JP2003129462A - Method for evaluating coefficient of earth pressure at rest of ground into which pile or sand compaction pile is driven, and method for evaluating coefficient of earth pressure at rest of sand compaction pile itself in ground into which sand compaction pile is driven - Google Patents
Method for evaluating coefficient of earth pressure at rest of ground into which pile or sand compaction pile is driven, and method for evaluating coefficient of earth pressure at rest of sand compaction pile itself in ground into which sand compaction pile is drivenInfo
- Publication number
- JP2003129462A JP2003129462A JP2001327946A JP2001327946A JP2003129462A JP 2003129462 A JP2003129462 A JP 2003129462A JP 2001327946 A JP2001327946 A JP 2001327946A JP 2001327946 A JP2001327946 A JP 2001327946A JP 2003129462 A JP2003129462 A JP 2003129462A
- Authority
- JP
- Japan
- Prior art keywords
- pile
- sand compaction
- earth pressure
- pressure coefficient
- ground
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、杭またはサンドコ
ンパクションパイルを地盤に打設することにより得られ
る地盤の強度の上昇を設計時に反映させ、コストダウン
に寄与させるために行なう杭またはサンドコンパクショ
ンパイル打設地盤の静止土圧係数の評価方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pile or a sand compaction pile for reflecting a rise in the strength of the ground obtained by driving a pile or a sand compaction pile on the ground at the time of designing and contributing to cost reduction. The present invention relates to a method for evaluating the static earth pressure coefficient of the placing ground.
【0002】[0002]
【従来の技術】従来、地盤中に杭またはサンドコンパク
ションパイル(SCP)を打設すれば、その地盤の静止
土圧係数(Ko )が増加し、地盤の強度が上昇すること
が一般に広く知られているが、このような利点が設計時
に取り入れられていないのが現状である。2. Description of the Related Art Conventionally, it is generally well known that when piles or sand compaction piles (SCP) are driven into the ground, the static earth pressure coefficient (K o ) of the ground is increased and the strength of the ground is increased. However, the present situation is that such advantages have not been incorporated at the time of design.
【0003】即ち、地盤の静止土圧係数(Ko )が増加
すると、地盤のせん断強度は増加することになり、この
Ko が増加することによる砂、粘土のせん断強度増加比
を、SCPが打設された複合地盤の置換え率(aS )、
即ち複合地盤のうちSCPの占める面積aS を例にとり
図7の2つの線図に示している。That is, when the static earth pressure coefficient (K o ) of the ground increases, the shear strength of the ground increases, and the increase in shear strength of sand and clay due to the increase of K o is expressed by SCP. Replacement rate (a S ) of the cast composite ground,
That is, the area a S occupied by SCP in the composite ground is shown as an example in the two diagrams of FIG. 7.
【0004】図7において、砂からなるサンドコンパク
ションパイルSCPにおいて、静止土圧係数Ko =1.
0およびaS =0.4のせん断強度は、Ko =0.4お
よびaS =0.7のせん断強度にほぼ等しく、また正規
圧密粘土において、静止土圧係数Ko =1.0のせん断
強度は、Ko =0.5のせん断強度の約1.5倍に達す
る。In FIG. 7, in a sand compaction pile SCP made of sand, a static earth pressure coefficient K o = 1.
A shear strength of 0 and a s = 0.4 is approximately equal to a shear strength of K o = 0.4 and a s = 0.7, and in the normally consolidated clay a static earth pressure coefficient of K o = 1.0. The shear strength reaches about 1.5 times that of K o = 0.5.
【0005】即ち、静止土圧係数Ko の増加を適切に評
価することにより、置換え率aS は0.7から0.4ま
で低減できる可能性があるにも拘らず、現在のところ、
Ko増加の適切な評価方法と、設計への簡便な適用方法
は現在のところ未だ確立されていない。That is, although the replacement rate a S may be reduced from 0.7 to 0.4 by appropriately evaluating the increase in the static earth pressure coefficient K o , at present,
An appropriate method for evaluating K o increase and a simple method for applying it to design have not yet been established.
【0006】このような静止土圧係数の増加を適切に評
価して設計に適切に適用すれば、当然関連工事のコスト
ダウンに寄与できることに着目して本発明の静止土圧係
数の評価方法に到達した。[0006] The static earth pressure coefficient evaluation method of the present invention is focused on the fact that if such an increase in the static earth pressure coefficient is properly evaluated and appropriately applied to the design, it can naturally contribute to cost reduction of the related construction work. Arrived
【0007】[0007]
【発明が解決しようとする課題】本発明は、杭やサンド
コンパクションパイルを打設することによる地盤の静止
土圧係数の増加を適切に評価し、その静止土圧係数を適
切に、かつ簡便に設計に適用させるため、電気式静的コ
ーン貫入試験(CPT)と一面せん断試験(DST)と
を組合わせた静止土圧係数増加の評価を行ないうる杭ま
たはサンドコンパクションパイル打設地盤の静止土圧係
数の評価方法を提供する。DISCLOSURE OF THE INVENTION The present invention appropriately evaluates the increase in the static earth pressure coefficient of the ground due to the driving of a pile or a sand compaction pile, and the static earth pressure coefficient can be appropriately and simply calculated. Static earth pressure of piles or sand compaction piles that can be evaluated by combining static static cone penetration test (CPT) and one-way shear test (DST) for design application. A coefficient evaluation method is provided.
