JP2003129458A - Method and device for testing liquefaction and dynamic property of ground in situ by utilizing borehole - Google Patents

Method and device for testing liquefaction and dynamic property of ground in situ by utilizing borehole

Info

Publication number
JP2003129458A
JP2003129458A JP2002208958A JP2002208958A JP2003129458A JP 2003129458 A JP2003129458 A JP 2003129458A JP 2002208958 A JP2002208958 A JP 2002208958A JP 2002208958 A JP2002208958 A JP 2002208958A JP 2003129458 A JP2003129458 A JP 2003129458A
Authority
JP
Japan
Prior art keywords
load
hole
displacement
ground
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002208958A
Other languages
Japanese (ja)
Other versions
JP2003129458A5 (en
JP3803922B2 (en
Inventor
Kazuo Masuda
和夫 益田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MASUDA GIKEN KK
Original Assignee
MASUDA GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MASUDA GIKEN KK filed Critical MASUDA GIKEN KK
Priority to JP2002208958A priority Critical patent/JP3803922B2/en
Publication of JP2003129458A publication Critical patent/JP2003129458A/en
Publication of JP2003129458A5 publication Critical patent/JP2003129458A5/ja
Application granted granted Critical
Publication of JP3803922B2 publication Critical patent/JP3803922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for testing the liquefaction and dynamic properties of ground in situ by utilizing a borehole, which can provide dynamic deformation properties with respect to a repeated load on a soil layer in an arbitrary position in the ground by using the simple method. SOLUTION: The repeated load is imposed on a test object soil layer of a hole wall of the borehole 100 which is provided in the ground, so that displacement of the hole wall can be measured. In particular, this method and this device are characterized in that the repeated load is imposed alternately on a plurality of areas J1 and J3 in the direction of a hole axis, so that a shear force in a direction crossing the hole axis can be made to act on an intermediate soil layer J2 in an alternately repeated manner. Additionally, a static load is imposed on the soil layer J2 in which a repeat test is performed, so that strength can be measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、地震荷重,交通荷
重、機械荷重等の繰り返し荷重が作用した場合の地盤の
原位置での特性を検査するボーリング孔を利用した地盤
の液状化および動的特性(強度,変形特性)試験方法お
よび試験装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to liquefaction and dynamics of a ground using a boring hole for inspecting the in-situ characteristics of the ground when a repeated load such as an earthquake load, a traffic load and a mechanical load is applied. The present invention relates to a characteristic (strength, deformation characteristic) test method and a test device.

【0002】[0002]

【従来の技術】従来の地盤検査は、所定の深さまでボー
リングをし、ボーリング孔内に測定用セルとしての検出
ゾンデを降ろし、検出ゾンデを膨らませて孔壁に水平荷
重を載荷し、荷重に対する孔壁の変位から地盤の静的な
強度および変形特性を検出するようになっていた。
2. Description of the Related Art In the conventional ground inspection, a boring is carried out to a predetermined depth, a detection sonde as a measuring cell is lowered in the boring hole, the detection sonde is inflated, and a horizontal load is applied to the hole wall. It was designed to detect the static strength and deformation characteristics of the ground from the displacement of the wall.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の地盤検
査では静的な特性を検出しているだけで、地震荷重,交
通荷重,機械荷重等のような繰り返し荷重に対する地盤
の強度や変形特性といった動的特性の評価をすることが
できなかった。地震の際には、地盤に加わる力が静的に
は破壊しない大きさであったとしても、徐々にあるいは
急激に歪みが大きくなって破壊に至るものと考えられ、
繰り返し荷重に対する地盤の特性を調査することはきわ
めて重要である。地震の際には地盤内には水平,上下お
よびねじり方向に複雑な力が作用するものと考えられ、
このような複雑な力が作用した際の原位置での地盤の動
的な特性を知ることはきわめて重要であるにも拘わら
ず、従来は原位置の地盤内で測定し評価する方法が確立
されていない。
However, in the conventional ground inspection, only static characteristics are detected, and the strength and deformation characteristics of the ground against repeated loads such as earthquake load, traffic load, mechanical load, etc. It was not possible to evaluate the dynamic properties. In the event of an earthquake, even if the force applied to the ground does not cause static damage, it is considered that the strain gradually or suddenly increases, leading to damage.
It is very important to investigate the characteristics of the ground against cyclic loading. At the time of an earthquake, it is considered that complicated forces act in the ground horizontally, vertically and in the torsional direction.
Although it is extremely important to know the in-situ dynamic characteristics of the ground when such complex forces act, it has heretofore been established to measure and evaluate in-situ ground. Not not.

【0004】従来の液状化の判定方法としては、たとえ
ば、地盤全体の特性傾向を判定するもの(特開平7−3
760号参照)、地震発生時に液状化を検知するもの
(特開平7−109725号公報参照)等があるが、い
ずれも地盤中の土層そのものの動的特性を直接的に試験
するものではなかった。
As a conventional liquefaction determination method, for example, a method of determining the characteristic tendency of the whole ground (Japanese Patent Laid-Open No. 7-3
No. 760), a device that detects liquefaction when an earthquake occurs (see Japanese Patent Laid-Open No. 7-109725), but none of them directly tests the dynamic characteristics of the soil layer itself in the ground. It was

【0005】土層自体の繰り返し荷重に対する動的な特
性を知る方法としては、現在、ボーリングして乱さない
状態での土のサンプルを採取して、これを試験室に持ち
込んで土質試験をして求めている。しかしサンプルを乱
さない状態(自然に堆積しているそのままの状態)で採
取すること自体が非常に困難であるばかりでなく、採取
したサンプルは地下の圧力がかかった状態でないことも
あって、実際の自然状態での特性を求めることは不可能
である。また、非常に締まりのない砂層あるいは礫など
を混入する土層、砂礫など粒径の大きい土層または風化
岩、軟岩などの場合は乱さない状態でのサンプリングも
不可能であり、したがって室内での土質試験は不可能で
ある。以上から現状では非常に限られた条件での特性し
か直接的に求めることができないのが実情である。
As a method of knowing the dynamic characteristics of the soil layer itself against repeated loading, at present, a soil sample is sampled in an undisturbed state by boring, and this is brought into a test room for soil testing. Looking for. However, not only is it very difficult to collect the sample without disturbing it (as it is naturally deposited), but the sample is not under the pressure of the underground. It is impossible to obtain the characteristics of the natural state of. In addition, it is not possible to sample in an undisturbed state in the case of an extremely tight sand layer or a soil layer mixed with gravel, a soil layer with a large particle size such as gravel, or weathered rock or soft rock. Soil tests are not possible. From the above, under the present circumstances, it is the actual situation that only the characteristics under very limited conditions can be directly obtained.

【0006】本発明は、地盤の繰り返し荷重に対する動
的な変形特性を直接知ることの重要性に鑑みてなされた
もので、その目的とするところは、乱さない状態での土
のサンプルを必要とすることなく、原位置での地盤の動
的な強度および変形特性を簡易な方法で得ることができ
るボーリング孔を利用した原位置での地盤の液状化およ
び動的特性試験方法および試験装置を提供することにあ
る。
The present invention has been made in view of the importance of directly knowing the dynamic deformation characteristics of the ground with respect to the repeated load, and the purpose thereof is to require a soil sample in an undisturbed state. Providing in-situ ground liquefaction and dynamic property test method and test equipment that uses boring holes that can obtain in-situ dynamic strength and deformation characteristics in a simple method without performing To do.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明のボーリング孔を利用した原位置での地盤の
液状化および動的特性試験方法は、地盤に設けたボーリ
ング孔の孔壁の試験対象土層に繰り返し荷重を載荷して
孔壁の変位を測定し地盤の動的特性を求めることを特徴
とする。特に地盤の液状化についても知ることができ
る。ここで、繰返し荷重とは、周期的に変動する荷重全
体を含める意味で、比較的振動数が高い変動荷重(振
動)から、手動でも操作できるようなゆっくりした変動
荷重も含まれる。動的特性とは、繰り返し荷重を加えた
際の荷重と変位の関係そのものであり、たとえば、繰返
し荷重の大きさ,繰返し回数および変位の関係から変形
特性を把握し、降伏荷重と破壊荷重といった強度および
変形係数を求めたり、これらの結果を系統立てて解析を
することで土層の動的な特性を評価できる。
In order to achieve the above object, the method for in-situ liquefaction and dynamic characteristic test of the ground using the boring hole according to the present invention is a hole wall of the boring hole provided in the ground. It is characterized in that the soil dynamics of the ground are determined by repeatedly applying a load to the soil layer under test and measuring the displacement of the hole wall. In particular, you can learn about liquefaction of the ground. Here, the term “repeated load” means to include the entire load that fluctuates periodically, and includes a fluctuating load (vibration) having a relatively high frequency to a slowly fluctuating load that can be manually operated. The dynamic characteristic is the relationship between the load and the displacement when a repeated load is applied. For example, the deformation characteristics are grasped from the relationship between the magnitude of the repeated load, the number of repetitions and the displacement, and the strength such as the yield load and the fracture load. The dynamic characteristics of the soil layer can be evaluated by calculating the deformation coefficient and the systematic analysis of these results.

【0008】特に、ボールリング孔の孔壁の孔軸方向の
複数の領域に交互に繰り返し圧縮荷重を載荷することが
効果的である。このようにすれば、荷重の載荷領域の中
間土層に揺れと孔軸と交差する方向のせん断力を交互に
繰り返し作用させることが可能となり、土層に対して地
震の際と同様の力を加えることができる。繰り返し試験
を行った中間土層はもっともダメージを受ける部分であ
り、この部分に静的な圧縮荷重を載荷して静的な強度を
測定すれば、どの程度ダメージを受けているか、その度
合いを知ることができる。また、ボーリング孔の孔壁の
一つの領域に交互に振動または繰り返し荷重を載荷し、
繰り返し加重の大きさ,振動または繰返し回数および変
位の関係から、地盤の動的特性を知ることもできる。繰
り返し荷重は、孔軸と直交する方向に載荷される圧縮荷
重と、孔軸を中心とする回転方向に載荷されるねじりせ
ん断荷重と、孔軸と平行方向に載荷されるせん断荷重の
3つの荷重のうちの一つ、または少なくとも2種類の荷
重を組み合わせた組み合わせ荷重である。
In particular, it is effective to repeatedly and repeatedly apply a compressive load to a plurality of regions in the hole axial direction of the hole wall of the ball ring hole. By doing so, it becomes possible to alternately apply sway and shearing force in the direction intersecting the hole axis to the intermediate soil layer in the area where the load is applied, and to apply the same force to the soil layer as when an earthquake occurred. Can be added. The intermediate soil layer that has been repeatedly tested is the most damaged part, and if you apply a static compressive load to this part and measure the static strength, you can see how much damage has been received. be able to. In addition, vibration or repeated load is alternately applied to one area of the hole wall of the boring hole,
It is also possible to know the dynamic characteristics of the ground from the relationship between the magnitude of cyclic loading, vibration or the number of cycles and displacement. Repeated loads are three loads: a compressive load loaded in the direction orthogonal to the hole axis, a torsional shear load loaded in the rotational direction around the hole axis, and a shear load loaded in the direction parallel to the hole axis. One of the above, or a combined load in which at least two types of loads are combined.

【0009】本発明のボーリング孔を利用した原位置で
の地盤の液状化および動的特性試験装置は、地盤に設け
たボーリング孔内に挿入されると共に圧力媒体の圧力に
よって孔壁を押圧する測定用セルと、該測定用セル内の
圧力媒体の圧力を周期的に変動させることが可能な圧力
調整手段と、前記孔壁の変位を検出するための変位検出
手段と、を備えていることを特徴とする。測定用セルは
ボーリング孔の孔軸方向に沿って孔壁を押圧する複数の
加圧部を有し、圧力調整手段は複数の加圧部に交互に繰
り返し圧力を加える。測定用セルは複数の室に区分され
て加圧部を構成し、圧力調整出段は複数の室内の圧力媒
体に交互に繰り返し圧力を加える。圧力調整手段は、中
間室を隔てて上下の室には交互に繰り返し圧力を加え、
中間室には静的な圧力を加える。測定用セルを孔壁に密
接させた状態で測定用セルに孔軸回りに繰り返し荷重を
加えるトルク発生手段と、該トルク発生手段によって加
えた繰り返し荷重による孔壁の回転変位を検出する変位
検出手段と、を備えていることを特徴とする。測定用セ
ルを孔壁に密接させた状態で測定用セルに孔軸と平行方
向に繰り返し荷重を加えるせん断荷重発生手段と、せん
断荷重による孔壁の軸方向変位を検出する変位検出手段
と、を備えていることを特徴とする。
The in-situ liquefaction and dynamic characteristic testing device using the boring hole of the present invention is a device for inserting into the boring hole provided in the ground and pressing the hole wall by the pressure of the pressure medium. Cell, a pressure adjusting means capable of periodically varying the pressure of the pressure medium in the measuring cell, and a displacement detecting means for detecting the displacement of the hole wall. Characterize. The measuring cell has a plurality of pressurizing portions that press the hole wall along the hole axial direction of the boring hole, and the pressure adjusting means alternately and repeatedly applies pressure to the plurality of pressurizing portions. The measurement cell is divided into a plurality of chambers to form a pressurizing unit, and the pressure adjusting outlet applies pressure repeatedly to the pressure medium in the plurality of chambers alternately. The pressure adjusting means alternately applies pressure to the upper and lower chambers with the intermediate chamber separated,
Static pressure is applied to the intermediate chamber. Torque generating means for repeatedly applying a load to the measuring cell around the hole axis in a state where the measuring cell is in close contact with the hole wall, and displacement detecting means for detecting a rotational displacement of the hole wall due to the repeated load applied by the torque generating means. And are provided. Shear load generating means for repeatedly applying a load to the measuring cell in the direction parallel to the hole axis in a state where the measuring cell is in close contact with the hole wall, and displacement detecting means for detecting the axial displacement of the hole wall due to the shear load, It is characterized by having.

【0010】[0010]

【発明の実施の形態】以下に本発明を図示の実施の形態
に基づいて説明する。 実施の形態1 図1(A)は本発明の実施の形態1に係る地盤の液状化
および動的特性試験装置の模式図である。この地盤の液
状化および動的特性試験装置は、地盤に設けたボーリン
グ孔100内に挿入されると共に圧力媒体としての水3
などの液体が満たされた測定用セルとしてのゴムゾンデ
1と、ゴムゾンデ1内の水3の圧力を周期的に変動させ
る圧力調整手段としての圧力制御弁5と、ゴムゾンデ1
からの圧力による孔壁の変位を検出するための変位検出
手段としての変位センサ8と、を備えている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below based on the illustrated embodiments. Embodiment 1 FIG. 1 (A) is a schematic diagram of a ground liquefaction and dynamic characteristic test device according to Embodiment 1 of the present invention. This liquefaction and dynamic characteristic test device for ground is inserted into a boring hole 100 provided in the ground, and water 3 as a pressure medium is used.
A rubber sonde 1 as a measuring cell filled with a liquid such as the above, a pressure control valve 5 as a pressure adjusting means for periodically varying the pressure of the water 3 in the rubber sonde 1, and a rubber sonde 1
And a displacement sensor 8 as a displacement detecting means for detecting the displacement of the hole wall due to the pressure from.

【0011】図示例では、水3は地上の水タンク2内に
貯留され、水タンク2内のヘッドスペースに圧力供給部
4から高圧気体を供給して水タンク2内の水3を加圧し
ており、圧力制御弁5はこの高圧気体の圧力を制御して
いる。場合によっては、高圧気体の制御ではなく、水圧
を直接調整する構成としてもよい。また、水タンク2と
ゴムゾンデ1は連結管6によって連結されており、変位
センサ8は、水タンク2の液面を検出し、液面高さから
孔壁の変位が求められる。変位検出手段としては、変位
センサ8に限られず、水タンクに設けた目盛りによって
目視で計測するようにしてもよい。
In the illustrated example, the water 3 is stored in the water tank 2 on the ground, and the head space in the water tank 2 is supplied with high-pressure gas from the pressure supply unit 4 to pressurize the water 3 in the water tank 2. The pressure control valve 5 controls the pressure of this high-pressure gas. In some cases, instead of controlling the high-pressure gas, the water pressure may be directly adjusted. Further, the water tank 2 and the rubber sonde 1 are connected by a connecting pipe 6, and the displacement sensor 8 detects the liquid level of the water tank 2 and the displacement of the hole wall is obtained from the liquid level height. The displacement detecting means is not limited to the displacement sensor 8 and may be visually measured by a scale provided on the water tank.

【0012】ゴムゾンデ1は縦方向には固定で横方向に
のみ膨張収縮するようになっており、ボーリング孔10
0の孔壁に密着するゴムチューブ等の中空の可撓性部材
を備えている。圧力供給部4は、たとえば、高圧窒素ガ
ス等の圧力源と、圧力源から供給されるガス圧を一定に
保つレギュレータバルブ等から構成される。圧力源とし
ては、高圧ガスではなくコンプレッサ等を用いることも
できる。
The rubber sonde 1 is fixed in the vertical direction and expands and contracts only in the horizontal direction.
It is provided with a hollow flexible member such as a rubber tube that comes into close contact with the hole wall of No. 0. The pressure supply unit 4 includes, for example, a pressure source such as high-pressure nitrogen gas, and a regulator valve that keeps the gas pressure supplied from the pressure source constant. A compressor or the like can be used as the pressure source instead of the high pressure gas.

【0013】圧力制御弁5にはサーボ弁が用いられ、図
1(B)に示すように、指令信号に応じて圧力を制御可
能となっており、図2(A)に示すように、所定の周期
でもって圧力が変動するようにプログラムされたコンピ
ュータ7からの制御信号に基づいて圧力制御弁5のバル
ブ駆動部51を制御し、たとえばバルブの開度を変える
ことにより出力圧を周期的に変化させる。出力圧は圧力
センサ52によって検出され、サーボアンプ53にフィ
ードバックされ、指令信号に正確に追従するように制御
される。
A servo valve is used as the pressure control valve 5, and as shown in FIG. 1 (B), the pressure can be controlled according to a command signal, and as shown in FIG. The valve drive unit 51 of the pressure control valve 5 is controlled on the basis of a control signal from the computer 7 programmed so that the pressure fluctuates in a cycle of, and the output pressure is cyclically changed by changing the opening of the valve, for example. Change. The output pressure is detected by the pressure sensor 52, fed back to the servo amplifier 53, and controlled so as to accurately follow the command signal.

【0014】次に、上記試験装置による試験手順を説明
する。原理的には、予想される降伏荷重または非液状化
限界荷重(Pl)を何段階かに分けて載荷し、各荷重ご
とプラスαの繰り返し荷重を繰返しかけて、地盤の変位
量を測定する。以下、同様に載荷荷重を上げていき地盤
が破壊されるまで試験を続行し、繰り返し荷重の大きさ
と変位量の関係から、動的特性を求める。図示例では、
繰り返し荷重は正弦波であるが、波形については限定さ
れるものではないし、衝撃な荷重を加えてもよい。繰り
返し荷重の振動または繰返し回数としては、地震の振動
または繰返し回数などを考慮して設定されるが、0.5
〜5[Hz]程度、好ましくは1〜2[Hz]程度に設
定することが好適である。この実施の形態2では、動的
特性の指標として、降伏荷重Pyと破壊荷重Plそして
変形係数を求める。
Next, a test procedure by the above test device will be described. In principle, the expected yield load or non-liquefaction limit load (Pl) is loaded in several stages, and a repeated load of plus α is repeated for each load to measure the amount of ground displacement. Hereinafter, similarly, the load is increased and the test is continued until the ground is destroyed, and the dynamic characteristics are obtained from the relationship between the magnitude of the repeated load and the displacement amount. In the example shown,
The repeated load is a sine wave, but the waveform is not limited, and an impact load may be applied. The vibration of the repeated load or the number of repetitions is set considering the vibration of the earthquake or the number of repetitions.
It is suitable to set to about 5 [Hz], preferably about 1 to 2 [Hz]. In the second embodiment, the yield load Py, the breaking load Pl, and the deformation coefficient are obtained as dynamic characteristic indexes.

【0015】以下、具体的な試験手順を説明する。 試験の設定 ゴムゾンデ1をボーリング孔100の試験対象土層まで
降ろし、ゴムゾンデ1が孔壁に密着して変位が安定する
までゴムゾンデ1に静的な圧力(乱れの要素の無い圧
力)を加えて膨らませ、変位が安定した時点の圧力を初
期圧P0とする。予想される破壊荷重または非液状化限
界荷重Plを設定し、初期圧P0との差圧をN段階に分
け、荷重増分(ΔP)=(Pl−P0)/Nを決め、各
荷重段階で、繰返し荷重をn回、または一定時間Tn加
えて試験する。予想される破壊荷重または非液状化限界
荷重は、試験目的に応じて、高く設定してもよいし、低
く設定してもよく、必要に応じて任意に設定される。た
とえば、重要な地盤の試験の場合には高く見積もって試
験を行う。非液状化限界荷重とはこれ以上荷重をかけて
も液状化しないであろうと予想される荷重の意味であ
り、地盤に応じて判断される。繰り返し荷重を載荷する
回数,時間については種々設定可能であり、たとえば、
地震の際の揺れている時間などを考慮して決められる。
この例では荷重段階は10段階とし、繰り返し荷重を2
0回または20秒間を限度として試験した。地震の際の
揺れは20秒程度であり、この程度かければ地震の際の
地盤の特性が把握できるし、それ以上となると試験時間
が長くなりすぎるからである。
A specific test procedure will be described below. Test settings Lower the rubber sonde 1 to the soil layer to be tested in the boring hole 100, and inflate the rubber sonde 1 with static pressure (pressure without disturbing elements) until the rubber sonde 1 comes into close contact with the hole wall and the displacement stabilizes. The initial pressure P0 is the pressure at which the displacement becomes stable. The expected breaking load or non-liquefaction limit load Pl is set, the differential pressure from the initial pressure P0 is divided into N stages, the load increment (ΔP) = (Pl-P0) / N is determined, and at each load stage, The test is repeated by applying a load n times or for a fixed time Tn. The expected breaking load or non-liquefaction limit load may be set high or low depending on the purpose of the test, and is set arbitrarily as needed. For example, in the case of an important ground test, the cost should be estimated high. The non-liquefaction limit load means a load that is expected not to be liquefied even if a further load is applied, and is judged according to the ground. It is possible to set variously the number of times and the time for loading the repeated load.
It is decided by considering the shaking time during an earthquake.
In this example, the load stage is 10 and the repeated load is 2
Tested 0 times or 20 seconds as a limit. This is because the shaking during an earthquake is about 20 seconds, and if it is about this, the characteristics of the ground at the time of the earthquake can be grasped, and if it is more than that, the test time becomes too long.

【0016】第1荷重段階 まず、繰り返し荷重(P0〜P0+α)段階を20回ま
たは20秒間載荷し、それぞれの変位量を読み取る。繰
り返し荷重のαはΔPを越えない範囲とすることが好適
で、αをほぼΔPと等しくすることが好ましい。
First load stage First, the repeated load (P0 to P0 + α) stage is loaded 20 times or 20 seconds, and the displacement amount of each is read. It is preferable that α of the repeated load is in a range not exceeding ΔP, and it is preferable that α is substantially equal to ΔP.

【0017】第k荷重段階 以下、段階的に荷重を大きくして、試験を繰り返す。た
とえば、k番目の荷重段階の場合には、荷重(Pk)を
(P0+(k−1)*ΔP)まで大きくし、繰り返し荷
重(Pk+α)を20回または20秒間載荷して変位を
測定する。このようにして測定したデータを、図2
(B)にモデル的に示すようにグラフ化する。このグラ
フは各荷重段階での最終変位r1,r2,r3・・・を
記入している。本実施の形態の場合、圧力センサによっ
て読み取られたデータはコンピュータに読み込まれ、自
動的にデータが処理され、降伏荷重Pyと破壊荷重Pl
および変形係数を求める。変形係数とはグラフで見れ
ば、降伏荷重Pyに至るまでの直線部分の勾配である。
After the k-th load stage, the load is increased stepwise and the test is repeated. For example, in the case of the kth load stage, the load (Pk) is increased to (P0 + (k-1) * ΔP), and the repeated load (Pk + α) is applied 20 times or 20 seconds to measure the displacement. The data measured in this way is shown in FIG.
It is graphed as shown as a model in (B). This graph shows the final displacements r1, r2, r3 ... At each load stage. In the case of the present embodiment, the data read by the pressure sensor is read by the computer, the data is automatically processed, and the yield load Py and the breaking load Pl are set.
And the deformation coefficient is calculated. When viewed in a graph, the deformation coefficient is the gradient of the straight line portion up to the yield load Py.

【0018】繰返し回数nが増えるに従って変位量rが
増大し、これらの結果を系統立てて解析することで地盤
の強度,動的変形特性を知ることができる。すなわち、
種々の土質の試験結果を比較しながら、液状化を起こし
易いかどうか等の判定が可能となる。砂質地盤の場合に
は急激に破壊され、荷重と変位の関係が急激に極限状態
に陥る傾向がでると想定される。この急激な変化の度合
いを見ることで液状化の度合いの判断も可能である。ま
た、粘土質地盤の場合、極限状態に陥る過程もややゆっ
くりと出ることが想定される。この傾向を見ることで動
的特性の度合いの判定も可能である。また、動的な繰り
返し荷重を受けることで急激に強度の低下する性質の高
い土ほど早く極限状態が現れ、強度低下率の度合いの判
定も可能となる。
The displacement amount r increases as the number of repetitions n increases, and the strength and dynamic deformation characteristics of the ground can be known by systematically analyzing these results. That is,
It is possible to judge whether or not liquefaction is likely to occur while comparing the test results of various soil types. In the case of sandy ground, it is presumed that it will be rapidly destroyed and that the relationship between load and displacement will suddenly fall to the extreme state. The degree of liquefaction can be judged by observing the degree of this rapid change. In addition, in the case of clayey ground, it is expected that the process of falling into the extreme state will take place rather slowly. By observing this tendency, it is possible to judge the degree of dynamic characteristics. In addition, the limit state appears earlier in soil that has a property of rapidly lowering its strength when subjected to a dynamic repetitive load, and it becomes possible to determine the degree of strength reduction.

【0019】 測定中での注目点 変位の変化に常に注意を払い、比例的な変化から変化が
急になりだした時点を記録しておく。変位が急激に変化
した時点を降伏状態として測定を終了するか、破壊荷重
を確認して終了する。ゴムゾンデ1の圧力をP0以下に
戻してから、ゴムゾンデ1を引き上げる。引き上げる際
の抵抗に注目する。引き抜くのが大変な場合は液状化し
て孔が崩れている可能性がある。なお、上記実施の形態
では、荷重と変位の関係をグラフ化しているが、図7
(A)乃至(D)に示すように、各荷重段階の繰返し回
数nと変位rの関係をグラフ化して振動または繰返し回
数に対する特性を評価することも可能である。このグラ
フは、各荷重段階での繰り返し荷重に対する変位のピー
ク値(繰り返し荷重の各ピーク値に対応する)をプロッ
トしたものである。繰り返し荷重が加わる毎に徐々に土
層に歪みが蓄積されて変位が大きくなっていく。図7
(A)乃至(C)の第1段,第2段,第3段の変位が増
大する度合い(グラフの勾配)は等しく、降伏段階で変
位の勾配が大きくなり(図7(D))、土層が破壊に至
る段階では、図7(E)に示すように、変位が急激に変
化する。このようなデータをとることにより、各土層の
繰り返し荷重に対する強度,動的変形特性を知ることが
できる。また、荷重を加える時間と変位の関係をグラフ
化してその特性を評価してもよく、必要に応じて種々の
特性を求めることが可能である。
Attention is always paid to the change in the displacement of the point of interest during the measurement, and the time when the change suddenly starts to be recorded from the proportional change. The measurement is ended with the yield state when the displacement changes abruptly, or the breaking load is confirmed and ended. After returning the pressure of the rubber sonde 1 to P0 or less, pull up the rubber sonde 1. Pay attention to the resistance when pulling up. If it is difficult to pull out, there is a possibility that the holes have collapsed due to liquefaction. In the above embodiment, the relationship between the load and the displacement is plotted as a graph.
As shown in (A) to (D), it is also possible to evaluate the characteristics with respect to vibration or the number of repetitions by graphing the relationship between the number of repetitions n and the displacement r at each load stage. This graph is a plot of the peak value of displacement (corresponding to each peak value of repeated load) with respect to repeated load at each load stage. Each time a repeated load is applied, strain is gradually accumulated in the soil layer and the displacement increases. Figure 7
The degrees of displacement increase (gradients in the graph) of the first, second, and third stages of (A) to (C) are equal, and the displacement gradients become large in the yield stage (FIG. 7D). At the stage when the soil layer is destroyed, the displacement changes rapidly as shown in FIG. By taking such data, it is possible to know the strength and dynamic deformation characteristics of each soil layer under repeated load. Further, the relationship between the time to apply the load and the displacement may be graphed to evaluate the characteristics, and various characteristics can be obtained as necessary.

【0020】上記実施の形態1では、繰り返し荷重は孔
壁に対して孔軸と直交する方向(水平方向)に載荷する
圧縮荷重としたが、繰り返し荷重としては、孔壁に対し
て孔軸を中心とする回転方向に載荷するねじりせん断荷
重とすることもできるし、孔壁に対して孔軸と平行方向
に載荷するせん断荷重とすることもできる。たとえば、
ねじりせん断振動試験を行う場合には、図1に示すよう
に、基本的には上記実施の形態の測定用セル1を孔壁に
密接させた状態で測定用セル1に孔軸回りに繰り返し荷
重を加えるトルク発生装置9と、このトルク発生装置9
によって加えた繰り返し荷重による孔壁の回転変位を検
出する変位検出手段としての変位検出部10と、を設け
ればよい。
In the first embodiment, the repetitive load is a compressive load applied to the hole wall in a direction (horizontal direction) orthogonal to the hole axis, but the repetitive load is the hole axis to the hole wall. It may be a torsional shear load that is applied in the rotational direction around the center, or a shear load that is applied to the hole wall in a direction parallel to the hole axis. For example,
When performing the torsional shear vibration test, as shown in FIG. 1, basically, the measurement cell 1 of the above-described embodiment is repeatedly loaded around the hole axis in the state in which the measurement cell 1 is brought into close contact with the hole wall. Torque generating device 9 for applying
The displacement detector 10 as a displacement detector that detects the rotational displacement of the hole wall due to the repeated load applied by

【0021】また、せん断振動試験を行う場合には、測
定用セル1を孔壁に密接させた状態で測定用セル1に孔
軸と平行方向に繰り返し荷重を加えるせん断荷重を加え
るせん断荷重発生装置11とせん断荷重による孔壁の軸
方向変位を検出する変位検出手段としての変位検出部1
2と、を備えた構成とすればよい。上記トルク発生装置
9およびせん断荷重発生装置11としては種々の構成が
可能であるが、油圧あるいは空気圧等の流体圧を用いた
装置が好適であり、油圧や空気圧を利用したアクチュエ
ータと、サーボ弁などの油圧あるいは空気圧制御弁によ
って構成することができる。
When performing a shear vibration test, a shear load generator for applying a shear load to the measurement cell 1 in the direction parallel to the hole axis while the measurement cell 1 is in close contact with the hole wall. 11 and a displacement detecting section 1 as a displacement detecting means for detecting the axial displacement of the hole wall due to the shear load.
2 may be provided. Although various configurations are possible for the torque generator 9 and the shear load generator 11, a device using fluid pressure such as hydraulic pressure or pneumatic pressure is preferable, and an actuator using hydraulic pressure or pneumatic pressure, a servo valve, etc. Hydraulic pressure or pneumatic control valve.

【0022】実施の形態2 次に本発明の実施の形態2について説明する。図3は本
発明のボーリング孔を利用した原位置における地盤の液
状化および動的特性試験方法が適用される試験装置の概
略構成が示されている。上記実施の形態1では、ゴムゾ
ンデによって一つの土層に繰り返し試験を行うようにし
たが、この実施の形態2では、上下段の土層J1,J3
に交互に繰り返し荷重を掛けて不動の中間土層J2の上
下にせん断力を作用させるようにしたものである。すな
わち、ボーリング孔100内に挿入され孔軸方向に第
1,第2,第3室111,112,113の3室に区分
され圧力媒体としての水等の液体が満たされた複数の加
圧部を備えた測定用セルとしてのゴムゾンデ110と、
このゴムゾンデ110の加圧部を構成する第1室111
と第3室113の水に交互に圧力を加えて交互に膨張,
収縮させる第1,第3圧力調整部121,123と、第
2室112内の水圧を調整する圧力調整部122と、を
備えている。
Second Embodiment Next, a second embodiment of the present invention will be described. FIG. 3 shows a schematic configuration of a test apparatus to which the in-situ ground liquefaction and dynamic characteristic test method using the boring hole of the present invention is applied. In the first embodiment, the rubber sonde was used to repeat the test on one soil layer, but in the second embodiment, upper and lower soil layers J1 and J3 are used.
Is alternately and repeatedly applied to apply a shearing force above and below the immovable intermediate soil layer J2. That is, a plurality of pressurizing parts inserted into the boring hole 100 and divided into three chambers of first, second and third chambers 111, 112 and 113 in the axial direction of the hole and filled with a liquid such as water as a pressure medium. A rubber probe 110 as a measuring cell equipped with
The first chamber 111 that constitutes the pressurizing unit of the rubber sonde 110
And the pressure in the water in the third chamber 113 is alternately applied to expand the water.
It is provided with first and third pressure adjusting parts 121 and 123 for contracting, and a pressure adjusting part 122 for adjusting the water pressure in the second chamber 112.

【0023】ゴムゾンデ110は、図4および図5に示
すように、円筒形状の本体部114と、本体部114の
外周に被着される可撓性部材である筒状のゴム部材11
5と、から構成されている。ゴム部材115は、第1,
第2,第3室111,112,113の全長を覆い、第
1室111と第2室112の境界部、第2室112と第
3室113の境界部を締め付け部材116で締め付けて
3室に区分してもよいし、第1,第2,第3室111,
112,113の各室毎に取り付けてもよいし、種々の
構造を選択することができる。以下、第1室111に対
応するゴム部材を115A,第2室112に対応するゴ
ム部材を115B、第3室113に対応するゴム部材を
115Cとする。これらゴム部材115A,115B,
115Cと第1室,第2室112,第3室111,11
3により加圧部が構成される。中間の第2室112(ゴ
ム部材115B)の長さL2は、ほぼゴムゾンデ110
の直径D程度に設定しておくことが好ましい。第2室1
12(ゴム部材115B)の長さL2があまり狭いと早
い段階から破壊が始まるし、あまり広いと影響が出にく
いからである。また、第1,第3室111,113(ゴ
ム部材115A,115C)の長さL1,L3は、Dの
1.5から2.5倍程度がよく、2倍程度が最適であ
る。また、Dは5cmから20cm程度に設定すること
が好ましい。もちろんは、寸法はこの寸法に限定される
わけではない。この程度の大きさにすれば、ゴム部材1
15の第1,第3室の111,113に対応するゴム部
材115A,115Cが球状に膨らみ、中間土層J2に
対し上下から圧縮する方向の力が働く。
As shown in FIGS. 4 and 5, the rubber sonde 110 has a cylindrical main body 114 and a tubular rubber member 11 which is a flexible member attached to the outer periphery of the main body 114.
It is composed of 5 and. The rubber member 115 is
The entire length of the second and third chambers 111, 112, 113 is covered, and the boundary portion between the first chamber 111 and the second chamber 112 and the boundary portion between the second chamber 112 and the third chamber 113 are tightened with the tightening member 116 to form three chambers. The first, second and third chambers 111,
The chambers 112 and 113 may be attached to each chamber, or various structures can be selected. Hereinafter, the rubber member corresponding to the first chamber 111 is 115A, the rubber member corresponding to the second chamber 112 is 115B, and the rubber member corresponding to the third chamber 113 is 115C. These rubber members 115A, 115B,
115C and the first chamber, the second chamber 112, the third chamber 111, 11
The pressure unit is constituted by 3. The length L2 of the intermediate second chamber 112 (rubber member 115B) is substantially equal to the rubber sonde 110.
It is preferable to set the diameter to about D. Second room 1
This is because if the length L2 of the 12 (rubber member 115B) is too narrow, the breakage will start from an early stage, and if it is too wide, the effect will be less likely to occur. Further, the lengths L1 and L3 of the first and third chambers 111 and 113 (rubber members 115A and 115C) are preferably 1.5 to 2.5 times D, and optimally about 2 times. Further, D is preferably set to about 5 cm to 20 cm. Of course, the size is not limited to this size. With this size, the rubber member 1
The rubber members 115A and 115C corresponding to 111 and 113 in the first and third chambers 15 swell in a spherical shape, and a force is applied to the intermediate soil layer J2 in a direction of vertically compressing.

【0024】第1,第3圧力調整部121,123は、
圧力源としての高圧のガスボンベ120Aと、ガスボン
ベ120Aから供給されるガスを定圧にして一定量貯留
するガスタンク120Bと、ガスタンク120Bからの
圧力で作動する水圧シリンダ121C,123Cと、を
備えている。ガスタンク120Bと水圧シリンダ121
C,123Cの間には圧力を逃がすバルブ121E,1
23Eと、圧力を供給するバルブ121D,123Dが
設けられ、これらのバルブ121D,121E;123
D,123Eを調整することで、ゴムゾンデ110の第
1,第3室111,113に繰り返し圧力を加えるよう
になっている。たとえば、バルブ121D,123Dを
圧力制御弁とし、バルブ121E,123Eを閉じた状
態で、バルブ121D,123Dによって水圧シリンダ
121C,123Cに供給するガス圧を制御して、水圧
シリンダ121C,123Cを介して第1,第3室11
1,113に交互に荷重を加えればよい。図6ではバル
ブ121D,123Dを手動バルブのシンボルで記載し
ているが、電気的に制御される圧力制御弁等、種々のバ
ルブを適用可能である。試験終了後、バルブ121E,
123Eを開いて水圧シリンダ121C,123Cから
ガス圧を抜く。この例では圧力媒体としては水であり、
ゴム部材115A,115Cは水圧によって膨張,収縮
する。
The first and third pressure adjusting portions 121 and 123 are
It is provided with a high-pressure gas cylinder 120A as a pressure source, a gas tank 120B that stores a constant amount of gas supplied from the gas cylinder 120A, and hydraulic cylinders 121C and 123C that operate at the pressure from the gas tank 120B. Gas tank 120B and hydraulic cylinder 121
Valves 121E, 1 for releasing pressure between C, 123C
23E and valves 121D and 123D for supplying pressure are provided, and these valves 121D, 121E;
By adjusting D and 123E, the pressure is repeatedly applied to the first and third chambers 111 and 113 of the rubber sonde 110. For example, when the valves 121D and 123D are pressure control valves, and the valves 121E and 123E are closed, the gas pressures supplied to the hydraulic cylinders 121C and 123C are controlled by the valves 121D and 123D, and the pressure cylinders 121C and 123C are used. First and third chamber 11
The load may be alternately applied to 1,113. In FIG. 6, the valves 121D and 123D are described as symbols of manual valves, but various valves such as a pressure control valve electrically controlled are applicable. After the test, the valve 121E,
Open 123E to release the gas pressure from the hydraulic cylinders 121C and 123C. In this example, the pressure medium is water,
The rubber members 115A and 115C expand and contract due to water pressure.

【0025】第2圧力調整部122は水圧シリンダは設
けないで、水3を地上の水タンク122C内に貯留し、
水タンク122C内のヘッドスペースにガスボンベ12
2Aから高圧ガスを供給して水タンク122C内の水を
加圧し、圧力制御弁122Dによってこの高圧気体の圧
力を制御している。もっとも、第1,第3圧力調整部1
21,123と同様に水圧シリンダを用いてもよい。水
圧シリンダ121Cとゴムゾンデ110の第1室111
とは第1通路131により、水タンク120Cと第2室
112とは第2通路132により、水圧シリンダ123
Cと第3室113とは第3通路133により連通されて
いる。これら第1,第2,第3通路131,132,1
33はゴムゾンデ110が取り付けられるボーリングロ
ッド140に設けられる。
The second pressure adjusting section 122 does not have a hydraulic cylinder, but stores the water 3 in a water tank 122C on the ground,
Gas cylinder 12 in the head space in the water tank 122C
The high-pressure gas is supplied from 2A to pressurize the water in the water tank 122C, and the pressure control valve 122D controls the pressure of the high-pressure gas. However, the first and third pressure adjusting units 1
A hydraulic cylinder may be used as in the case of 21 and 123. The hydraulic cylinder 121C and the first chamber 111 of the rubber sonde 110
Is a first passage 131, and the water tank 120C and the second chamber 112 are a second passage 132.
C and the third chamber 113 are communicated with each other by a third passage 133. These first, second and third passages 131, 132, 1
33 is provided on the boring rod 140 to which the rubber sonde 110 is attached.

【0026】また、ゴムゾンデ110の第1室111,
第3室113によって圧縮される上段土層J1,下段土
層J3の変位を検出する変位検出手段として、水圧シリ
ンダ121C,123Dに、ピストンの変位を検出する
変位センサ151,152が設けられている。このピス
トンの変位からゴムゾンデ110のゴム部材115A,
115Cの変位量、すなわち孔壁の変位が測定される。
また、ゴムゾンデ110の第2室112によって圧縮さ
れる中間土層J2の変位を検出する変位検出手段とし
て、水タンク122C内の水位の変化を変位センサ15
3が設けられている。この水位の変位量から第2室11
2のゴム部材115Bの変位量、すなわち孔壁の変位が
測定される。さらに、ゴムゾンデ110の下端部には液
状化の発生を検証するための間隙水圧計150が設けら
れている。この間隙水圧計150はセルの側面に設けて
もよいが、孔壁に粘土膜があって水圧が測定できない可
能性があるので、図3(B)に示すように、下端110
C面側に設けることが好適である。また、下端面110
Cにはゴムゾンデ110をボーリング孔100内に降ろ
していく途中でゾンデ110によって削られて土が付着
する場合があるので、下端面の凹部110Dの奥に取付
けることが望ましい。
Further, the first chamber 111 of the rubber sonde 110,
As displacement detection means for detecting the displacement of the upper soil layer J1 and the lower soil layer J3 compressed by the third chamber 113, the hydraulic cylinders 121C, 123D are provided with displacement sensors 151, 152 for detecting the displacement of the piston. . From the displacement of this piston, the rubber member 115A of the rubber sonde 110,
The displacement amount of 115C, that is, the displacement of the hole wall is measured.
Further, as a displacement detecting means for detecting the displacement of the intermediate soil layer J2 compressed by the second chamber 112 of the rubber sonde 110, the displacement sensor 15 detects the change of the water level in the water tank 122C.
3 is provided. From the displacement of this water level, the second chamber 11
The displacement amount of the second rubber member 115B, that is, the displacement of the hole wall is measured. Further, a pore water pressure gauge 150 for verifying the occurrence of liquefaction is provided at the lower end of the rubber sonde 110. The pore water pressure gauge 150 may be provided on the side surface of the cell, but since the water pressure may not be measured due to the clay film on the hole wall, the lower end 110 as shown in FIG. 3 (B).
It is preferable to provide it on the C surface side. In addition, the lower end surface 110
Since the rubber sonde 110 may be scraped by the sonde 110 and adhere to the soil while the rubber sonde 110 is being lowered into the boring hole 100, it is desirable to attach the rubber sonde 110 to the inner part of the recess 110D on the lower end surface.

【0027】次に、実施の形態2についての試験方法に
ついて、図1を参照して説明する。試験は、上下段の土
層J1,J3に繰り返し荷重を交互に加えてその変位を
リアルタイムで測定し、その後に中間土層J2の静的載
荷試験を行って静的強度を測定する。上下段個々の土層
J1,J3への繰り返し荷重の載荷試験自体は、実施の
形態1と全く同様であり、予想される降伏荷重または非
液状化限界荷重(Pl)をN段階に分けて載荷し、各荷
重ごとプラスαの繰り返し荷重をn回または所定時間T
nかけて、地盤の変位量rを測定し、各段階の繰り返し
荷重載荷毎に中間土層J2の静的強度を測定する。
Next, a test method for the second embodiment will be described with reference to FIG. In the test, load is alternately applied to the upper and lower soil layers J1 and J3, the displacement is measured in real time, and then the static load test of the intermediate soil layer J2 is performed to measure the static strength. The loading test itself of the repeated load on the soil layers J1 and J3 of the upper and lower stages is exactly the same as that of the first embodiment, and the expected yield load or non-liquefaction limit load (Pl) is divided into N stages and loaded. Then, for each load, plus α repeated load n times or for a predetermined time T
The displacement amount r of the ground is measured over n, and the static strength of the intermediate soil layer J2 is measured for each cyclic load loading at each stage.

【0028】以下、具体的な試験手順を説明する。ボー
リング孔100を検査すべき地層の深さまで掘削し、ボ
ーリングロッド140によってゴムゾンデ110をボー
リング孔100内の所定深さ位置まで挿入し、以下の手
順で試験を行う。 試験の設定 ゴムゾンデ110の第2室112に圧力を供給して、中
間土層J2に静的な圧縮荷重を載荷し、中間土層J2の
初期強度を測定する。具体的には静的な状態での「荷重
P〜変位r曲線」を求める。この時点で、ゴムゾンデ1
が孔壁に密着して変位が安定する初期圧P0が求めら
る。予想される破壊荷重または非液状化限界荷重をPl
とし、初期圧P0との差圧をN段階に分け、荷重増分
(ΔP)=(Pl−P0)/Nを決め、ゴムゾンデ11
0の第1室111,第3室113に各荷重段階で繰返し
荷重をn回、または一定時間Tn交互に加えて試験す
る。繰り返し試験の前に、ゴムゾンデ110の第1室1
11,第3室113に初期圧P0を加えておく。
The specific test procedure will be described below. The boring hole 100 is excavated to the depth of the formation to be inspected, the rubber sonde 110 is inserted by the boring rod 140 to a predetermined depth position in the boring hole 100, and the test is performed in the following procedure. Test Settings Pressure is supplied to the second chamber 112 of the rubber sonde 110, a static compressive load is applied to the intermediate soil layer J2, and the initial strength of the intermediate soil layer J2 is measured. Specifically, the "load P-displacement r curve" in a static state is obtained. At this point, rubber sonde 1
The initial pressure P0 is calculated so that is closely attached to the hole wall and the displacement is stable. Pl for the expected breaking load or non-liquefaction limit load
Then, the differential pressure from the initial pressure P0 is divided into N stages, the load increment (ΔP) = (Pl−P0) / N is determined, and the rubber sonde 11
A test is repeatedly applied to the first chamber 111 and the third chamber 113 of 0 times at each load stage n times or alternately for a predetermined time Tn. Before the repeated test, the first chamber 1 of the rubber sonde 110
11. The initial pressure P0 is applied to the third chamber 113 in advance.

【0029】第1荷重段階 第1荷重段階は、第1室111および第3室113に、
P0〜P0+αの大きさの繰り返し荷重をn回交互に載
荷し、第1室111および第3室113に対応する上段
土層J1および下段土層J3の変位を測定し、実施の形
態1と同様に荷重と変位の関係をリアルタイムで監視し
データをコンピュータに蓄積し、グラフ化する。この場
合も、荷重段階は10段階とし、繰り返し荷重を20回
または20秒間を限度とする。この場合の載荷荷重は、
図3(E)に示すような立ち上がりが急激な衝撃荷重と
する。衝撃荷重は急激に立ち上がった後一定時間t0荷
重を維持して確実に土層を圧縮し、その後荷重が低下す
る。第1室111と第3室113の一方に荷重が加わる
時には他方には荷重が加わらないように、交互に荷重が
加えられる。荷重の低下開始時点は、他方の室への荷重
の立ち上がり前となっているが、点線で記載したように
他方の室への荷重立ち上がり時点と同時としてもよい。
上段土層J1の上下両端部および下段土層J3の上下両
端部には圧縮とともに剪断力が作用し、特に中間土層J
2については上下の土層J1,J3が交互に圧縮される
ことから揺れながら剪断力が作用することになり(図3
(A)〜(C)中の×印)、地震の際と同様のダメージ
が土層に加わる。ゴムゾンデ110の形状が、第2室1
12の長さL2がゴムゾンデ110の直径D程度となっ
ているので、破壊に至る現象を適切に捉えることがで
き、第1,第3室111,113の長さL1,L3がD
の2倍程度となっているので、ゴム部材115A,11
5Cが球状に膨らむので変位が大きくなり、しかも圧縮
力の分力が直接中間土層J2に対して作用し、土層に対
する荷重の影響を高めることができる。 繰り返し荷重試験後、再び第2室J2に圧力を供給し
て中間土層J2に静的な圧縮荷重を載荷し、中間土層J
2の強度測定を行い、初期強度からどの程度低下したか
のデータを得る。このサイクルを1サイクルとし、載荷
荷重をΔP毎、順次大きくして繰り返し試験を行い、基
本的には土層の破壊が生じるまで行う。図8には、中間
土層J2の静的強度試験の試験結果モデルを示してい
る。図8(A)は、縦軸を中間土層J2に加える静的荷
重P、横軸を時間としたグラフ、図8(B)は、縦軸を
荷重を加えられた中間土層J2の変位r、横軸を時間と
したグラフである。また、図8(C)乃至(F)は、図
8(A),(B)に示す、各段階での中間土層J2の荷
重と変位の関係を示すグラフである。図8(A),
(B)に示すように、まず、繰り返し試験を行う前の中
間土層の初期強度を測定する。ゴムゾンデ110の第2
室112のゴム部材115Bがボーリング孔100の孔
壁に密着するまでは圧力が上がらず変位だけが大きくな
り、孔壁に密着すると圧力が急激に増大し、逆に変位の
変化は小さくなって初期圧力P0に達し、荷重に対する
変位の変化が安定する。この安定した領域で荷重をP0
+δまで増大させて変位を検出し、図8(C)に示すよ
うに、初期段階の中間土層の荷重−変位曲線(横軸を荷
重、縦軸を変位)を作成する。この荷重−変位曲線の勾
配を変形係数とする。測定後、荷重をP0(0)に戻
す。荷重をP0に戻しても、中間土層J2に永久歪みが
残るので、変位は元には戻らない。圧力増分δの大きさ
は、上下段土層J1,J3に加える繰り返し荷重の振幅
の数分の1程度とし、荷重と変位の関係が分かる程度で
あればよい。次に、上下段土層J1,J3に対して1回
目の繰り返し試験を行なった後に、中間土層J1の静的
な強度試験を行う。圧力をかけても荷重P0はゴムゾン
デのゴム部材115Bが初期圧力測定時の永久歪みの分
だけ膨らむまで荷重が上昇せず変位だけが大きくなり、
永久歪みを吸収した時点で圧力が急激に増大し、逆に変
位の変化は小さくなって試験開始荷重P0(1)に達
し、この安定した領域で荷重をP0(1)+δまで増大
させて変位を検出し、1回目の繰り返し試験後の中間土
層の荷重−変位曲線を作成し(図8(D)参照)、グラ
フの勾配を変形係数とする。測定後、荷重を試験開始荷
重P0(1)まで戻す。荷重をP0(1)に戻しても、
中間土層J2に永久歪みが残るので変位は試験開始時点
の変位まで戻らない。以下、同様に上下段土層J1,J
3の繰り返し試験後に、中間土層J2の静的強度試験を
行う。弾性領域では、荷重−変位曲線から得られる変形
係数はほぼ等しい。何回目かの繰り返し試験後(k回
目)、中間土層J2が降伏状態となった場合には、ま
ず、試験開始荷重(P0(k))に達した後、(P0
(k)+δ)まで荷重が増大するのに時間がかかり、な
かなか荷重が上がらないで変位が大きく増大していく。
この時の荷重−変位曲線は勾配が急になる(図8(E)
参照)。さらに、中間土層J2が破壊した場合(m回
目、図では降伏段階の次段として記載している)、荷重
は破壊荷重Plをピークとして低下していき、地下水圧
などのある圧力まで降下した時点で一定となる。変位は
破壊荷重近くから急激に増大し(図8(B))、荷重−
変位曲線は、図8(F)に示すように、圧力が低下して
もさらに変位が増大するグラフ形状となる。
First Loading Stage In the first loading stage, the first chamber 111 and the third chamber 113 are
Repeated loads of P0 to P0 + α are alternately loaded n times, the displacements of the upper soil layer J1 and the lower soil layer J3 corresponding to the first chamber 111 and the third chamber 113 are measured, and the same as in the first embodiment. The relationship between load and displacement is monitored in real time and the data is stored in a computer and graphed. Also in this case, the load stage is 10 stages, and the repeated load is limited to 20 times or 20 seconds. The loading load in this case is
It is assumed that the shock load has a sharp rise as shown in FIG. After the shock load rises rapidly, the t0 load is maintained for a certain period of time to reliably compress the soil layer, and then the load decreases. The loads are alternately applied so that when one of the first chamber 111 and the third chamber 113 is loaded, the other is not loaded. Although the load start time is before the load rises to the other chamber, it may be at the same time as the load rise to the other chamber as described by the dotted line.
A shearing force acts on the upper and lower end portions of the upper soil layer J1 and the upper and lower end portions of the lower soil layer J3 together with compression, and particularly, the intermediate soil layer J
For No. 2, since the upper and lower soil layers J1 and J3 are alternately compressed, shearing force acts while shaking (Fig. 3
(X) in (A) to (C)), damage similar to that during an earthquake is applied to the soil layer. The shape of the rubber probe 110 is the second chamber 1
Since the length L2 of 12 is about the diameter D of the rubber sonde 110, the phenomenon leading to the destruction can be appropriately captured, and the lengths L1 and L3 of the first and third chambers 111 and 113 are D.
It is about twice as large as the rubber member 115A, 11A.
Since 5C expands in a spherical shape, the displacement becomes large, and the component force of the compressive force directly acts on the intermediate soil layer J2, so that the influence of the load on the soil layer can be increased. After the repeated load test, the pressure is supplied to the second chamber J2 again to apply a static compressive load to the intermediate soil layer J2,
The intensity measurement of 2 is performed to obtain data on how much the initial intensity is decreased. This cycle is set as one cycle, and the load is sequentially increased for each ΔP, and the test is repeated, basically until the soil layer is destroyed. FIG. 8 shows a test result model of the static strength test of the intermediate soil layer J2. 8A is a graph in which the vertical axis represents the static load P applied to the intermediate soil layer J2 and the horizontal axis represents time. FIG. 8B shows the displacement of the intermediate soil layer J2 in which the vertical axis is loaded. 6 is a graph in which r is the time and the horizontal axis is time. 8C to 8F are graphs showing the relationship between the load and displacement of the intermediate soil layer J2 at each stage shown in FIGS. 8A and 8B. FIG. 8 (A),
As shown in (B), first, the initial strength of the intermediate soil layer before the repeated test is measured. Second of rubber sonde 110
Until the rubber member 115B of the chamber 112 comes into close contact with the hole wall of the boring hole 100, the pressure does not rise and only the displacement increases. When the rubber member 115B comes into close contact with the hole wall, the pressure sharply increases, and conversely, the change in the displacement becomes small and becomes small. The pressure reaches P0, and the change in displacement with respect to the load stabilizes. The load is P0 in this stable area.
The displacement is detected by increasing to + δ, and as shown in FIG. 8C, a load-displacement curve (horizontal axis is load, vertical axis is displacement) of the intermediate soil layer at the initial stage is created. The gradient of this load-displacement curve is used as the deformation coefficient. After the measurement, the load is returned to P0 (0). Even if the load is returned to P0, the permanent strain remains in the intermediate soil layer J2, so the displacement does not return to the original. The magnitude of the pressure increment δ is set to about a fraction of the amplitude of the repeated load applied to the upper and lower soil layers J1 and J3, as long as the relationship between the load and the displacement can be understood. Next, after performing the first repeated test on the upper and lower soil layers J1 and J3, the static strength test of the intermediate soil layer J1 is performed. Even if pressure is applied, the load P0 does not increase until the rubber member 115B of the rubber sonde expands by the amount of the permanent strain at the time of measuring the initial pressure, and only the displacement increases.
When the permanent strain is absorbed, the pressure sharply increases, conversely the change in displacement becomes small and reaches the test start load P0 (1), and in this stable region the load is increased to P0 (1) + δ Is detected, a load-displacement curve of the intermediate soil layer after the first repeated test is created (see FIG. 8D), and the gradient of the graph is used as the deformation coefficient. After the measurement, the load is returned to the test start load P0 (1). Even if the load is returned to P0 (1),
Since the permanent strain remains in the intermediate soil layer J2, the displacement does not return to the displacement at the start of the test. Below, similarly, upper and lower soil layers J1, J
After the repeated test of 3, the static strength test of the intermediate soil layer J2 is performed. In the elastic region, the deformation coefficients obtained from the load-displacement curve are almost equal. When the intermediate soil layer J2 is in a yield state after a number of repeated tests (k times), first, the test start load (P0 (k)) is reached, and then (P0
It takes time for the load to increase up to (k) + δ), and the load does not increase so much and the displacement increases greatly.
The load-displacement curve at this time has a steep slope (Fig. 8 (E)).
reference). Furthermore, when the intermediate soil layer J2 is destroyed (m-th time, it is described as the next stage of the yield stage in the figure), the load decreases with the breaking load Pl as the peak and drops to a certain pressure such as groundwater pressure. It will be constant at that point. The displacement increases rapidly near the breaking load (Fig. 8 (B)), and the load-
As shown in FIG. 8F, the displacement curve has a graph shape in which the displacement further increases even when the pressure decreases.

【0030】上段および下段土層J1,J3の繰り返し
荷重に対する変位のデータ、および中間土層J2の静的
荷重に対する変位のデータを合わせて、繰り返し荷重に
対する動的な変形特性を判断し、降伏点や破壊点等の強
度を求める。また、土層の液状化は剪断力が上下から作
用する中間土層J2で生じるものと想定され、液状化が
生じると、図8に示す測定データの変位が急激に大きく
なるので液状化が生じたことが分かる。また、間隙水圧
計150による間隙水圧が一定となることによっても液
状化を検証でき、液状化が生じたかどうかを2重に検証
することができる。このように、本実施の形態2によれ
ば、実施の形態1のようなねじりせん断試験や軸方向せ
ん断試を行うことなく、上下段の土層への単純な圧縮荷
重の交互載荷によってせん断力を中間土層に加えること
ができ、簡易な構成で、確実に、短時間に、かつ低コス
トで、精度の高い土層の動的特性試験を行うことができ
る。
By combining the displacement data of the upper and lower soil layers J1 and J3 with respect to the repeated load and the displacement data of the intermediate soil layer J2 with respect to the static load, the dynamic deformation characteristics against the repeated load are determined and the yield point is determined. Calculate the strength of the break point. Further, liquefaction of the soil layer is assumed to occur in the intermediate soil layer J2 in which shearing force acts from above and below. When liquefaction occurs, the displacement of the measurement data shown in FIG. I understand that Further, the liquefaction can be verified by the constant pore water pressure measured by the pore water pressure gauge 150, and whether or not the liquefaction has occurred can be double verified. As described above, according to the second embodiment, the shearing force is not changed by the simple alternating load of the compressive load on the upper and lower soil layers without performing the torsional shear test and the axial shear test as in the first embodiment. Can be added to the intermediate soil layer, and the dynamic characteristic test of the soil layer can be performed with a simple structure, reliably, in a short time, at low cost, and with high accuracy.

【0031】上記実施の形態2では、ゴムゾンデに静的
な荷重を載荷する不動部を設けたが、不動部を設けない
で上下の繰り返し荷重載荷部のみによって構成し、上下
段土層の変形のみ注目してもよい。上下段土層の境界部
には剪断力が作用しており、液状化が発生すると上下段
土層に波及するからである。また、繰り返し荷重を上下
2段としたが、上下3段以上としてもよく、その場合に
は各繰り返し荷重載荷部の中間に不動部を設ければよ
い。
In the second embodiment, the rubber sonde is provided with the immovable portion for loading a static load. However, the immobility portion is not provided and only the upper and lower repetitive load loading portions are provided, and only the upper and lower soil layers are deformed. You may pay attention. This is because a shearing force acts on the boundary between the upper and lower soil layers, and if liquefaction occurs, it will spread to the upper and lower soil layers. Further, although the repeated load is set to the upper and lower two steps, it may be set to the upper and lower three steps or more, and in that case, the immovable portion may be provided in the middle of each repeated load loading section.

【0032】繰り返し荷重としては、孔軸と直交する方
向に載荷される圧縮荷重と、孔軸を中心とする回転方向
に載荷されるねじりせん断荷重と、孔軸と平行方向に載
荷されるせん断荷重の3つの荷重のうち、それぞれ単独
に載荷することもできるし、少なくとも2種類の荷重を
組み合わせた組み合わせて載荷することもできる。
The repetitive load includes a compressive load applied in the direction orthogonal to the hole axis, a torsional shear load applied in the rotational direction about the hole axis, and a shear load applied in the direction parallel to the hole axis. Each of the three loads can be loaded individually, or a combination of at least two types of loads can be loaded.

【0033】なお、上記実施の形態1,2では、ボーリ
ング孔100を垂直に掘った場合を例にとって説明した
が、たとえば水平に掘る場合や、斜めに掘った場合につ
いても適用可能である。また、測定用セルとしては、ゴ
ムゾンデ110,1の代わりに、金属製の載荷板を油圧
等によって加圧するピストンジャッキ等を用いてもよ
く、土層に応じて適切な測定用セルが選択される。
In the first and second embodiments, the case where the boring hole 100 is dug vertically has been described as an example, but the present invention is also applicable to the case where the boring hole 100 is dug horizontally or diagonally. Further, as the measuring cell, a piston jack or the like which presses a metal loading plate by hydraulic pressure or the like may be used instead of the rubber sonde 110, 1, and an appropriate measuring cell is selected according to the soil layer. .

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
地下のサンプルを取り出すことなく、原位置で試験でき
るので、自然状態での土層の繰り返し荷重に対する強度
および変形特性を求めることができる。特に、非常にゆ
るい砂層あるいは礫などの混入でサンプリングが不可能
な土層、砂礫層など粒径の大きい土層または風化岩、軟
岩などでも測定が可能であり、利用範囲が広がる。ま
た、従来のサンプル試験に対して短時間で試験が可能な
ために、経済的である。
As described above, according to the present invention,
Since in-situ tests can be performed without taking out underground samples, strength and deformation characteristics of soil layers under natural conditions under repeated loading can be obtained. In particular, it is possible to measure very loose sand layers or soil layers that cannot be sampled due to mixing of gravel, etc., soil layers with large grain size such as gravel layers, weathered rocks, soft rocks, etc. In addition, it is economical because the test can be performed in a short time as compared with the conventional sample test.

【0035】特に、ボールリング孔の孔壁の孔軸方向の
複数の領域に交互に繰り返し圧縮荷重を載荷することに
より、載荷領域の境界部に実際の地震の横揺れに似た形
の繰り返しせん断力を加わえることができ、繰り返し圧
縮荷重に対する特性と同時に、せん断力に対する特性に
ついても試験することができる。液状化はせん断力によ
って生じやすくなるので、液状化の判定に有効である。
境界部が崩れると圧縮荷重載荷領域にも液状化が拡が
り、変位が大きく変化するため液状化が判定できる。ま
た、ボールリング孔の孔壁の一領域に繰り返し荷重をか
ける場合でも、データの解析手法により、種々の地盤の
特性を検討できる。この場合には、孔軸と直交する方向
に載荷される圧縮荷重と、孔軸を中心とする回転方向に
載荷されるねじりせん断荷重と、孔軸と平行方向に載荷
されるせん断荷重の3つの荷重のうちの一つ、または少
なくとも2種類の荷重を組み合わせた組み合わせ荷重を
載荷して試験することにより、ねじられながら圧縮やせ
ん断荷重が作用するような実際に即した繰り返し荷重に
対する試験を行うことができる。
Particularly, by repeatedly and repeatedly applying a compressive load to a plurality of regions in the hole axial direction of the hole wall of the ball ring hole, repeated shearing of a shape similar to the actual rolling of the earthquake is carried out at the boundary part of the loading region. A force can be applied, and the property against shearing force can be tested as well as the property against repeated compressive load. Liquefaction is likely to occur due to shearing force, which is effective in determining liquefaction.
When the boundary portion collapses, the liquefaction spreads also in the compressive load loading region, and the displacement changes greatly, so liquefaction can be determined. Further, even when a load is repeatedly applied to one region of the hole wall of the ball ring hole, various ground characteristics can be examined by the data analysis method. In this case, there are three types of compression load, that is, a compressive load that is applied in a direction orthogonal to the hole axis, a torsional shear load that is applied in a rotational direction around the hole axis, and a shear load that is applied in a direction parallel to the hole axis. One of the loads, or a combined load that combines at least two types of loads is loaded and tested to perform an actual repeated load test in which a compression or shear load acts while being twisted. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1(A)は本発明の実施の形態1に係るボ
ーリング孔を利用した原位置での地盤の液状化および動
的特性試験装置の概略構成を示す図、図1(B)は圧力
制御弁の制御構成を示す図である。
FIG. 1 (A) is a diagram showing a schematic configuration of an in-situ liquefaction of ground and a dynamic characteristic testing device using a boring hole according to a first embodiment of the present invention, FIG. 1 (B). FIG. 3 is a diagram showing a control configuration of a pressure control valve.

【図2】 図2(A)は図1の圧力制御弁による出力例
を示す図、同図(B)は図1の試験結果のモデルを示す
グラフである。
2 (A) is a diagram showing an output example by the pressure control valve of FIG. 1, and FIG. 2 (B) is a graph showing a model of the test result of FIG. 1.

【図3】 図3(A)乃至(E)は本発明の実施の形態
2に係るボーリング孔を利用した原位置での地盤の液状
化および動的特性試験方法を示す説明図である。
3 (A) to 3 (E) are explanatory views showing a method for in-situ liquefaction of ground and a dynamic characteristic test method using a boring hole according to a second embodiment of the present invention.

【図4】 図4は図3のゴムゾンデの機能説明図であ
る。
FIG. 4 is a functional explanatory diagram of the rubber probe of FIG. 3.

【図5】 図5は図4のゴムゾンデの概略構成図であ
る。
5 is a schematic configuration diagram of the rubber probe of FIG.

【図6】 図6は本発明の実施の形態2に係るボーリン
グ孔を利用した原位置での地盤の液状化および動的特性
試験装置の構成例を示す説明図である。
FIG. 6 is an explanatory diagram showing a configuration example of an in-situ liquefaction of ground and a dynamic characteristic testing device using a boring hole according to a second embodiment of the present invention.

【図7】 図7は図1の試験結果モデルの他のグラフで
ある。
FIG. 7 is another graph of the test result model of FIG.

【図8】 図8(A)乃至(F)は中間土層の静的強度
試験の試験結果モデルを示すグラフである。
8 (A) to (F) are graphs showing test result models of a static strength test of an intermediate soil layer.

【符号の説明】[Explanation of symbols]

1 ゴムゾンデ(測定用セル)、2 水タンク(液体タ
ンク)、3 水(液体)、 4 圧力供給部、5 圧力制御弁、6 連結管、 7 コンピュータ、 9トルク発生装置、10 変位検出部、 11 せん断荷重発生装置、12 変位検出部 100 ボーリング孔 110 ゴムゾンデ 111,112,113 第1,第2,第3室 121,122,123 第1,第2,第3圧力調整部 114 本体部、115 ゴム部材、116 締め付け
部材 120A ガスボンベ、120B ガスタンク 121C,123C 水圧シリンダ 121D,123D バルブ 121E,123E バルブ 122C 水タンク122C、122D 圧力制御弁 J1 上段土層、J2 中間土層、J3 下段土層 150 間隙水圧計
1 rubber sonde (measuring cell), 2 water tank (liquid tank), 3 water (liquid), 4 pressure supply unit, 5 pressure control valve, 6 connecting pipe, 7 computer, 9 torque generator, 10 displacement detection unit, 11 Shear load generator, 12 Displacement detecting section 100 Boring hole 110 Rubber sondes 111, 112, 113 First, second and third chambers 121, 122, 123 First, second and third pressure adjusting section 114 Main body section, 115 Rubber Member, 116 Tightening member 120A Gas cylinder, 120B Gas tank 121C, 123C Hydraulic cylinder 121D, 123D Valve 121E, 123E Valve 122C Water tank 122C, 122D Pressure control valve J1 Upper soil layer, J2 Intermediate soil layer, J3 Lower soil layer 150 Pore pressure gauge

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 地盤に設けたボーリング孔の孔壁の試験
対象土層に繰り返し荷重を載荷して孔壁の変位を測定し
地盤の動的特性を求めることを特徴とするボーリング孔
を利用した原位置での地盤の液状化および動的特性試験
方法。
1. A boring hole characterized in that the dynamic characteristics of the ground are obtained by repeatedly applying a load to the soil layer to be tested on the hole wall of the boring hole provided in the ground and measuring the displacement of the hole wall. In-situ ground liquefaction and dynamic property test method.
【請求項2】 ボーリング孔の孔壁の孔軸方向の複数の
領域に交互に繰り返し荷重を載荷することにより、荷重
の載荷領域の中間土層に孔軸と交差する方向のせん断力
を交互に繰り返し作用させることを特徴とする請求項1
に記載のボーリング孔を利用した原位置における地盤の
液状化および動的特性試験方法。
2. A shear force in a direction intersecting with the hole axis is alternately applied to an intermediate soil layer in the load-loaded area by alternately and repeatedly applying a load to a plurality of areas in the hole axis direction of the hole wall of the boring hole. 2. It is made to act repeatedly, Claim 1 characterized by the above-mentioned.
In-situ liquefaction and dynamic property test method using in-situ boring holes.
【請求項3】 繰り返し試験を行った中間土層に静的な
荷重を載荷して強度を測定する請求項2に記載のボーリ
ング孔を利用した原位置における地盤の液状化および動
的特性試験方法。
3. A method for in-situ liquefaction and dynamic property test of an in-situ ground using a boring hole according to claim 2, wherein a static load is applied to the intermediate soil layer subjected to the repeated test to measure the strength. .
【請求項4】ボーリング孔の孔壁の一つの領域に交互に
振動または繰り返し荷重を載荷し、繰り返し加重の大き
さ,振動または繰返し回数および変位の関係から、地盤
の動的特性を知る請求項1に記載のボーリング孔を利用
した原位置での地盤の液状化および動的特性試験方法。
4. A dynamic characteristic of the ground is known from a relation of magnitude of repeated load, vibration or number of repetitions and displacement by alternately applying vibration or repeated load to one region of the hole wall of the boring hole. In-situ liquefaction and dynamic property testing method using in-situ drilling according to 1.
【請求項5】 繰り返し荷重は、孔軸と直交する方向に
載荷される圧縮荷重と、孔軸を中心とする回転方向に載
荷されるねじりせん断荷重と、孔軸と平行方向に載荷さ
れるせん断荷重の3つの荷重のうちの一つ、または少な
くとも2種類の荷重を組み合わせた組み合わせ荷重であ
る請求項1または4に記載のボーリング孔を利用した原
位置での地盤の液状化および動的特性試験方法。
5. The repetitive load includes a compressive load applied in a direction orthogonal to the hole axis, a torsional shear load applied in a rotation direction about the hole axis, and a shear load applied in a direction parallel to the hole axis. Liquefaction and dynamic characteristic test of in-situ ground using a boring hole according to claim 1 or 4, which is one of three loads or a combined load in which at least two types of loads are combined. Method.
【請求項6】 地盤に設けたボーリング孔内に挿入され
ると共に圧力媒体の圧力によって孔壁を押圧する測定用
セルと、該測定用セル内の圧力媒体の圧力を周期的に変
動させることが可能な圧力調整手段と、前記孔壁の変位
を検出するための変位検出手段と、を備えていることを
特徴とするボーリング孔を利用した原位置での地盤の液
状化および動的特性試験装置。
6. A measuring cell that is inserted into a boring hole provided in the ground and presses the hole wall by the pressure of the pressure medium, and the pressure of the pressure medium in the measuring cell can be periodically changed. Liquefaction and dynamic characteristic testing device for in-situ ground utilizing a boring hole, which is equipped with a possible pressure adjusting means and a displacement detecting means for detecting the displacement of the hole wall. .
【請求項7】測定用セルはボーリング孔の孔軸方向に沿
って孔壁を押圧する複数の室に区分され、圧力調整出段
は複数の室内の圧力媒体に交互に繰り返し圧力を加える
請求項6に記載のボーリング孔を利用した原位置での地
盤の液状化および動的特性試験装置。
7. The measuring cell is divided into a plurality of chambers that press the hole wall along the hole axis direction of the boring hole, and the pressure adjusting stage applies repeated pressure to the pressure medium in the plurality of chambers alternately. An in-situ liquefaction and dynamic property testing device using the boring hole according to item 6.
【請求項8】圧力調整手段は、中間室を隔てて上下の室
には交互に繰り返し圧力を加え、中間室には静的な圧力
を加える請求項7に記載のボーリング孔を利用した原位
置での地盤の液状化および動的特性試験装置。
8. The original position using a boring hole according to claim 7, wherein the pressure adjusting means alternately and repeatedly applies pressure to the upper and lower chambers with a space between the intermediate chambers and static pressure to the intermediate chambers. Liquefaction and dynamic property test equipment for ground at the ground.
【請求項9】 測定用セルを孔壁に密接させた状態で測
定用セルに孔軸回りに繰り返し荷重を加えるトルク発生
手段と、該トルク発生手段によって加えた繰り返し荷重
による孔壁の回転変位を検出する変位検出手段と、を備
えていることを特徴とする請求項6に記載のボーリング
孔を利用した原位置での地盤の液状化および動的特性試
験装置。
9. A torque generating means for applying a repeated load to the measuring cell around the hole axis in a state where the measuring cell is in close contact with the hole wall, and a rotational displacement of the hole wall due to the repeated load applied by the torque generating means. The in-situ liquefaction and dynamic characteristic testing device using the boring hole according to claim 6, further comprising: a displacement detecting unit that detects the displacement.
【請求項10】 測定用セルを孔壁に密接させた状態で
測定用セルに孔軸と平行方向に繰り返し荷重を加えるせ
ん断荷重発生手段と、せん断荷重による孔壁の軸方向変
位を検出する変位検出手段と、を備えていることを特徴
とする請求項6または9に記載のボーリング孔を利用し
た原位置での地盤の液状化および動的特性試験装置。
10. A shear load generating means for repeatedly applying a load to the measuring cell in a direction parallel to the hole axis in a state where the measuring cell is in close contact with the hole wall, and a displacement for detecting an axial displacement of the hole wall due to the shear load. A liquefaction and dynamic characteristic testing device for in-situ ground utilizing a boring hole according to claim 6 or 9, further comprising: detection means.
JP2002208958A 2001-07-17 2002-07-17 In-situ liquefaction and dynamic characteristics testing method and testing equipment using boreholes Expired - Fee Related JP3803922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002208958A JP3803922B2 (en) 2001-07-17 2002-07-17 In-situ liquefaction and dynamic characteristics testing method and testing equipment using boreholes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-216145 2001-07-17
JP2001216145 2001-07-17
JP2002208958A JP3803922B2 (en) 2001-07-17 2002-07-17 In-situ liquefaction and dynamic characteristics testing method and testing equipment using boreholes

Publications (3)

Publication Number Publication Date
JP2003129458A true JP2003129458A (en) 2003-05-08
JP2003129458A5 JP2003129458A5 (en) 2005-11-04
JP3803922B2 JP3803922B2 (en) 2006-08-02

Family

ID=26618838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002208958A Expired - Fee Related JP3803922B2 (en) 2001-07-17 2002-07-17 In-situ liquefaction and dynamic characteristics testing method and testing equipment using boreholes

Country Status (1)

Country Link
JP (1) JP3803922B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005066421A1 (en) * 2003-12-26 2005-07-21 Masuda Giken Co., Ltd. Testing method and apparatus ground liquefaction and dynamic characteristics in original position utilizing boring hole
CN105181494A (en) * 2015-06-12 2015-12-23 同济大学 Model test air pressure loading apparatus simulating traffic load effect, and uses thereof
CN106644738A (en) * 2017-01-20 2017-05-10 宁波冶金勘察设计研究股份有限公司 Measurement device and method of subgrade coefficient of soil body
CN107842010A (en) * 2017-12-19 2018-03-27 山东三瑞土木工程有限公司 A kind of static penetrometer
CN113391012A (en) * 2021-06-10 2021-09-14 中山大学 Rock shear test device
JP7178525B1 (en) * 2022-05-26 2022-11-25 和夫 益田 Liquefaction Strength Test by In-situ Cyclic Loading Using Boring Holes
WO2024011651A1 (en) * 2022-07-13 2024-01-18 东北大学 Large three-dimensional physical simulation experiment system for whole process of deep engineering rock burst development
CN117871267A (en) * 2024-03-12 2024-04-12 西南交通大学 Consolidation apparatus and implementation method for non-confined condition
JP7466425B2 (en) 2020-10-14 2024-04-12 株式会社安藤・間 Deformation coefficient calculation program and deformation coefficient calculation method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005066421A1 (en) * 2003-12-26 2005-07-21 Masuda Giken Co., Ltd. Testing method and apparatus ground liquefaction and dynamic characteristics in original position utilizing boring hole
JPWO2005066421A1 (en) * 2003-12-26 2007-07-26 株式会社マスダ技建 In-situ liquefaction and dynamic property testing equipment using in-situ drilling holes.
US7624630B2 (en) 2003-12-26 2009-12-01 Masuda Giken Co., Ltd. Testing method and apparatus ground liquefaction and dynamic characteristics in original position utilizing boring hole
JP4558650B2 (en) * 2003-12-26 2010-10-06 株式会社マスダ技建 In-situ liquefaction and dynamic property testing method and apparatus using boreholes
CN105181494A (en) * 2015-06-12 2015-12-23 同济大学 Model test air pressure loading apparatus simulating traffic load effect, and uses thereof
CN106644738B (en) * 2017-01-20 2023-10-13 宁波冶金勘察设计研究股份有限公司 Soil foundation bed coefficient measuring device and measuring method
CN106644738A (en) * 2017-01-20 2017-05-10 宁波冶金勘察设计研究股份有限公司 Measurement device and method of subgrade coefficient of soil body
CN107842010A (en) * 2017-12-19 2018-03-27 山东三瑞土木工程有限公司 A kind of static penetrometer
JP7466425B2 (en) 2020-10-14 2024-04-12 株式会社安藤・間 Deformation coefficient calculation program and deformation coefficient calculation method
CN113391012A (en) * 2021-06-10 2021-09-14 中山大学 Rock shear test device
JP7178525B1 (en) * 2022-05-26 2022-11-25 和夫 益田 Liquefaction Strength Test by In-situ Cyclic Loading Using Boring Holes
WO2024011651A1 (en) * 2022-07-13 2024-01-18 东北大学 Large three-dimensional physical simulation experiment system for whole process of deep engineering rock burst development
CN117871267A (en) * 2024-03-12 2024-04-12 西南交通大学 Consolidation apparatus and implementation method for non-confined condition

Also Published As

Publication number Publication date
JP3803922B2 (en) 2006-08-02

Similar Documents

Publication Publication Date Title
JP3940396B2 (en) A field method to determine the liquefaction tendency of soil and prevent this liquefaction by electroosmosis
Paik et al. Determination of bearing capacity of open-ended piles in sand
US5576485A (en) Single fracture method and apparatus for simultaneous measurement of in-situ earthen stress state and material properties
Papamichos et al. Hole stability of Red Wildmoor sandstone under anisotropic stresses and sand production criterion
US7624630B2 (en) Testing method and apparatus ground liquefaction and dynamic characteristics in original position utilizing boring hole
JP3803922B2 (en) In-situ liquefaction and dynamic characteristics testing method and testing equipment using boreholes
Ivanović et al. The influence of load on the frequency response of rock bolt anchorage
Clayton et al. Dynamic penetration resistance and the prediction of the compressibility of a fine-grained sand—a laboratory study
Narimani et al. Simple and non-linear regression techniques used in sandy-clayey soils to predict the pressuremeter modulus and limit pressure: A case study of Tabriz subway
JP3893343B2 (en) In-situ stress measurement method for rock mass
Kooijman et al. Hollow-cylinder collapse: measurement of deformation and failure in an X-ray CT scanner, observation of size effect
Thom et al. A simple triaxial system for evaluating the performance of unsaturated soils under repeated loading
JP2003129458A5 (en)
Cui et al. Use of a differential pressure transducer for the monitoring of soil volume change in cyclic triaxial test on unsaturated soils
JPH05500248A (en) Device and method for measuring ground displacement characteristics on site
Song The influence of initial static shear stress on post-cyclic degradation of non-plastic silt
Miller et al. Iowa borehole shear testing in unsaturated soil
김재규 Evaluation of Deformation Characteristics of Residual Soil using Borehole Pressure-Shear Test Apparatus
Cosentino et al. FWD backcalculated moduli compared with pavement pressuremeter moduli and cyclic triaxial moduli
Rausche et al. Dynamic loading tests: a state of the art of prevention and detection of deep foundation failures
Foriero et al. Confined Pressuremeter Tests for the Assessment of the Theoretically Back-Calculated Cross-Anisotropic Elastic Moduli
Nguyen et al. P-Cone: A Novel Cone Penetration Test Device for Deep Foundation Design.
Mohammadi et al. Calibration of the Perth sand penetrometer (PSP) for silica sands
McGillivray et al. An electro-vibrocone for site-specific evaluation of soil liquefaction potential
Nicolai et al. Variation in stiffness of monopiles in dense sand under cyclic lateral loads

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050713

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051115

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees