行うことができる。
Further, although it is impossible to meet the required axle torque value when the transmission is set to the high speed stage, as long as the transmission can be set to the next lower speed stage after the high speed stage, the required axle shaft torque value can be met. Despite the change in the vehicle speed, the vehicle is operated by holding the transmission at the lower gear next to the higher gear, and similarly, when the gear is set at the lower gear next to the high gear, the axle is set. Although it cannot respond to the torque request value, if the transmission is set to the gear next to the gear next to the high speed, the gear can be set to the high speed regardless of the change in the vehicle speed as long as the axle torque requirement can be met. By operating the vehicle while maintaining the gear next to the gear next to the next gear, the number of gear shifts can be reduced and the hybrid vehicle can be driven without gear shock or gear delay.

【0024】また、この型のハイブリッド車駆動構造で
は、全車速域にわたって車軸回転数と内燃機関回転数の
各々およびその間の相対関係の変化は、第一の電動発電
機回転数の調節にて吸収でき、変速機は車軸トルク要求
値が特に大きくなったときそれに対応するために設けら
れているので、車軸トルク要求値の変化に対する速度段
の切り換えの対応は、従来の単に内燃機関に変速機を組
み合わせた車輌駆動構造におけるほど厳しくはない。従
って、変速機の速度段を切り換えたときには、適当な所
定時間を設定し、そのような所定時間が経過するまで次
の速度段への切換えを禁止することにより、変速機の変
速機能発揮を損なうことなく、変速段切り換えの境界近
傍にて車軸トルク要求値が変動することにより変速機の
作動が不安定になることを防止することができる。ま
た、かかる切換え禁止時間を設けることにより、変速境
界線をアップシフト用とダウンシフト用とに分け、両境
界線を互いに引き離してその間にヒステリシスを持たせ
る対策を行わなくても、変速ハンチングが生ずることを
回避できる。
Further, in this type of hybrid vehicle drive structure, changes in the axle rotational speed, the internal combustion engine rotational speed, and the relative relationship therebetween are absorbed by adjusting the first motor / generator rotational speed over the entire vehicle speed range. Since the transmission is provided for responding to a particularly large axle torque demand value, the change of the speed stage with respect to the change of the axle torque demand value can be achieved by simply changing the transmission to the conventional internal combustion engine. Not as strict as in a combined vehicle drive structure. Therefore, when the speed stage of the transmission is changed, an appropriate predetermined time is set, and the shift to the next speed stage is prohibited until such a predetermined time elapses, thereby impairing the transmission function of the transmission. Therefore, it is possible to prevent the operation of the transmission from becoming unstable due to the required axle torque value fluctuating in the vicinity of the boundary of the gear shift. Further, by providing such a switching prohibition time, shift hunting occurs without dividing the shift boundary lines into those for upshifting and those for downshifting, and separating both boundary lines from each other to provide hysteresis therebetween. You can avoid that.

【0025】また、この型のハイブリッド車駆動構造で
は、全車速域にわたって車軸回転数と内燃機関回転数の
各々およびその間の相対関係の変化は、第一の電動発電
機回転数の調節にて吸収でき、また第一または第二の電
動発電機は短時間であればその定格出力を越えて運転さ
れても問題はないので、車軸トルクの要求値に対応する
のに変速段の変更を要するとき、所定の時間以内に限り
変速段の変更に代えて第一および第二の電動発電機の少
なくとも一方の出力を変更することにより対応すること
ができ、かかる要領によっても変速機の切り換え頻度を
低減し、また変速ハンチングの発生を回避することがで
きる。
Further, in this type of hybrid vehicle drive structure, changes in the axle rotational speed, the internal combustion engine rotational speed, and the relative relationship therebetween are absorbed by adjusting the first motor generator rotational speed over the entire vehicle speed range. If the first or second motor generator can be operated beyond its rated output for a short period of time, there is no problem, so it is necessary to change the gear to meet the required axle torque value. It is possible to respond by changing the output of at least one of the first and second motor-generators instead of changing the gear stage only within a predetermined time, and the frequency of gear changeovers can also be reduced by this procedure. Moreover, it is possible to avoid the occurrence of gear shift hunting.

【0026】また、運転方法がノーマル運転モードとス
ポーツ運転モードとの間に切り換え可能とされ、スポー
ツ運転モードに切り換えられたときには、変速機を車速
の変化に拘わらず前記高速段を保持することを解除する
ようになっていれば、運転者の好みや運転地域の起伏状
態に応じて、折角設けられた変速機の作動を抑制するこ
となく、それを従来通りの作動態様にて作動せしめ、車
輌の運転特性を広げることができる。
Further, the driving method can be switched between a normal driving mode and a sports driving mode, and when the driving mode is switched to the sports driving mode, the transmission is held at the high speed stage regardless of the change of the vehicle speed. If it is released, the transmission can be operated in the conventional operating mode without restraining the operation of the transmission provided according to the driver's preference and the undulating state of the driving area. The driving characteristics of can be expanded.

【0027】[0027]

【発明の実施の形態】図4および図5は、図1に示す如
く内燃機関の出力軸が動力分配機構を経て第一の電動発
電機と車輪駆動軸とに連結され、該車輪駆動軸に第二の
電動発電機が連結されたハイブリッド車駆動構造に、上
記別件特願2001−323578号により変速機を組
み込み、本発明による運転方法の対象となるハイブリッ
ド車駆動構造を構成した二つの実施例を示す図1と同様
の概略図である。図4および図5に於いて、図1に示す
部分に対応する部分は対応する符号により示されてい
る。
4 and 5, the output shaft of an internal combustion engine is connected to a first motor generator and a wheel drive shaft via a power distribution mechanism as shown in FIG. Two embodiments in which a hybrid vehicle drive structure in which a second motor generator is coupled with a transmission according to the above-mentioned Japanese Patent Application No. 2001-323578 to constitute a hybrid vehicle drive structure which is a target of the driving method according to the present invention 2 is a schematic view similar to FIG. 4 and 5, parts corresponding to those shown in FIG. 1 are designated by corresponding reference numerals.

【0028】図4に示す第一のハイブリッド車駆動構造
に於いては、変速機100は車輪駆動軸の途中であって
第二の電動発電機MG2の連結部より内燃機関の側に設
けられており、図1についての説明の文言でいえば、車
輪駆動軸の一部をなすプロペラ軸11の一部であってM
G2の連結部をなす歯車15よりも内燃機関の側に設け
られている。変速機100は2段ないし3段のものであ
ってよく、更に後進段を含むものであってよい。そのよ
うな変速機は既に公知の技術により種々の態様にて得ら
れるが、前進3段と後進段を有するものについてその一
例を解図的に示せば、図6の通りである。
In the first hybrid vehicle drive structure shown in FIG. 4, the transmission 100 is provided in the middle of the wheel drive shaft and closer to the internal combustion engine than the connecting portion of the second motor generator MG2. In terms of the description of FIG. 1, a part of the propeller shaft 11 forming a part of the wheel drive shaft, which is M
It is provided closer to the internal combustion engine than the gear 15 forming the connecting portion of G2. The transmission 100 may have two or three gears, and may further include a reverse gear. Although such a transmission can be obtained in various modes by a known technique, an example of a transmission having three forward gears and a reverse gear is schematically shown in FIG.

【0029】図6に於いて、20、22、24、26は
一つの遊星歯車機構を構成するサンギヤ、リングギヤ、
プラネタリピニオン、キャリアであり、また21、2
3、25、27は他の一つの遊星歯車機構を構成するサ
ンギヤ、リングギヤ、プラネタリピニオン、キャリアで
あり、28(C1)、29(C2)はクラッチであり、
30(B1)、31(B2)はブレーキであり、32
(F1)はワンウェイクラッチである。そしてこれらの
回転要素が、33を入力軸とし、34を出力軸として、
その間に図示の如く組み合わされていると、クラッチC
1が係合されることにより減速比が最も大きい第1速段
が達成され、クラッチC1とブレーキB1とが係合され
ることにより減速比が中程の第2速段が達成され、クラ
ッチC1とC2とが係合されることにより減速比が最も
小さい(減速比=1)第3速段が達成され、クラッチC
2とブレーキB2とが係合されることにより後進段が達
成される。
In FIG. 6, reference numerals 20, 22, 24 and 26 designate a sun gear, a ring gear and a planetary gear mechanism, respectively.
Planetary pinion, carrier, also 21, 2
3, 25 and 27 are sun gears, ring gears, planetary pinions and carriers that constitute another planetary gear mechanism, and 28 (C1) and 29 (C2) are clutches,
30 (B1) and 31 (B2) are brakes, 32
(F1) is a one-way clutch. These rotary elements have 33 as an input shaft and 34 as an output shaft,
In the meantime, if it is combined as shown, the clutch C
The first speed stage having the largest reduction ratio is achieved by engaging 1 and the second speed stage having an intermediate reduction ratio is achieved by engaging the clutch C1 and the brake B1. And C2 are engaged, the third speed ratio having the smallest reduction ratio (reduction ratio = 1) is achieved, and the clutch C
The reverse gear is achieved by the engagement of 2 and the brake B2.

【0030】図4のハイブリッド車駆動構造に於いて、
変速機100が3段の変速を与えるようになっていると
すると、車速対車軸トルク座標系で見たトルク分担は、
変速機を内燃機関回転数と車軸回転数との間に調和をも
たらすよう切り換えるという従来の変速段切り換えの概
念に従えば、変速機がない場合の図3に対比して、例え
ば、図7の如く変更されてよい。この線図に於いて、領
域B1、B2、B3は、それぞれ変速機を第1速段、第
2速段、第3速段にすることにより内燃機関にて車軸ト
ルクを賄うことができるトルクの大きさを示しており、
MG2は残る領域Cを賄うことができるようになってい
ればよい。(図7はいわゆる変速線図ではなく、従っ
て、例えば、車速と車軸トルク要求値とが座標に沿った
値で領域B1内にあることにより、変速段が第1速段に
設定されることを意味するものではない。)
In the hybrid vehicle drive structure of FIG. 4,
Assuming that the transmission 100 is configured to provide three speeds, the torque sharing seen in the vehicle speed versus axle torque coordinate system is:
According to the conventional concept of gear shift, in which the transmission is switched so as to obtain a harmony between the internal combustion engine speed and the axle speed, as compared with FIG. May be changed as follows. In this diagram, regions B1, B2, and B3 represent torques that can cover the axle torque in the internal combustion engine by setting the transmission to the first speed, the second speed, and the third speed, respectively. Shows the size,
The MG 2 only needs to be able to cover the remaining area C. (FIG. 7 is not a so-called shift diagram, and therefore, for example, the fact that the vehicle speed and the axle torque demand value are values along the coordinates within the region B1 indicates that the gear stage is set to the first speed stage. It does not mean.)

【0031】図5に示すハイブリッド車駆動構造に於い
ては、変速機101は車輪駆動軸の途中であって第二の
電動発電機MG2の連結部より内燃機関とは隔たる側に
設けられており、図1についての説明の文言でいえば、
車輪駆動軸の一部をなすプロペラ軸11の一部であって
MG2の連結部をなす歯車15よりも内燃機関とは隔た
る側に設けられている。変速機101もまた2段ないし
3段のものであってよく、更に後進段を含むものであっ
てよく、図6に示す如きものであってよい。
In the hybrid vehicle drive structure shown in FIG. 5, the transmission 101 is provided in the middle of the wheel drive shaft and on the side remote from the internal combustion engine with respect to the connecting portion of the second motor generator MG2. In terms of the description of FIG. 1,
It is a part of a propeller shaft 11 forming a part of a wheel drive shaft, and is provided on a side farther from an internal combustion engine than a gear 15 forming a connecting portion of MG2. The transmission 101 may also have two or three gears, may further include a reverse gear, and may be as shown in FIG.

【0032】図5のハイブリッド車駆動構造に於いて、
変速機101が3段の変速を与えるようになっていると
すると、車速対車軸トルクの座標系に於ける変速段に応
じたトルクの分担領域は、同じく従来の変速段切り換え
の概念に従えば、かかる変速機がない場合の図3に比し
て、例えば、図8の如く変更されてよい。この線図に於
いては、領域B1、B2、B3が、それぞれ変速機を第
1速段、第2速段、第3速段にすることにより内燃機関
よって賄われるトルクの大きさを示し、領域C1、C
2、C3が、それぞれ変速機を第1速段、第2速段、第
3速段にすることによりMG2によって賄われるトルク
の大きさを示している。この場合にも、図8より分かる
通り、MG2に求められる最大トルクは、図3の場合に
比して大幅に低減される。
In the hybrid vehicle drive structure of FIG.
Assuming that the transmission 101 is configured to provide three speeds, the torque sharing region corresponding to the speed in the vehicle speed versus axle torque coordinate system is also the same as in the conventional concept of speed change. As compared with FIG. 3 in the case where there is no such transmission, for example, it may be changed as shown in FIG. In this diagram, regions B1, B2, and B3 represent the magnitudes of torques provided by the internal combustion engine by setting the transmission to the first speed, the second speed, and the third speed, respectively. Area C1, C
Reference numerals 2 and C3 represent the magnitudes of the torques covered by the MG2 by setting the transmission to the first speed, the second speed, and the third speed, respectively. Also in this case, as can be seen from FIG. 8, the maximum torque required for the MG2 is significantly reduced as compared with the case of FIG.

【0033】しかし、本発明は、図4および図5に示さ
れている如きハイブリッド車駆動構造を、車速に対応し
た車軸トルク要求を示す車速対車軸トルクの座標系で見
て、それぞれ図9および図10に示すよう変速段に応じ
た分担にして運転することを提案するものである。即
ち、いずれの場合にも、かかる車速対車軸トルクの座標
系で見て、線Aにて縁取られた運転可能領域内を車軸ト
ルク要求値の大きさに応じて車速軸に平行な境界線によ
り仕切るものである。これは、図9の場合には、変速機
が第3速段に切り換えられているときには、車速に対応
して領域B3と領域Cとを加算した大きさの車軸トルク
を賄うことができ、変速機が第2速段に切り換えられて
いるときには、更にそれに車速に対応して領域B2を加
算した大きさの車軸トルクを賄うことができ、変速機が
第1速段に切り換えられているときには、更にそれに車
速に対応して領域B1を加算した大きさの車軸トルクを
賄うことができることを意味する。
However, according to the present invention, the hybrid vehicle drive structure as shown in FIGS. 4 and 5 is viewed in the coordinate system of the vehicle speed versus the axle torque indicating the axle torque demand corresponding to the vehicle speed, and FIGS. As shown in FIG. 10, it is proposed to drive the vehicles in proportion to the shift speed. That is, in any case, when viewed in the coordinate system of the vehicle speed versus the axle torque, the inside of the drivable area bordered by the line A is defined by the boundary line parallel to the vehicle speed axis according to the magnitude of the axle torque required value. It is a partition. This is because, in the case of FIG. 9, when the transmission is switched to the third speed, it is possible to cover the axle torque of a size obtained by adding the region B3 and the region C corresponding to the vehicle speed. When the gearbox is switched to the second gear, it is possible to further cover the axle torque having a magnitude added with the region B2 corresponding to the vehicle speed, and when the transmission is switched to the first gear, Further, it means that it is possible to cover the axle torque having a magnitude obtained by adding the region B1 corresponding to the vehicle speed.

【0034】また図10の場合には、変速機が第3速段
に切り換えられているときには、車速に対応して領域B
3と領域C3とを加算した大きさの車軸トルクを賄うこ
とができ、変速機が第2速段に切り換えられているとき
には、更にそれに車速に対応して領域B2と領域C2と
を加算した大きさの車軸トルクを賄うことができ、変速
機が第1速段に切り換えられているときには、更にそれ
に車速に対応して領域B1と領域C1とを加算した大き
さの車軸トルクを賄うことができることを意味する。こ
うすることにより、車軸の要求駆動トルクが高くない限
り、内燃機関回転数と車速の間の相違の調整は変速機の
変速段切り替えによらずとも動力配分機構により行い、
車軸の要求駆動トルクが高くなった場合にのみ変速機に
よるトルク増大機能の助けを得てこれに対処することが
できる。
Further, in the case of FIG. 10, when the transmission is switched to the third speed, the range B corresponding to the vehicle speed is obtained.
It is possible to cover the axle torque of a size obtained by adding 3 and the region C3, and when the transmission is switched to the second speed stage, a size obtained by adding the region B2 and the region C2 corresponding to the vehicle speed. Of the vehicle, and when the transmission is switched to the first gear, it is possible to further cover the axle torque of a size obtained by adding the region B1 and the region C1 corresponding to the vehicle speed. Means By doing so, unless the required drive torque of the axle is high, adjustment of the difference between the internal combustion engine speed and the vehicle speed is performed by the power distribution mechanism without depending on the gear shift of the transmission,
Only when the required drive torque of the axle becomes high can this be dealt with with the help of the torque increasing function of the transmission.

【0035】但し、図4および図5に示されている如き
ハイブリッド車駆動構造は、それぞれ図7および図8に
示すような変速区分にて運転されてもよいものである。
そこで、例えばノーマル運転モードとスポーツ運転モー
ドの如き異なる運転モードの間で切り換えができるよう
にし、運転者の好みや車輌が運転される地域の路面の起
伏状態等に応じて運転モードを切り換えて作動させるこ
とができるようにし、ノーマル運転モードのときには図
9あるいは図10に従ってハイブリッド車駆動構造を作
動させ、スポーツ運転モードのときには例えば図7ある
いは図8に従ってハイブリッド車駆動構造作動させるよ
うにしてよい。
However, the hybrid vehicle drive structure as shown in FIGS. 4 and 5 may be operated in a speed change section as shown in FIGS. 7 and 8, respectively.
Therefore, it is possible to switch between different driving modes such as a normal driving mode and a sports driving mode, and operate by switching the driving mode according to the driver's preference and the undulation state of the road surface in the area where the vehicle is driven. The hybrid vehicle drive structure may be operated according to FIG. 9 or 10 in the normal operation mode, and may be operated according to, for example, FIG. 7 or 8 in the sports operation mode.

【0036】図6に例示した如き変速機をそのクラッチ
C1、C2およびブレーキB1、B2の係合または解除
の制御により第1変段、第2変段,第3変段の間に切り
換える制御は、図には示されていないが、マイクロコン
ピュータを備え、運転者からの運転指令と車輌の運行状
態を検出する各種センサからの信号に基づいて車輌の運
転を制御する任意の公知の車輌運転制御装置によって行
われてよく、図7あるいは図8図および9あるいは図1
0の如き車速対車軸トルクの変速による車軸トルク分担
マップが与えられれば、これに沿って変速機を作動させ
ることは当業者にとって容易である。
Control for switching the transmission as shown in FIG. 6 between the first speed change step, the second speed change step, and the third speed change step by controlling the engagement or disengagement of the clutches C1, C2 and the brakes B1, B2 is performed. Although not shown in the figure, any known vehicle driving control that includes a microcomputer and controls the driving of the vehicle based on signals from various commands that detect a driving command from the driver and the operating state of the vehicle 7 or 8 and 9 or 1
Given an axle torque sharing map by shifting vehicle speed versus axle torque such as 0, it is easy for those skilled in the art to operate the transmission in accordance with this map.

【0037】また、そのような車輌運転制御装置による
図4または図5に示すハイブリッド車駆動構造の図9ま
たは図10に示す車軸トルク分担マップに沿った運転に
おいて、速度段を切り換えたときには、所定の時間が経
過するまで次の速度段への切換えを禁止することは、特
に実施例を図示するまでもなく当業者にとって自明であ
ろう。
Further, in the operation according to the axle torque sharing map shown in FIG. 9 or FIG. 10 of the hybrid vehicle drive structure shown in FIG. It will be obvious to a person skilled in the art to prohibit switching to the next speed stage until the time elapses, without needing to specifically illustrate the embodiment.

【0038】また、内燃機関とMG1およびMG2とを
遊星歯車機構にて組み合わせた図示のハイブリッド車駆
動構造より理解される通り、内燃機関がある一定の出力
状態にて運転されていて、車軸トルクの要求値が急に上
昇したとき、わざわざ変速機の変速段を低速側へ切り換
えることによって車輪駆動軸への出力トルクを増大させ
なくても、MG1またはMG2の少なくとも一方の出力
を上げることにより車軸トルク要求値の増大に対処する
ことができる。ただその場合、車軸トルク要求値の上昇
が領域B3より領域B2へあるいは領域B2より領域B
1への遷移を促すものであるときには、そのような車軸
トルクの増大は変速機の切り換えによって対処されるの
が、MG1およびMG2を定格負荷内にて運転する上で
好ましい。従って、そのような場合にMG1またはMG
2の出力増大により対処したのでは、MG1またはMG
2を定格出力以上で作動させる恐れがある。しかし、た
とえMG1またはMG2に定格出力以上の負荷をかける
ことがあっても、それが所定の時間内であれば許される
と考えられる。
Further, as understood from the illustrated hybrid vehicle drive structure in which the internal combustion engine and MG1 and MG2 are combined by the planetary gear mechanism, the internal combustion engine is operated at a certain output state and the axle torque When the required value suddenly rises, the axle torque can be increased by increasing the output of at least one of MG1 and MG2 without increasing the output torque to the wheel drive shaft by switching the shift stage of the transmission to the low speed side. It is possible to cope with an increase in the required value. However, in that case, the increase in the axle torque demand value is from region B3 to region B2 or from region B2 to region B.
It is preferable for operating MG1 and MG2 within the rated load that such an increase in axle torque is dealt with by shifting the transmission when the transition to 1 is promoted. Therefore, in such a case, MG1 or MG
The problem was dealt with by increasing the output of 2 is MG1 or MG
2 may operate above the rated output. However, even if the MG1 or MG2 is loaded with a load equal to or higher than the rated output, it is considered to be allowed as long as it is within a predetermined time.

【0039】そこで、車軸トルクの要求値が領域B3よ
り領域B2への遷移を促すよう増大したとき、所定の時
間が経過するまで変速段を切り換える代わりにMG1お
よびMG2の少なくとも一方により車軸トルクを増大さ
せるようにすれば、極く一時的な車軸トルク要求値の増
大に対し変速機が頻繁に切り換えられることを防止し、
ハイブリッド車駆動構造の運転をより滑らかで静粛なも
のとすることができる。かかるハイブリッド車駆動構造
の運転制御も、図1およびその作動に関する上記の記載
によれば、特に制御のシーケンスをフローチャート等に
より図示して説明しなくても、この技術の分野における
公知の車輌運転制御装置を用いて容易に行なえることは
当業者にとって明らかであろう。
Therefore, when the required value of the axle torque increases so as to promote the transition from the region B3 to the region B2, the axle torque is increased by at least one of MG1 and MG2 instead of switching the shift speed until a predetermined time elapses. By doing so, it is possible to prevent the transmission from being frequently switched with respect to a very temporary increase in the axle torque demand value,
The operation of the hybrid vehicle drive structure can be made smoother and quieter. According to the above description of FIG. 1 and the operation thereof, the operation control of such a hybrid vehicle drive structure is also a known vehicle operation control in the field of the present technology, even if the control sequence is not shown in the flowchart or the like and described. It will be apparent to those skilled in the art that this can be easily done with the device.

【0040】以上に於いては本発明をいくつかの実施例
について詳細に説明したが、本発明がこれらの実施例に
のみ限られるものではなく、本発明の範囲内にて他に種
々の実施例が可能であることは当業者にとって明らかで
あろう。
Although the present invention has been described in detail with reference to some embodiments in the above, the present invention is not limited to these embodiments, and various other implementations are possible within the scope of the present invention. It will be apparent to those skilled in the art that examples are possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による運転方法の対象となるハイブリッ
ド車駆動構造の原型を示す概略図。
FIG. 1 is a schematic view showing a prototype of a hybrid vehicle drive structure which is a target of a driving method according to the present invention.

【図2】図1に示すハイブリッド車駆動構造に於ける内
燃機関と二つの電動発電機MG1、MG2の回転数N
c、Ns、Nrの間の関係を示す線図。
2 is a rotational speed N of an internal combustion engine and two motor generators MG1 and MG2 in the hybrid vehicle drive structure shown in FIG.
A diagram showing the relationship between c, Ns, and Nr.

【図3】図1に示すハイブリッド車駆動構造に於いて内
燃機関および電動発電機MG2の各々により分担される
べき車軸トルクの大きさを車速に対して示す線図。
3 is a diagram showing the magnitude of axle torque to be shared by an internal combustion engine and a motor generator MG2 in the hybrid vehicle drive structure shown in FIG. 1 with respect to vehicle speed.

【図4】図1に示すハイブリッド車駆動構造について本
発明による運転方法の対象となる改良の第一の実施例を
示す概略図。
FIG. 4 is a schematic diagram showing a first embodiment of an improvement which is a target of a driving method according to the present invention with respect to the hybrid vehicle drive structure shown in FIG.

【図5】図1に示すハイブリッド車駆動構造について本
発明による運転方法の対象となる改良の第二の実施例を
示す概略図。
5 is a schematic view showing a second embodiment of the improvement targeted by the driving method according to the present invention with respect to the hybrid vehicle drive structure shown in FIG. 1. FIG.

【図6】三つの変速段と後進段とを提供する変速機の一
例を示す概略図。
FIG. 6 is a schematic diagram showing an example of a transmission that provides three shift speeds and a reverse speed.

【図7】図4に示すハイブリッド車駆動構造に於いて、
変速機が従来の変速態様にて作動される場合の内燃機関
および電動発電機MG2の各々により分担されるべき車
軸トルクの大きさを車速に対して示す線図。
FIG. 7 is a block diagram of the hybrid vehicle drive structure shown in FIG.
FIG. 9 is a diagram showing the magnitude of axle torque to be shared by each of the internal combustion engine and the motor generator MG2 with respect to the vehicle speed when the transmission is operated in the conventional shift mode.

【図8】図5に示すハイブリッド車駆動構造に於いて、
変速機が従来の変速態様にて作動される場合の内燃機関
および電動発電機MG2の各々により分担されるべき車
軸トルクの大きさを車速に対して示す線図。
FIG. 8 is a view showing the hybrid vehicle drive structure shown in FIG.
FIG. 9 is a diagram showing the magnitude of axle torque to be shared by each of the internal combustion engine and the motor generator MG2 with respect to the vehicle speed when the transmission is operated in the conventional shift mode.

【図9】図4に示すハイブリッド車駆動構造に於いて、
変速機が本発明の変速態様にて作動される場合の内燃機
関および電動発電機MG2の各々により分担されるべき
車軸トルクの大きさを車速に対して示す線図。
9 is a view showing the hybrid vehicle drive structure shown in FIG.
FIG. 6 is a diagram showing the magnitude of axle torque to be shared by each of the internal combustion engine and the motor generator MG2 with respect to the vehicle speed when the transmission is operated in the shift mode of the present invention.

【図10】図5に示すハイブリッド車駆動構造に於い
て、変速機が本発明の変速態様にて作動される場合の内
燃機関および電動発電機MG2の各々により分担される
べき車軸トルクの大きさを車速に対して示す線図。
FIG. 10 is a magnitude of axle torque to be shared by each of the internal combustion engine and the motor generator MG2 when the transmission is operated in the speed change mode of the present invention in the hybrid vehicle drive structure shown in FIG. FIG.

【符号の説明】[Explanation of symbols]

1…内燃機関 2…内燃機関の出力軸 3…遊星歯車装置 4…サンギヤ 5…リングギヤ 6…プラネタリピニオン 7…キャリア 8…第一の電動発電機(MG1) 9…コイル 10…回転子 11…プロペラ軸 12…第二の電動発電機(MG2) 13…コイル 14…回転子 15,16…歯車 17…ディファレンシャル装置 18…車軸 19…車輪 20…サンギヤ 22…リングギヤ 24…プラネタリピニオンヤ 26…キャリア 21…サンギヤ 23…リングギヤ 25…プラネタリピニオン 27…キャリア 28,29…クラッチ 28,29…ブレーキ 32…ワンウェイクラッチ 100,101…変速機 1 ... Internal combustion engine 2 ... Output shaft of internal combustion engine 3 ... Planetary gear device 4 ... Sun gear 5 ... Ring gear 6 ... Planetary pinion 7 ... Career 8 ... First motor generator (MG1) 9 ... Coil 10 ... rotor 11 ... Propeller shaft 12 ... Second motor generator (MG2) 13 ... Coil 14 ... rotor 15, 16 ... Gears 17 ... Differential device 18 ... Axle 19 ... Wheels 20 ... Sun gear 22 ... Ring gear 24 ... Planetary Pinionya 26 ... Career 21 ... Sun gear 23 ... Ring gear 25 ... Planetary pinion 27 ... Career 28, 29 ... Clutch 28, 29 ... Brakes 32 ... One-way clutch 100, 101 ... Transmission

フロントページの続き Fターム(参考) 3D039 AA04 AB27 AC39 3J552 MA02 NA01 NB08 PA59 SB12 SB13 SB22 VA70W 5H115 PA11 PC06 PG04 PI16 PO02 PU21 PU24 PU27 RE13 SE04 SE08 Continued front page    F-term (reference) 3D039 AA04 AB27 AC39                 3J552 MA02 NA01 NB08 PA59 SB12                       SB13 SB22 VA70W                 5H115 PA11 PC06 PG04 PI16 PO02                       PU21 PU24 PU27 RE13 SE04                       SE08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の出力軸が動力分配機構を経て第
一の電動発電機と車輪駆動軸とに連結され、該車輪駆動
軸に第二の電動発電機が連結され、前記車輪駆動軸の途
中に変速機が設けられたハイブリッド車駆動構造の運転
方法にして、前記変速機を所定の高速段に設定し、前記
内燃機関を高燃費にて運転して車軸トルク要求値に対応
できる限り、車速の変化に拘わらず該高速段を保持して
運転することを特徴とするハイブリッド車駆動構造運転
方法。
1. An output shaft of an internal combustion engine is connected to a first motor generator and a wheel drive shaft via a power distribution mechanism, a second motor generator is connected to the wheel drive shaft, and the wheel drive shaft is connected. As long as it is possible to meet the axle torque required value by setting the transmission to a predetermined high-speed stage and operating the internal combustion engine with high fuel efficiency, a method of operating a hybrid vehicle drive structure in which a transmission is provided in the middle of A method for operating a hybrid vehicle drive structure, characterized in that the vehicle is operated while holding the high speed stage regardless of changes in the vehicle speed.
【請求項2】前記変速機を前記高速段に設定した状態で
は車軸トルク要求値に対応できないが、前記変速機を前
記高速段に次ぐ下の変速段に設定すれば車軸トルク要求
値に対応できる限り、車速の変化に拘わらず前記変速機
を該高速段に次ぐ下の変速段に保持して運転することを
特徴とする請求項1に記載のハイブリッド車駆動構造運
転方法。
2. The axle torque request value cannot be met when the transmission is set to the high speed stage, but the axle torque demand value can be met if the transmission is set to the next lower speed stage after the high speed stage. As long as possible, the hybrid vehicle drive structure operating method according to claim 1, wherein the transmission is operated while being held at a gear next to the high speed regardless of changes in the vehicle speed.
【請求項3】前記変速機を前記高速段に次ぐ下の変速段
に設定した状態では車軸トルク要求値に対応できない
が、前記変速機を前記高速段に次ぐ下の変速段に次ぐ下
の変速段に設定すれば車軸トルク要求値に対応できる限
り、車速の変化に拘わらず前記変速機を該高速段に次ぐ
下の変速段に次ぐ下の変速段に保持して運転することを
特徴とする請求項2に記載のハイブリッド車駆動構造運
転方法。
3. When the transmission is set to a gear next to the high speed, it cannot meet the required axle torque value, but the gear is shifted to the next lower speed after the high speed. If it is set to a gear, as long as it is possible to meet the axle torque demand value, the transmission is held at the gear next to the gear next to the high gear regardless of the change in the vehicle speed, and is operated. The hybrid vehicle drive structure operating method according to claim 2.
【請求項4】前記変速機の速度段を切り換えたときに
は、所定の時間が経過するまで次の速度段の切換えを禁
止することを特徴とする請求項1〜3のいずれかに記載
のハイブリッド車駆動構造運転方法。
4. The hybrid vehicle according to claim 1, wherein when the speed stage of the transmission is switched, the switching of the next speed stage is prohibited until a predetermined time elapses. Drive structure operating method.
【請求項5】車軸トルクの要求値に対応するのに変速段
の変更を要するとき、所定の時間以内に限り変速段の変
更に代えて前記第一および第二の電動発電機の少なくと
も一方の出力変更により対応することを特徴とする請求
項1〜4のいずれかに記載のハイブリッド車駆動構造運
転方法。
5. When it is necessary to change the shift speed in order to correspond to the required value of the axle torque, at least one of the first and second motor generators is replaced with the change of the shift speed only within a predetermined time. The hybrid vehicle drive structure operating method according to any one of claims 1 to 4, characterized in that the output is changed.
【請求項6】ノーマル運転モードとスポーツ運転モード
との間に切り換えられ、前記スポーツ運転モードに切り
替えられたときには、前記変速機を車速の変化に拘わら
ず前記高速段を保持することを解除することを特徴とす
る請求項1〜5のいずれかに記載のハイブリッド車駆動
構造運転方法。
6. Switching between a normal driving mode and a sports driving mode, and when the sports driving mode is switched, releasing the transmission from holding the high speed stage regardless of changes in the vehicle speed. The hybrid vehicle drive structure operating method according to any one of claims 1 to 5.
JP2001323931A 2001-10-22 2001-10-22 Driving method of hybrid vehicle drive structure with transmission Expired - Lifetime JP3757845B2 (en)

Priority Applications (19)

Application Number Priority Date Filing Date Title
JP2001323931A JP3757845B2 (en) 2001-10-22 2001-10-22 Driving method of hybrid vehicle drive structure with transmission
US10/261,411 US7223200B2 (en) 2001-10-22 2002-10-02 Hybrid-vehicle drive system and operation method with a transmission
CA002406817A CA2406817C (en) 2001-10-22 2002-10-08 Hybrid-vehicle drive system and operation method with a transmission
CA2704802A CA2704802C (en) 2001-10-22 2002-10-08 Hybrid-vehicle drive system with a transmission
CA002548815A CA2548815C (en) 2001-10-22 2002-10-08 Hybrid-vehicle drive system and operation method with a transmission
CA2632448A CA2632448C (en) 2001-10-22 2002-10-08 Operation method of a hybrid-vehicle drive system with a transmission
CA2704805A CA2704805A1 (en) 2001-10-22 2002-10-08 Hybrid-vehicle drive system with a transmission
CA2704804A CA2704804C (en) 2001-10-22 2002-10-08 Hybrid-vehicle drive system with a transmission
ES02023460T ES2269583T3 (en) 2001-10-22 2002-10-21 HYBRID TRANSMISSION SYSTEM OF A VEHICLE AND METHOD OF OPERATION WITH A TRANSMISSION.
ES04028726T ES2308093T3 (en) 2001-10-22 2002-10-21 METHOD OF OPERATION OF A MOTOR SYSTEM OF A HYBRID VEHICLE.
EP02023460A EP1304248B1 (en) 2001-10-22 2002-10-21 Hybrid-vehicle drive system and operation method with a transmission
DE60223850T DE60223850T2 (en) 2001-10-22 2002-10-21 Method for operating a drive system of a hybrid vehicle
ES04028725T ES2294422T3 (en) 2001-10-22 2002-10-21 METHOD OF OPERATION OF A TRACTION SYSTEM FOR HYBRID VEHICLE.
EP04028726A EP1520743B1 (en) 2001-10-22 2002-10-21 Method of operating a hybrid-vehicle drive system
EP04028725A EP1514716B1 (en) 2001-10-22 2002-10-21 Method of operating a hybrid-vehicle drive system
DE60214104T DE60214104T2 (en) 2001-10-22 2002-10-21 Drive system for hybrid vehicle and method of operation with a transmission
DE60227711T DE60227711D1 (en) 2001-10-22 2002-10-21 Method for operating a drive system of a hybrid vehicle
CNB021471347A CN1286681C (en) 2001-10-22 2002-10-22 Mixed power vehicle drive system with speed changing box and operating method
KR10-2002-0064574A KR100501062B1 (en) 2001-10-22 2002-10-22 Hybrid-vehicle drive system and operation method with a transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001323931A JP3757845B2 (en) 2001-10-22 2001-10-22 Driving method of hybrid vehicle drive structure with transmission

Publications (2)

Publication Number Publication Date
JP2003130202A true JP2003130202A (en) 2003-05-08
JP3757845B2 JP3757845B2 (en) 2006-03-22

Family

ID=19140746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001323931A Expired - Lifetime JP3757845B2 (en) 2001-10-22 2001-10-22 Driving method of hybrid vehicle drive structure with transmission

Country Status (1)

Country Link
JP (1) JP3757845B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005304229A (en) * 2004-04-14 2005-10-27 Nissan Motor Co Ltd Control device for coping with motor failure of hybrid vehicle
WO2006030948A1 (en) * 2004-09-14 2006-03-23 Toyota Jidosha Kabushiki Kaisha Drive device for vehicle
JP2006089003A (en) * 2004-09-27 2006-04-06 Toyota Motor Corp Driving device for vehicle
US7219757B2 (en) 2003-06-23 2007-05-22 Nissan Motor Co., Ltd. Mode transfer control apparatus and method for hybrid vehicle
US7226385B2 (en) 2004-06-03 2007-06-05 Toyota Jidosha Kabushiki Kaisha Control apparatus for controlling driving device of vehicle
US7252619B2 (en) 2004-02-25 2007-08-07 Toyota Jidosha Kabushiki Kaisha Control device for vehicular drive system
US7322902B2 (en) 2004-05-10 2008-01-29 Toyota Jidosha Kabushiki Kaisha Control device for vehicular transmission mechanism
CN100377901C (en) * 2004-05-10 2008-04-02 丰田自动车株式会社 Control device for vehicular transmission mechanism
US7396316B2 (en) 2004-04-27 2008-07-08 Toyota Jidosha Kabushiki Kaisha Control device for vehicular drive system
US7503870B2 (en) 2005-05-26 2009-03-17 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicular drive system
US7544140B2 (en) 2006-01-03 2009-06-09 Toyota Jidosha Kabushiki Kaisha Control device for vehicular drive system
JP2009132190A (en) * 2007-11-28 2009-06-18 Toyota Motor Corp Controller for hybrid vehicle
US7618343B2 (en) 2005-05-27 2009-11-17 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicular drive system
US7822524B2 (en) 2003-12-26 2010-10-26 Toyota Jidosha Kabushiki Kaisha Vehicular drive system
US7935021B2 (en) 2004-10-27 2011-05-03 Toyota Jidosha Kabushiki Kaisha Controller apparatus for vehicular device system
US7942775B2 (en) 2004-09-27 2011-05-17 Toyota Jidosha Kabushiki Kaisha Drive apparatus for vehicle
DE112005000456B4 (en) * 2004-02-26 2011-07-14 Toyota Jidosha Kabushiki Kaisha, Aichi-ken Control device for vehicle drive system
US8187143B2 (en) 2007-05-29 2012-05-29 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicular drive system
US8360928B2 (en) 2004-09-27 2013-01-29 Toyota Jidosha Kabushiki Kaisha Drive apparatus for vehicle
CN108001183A (en) * 2016-10-31 2018-05-08 比亚迪股份有限公司 Power drive system and there is its vehicle

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7219757B2 (en) 2003-06-23 2007-05-22 Nissan Motor Co., Ltd. Mode transfer control apparatus and method for hybrid vehicle
EP2375103A1 (en) 2003-12-26 2011-10-12 Toyota Jidosha Kabushiki Kaisha Vehicular drive system
US7848858B2 (en) 2003-12-26 2010-12-07 Toyota Jidosha Kabushiki Kaisha Vehicular drive system
US7822524B2 (en) 2003-12-26 2010-10-26 Toyota Jidosha Kabushiki Kaisha Vehicular drive system
US7252619B2 (en) 2004-02-25 2007-08-07 Toyota Jidosha Kabushiki Kaisha Control device for vehicular drive system
US8135522B2 (en) 2004-02-26 2012-03-13 Toyota Jidosha Kabushiki Kaisha Control device for vehicular drive system
DE112005000456B4 (en) * 2004-02-26 2011-07-14 Toyota Jidosha Kabushiki Kaisha, Aichi-ken Control device for vehicle drive system
JP2005304229A (en) * 2004-04-14 2005-10-27 Nissan Motor Co Ltd Control device for coping with motor failure of hybrid vehicle
US7513847B2 (en) 2004-04-27 2009-04-07 Toyota Jidosha Kabushiki Kaisha Control device for vehicular drive system
US7396316B2 (en) 2004-04-27 2008-07-08 Toyota Jidosha Kabushiki Kaisha Control device for vehicular drive system
CN100377901C (en) * 2004-05-10 2008-04-02 丰田自动车株式会社 Control device for vehicular transmission mechanism
DE102005021582B4 (en) 2004-05-10 2022-06-23 Toyota Jidosha Kabushiki Kaisha Vehicle power transmission mechanism control device
US7322902B2 (en) 2004-05-10 2008-01-29 Toyota Jidosha Kabushiki Kaisha Control device for vehicular transmission mechanism
US7226385B2 (en) 2004-06-03 2007-06-05 Toyota Jidosha Kabushiki Kaisha Control apparatus for controlling driving device of vehicle
DE102005025654B4 (en) 2004-06-03 2022-06-30 Toyota Jidosha Kabushiki Kaisha Control device for controlling the driving device of a vehicle
CN100427813C (en) * 2004-06-03 2008-10-22 丰田自动车株式会社 Control apparatus for controlling driving device of vehicle
WO2006030948A1 (en) * 2004-09-14 2006-03-23 Toyota Jidosha Kabushiki Kaisha Drive device for vehicle
US7766778B2 (en) 2004-09-14 2010-08-03 Toyota Jidosha Kabushiki Kaisha Drive device for vehicle
US7942775B2 (en) 2004-09-27 2011-05-17 Toyota Jidosha Kabushiki Kaisha Drive apparatus for vehicle
JP2006089003A (en) * 2004-09-27 2006-04-06 Toyota Motor Corp Driving device for vehicle
US8360928B2 (en) 2004-09-27 2013-01-29 Toyota Jidosha Kabushiki Kaisha Drive apparatus for vehicle
US7935021B2 (en) 2004-10-27 2011-05-03 Toyota Jidosha Kabushiki Kaisha Controller apparatus for vehicular device system
DE112005002717B4 (en) 2004-10-27 2019-07-18 Toyota Jidosha Kabushiki Kaisha Control device for vehicle drive system
US7503870B2 (en) 2005-05-26 2009-03-17 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicular drive system
US7618343B2 (en) 2005-05-27 2009-11-17 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicular drive system
US7544140B2 (en) 2006-01-03 2009-06-09 Toyota Jidosha Kabushiki Kaisha Control device for vehicular drive system
US8187143B2 (en) 2007-05-29 2012-05-29 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicular drive system
JP2009132190A (en) * 2007-11-28 2009-06-18 Toyota Motor Corp Controller for hybrid vehicle
CN108001183A (en) * 2016-10-31 2018-05-08 比亚迪股份有限公司 Power drive system and there is its vehicle
CN108001183B (en) * 2016-10-31 2020-02-21 比亚迪股份有限公司 Power transmission system and vehicle with same

Also Published As

Publication number Publication date
JP3757845B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
JP2003127681A (en) Hybrid vehicle drive structure with transmission
JP2003130202A (en) Method for operating hybrid vehicle driving structure with transmission
CA2704802C (en) Hybrid-vehicle drive system with a transmission
JP3852321B2 (en) HV drive structure and method with cranking support torque increasing means
US9758159B2 (en) Power transmission device for vehicle
JP3852322B2 (en) Driving method of hybrid vehicle drive structure with transmission
CN109720333B (en) Control device for hybrid vehicle
US9562481B2 (en) Drive system for hybrid vehicle
JP5935942B2 (en) Vehicle transmission and control device
JP6972905B2 (en) Vehicle control device
JP6458770B2 (en) Hybrid car
JP2019026149A (en) Vehicle automatic driving control device
KR20190129005A (en) Speed change control system for vehicle
JP2017154511A (en) Driving device for vehicle
JP2007118726A (en) Controller of power transmission device
JP2019026150A (en) Vehicular control apparatus
JP3747842B2 (en) Driving method of hybrid vehicle drive structure equipped with transmission
CA2548815C (en) Hybrid-vehicle drive system and operation method with a transmission
KR100624130B1 (en) The continuously variable transmission of hybrid emussion vehicleas
JP2003166633A (en) Method of operating hybrid vehicle driving structure with transmission
JP2003212005A (en) Operating method for hybrid vehicle driving structure with transmission
Mi et al. Advanced HEV Architectures and Dynamics of HEV Powertrain

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3757845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

EXPY Cancellation because of completion of term