【0008】[0008]
【課題を解決するための手段】本発明は、施工区域内の
代表地点を選定し、電気式静的コーン貫入試験CPTを
実施して、杭またはサンドコンパクションパイル打設前
のコーン先端抵抗(q T −σVO)(0) を得、CPT実施
後、代表的地点を囲むように試験杭または試験用サンド
コンパクションパイルを複数本打設し、次いで杭または
サンドコンパクションパイル間中央部や杭またはサンド
コンパクションパイル近傍などの複数点でCPTを実施
し、杭またはサンドコンパクションパイル打設後のコー
ン先端抵抗(qT −σVO)(1) を得た後、杭またはサン
ドコンパクションパイル打設前後のコーン先端抵抗(q
T −σVO)(0) および(qT −σVO)(1) と杭またはサ
ンドコンパクションパイル打設前および打設後それぞれ
の静止土圧係数Ko(1)との関係式:SUMMARY OF THE INVENTION The present invention is directed to
Select a representative point and use the electric static cone penetration test CPT
Perform and before placing piles or sand compaction piles
Cone tip resistance (q T−σVO)(0)And CPT implementation
Later, test piles or test sands surrounding the representative points
Place multiple compaction piles, then pile or
Sand compaction Central between piles or piles or sand
Conduct CPT at multiple points near the compaction pile
The piles or sand compaction piles
Tip resistance (qT−σVO)(1)After getting the pile or sun
Cone tip resistance before and after placing compaction pile (q
T−σVO)(0)And (qT−σVO)(1)And pile or
And compaction piles before and after placing
Static earth pressure coefficient Ko (1)Relational expression with:
【0009】[0009]
【数3】 [Equation 3]
【0010】から、杭またはサンドコンパクションパイ
ル打設後の砂質地盤の静止土圧係数を算定する杭または
サンドコンパクションパイル打設地盤の静止土圧係数の
評価方法からなる。From the above, there is provided a method for evaluating a static earth pressure coefficient of a pile or a sand compaction pile driving ground for calculating a static earth pressure coefficient of a sandy ground after driving a pile or a sand compaction pile.
【0011】また本発明は、施工区域内の代表的地点を
選定し、電気式静的コーン貫入試験CPTを実施して、
サンドコンパクションパイル打設前のコーン先端抵抗
(qT−σVO)(0) を得ると同時に、同一地点で不攪乱
試料を採取し、全不攪乱試料に対して再圧縮法による一
面せん断試験DSTを実施し、サンドコンパクションパ
イル打設前の非排水せん断強度Su(B)を求め、Su(B)と
(qT −σVO)(0) の相関関係を求めた後、代表的不攪
乱試料により正規圧密状態でのDSTを実施し、正規圧
密状態のせん断強度増加率(Sun(DST) /σ' V )を求
め、次に代表的地点を囲むように試験サンドコンパクシ
ョンパイルを複数本打設し、圧密終了後、CPTを複数
点で実施し、サンドコンパクションパイル打設後のコー
ン先端抵抗(qT −σVO)(1) を得、Su(B)と(qT −
σVO)(0) の相関関係を、サンドコンパクションパイル
打設後の非排水せん断強度Su(D)と(qT −σVO)(1)
の関係に適用してSu(D)を求めた後、サンドコンパクシ
ョンパイル打設前および打設後それぞれの静止土圧係数
Ko(0)およびKo(1)とSu(D)およびSun(DST) /σ' V
との関係式:The present invention also provides for the representative points within the construction area.
Select and conduct an electric static cone penetration test CPT,
Cone tip resistance before placing sand compaction pile
(QT−σVO)(0)At the same time, get undisturbed at the same point
A sample is taken and recompressed for all undisturbed samples.
A surface shear test DST was performed and the sand compaction
Undrained shear strength S before castingu (B), Su (B)When
(QT−σVO)(0)After determining the correlation of
Perform DST in a normal consolidation state with a random sample
Increase in shear strength in dense state (Sun (DST)/ Σ' V)
Next, test sand compaction around the representative point.
Place multiple piles of piles, and after consolidation, add multiple CPTs.
At the point and after the sand compaction pile has been cast.
Tip resistance (qT−σVO)(1)Get Su (B)And (qT−
σVO)(0)The correlation of the sand compaction pile
Undrained shear strength S after castingu (D)And (qT−σVO)(1)
Apply to the relationship of Su (D)After asking for the sand compaction
Soil pressure coefficient before and after placing piles
Ko (0)And Ko (1)And Su (D)And Sun (DST)/ Σ' V
Relational expression with:
【0012】[0012]
【数4】 [Equation 4]
【0013】から、サンドコンパクションパイル打設後
の粘土地盤の静止土圧係数を算定するサンドコンパクシ
ョンパイル打設地盤の静止土圧係数の評価方法からな
り、さらに本発明は、上記したサンドコンパクションパ
イル打設後に算定した静止土圧係数を、サンドコンパク
ションパイル自体の静止土圧係数として評価するサンド
コンパクションパイル打設地盤のサンドコンパクション
パイル自体の静止土圧係数の評価方法からなり、また本
発明は、複数のサンドコンパクションパイルと粘土の境
界付近で電気式静的コーン貫入試験CPTを実施して、
得られた複数のコーン先端抵抗(qT −σVO)(1) の平
均値を求め、前記本発明の方法に従って得られる静止土
圧係数を、サンドコンパクションパイル自体の静止土圧
係数として評価するサンドコンパクションパイル打設地
盤のサンドコンパクションパイル自体の静止土圧係数の
評価方法からなる。From the above, there is provided a method for evaluating the static earth pressure coefficient of the sand compaction pile placing ground for calculating the static earth pressure coefficient of the clay ground after the sand compaction pile placing. Further, the present invention provides the above-mentioned sand compaction pile placing The static earth pressure coefficient calculated after installation, consisting of an evaluation method of the static earth pressure coefficient of the sand compaction pile itself of the sand compaction pile placing ground to evaluate as the static earth pressure coefficient of the sand compaction pile itself, and the present invention is a plurality. Conducted an electric static cone penetration test CPT near the boundary between the sand compaction pile and clay,
An average value of the obtained plurality of cone tip resistances (q T −σ VO ) (1) is obtained, and the static earth pressure coefficient obtained according to the method of the present invention is evaluated as the static earth pressure coefficient of the sand compaction pile itself. Sand compaction pile It consists of the evaluation method of the static earth pressure coefficient of the sand compaction pile itself of the ground.
【0014】[0014]
【発明の実施の形態】以下図面を参照しながら本発明の
杭またはサンドコンパクションパイル打設地盤の静止土
圧係数の評価方法を適用した実施の形態につき説明する
が、以下の説明において使用する用語とその記号および
簡単な説明を下記の表に纏めている。BEST MODE FOR CARRYING OUT THE INVENTION An embodiment to which a method for evaluating a static earth pressure coefficient of a pile or a sand compaction pile driving ground of the present invention is applied will be described below with reference to the drawings. Terms used in the following description And their symbols and a brief description are summarized in the table below.
【0015】[0015]
【表1】 [Table 1]
【0016】そこで、本発明の一実施形態における杭ま
たはSCP打設による砂地盤の静止土圧係数Ko 増加の
評価方法につき杭またはSCPが打設された砂地盤を対
象に、Ko 増加を求めるための調査と評価方法の手順を
以下の1項から5項のフローに沿って説明する。[0016] Therefore, the target sand Ground pile or SCP per evaluation method of stationary earth pressure coefficient K o increase in Sand by piles or SCP hitting set in one embodiment is pouring of the present invention, the K o increase The procedure of the survey and the evaluation method for obtaining will be described according to the flows of the following items 1 to 5.
【0017】1.施工区域全域でCPTを実施し、(q
T −σVO)(0) 、地盤構成を把握する。ただし、事前に
充分な土質調査が行われて、施工区域全域の代表的地点
が選定できる場合は不要である。1. Perform CPT in the whole construction area,
T − σ VO ) (0) , grasp the ground composition. However, it is not necessary if a sufficient soil survey is conducted in advance and a representative point in the entire construction area can be selected.
【0018】2.上記の調査から代表的地点を選定し
(必要に応じて複数点)、CPTを実施する。この際、
CPTは1点につき2回以上行なうことが好ましく、こ
のCPTの実施の状態は図1に示す通りである。この試
験より、杭1またはSCP打設前の(qT −σVO)(1)
が得られる。2. Select representative points from the above survey (multiple points if necessary) and implement CPT. On this occasion,
It is preferable to perform CPT twice or more per point, and the state of implementation of this CPT is as shown in FIG. From this test, (q T −σ VO ) before placing pile 1 or SCP (1)
Is obtained.
【0019】3.CPT実施後、代表的地点を囲むよう
に試験杭あるいは試験SCPを複数本打設する。なお、
図1に示すこの実施形態では杭1を4本打設した正方形
配置の場合であるが、三角形配置で3本打設する場合
や、多角形配置で5本以上打設する場合もあり得る。3. After the CPT, multiple test piles or test SCPs will be placed around the representative points. In addition,
In this embodiment shown in FIG. 1, four piles 1 are arranged in a square arrangement, but three piles may be arranged in a triangular arrangement or five or more piles may be arranged in a polygonal arrangement.
【0020】4.次いで、杭1まはSCP間中央部や杭
1またはSCP近傍などの複数点でCPTを実施する。
本試験より(qT −σVO)(1) が得られる。なお、(q
T −σVO)(0) と(qT −σVO)(1) の測定例を図2に
示している。4. Next, CPT is performed at a plurality of points such as the pile 1 or the central portion between the SCPs and the pile 1 or the vicinity of the SCP.
From this test, (q T −σ VO ) (1) is obtained. Note that (q
Fig. 2 shows an example of measurement of T- σ VO ) (0) and (q T- σ VO ) (1) .
【0021】5.(qT −σVO)(0) と(qT −σVO)
(1) から式(1)により、Ko(1)を算定する。ただし一
般的にはKo(0)=0.4とすることが多い。5. (Q T −σ VO ) (0) and (q T −σ VO )
From the (1) , the K o (1) is calculated by the equation (1). However, in general, K o (0) = 0.4 is often set.
【0022】[0022]
【数5】 [Equation 5]
【0023】実務上、φ増加をKo 増加に含め、式
(2)のように単純化してもよい。In practice, the φ increase may be included in the K o increase to simplify it as in equation (2).
【0024】[0024]
【数6】 [Equation 6]
【0025】なお、シルト質砂や粘土質砂のように、排
水速度の遅い地盤では、JGS1435−1995「電
気式静的コーン貫入試験方法」に示されている標準的貫
入速度(1〜2cm/s)にとらわれず、貫入中の過剰間隙
水圧が0となるような速度でCPTを実施する。For soils with slow drainage speed, such as silty sand and clay sand, the standard penetration speed (1-2 cm / s) shown in JGS1435-1995 "Electric static cone penetration test method" is used. Regardless of s), CPT is carried out at such a rate that the excess pore water pressure during penetration becomes zero.
【0026】上記の実施形態における評価方法のフロー
チャートを図3に示しており、またこの評価で得られた
杭打設後のKo(1)の具体的使用例として、次式による杭
の周面摩擦力の算定が挙げられる。A flow chart of the evaluation method in the above embodiment is shown in FIG. 3, and as a concrete example of use of K o (1) after pile driving obtained in this evaluation, the circumference of the pile according to the following equation is given. Calculation of surface friction force can be mentioned.
【0027】τ=σ' VO tanφ(1) Ko (1)
次に、本発明の他の実施形態におけるSCP打設による
粘土地盤の静止土圧係数Ko 増加の評価方法につき、S
CPが打設された粘土を対象に、Ko 増加を求めるため
の調査と評価方法の手順を以下の1項から6項のフロー
に沿って説明する。Τ = σ ′ VO tan φ (1) K o (1) Next, with respect to the evaluation method of the static earth pressure coefficient K o increase of the clay ground by SCP casting in another embodiment of the present invention, S
The procedure of the investigation and evaluation method for obtaining the increase in K o will be explained for the clay in which CP is placed, following the flow of items 1 to 6 below.
【0028】1.施工区域全域でCPTを実施し、(q
T −σVO)(0) 、地盤構成を把握する。ただし、事前に
充分な土質調査が行われて、施工区域全域の代表的地点
が設定できる場合は不要である。1. Perform CPT in the whole construction area,
T − σ VO ) (0) , grasp the ground composition. However, it is not necessary if sufficient soil surveys have been conducted in advance and representative points in the entire construction area can be set.
【0029】2.上記の調査から代表的地点を選定し
(必要に応じて複数点)、CPTを実施する。この試験
よりSCP2打設前の(qT −σVO)(0) が得られる。2. Select representative points from the above survey (multiple points if necessary) and implement CPT. From this test, (q T −σ VO ) (0) before placing SCP2 is obtained.
【0030】3.上記2項と同時に同一地点で不攪乱試
料を採取し、全不攪乱試料に対して再圧縮法によるDS
Tを実施し、Su(B)を求める。次いで、式(3)に示す
(q T −σVO)(0) とSu(B)の相関関係を求める。3. Undisturbed test at the same point at the same time as the above 2 items
Of all the undisturbed samples by the recompression method
Perform T, Su (B)Ask for. Then, shown in equation (3)
(Q T−σVO)(0)And Su (B)Find the correlation of.
【0031】[0031]
【数7】 [Equation 7]
【0032】なお、再圧縮法とは、試料を原位置の有効
土被り圧で圧密した後に試験を行う方法である。2ヶ所
の粘土から得られた(qT −σVO)(0) とSu(B)の関係
を図4に示す。両者のあいだには図に示したような良い
相関関係が通常認められる。The recompression method is a method in which the test is conducted after the sample is compacted by the in-situ effective overburden pressure. FIG. 4 shows the relationship between (q T −σ VO ) (0) obtained from two clays and Su (B) . There is usually a good correlation between them, as shown in the figure.
【0033】4.代表的な不攪乱試料により正規圧密状
態でのDSTを実施し、(Su(B)(D ST/σ' v )を求め
る。4. DST in a normal consolidation state is performed using a typical undisturbed sample, and (S u (B) (D ST / σ ′ v ) is obtained.
【0034】5.代表的地点を囲むように試験SCP2
を打設する。なお、図5に示すごとく、この実施形態で
は4本打設した場合を示しているが、三角形配置で3本
打設する場合や、多角形配置で5本以上打設する場合も
あり得る。打設による圧密が終了した後、複数点でCP
Tを図5のように実施する。本試験より、(qT −
σ VO)(1) が得られる。平均(qT −σVO)(1) と式
(3)で得られたkを用いて式(4)によりSu(D)を求
める。5. Test SCP2 around the representative points
To place. In this embodiment, as shown in FIG.
Shows the case of placing four, but three in a triangular arrangement.
When placing, or when placing 5 or more in a polygonal arrangement
possible. After finishing the consolidation by casting, CP at multiple points
Perform T as in FIG. From this test, (qT−
σ VO)(1)Is obtained. Average (qT−σVO)(1)And expression
Using k obtained in (3), S is obtained by the equation (4).u (D)Seeking
Meru.
【0035】[0035]
【数8】 [Equation 8]
【0036】6.Su(D)を用い、式(4)よりKo(1)を
算定する。ただし、Ko(0)=0.5とすることが多い。6. Using S u (D) , K o (1) is calculated from equation (4). However, it is often the case that K o (0) = 0.5.
【0037】[0037]
【数9】 [Equation 9]
【0038】上記の実施形態における評価方法のフロー
チャートを図6に示しており、この評価方法で得られた
Ko(1)の具体的使用例として、次式によるSCP打設後
の地盤に盛土を行う際の粘土地盤のせん断力の算定が挙
げられる。A flow chart of the evaluation method in the above-mentioned embodiment is shown in FIG. 6, and as a concrete use example of K o (1) obtained by this evaluation method, embankment on the ground after SCP placement by the following formula The calculation of the shear force of the clay ground when performing
【0039】[0039]
【数10】 [Equation 10]
【0040】さらに、サンドコンパクションパイルSC
P自体の静止土圧係数Ko の評価方法につき説明する
と、サンドコンパクションパイルSCPと粘土から構成
される複合地盤では、SCP自体のKo 評価も重要とな
る。SCP打設により発揮される水平応力は、図5に示
すようにSCP中心で高く、粘土地盤に向けて低下す
る。ここでは、下記の2通りの方法を、SCP自体のK
o 評価法として示す。どちらを採用するかは設計者の判
断となる。Furthermore, sand compaction pile SC
Explaining the method of evaluating the static earth pressure coefficient K o of P itself, the K o evaluation of SCP itself is also important for the composite ground composed of sand compaction pile SCP and clay. The horizontal stress exerted by the SCP casting is high at the center of the SCP and decreases toward the clay ground as shown in FIG. Here, the following two methods are used for K of SCP itself.
o As an evaluation method. It is up to the designer to decide which one to use.
【0041】A)式(5)から得られる粘土のKo(1)を
SCP自体のKo と見なす。A) The K o (1) of the clay obtained from equation (5) is considered as the K o of the SCP itself.
【0042】B)SCPと粘土の境界付近(図5のNo.
1' 〜No.4' )でCPTを実施する。平均(qT −
σVO)(1) を求め、式(4)および式(5)から得られ
るKo(1)をSCP自体のKo とする。B) Near the boundary between SCP and clay (No. in FIG. 5)
Perform CPT from 1'to No.4 '). Average (q T −
sigma VO) seek (1), equation (4) and (5) K o (1) obtained from the K o of SCP itself.
【0043】以上の通り、本発明の杭まはたサンドコン
パクションパイル打設地盤の静止土圧係数の評価方法に
おいては、実際の現場の地盤に試験的に杭1またはサン
ドコンパクションパイルSCP2を打設する前の状態を
ある決められた試験方法で試験した後、杭1またはサン
ドコンパクションパイルSCP2を打設後の状態も同じ
ような試験方法で試験し、これら打設前と打設後との結
果から、静止土圧係数Ko(0)とKo(1)とを評価しようと
するものであり、図3に示す実施形態のように砂地盤の
Ko 増加の評価を行なう場合には、電気式静的コーン貫
入試験CPTだけの試験を行って評価をする一方、図6
に示す実施形態のように粘土地盤のKo増加の評価を行
なう場合には、電気式静的コーン貫入試験CPTと一面
せん断試験DSTの2つの試験を行なって評価をするこ
とを特徴としたものである。As described above, in the method for evaluating the static earth pressure coefficient of the pile or sand compaction pile placing ground of the present invention, the pile 1 or the sand compaction pile SCP2 is experimentally placed on the actual ground. After testing the condition before the test by a certain test method, the condition after driving the pile 1 or the sand compaction pile SCP2 is also tested by the same test method, and the results before and after the driving Therefore, the static earth pressure coefficient K o (0) and K o (1) are to be evaluated, and when the increase in K o of the sand ground is evaluated as in the embodiment shown in FIG. Electrical static cone penetration test CPT only test and evaluate, while Fig. 6
In the case of evaluating the increase in K o of the clay ground as in the embodiment shown in FIG. 2, it is characterized by performing two tests, an electric static cone penetration test CPT and a one-sided shear test DST. Is.
【0044】[0044]
【発明の効果】以上に説明した本発明の杭またはサンド
コンパクションパイル打設地盤の静止土圧係数の評価方
法によれば、杭やサンドコンパクションパイルを打設す
ることによる地盤の静止土圧係数を適切に評価して、設
計に適切、かつ簡便に適用することができ、関連する工
事のコストダウンをはかることができ、工事の経済性を
高めることができる。According to the method for evaluating the static earth pressure coefficient of the pile or the sand compaction pile driving ground of the present invention described above, the static earth pressure coefficient of the ground by driving the pile or the sand compaction pile can be calculated. Appropriate evaluation can be applied to the design appropriately and easily, cost reduction of related construction can be achieved, and the economic efficiency of construction can be improved.
【図1】本発明の方法により杭またはSCP打設による
砂地盤のKo 増加の評価を行なう一実施形態における4
本の杭の打設前及び打設後のCPT試験実施位置説明図
である。FIG. 1 is a graph of 4 in one embodiment for evaluating the increase in K o of sand ground by pile or SCP driving according to the method of the present invention.
It is a CPT test implementation position explanatory drawing before and after driving of the pile of a book.
【図2】図1の実施形態における杭打込み前と後のCP
Tによる先端抵抗力を示す線図である。2 is a CP before and after driving a pile in the embodiment of FIG.
It is a diagram showing the tip resistance force by T.
【図3】図1の実施形態における評価方法のフローチャ
ートである。3 is a flowchart of an evaluation method in the embodiment of FIG.
【図4】本発明の方法によりSCP打設による粘土地盤
のKo 増加の評価を行なう他の実施形態における2ヶ所
の粘土から得られたCPTによる先端抵抗力(qT −σ
VO)(0) と非排水せん断強度Sun(DST) の関係線図であ
る。FIG. 4 Clay ground by SCP casting by the method of the present invention
KoTwo places in another embodiment for evaluating the increase
Tip resistance (qT−σ
VO)(0)And undrained shear strength Sun (DST)Is a relationship diagram of
It
【図5】本発明の方法によりSCP打設による粘土地盤
のKo 増加の評価を行う一実施形態における4本のSC
Pの打設前及び打設後のCPT試験実施位置の説明図で
ある。FIG. 5: 4 SCs in one embodiment for evaluating K o increase of clay ground by SCP casting by the method of the present invention
It is explanatory drawing of the CPT test implementation position before and after the placement of P.
【図6】図5の実施形態における評価方法のフローチャ
ートである。6 is a flowchart of an evaluation method in the embodiment of FIG.
【図7】地盤のKo が増加することによる砂、粘土のせ
ん断強度増加比を、SCPが打設された複合地盤の置換
え率で示す線図である。FIG. 7 is a diagram showing a shear strength increase ratio of sand and clay due to an increase in K o of the ground, as a replacement rate of the composite ground on which SCP is placed.
1 杭 2 SCP 1 pile 2 SCP
Claims (4)
静的コーン貫入試験CPTを実施して、杭またはサンド
コンパクションパイル打設前のコーン先端抵抗(qT −
σVO)(0) を得、CPT実施後、代表的地点を囲むよう
に試験杭または試験用サンドコンパクションパイルを複
数本打設し、次いで杭またはサンドコンパクションパイ
ル間中央部や杭またはサンドコンパクションパイル近傍
などの複数点でCPTを実施し、杭またはサンドコンパ
クションパイル打設後のコーン先端抵抗(qT −σVO)
(1) を得た後、杭またはサンドコンパクションパイル打
設前後のコーン先端抵抗(qT −σVO)(0) および(q
T −σVO)(1) と杭またはサンドコンパクションパイル
打設前および打設後それぞれの静止土圧係数Ko( 0)とK
o(1)との関係式: 【数1】 から、杭またはサンドコンパクションパイル打設後の砂
質地盤の静止土圧係数を算定する杭またはサンドコンパ
クションパイル打設地盤の静止土圧係数の評価方法。1. A representative point in a construction area is selected, an electric static cone penetration test CPT is performed, and a cone tip resistance (q T − before placing a pile or sand compaction pile).
σ VO ) (0) is obtained, and after CPT is performed, multiple test piles or sand compaction piles for test are placed so as to surround a typical point, and then the central portion between piles or sand compaction piles or piles or sand compaction piles are placed. performed CPT at a plurality of points, such as near, corn tip resistance of piles or sand compaction pile droplet after casting (q T -σ VO)
After obtaining (1) , the cone tip resistance (q T −σ VO ) before and after placing the pile or sand compaction pile (q T −σ VO ) (0) and (q
T −σ VO ) (1) and static earth pressure coefficient K o ( 0) and K before and after driving the pile or sand compaction pile
Relational expression with o (1) : To calculate the static soil pressure coefficient of sandy ground after pile or sand compaction pile driving.
式静的コーン貫入試験CPTを実施して、サンドコンパ
クションパイル打設前のコーン先端抵抗(q T −σVO)
(0) を得ると同時に、同一地点で不攪乱試料を採取し、
全不攪乱試料に対して再圧縮法による一面せん断試験D
STを実施し、サンドコンパクションパイル打設前の非
排水せん断強度Su(B)を求める、Su(B)と(qT −
σVO)(0)の相関関係を求めた後、代表的不攪乱試料に
より正規圧密状態でのDSTを実施し、正規圧密状態の
せん断強度増加率(Sun(DST) /σ' V )を求め、次に
代表的地点を囲むように試験サンドコンパクションパイ
ルを複数本打設し、圧密終了後、CPTを複数点で実施
し、サンドコンパクションパイル打設後のコーン先端抵
抗(qT −σVO)(1) を得、Su(B)と(qT −σVO)
(0) の相関関係を、サンドコンパクションパイル打設後
の非排水せん断強度Su(D)と(qT −σVO)(1)の関係
に適用してSu(D)を求めた後、サンドコンパクションパ
イル打設前および打設後それぞれの静止土圧係数Ko(0)
およびKo(1)とSu(D)およびSun(DST) /σ' V との関
係式: 【数2】 から、サンドコンパクションパイル打設後の粘土地盤の
静止土圧係数を算定するサンドコンパクションパイル打
設地盤の静止土圧係数の評価方法。2. A representative point in the construction area is selected and electricity is selected.
Type Cone Penetration Test CPT
Cone tip resistance (q T−σVO)
(0)At the same time, obtain undisturbed sample at the same point,
Single shear test by recompression method for all undisturbed samples D
Perform ST and make sure that the sand compaction pile is not
Drainage shear strength Su (B)Ask for, Su (B)And (qT−
σVO)(0)After obtaining the correlation of
Performing DST in a more regular consolidated state,
Shear strength increase rate (Sun (DST)/ Σ' V), Then
Test sand compaction pie surrounding a representative site
Multiple Cements are placed, CPT is performed at multiple points after consolidation is completed
The cone tip resistance after sand compaction pile placement.
Anti (qT−σVO)(1)Get Su (B)And (qT−σVO)
(0)After placing the sand compaction pile,
Undrained shear strength S ofu (D)And (qT−σVO)(1)connection of
Apply to Su (D)After asking for
Static earth pressure coefficient K before and after placing the pileo (0)
And Ko (1)And Su (D)And Sun (DST)/ Σ' VSeki
Engagement: [Equation 2] From the clay ground after placing the sand compaction pile
Sand compaction pile driving to calculate static earth pressure coefficient
Evaluation method of static earth pressure coefficient of ground.
定した請求項2記載の静止土圧係数を、サンドコンパク
ションパイル自体の静止土圧係数として評価するサンド
コンパクションパイル打設地盤のサンドコンパクション
パイル自体の静止土圧係数の評価方法。3. The static soil pressure coefficient of claim 2 calculated after placing the sand compaction pile is evaluated as the static soil pressure coefficient of the sand compaction pile itself. Evaluation method of pressure coefficient.
土の境界付近で電気式静的コーン貫入試験CPTを実施
して、得られた複数のコーン先端抵抗(qT−σVO)
(1) の平均値を求め、請求項2または3記載の方法に従
って得られる静止土圧係数を、サンドコンパクションパ
イル自体の静止土圧係数として評価するサンドコンパク
ションパイル打設地盤のサンドコンパクションパイル自
体の静止土圧係数の評価方法。4. A plurality of cone tip resistances (q T −σ VO ) obtained by conducting an electric static cone penetration test CPT near the boundary between a plurality of sand compaction piles and clay.
The average value of (1) is obtained, and the static earth pressure coefficient obtained according to the method of claim 2 or 3 is evaluated as the static earth pressure coefficient of the sand compaction pile itself. Evaluation method of static earth pressure coefficient.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001327946A JP3952138B2 (en) | 2001-10-25 | 2001-10-25 | Evaluation method of static earth pressure coefficient of pile or sand compaction pile placement ground and evaluation method of static earth pressure coefficient of sand compaction pile itself of sand compaction pile placement ground |
SG200201373A SG103848A1 (en) | 2001-10-25 | 2002-03-08 | Evaluation method of coefficient of earth pressure at rest in pile or sand compaction pile driving ground and evaluation method of coefficient of earth pressure at rest in the sand compaction pile itself of the sand compaction pile driving ground |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001327946A JP3952138B2 (en) | 2001-10-25 | 2001-10-25 | Evaluation method of static earth pressure coefficient of pile or sand compaction pile placement ground and evaluation method of static earth pressure coefficient of sand compaction pile itself of sand compaction pile placement ground |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003129462A true JP2003129462A (en) | 2003-05-08 |
JP3952138B2 JP3952138B2 (en) | 2007-08-01 |
Family
ID=19144097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001327946A Expired - Fee Related JP3952138B2 (en) | 2001-10-25 | 2001-10-25 | Evaluation method of static earth pressure coefficient of pile or sand compaction pile placement ground and evaluation method of static earth pressure coefficient of sand compaction pile itself of sand compaction pile placement ground |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3952138B2 (en) |
SG (1) | SG103848A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102330423A (en) * | 2011-07-20 | 2012-01-25 | 山西潞安矿业(集团)有限责任公司 | Method for evaluating stability of newly built railway foundation on goaf |
CN102864766A (en) * | 2012-08-22 | 2013-01-09 | 江苏省电力设计院 | Liquefaction judgment method based on standard penetration and static cone penetration test correlation |
CN103422484A (en) * | 2013-07-15 | 2013-12-04 | 西南交通大学 | Method for evaluating ground coefficient K30 values of high-speed railway bed coarse particle soil padding |
JP2014040743A (en) * | 2012-08-23 | 2014-03-06 | Penta Ocean Construction Co Ltd | Estimation method for ground density, management method for ground reclamation using estimation method for ground density, management method for ground compaction, and management method for caisson filling |
CN104408277A (en) * | 2014-09-28 | 2015-03-11 | 沈阳大学 | Method for predicting, preventing and controlling earth surface residual movement and deformation caused by newly-built building in mine lot |
CN105155500A (en) * | 2015-08-03 | 2015-12-16 | 河海大学 | Rotation type static sounding detecting method for cement mixing pile |
CN108797554A (en) * | 2018-06-01 | 2018-11-13 | 华东交通大学 | A kind of reinforcing test and optimization method based on compacted effect |
JP7126592B1 (en) | 2021-06-09 | 2022-08-26 | 健 深沢 | Estimation method of undrained shear strength for cohesive soil design |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11351982A (en) * | 1998-06-10 | 1999-12-24 | Shimizu Corp | Method for estimating stress state in ground utilizing shear wave velocity |
-
2001
- 2001-10-25 JP JP2001327946A patent/JP3952138B2/en not_active Expired - Fee Related
-
2002
- 2002-03-08 SG SG200201373A patent/SG103848A1/en unknown
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102330423A (en) * | 2011-07-20 | 2012-01-25 | 山西潞安矿业(集团)有限责任公司 | Method for evaluating stability of newly built railway foundation on goaf |
CN102330423B (en) * | 2011-07-20 | 2014-04-09 | 山西潞安矿业(集团)有限责任公司 | Method for evaluating stability of newly built railway foundation on goaf |
CN102864766A (en) * | 2012-08-22 | 2013-01-09 | 江苏省电力设计院 | Liquefaction judgment method based on standard penetration and static cone penetration test correlation |
CN102864766B (en) * | 2012-08-22 | 2014-12-31 | 江苏省电力设计院 | Liquefaction judgment method based on standard penetration and static cone penetration test correlation |
JP2014040743A (en) * | 2012-08-23 | 2014-03-06 | Penta Ocean Construction Co Ltd | Estimation method for ground density, management method for ground reclamation using estimation method for ground density, management method for ground compaction, and management method for caisson filling |
CN103422484A (en) * | 2013-07-15 | 2013-12-04 | 西南交通大学 | Method for evaluating ground coefficient K30 values of high-speed railway bed coarse particle soil padding |
CN104408277A (en) * | 2014-09-28 | 2015-03-11 | 沈阳大学 | Method for predicting, preventing and controlling earth surface residual movement and deformation caused by newly-built building in mine lot |
CN105155500A (en) * | 2015-08-03 | 2015-12-16 | 河海大学 | Rotation type static sounding detecting method for cement mixing pile |
CN108797554A (en) * | 2018-06-01 | 2018-11-13 | 华东交通大学 | A kind of reinforcing test and optimization method based on compacted effect |
CN108797554B (en) * | 2018-06-01 | 2020-08-11 | 华东交通大学 | Reinforcement test and optimization method based on compaction effect |
JP7126592B1 (en) | 2021-06-09 | 2022-08-26 | 健 深沢 | Estimation method of undrained shear strength for cohesive soil design |
JP2022188550A (en) * | 2021-06-09 | 2022-12-21 | 健 深沢 | Method for estimating design undrained shear strength of cohesive soil |
Also Published As
Publication number | Publication date |
---|---|
JP3952138B2 (en) | 2007-08-01 |
SG103848A1 (en) | 2004-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Carrubba | Skin friction on large-diameter piles socketed into rock | |
Dammala et al. | Dynamic soil properties and liquefaction potential of northeast Indian soil for non-linear effective stress analysis | |
Nicolai et al. | Small-scale testing of cyclic laterally loaded monopiles in dense saturated sand | |
Sivakumar et al. | Granular anchors under vertical loading–axial pull | |
JP2003129462A (en) | Method for evaluating coefficient of earth pressure at rest of ground into which pile or sand compaction pile is driven, and method for evaluating coefficient of earth pressure at rest of sand compaction pile itself in ground into which sand compaction pile is driven | |
Flynn et al. | Shaft resistance of driven cast-in-situ piles in sand | |
Tilak et al. | Pullout capacity of multi-plate horizontal anchors in sand: an experimental study | |
Fellenius | Pile foundations | |
Awwad et al. | A comparison of numerical simulation models to determine the location of the neutral plane | |
Amoroso | G-γ decay curves by seismic dilatometer (SDMT) | |
Johansson et al. | Equivalent linear pseudostatic and dynamic modelling of vertically vibrating monopile | |
CN105956282B (en) | A kind of calculation method improving saturated soil foundation dynamic consolidation construction efficiency | |
Le et al. | Modelling the behaviour of the Ballina test embankment | |
Togliani et al. | CPT/CPTu pile capacity prediction methods–question time | |
Rabarijoely et al. | Simultaneous interpretation of CPT/DMT tests to ground characterization | |
Ruban et al. | Pile load testing of concrete belled pile and rock socket pile using the Osterberg load cell | |
JP4319935B2 (en) | Press-fit support pile and construction method and design method of press-fit support pile | |
Haberfield | Practical experience with piled raft design for tall buildings | |
Tan et al. | Design parameters of Klang clay, Malaysia | |
Bouassida et al. | Numerical Study of the behaviour of improved soft clay by stone column | |
Suzuk et al. | Two case studies of consolidation settlement analysis using constant rate of strain consolidation test | |
Mohammadi et al. | Unit Skin Friction from the Extended Dynamic Cone Penetrometer (EDCP) Test Supplemented by Measurement of Torque within Testing Wells | |
Shamshirgaran et al. | Assessment of Time Effects on Compressive Bearing Capacity of Steel Pipe Piles Driven in Clay Deposits of Persian Gulf | |
Porbaha et al. | Analysis of a failed embankment on peaty ground | |
Ng et al. | Understanding the responses of surrounding soils to pile setup from medium-scale experiments and cone penetration tests |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041004 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061010 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070403 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070417 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3952138 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130511 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130511 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140511 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |