JP2003129265A - Water electrolyzer and method for operating the same - Google Patents

Water electrolyzer and method for operating the same

Info

Publication number
JP2003129265A
JP2003129265A JP2001324685A JP2001324685A JP2003129265A JP 2003129265 A JP2003129265 A JP 2003129265A JP 2001324685 A JP2001324685 A JP 2001324685A JP 2001324685 A JP2001324685 A JP 2001324685A JP 2003129265 A JP2003129265 A JP 2003129265A
Authority
JP
Japan
Prior art keywords
water
electrolysis
anode chamber
value
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001324685A
Other languages
Japanese (ja)
Inventor
Takahiro Nakanori
孝博 中野利
Mikimasa Yamaguchi
幹昌 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001324685A priority Critical patent/JP2003129265A/en
Publication of JP2003129265A publication Critical patent/JP2003129265A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PROBLEM TO BE SOLVED: To provide a water electrolyzer made proof against the adhesion and buildup of impurity ions on a solid polyelectrolyte membrane to keep its electrolytic performances stable and satisfactory and being capable of a long- term continuous operation in spite of no using an inexpensive heat-resistant ion exchange resin and to provide a method for operating the same. SOLUTION: The water electrolyzer is the one provided with a cation exchange resin tank 40 for removing cations; an acid storage tank 50 and an acid feed sluice valve 52 for adding an acid; a pH meter that measures the pH value of the water discharged from an anode-side gas/liquid separator 25; a discharge pipe 44 and a discharge control valve 46 for discharging water from an anode chamber; a flow control valve 48 for feed water for electrolysis; and a controller 45a that when the pH value measured with the pH meter 54 reached a specified value, controls the valve 46 to discharge water from the anode chamber, shuts the sluice valve 52, and controls the valve 48 to control the flow rate of the feed water for electrolysis, wherein acidic water containing a large quantity of anions is fed into the anode chamber, and the feed water for electrolysis is set in a specified pH range in consideration for corrosion prevention.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、固体高分子電解
質膜を用いた水電解装置とその運転方法に関する。
TECHNICAL FIELD The present invention relates to a water electrolysis apparatus using a solid polymer electrolyte membrane and a method of operating the same.

【0002】[0002]

【従来の技術】固体高分子電解質膜を隔膜として陽極側
と陰極側とに分離し、陽極側に純水、又はイオンを含む
水を供給しながら電気分解して、陽極側から酸素ガス
を、陰極側から水素ガスをそれぞれ発生するように構成
した水電解装置の開発が、近年進められ、そのシステム
構成,スタックの構造,運転方法等々に関して、種々の
提案が行なわれている(例えば、実開平2−51263
号の全文明細書、実開平3−74670号の全文明細
書、特開平7−252682号公報、特開平8−311
676号公報、特開2000−54175号公報など参
照)。
2. Description of the Related Art A solid polymer electrolyte membrane is used as a diaphragm to separate an anode side and a cathode side, and electrolysis is performed while supplying pure water or water containing ions to the anode side to generate oxygen gas from the anode side. In recent years, development of a water electrolysis device configured to generate hydrogen gas from the cathode side has been advanced, and various proposals have been made regarding its system configuration, stack structure, operating method, etc. 2-51263
Full text specification, Japanese Utility Model Publication No. 3-74670 full text specification, JP-A-7-252682, JP-A-8-311.
676, JP 2000-54175, etc.).

【0003】前記特開2000−54175号公報に
は、模式的なシステム構成が記載されており、また、前
記実開平2−51263号の全文明細書には、供給水入
口にイオン交換樹脂槽を設けることにより、電解される
水に含まれる不純物イオンが、固体高分子電解質膜に付
着蓄積して電解性能が低下するのを防止するシステム構
成が記載されている。さらに実開平3−74670号の
全文明細書には、前記イオン交換樹脂槽として、陽イオ
ン交換樹脂槽を用いることが記載されている。
The above-mentioned Japanese Patent Laid-Open No. 2000-54175 describes a schematic system configuration, and the full-text specification of the above-mentioned Japanese Utility Model Application Laid-Open No. 2-51263 discloses an ion exchange resin tank at the feed water inlet. A system configuration is described which, when provided, prevents impurity ions contained in electrolyzed water from adhering and accumulating on the solid polymer electrolyte membrane and deteriorating electrolytic performance. Furthermore, the full-text specification of Jitsukaihei 3-74670 describes that a cation exchange resin tank is used as the ion exchange resin tank.

【0004】図3は、前記先行技術を参照して模式的に
記載した従来の固体高分子電解質膜を用いた水電解装置
のシステム系統図を示す。図3において、水電解槽1は
固体高分子電解質膜3により陰極室1aと陽極室1bと
に内部が区画されている。前記陰極室1aと陽極室1b
は、それぞれ、図示しない触媒電極と多孔質給電体とを
備える。
FIG. 3 shows a system diagram of a water electrolysis apparatus using a conventional solid polymer electrolyte membrane, which is schematically described with reference to the prior art. In FIG. 3, the water electrolysis tank 1 is divided into a cathode chamber 1a and an anode chamber 1b by a solid polymer electrolyte membrane 3. The cathode chamber 1a and the anode chamber 1b
Are each provided with a catalyst electrode and a porous power feeder which are not shown.

【0005】ポンプ5によって入口ライン7を通して水
電解槽1に流入する純水は、電気分解され、これにより
水素は陰極室1aに発生する。一方酸素は陽極室1bに
発生する。水素イオンが陽極室1bから陰極室1aへ移
動する際に、電気浸透現象により、水も同時に陰極室1
aへ移動する。なお、水電解槽1に導入する純水は、陽
極室1bではなしに、陰極室1aに導入するタイプの水
電解槽もある。
Pure water flowing into the water electrolysis cell 1 through the inlet line 7 by the pump 5 is electrolyzed, and hydrogen is generated in the cathode chamber 1a. On the other hand, oxygen is generated in the anode chamber 1b. When hydrogen ions move from the anode chamber 1b to the cathode chamber 1a, water is also simultaneously caused by the electroosmosis phenomenon in the cathode chamber 1a.
Move to a. There is a type of water electrolysis tank in which pure water introduced into the water electrolysis tank 1 is introduced into the cathode chamber 1a instead of the anode chamber 1b.

【0006】陰極室1aからの水素/水二相流は、出口
ライン9を通って陰極側気液分離器11に入り、気体の
水素と水とに分けられる。陰極側気液分離器11におい
て分離された水は、陰極水戻りライン13を通ってポン
プ5の吸込み側へ至り、ポンプ5により再び入口ライン
7を通して水電解槽1に供給される。通常、ライン13
上には、仕切り弁を設けるが、図示を省略している。
The hydrogen / water two-phase flow from the cathode chamber 1a enters the cathode side gas-liquid separator 11 through the outlet line 9 and is separated into gaseous hydrogen and water. The water separated in the cathode-side gas-liquid separator 11 reaches the suction side of the pump 5 through the cathode water return line 13, and is supplied to the water electrolysis tank 1 through the inlet line 7 by the pump 5 again. Usually line 13
Although a sluice valve is provided on the top, illustration is omitted.

【0007】一方、分離された水素(気体)は、出口ラ
イン15、圧力制御弁17を順次通過して水素ライン1
9に流出し、適宜な回収装置に向かう。尚、出口ライン
15には、圧力逃し弁21が設けられ、過大な圧力上昇
を防止している。
On the other hand, the separated hydrogen (gas) passes through the outlet line 15 and the pressure control valve 17 in sequence and the hydrogen line 1
It flows to 9 and goes to an appropriate recovery device. A pressure relief valve 21 is provided in the outlet line 15 to prevent an excessive pressure rise.

【0008】他方、陽極室1bからの酸素/水二相流は
出口ライン23を通って陽極側気液分離器25に入り、
気体の酸素と水とに分けられる。セパレータ25におい
て分離された水は、戻りライン27を通ってポンプ5の
吸込み側へ至り、ポンプ5により再び入口ライン7を通
して水電解槽1に供給される。
On the other hand, the oxygen / water two-phase flow from the anode chamber 1b enters the anode side gas-liquid separator 25 through the outlet line 23,
It is divided into gaseous oxygen and water. The water separated in the separator 25 reaches the suction side of the pump 5 through the return line 27, and is again supplied to the water electrolysis tank 1 through the inlet line 7 by the pump 5.

【0009】一方、分離された酸素(気体)は、出口ラ
イン29、圧力制御弁31を順次通過して酸素ライン3
3に流出し、適宜な回収装置に向かう。尚、出口ライン
29にも、圧力逃し弁35が設けられ、過大な圧力上昇
を防止している。更に、出口ライン15,29間の差圧
を測定する差圧変換器37が設けられ、その差圧信号を
用いて圧力制御弁31を操作し、水電解槽1内の陰極室
1aと陽極室1bとを微少差圧に保持している。
On the other hand, the separated oxygen (gas) passes through the outlet line 29 and the pressure control valve 31 in sequence and the oxygen line 3
It flows to 3 and goes to an appropriate recovery device. The outlet line 29 is also provided with a pressure relief valve 35 to prevent an excessive increase in pressure. Further, a differential pressure converter 37 for measuring the differential pressure between the outlet lines 15 and 29 is provided, and the pressure control valve 31 is operated by using the differential pressure signal, and the cathode chamber 1a and the anode chamber 1 in the water electrolysis tank 1 are operated. 1b and a small differential pressure.

【0010】図3において、20は純水供給装置、14
は純水供給ポンプ、30はイオン交換樹脂槽(または陽
イオン交換樹脂槽)を示す。このイオン交換樹脂槽30
を設ける意義について、以下に述べる。
In FIG. 3, reference numeral 20 denotes a pure water supply device, and 14
Is a pure water supply pump, and 30 is an ion exchange resin tank (or a cation exchange resin tank). This ion exchange resin tank 30
The significance of the provision will be described below.

【0011】図3の構成において、純水供給装置20か
ら純水供給ポンプ14を用いて陽極側気液分離器25内
に供給された純水は、電解により分解され酸素と水素に
変化する。この過程で水の中に含まれる微量の不純物は
陽極室1b内に残留するが、陽極室1b内の水は陽極室
1bから引きぬかれ、ライン23および陽極側気液分離
器25を経由して、イオン交換樹脂槽30の中を通り再
び陽極室1bに返送される。これにより、電解により消
費された分の水からの不純物イオンは、イオン交換樹脂
槽30により除去される。即ち、イオン交換樹脂槽30
を設けることにより、陽極室1b内に供給される電解用
の水の中の不純物イオンの濃度が高くなるのが防止され
る。前記不純物イオンは、陽イオンが主であるため、3
0は、陽イオン交換樹脂槽の方が好ましい。
In the structure shown in FIG. 3, the pure water supplied from the pure water supply device 20 into the anode-side gas-liquid separator 25 by using the pure water supply pump 14 is decomposed by electrolysis into oxygen and hydrogen. In this process, a trace amount of impurities contained in the water remains in the anode chamber 1b, but the water in the anode chamber 1b is removed from the anode chamber 1b, and passes through the line 23 and the anode-side gas-liquid separator 25. Then, it passes through the ion exchange resin tank 30 and is returned to the anode chamber 1b again. As a result, the impurity ions from the water consumed by the electrolysis are removed by the ion exchange resin tank 30. That is, the ion exchange resin tank 30
By providing, the concentration of impurity ions in the electrolysis water supplied into the anode chamber 1b can be prevented from increasing. Since the impurity ions are mainly cations, 3
0 is preferably a cation exchange resin tank.

【0012】前記不純物イオンの濃度が高くなると、電
解電圧が上昇し、電解性能が低下するが、前述のよう
に、純水の循環流路にあるイオン交換樹脂槽30に電解
槽内の水を通し電解槽に返送することにより不純物イオ
ンが除去され、固体高分子電解質膜に不純物イオンが蓄
積して電解性能が低下するのを防止することができる。
When the concentration of the impurity ions is increased, the electrolysis voltage is increased and the electrolysis performance is deteriorated. However, as described above, the water in the electrolysis tank is placed in the ion exchange resin tank 30 in the circulation path of pure water. It is possible to prevent impurity ions from being removed by returning them to the electrolytic cell through the electrolytic cell, and to prevent deterioration of electrolytic performance due to accumulation of impurity ions in the solid polymer electrolyte membrane.

【0013】なお、前述のように、水素イオンが陽極室
1bから陰極室1aへ移動する際に、電気浸透現象によ
り、水も同時に陰極室1aへ移動するが、この水内に不
純物イオンがあっても、固体高分子電解質膜に付着して
除去される。従って、陰極側気液分離器11に貯液され
る水には、不純物イオンが含まれることはなく、そのた
め、図3に示すように、陰極側気液分離器11の水は、
イオン交換樹脂糟30を経ずに、直接、陽極室1bに還
流することができる。
As described above, when hydrogen ions move from the anode chamber 1b to the cathode chamber 1a, water also moves to the cathode chamber 1a at the same time due to the electroosmosis phenomenon. However, there are impurity ions in the water. However, it is attached to the solid polymer electrolyte membrane and removed. Therefore, the water stored in the cathode-side gas-liquid separator 11 does not contain impurity ions. Therefore, as shown in FIG. 3, the water in the cathode-side gas-liquid separator 11 is
It is possible to directly flow back to the anode chamber 1b without passing through the ion-exchange resin container 30.

【0014】[0014]

【発明が解決しようとする課題】ところで、前記図3に
示す水電解装置の構成においては、下記のような問題が
ある。即ち、従来の水電解装置において用いるイオン交
換樹脂または陽イオン交換樹脂は、水電解装置の運転温
度が、通常約80℃であるため、耐熱仕様の交換樹脂を
使用する必要があり、高価である。また、一定時間継続
使用すると、不純物イオンの除去性能が低下するので、
水電解装置から取り外し、酸で洗浄した後、純水で洗浄
する再生処理が必要となり、連続した水電解運転ができ
ない問題がある。この再生処理の問題は、イオン交換樹
脂を2台準備して交代して用いることでカバーできる
が、前記耐熱仕様の交換樹脂を使用する場合、より一層
コスト高となる。
By the way, the structure of the water electrolysis apparatus shown in FIG. 3 has the following problems. That is, since the operating temperature of the water electrolysis device is usually about 80 ° C., the ion exchange resin or cation exchange resin used in the conventional water electrolysis device needs to use a heat resistant exchange resin, and is expensive. . In addition, if you continue to use for a certain period of time, the impurity ion removal performance will decrease, so
There is a problem that a continuous water electrolysis operation cannot be performed because a regeneration treatment of removing from the water electrolysis device, washing with acid, and then washing with pure water is required. The problem of this regeneration treatment can be covered by preparing two ion-exchange resins and using them in alternation, but the cost is further increased when the heat-resistant exchange resin is used.

【0015】この発明は、上記のような問題点を解消す
るためになされたもので、本発明の課題は、固体高分子
電解質膜に不純物イオンの付着・蓄積が進行しないよう
にして、電解性能が安定して良好に維持され、かつ高価
な耐熱性イオン交換樹脂を使用せずに長期継続運転が可
能な水電解装置とその運転方法を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to prevent the adhesion and accumulation of impurity ions on the solid polymer electrolyte membrane so that the electrolytic performance is improved. It is intended to provide a water electrolysis apparatus that can be stably and satisfactorily maintained and that can be continuously operated for a long period of time without using an expensive heat-resistant ion exchange resin, and an operating method thereof.

【0016】[0016]

【課題を解決するための手段】前述の課題を解決するた
め、この発明は、固体高分子電解質膜によって内部が陽
極室と陰極室とに区画された水電解槽と、陽極側気液分
離器および陰極側気液分離器とを備えた水電解装置の運
転方法において、供給水としての水道水を陽イオン交換
樹脂と接触させて陽イオンを除去した水を電解用水とし
て前記陽極室に供給して水電解を行い、前記陽極室から
排出される水の陽イオン濃度が上昇して所定値に到達し
た際に、前記陽極室内の水を排出し、この排出に伴って
前記電解用水を補給することとする(請求項1の発
明)。
In order to solve the above-mentioned problems, the present invention provides a water electrolysis tank whose interior is divided into an anode chamber and a cathode chamber by a solid polymer electrolyte membrane, and an anode-side gas-liquid separator. In a method of operating a water electrolysis apparatus including a cathode-side gas-liquid separator, tap water as feed water is brought into contact with a cation exchange resin to remove cations, and water supplied to the anode chamber as electrolysis water. Water electrolysis is performed, and when the cation concentration of the water discharged from the anode chamber rises and reaches a predetermined value, the water in the anode chamber is discharged and the water for electrolysis is replenished with this discharge. (The invention of claim 1).

【0017】前記請求項1の発明の実施態様として、下
記請求項2の発明が好ましい。即ち、請求項1に記載の
水電解装置の運転方法において、前記陽イオン濃度の所
定値は、予め前記陽イオン濃度との相関によって求めた
pH値により設定し、pH値が低下して下限設定値に到
達した際に前記陽極室内の水を排出し、電解用水を補給
することによってpH値が上昇して上限設定値に到達し
た際に、前記陽極室内の水の排出を停止する。
As an embodiment of the invention of claim 1, the invention of claim 2 below is preferable. That is, in the method for operating a water electrolysis apparatus according to claim 1, the predetermined value of the cation concentration is set by a pH value previously obtained by correlation with the cation concentration, and the pH value is lowered to set a lower limit. When the value reaches a certain value, the water in the anode chamber is discharged, and when the pH value rises by reaching the upper limit set value by replenishing water for electrolysis, the discharge of the water in the anode chamber is stopped.

【0018】陰イオンを多く含む酸性の水を陽極室内に
供給すると、電解される水の水素イオン濃度は純水を供
給したときに比べ100倍から1000倍となるため、
微量のNaイオン、Kイオン、Caイオン、Mgイオン、金属
イオンが膜電極接合体から脱離しやすくなり、不純物イ
オンが電解質膜に付着蓄積するのを防止することができ
る。また陰イオンを多く含む酸性の水を陽極室内に供給
することにより、すでに陽極側の電極とイオン交換膜の
表面に付着している陽イオンが供給水中に脱離する。
When acidic water containing a large amount of anions is supplied into the anode chamber, the concentration of hydrogen ions in the electrolyzed water becomes 100 to 1000 times that of pure water.
Trace amounts of Na ions, K ions, Ca ions, Mg ions, and metal ions are easily desorbed from the membrane electrode assembly, and it is possible to prevent impurity ions from adhering and accumulating on the electrolyte membrane. Further, by supplying acidic water containing a large amount of anions into the anode chamber, cations already attached to the surface of the electrode on the anode side and the ion exchange membrane are desorbed into the supplied water.

【0019】電解により水が消費されpH値が下がる
が、この水を排出し陽イオンを除去し酸性とした水を供
給することによりpH値を2から3に保ち接液部の腐食
を防ぐと共に、陽イオンが排出され低い電圧で継続して
電解を行うことができる。なお、pH値を適切に調節す
るためには、後述する発明のように、酸の添加による調
節が好ましい。
Although water is consumed by electrolysis to lower the pH value, the pH value is kept at 2 to 3 by discharging the water to remove cations and supplying acidified water to prevent corrosion of the wetted part. , Cations are discharged, and electrolysis can be continuously performed at a low voltage. In addition, in order to appropriately adjust the pH value, it is preferable to adjust by adding an acid as in the invention described later.

【0020】前記請求項1または2の発明によれば、固
体高分子電解質膜への不純物イオンの付着・蓄積の進行
を防止することができ、安定した電解性能が維持でき
る。また、高価な耐熱性イオン交換樹脂を使用せずに長
期継続運転が可能となる。なお、電解用水を陽極室では
なしに、陰極室に供給して電解する方式に上記発明を適
用しても、電解質膜を介して電解用水は陽極室に移行す
るので、前記と同様の効果が得られる。
According to the invention of claim 1 or 2, it is possible to prevent the adhesion and accumulation of impurity ions from adhering to the solid polymer electrolyte membrane, and to maintain stable electrolysis performance. Further, long-term continuous operation becomes possible without using expensive heat-resistant ion exchange resin. Incidentally, even if the above invention is applied to a system in which electrolysis water is supplied to the cathode chamber instead of the anode chamber and electrolyzed, the electrolysis water is transferred to the anode chamber through the electrolyte membrane, so that the same effect as above is obtained. can get.

【0021】また、請求項1または2に記載の水電解装
置の運転方法において、前記陰極側気液分離器内の水を
前記陽極室内に還流する(請求項3の発明)。
Further, in the method for operating a water electrolysis apparatus according to claim 1 or 2, water in the cathode side gas-liquid separator is returned to the anode chamber (invention of claim 3).

【0022】前記請求項3の発明によれば、不純物イオ
ンが除去された陰極水を陽極室へ返送するので、陽極室
内の水の不純物イオンの濃度を、所定値以下に、より長
時間保つことができ、補給する電解用水が節減できる。
補給する電解用水は、常温ではあるが、陽イオン交換樹
脂によって製造されるので、補給水の節減により、陽イ
オン交換樹脂のメンテナンス間隔が延長できる。
According to the third aspect of the invention, the cathode water from which the impurity ions have been removed is returned to the anode chamber, so that the concentration of the impurity ions in the water in the anode chamber should be kept below a predetermined value for a longer time. It is possible to reduce the amount of electrolytic water to be supplied.
Although the electrolyzing water to be replenished is at room temperature, it is produced by the cation exchange resin, so the maintenance interval of the cation exchange resin can be extended by saving the replenishment water.

【0023】また、前記運転方法を実施するための装置
としては、下記請求項4の発明が好適である。即ち、請
求項2に記載の水電解装置の運転方法を実施するための
水電解装置であって、供給水としての水道水と接触させ
て陽イオンを除去する陽イオン交換樹脂槽と、前記陽極
室から排出される水のpH値を測定するpHメータと、
前記陽極室内の水を排出する排出管および排出制御弁
と、電解用水流量制御弁と、前記pHメータのpH測定
値が所定値に到達した際に、前記排出制御弁を操作して
陽極室内の水を排出し、かつ前記電解用水流量制御弁を
操作して電解用水の流量を調節する制御装置とを備える
ものとする。
Further, as an apparatus for carrying out the operating method, the invention of claim 4 below is preferable. That is, a water electrolysis apparatus for carrying out the method of operating a water electrolysis apparatus according to claim 2, wherein a cation exchange resin tank for removing cations by contacting tap water as feed water, and the anode A pH meter for measuring the pH value of the water discharged from the chamber,
A discharge pipe and a discharge control valve for discharging water in the anode chamber, a water flow control valve for electrolysis, and when the pH measured value of the pH meter reaches a predetermined value, the discharge control valve is operated to operate in the anode chamber. A controller for discharging water and operating the electrolysis water flow rate control valve to adjust the flow rate of electrolysis water.

【0024】さらに、前記酸の添加に関わる発明として
は、下記請求項5ないし10の発明が好ましい。即ち、
固体高分子電解質膜によって内部が陽極室と陰極室とに
区画された水電解槽と、陽極側気液分離器および陰極側
気液分離器とを備えた水電解装置の運転方法において、
供給水としての水道水を陽イオン交換樹脂と接触させて
陽イオンを除去した後、酸を添加して接液材料が腐食し
ない程度の酸性とした水を電解用水として前記陽極室に
供給して水電解を行い、陽極室から排出される水と混合
して陽極室に供給する水のpH値が低下して所定値に到
達した際に、酸の添加を停止し、かつ前記陽極室内の水
を排出し、この排出に伴って前記電解用水を補給する
(請求項5の発明)。
Further, as the invention relating to the addition of the acid, the inventions of claims 5 to 10 below are preferable. That is,
In a method of operating a water electrolysis apparatus including a water electrolysis tank in which the interior is divided into an anode chamber and a cathode chamber by a solid polymer electrolyte membrane, and an anode-side gas-liquid separator and a cathode-side gas-liquid separator,
After tap water as feed water is contacted with a cation exchange resin to remove cations, acid is added to the anode chamber as water for electrolysis, which is acidified to such an extent that the wetted material does not corrode. Water electrolysis is performed, and when the pH value of the water mixed with the water discharged from the anode chamber and supplied to the anode chamber decreases to a predetermined value, the addition of acid is stopped and the water in the anode chamber is stopped. Is discharged and the water for electrolysis is replenished with this discharge (the invention of claim 5).

【0025】また、前記請求項5に記載の水電解装置の
運転方法において、前記pH値が低下して下限設定値に
到達した際に酸の添加を停止し、かつ前記陽極室内の水
を排出し電解用水を補給することによってpH値が上昇
して上限設定値に到達した際に、前記陽極室内の水の排
出を停止し、かつ酸の添加を再度開始することとする
(請求項6の発明)。
Further, in the method for operating a water electrolysis apparatus according to claim 5, the addition of acid is stopped and the water in the anode chamber is discharged when the pH value reaches a lower limit set value. Then, when the pH value rises and reaches the upper limit set value by replenishing the electrolyzing water, the discharge of water in the anode chamber is stopped and the addition of the acid is restarted (claim 6). invention).

【0026】前記請求項5ないし6の発明の作用効果
は、前述と同様であるので説明を省略する。なお、酸と
しては、硫酸、硝酸、塩酸、蓚酸、酢酸などを用いるこ
とができ、Na,K,Ca,Mg,金属などが不純物として含
まれていないものが好ましい。
The functions and effects of the inventions according to claims 5 to 6 are the same as those described above, and a description thereof will be omitted. As the acid, sulfuric acid, nitric acid, hydrochloric acid, oxalic acid, acetic acid or the like can be used, and it is preferable that Na, K, Ca, Mg, metal and the like are not contained as impurities.

【0027】また、請求項5または6に記載の水電解装
置の運転方法において、前記水道水を陽イオン交換樹脂
と接触させて陽イオンを除去する工程に代えて、陽イオ
ン交換および陰イオン交換の両機能を有するイオン交換
樹脂と接触する純水化工程とする(請求項7の発明)。
酸を添加して電解用水を調整する場合には、上記のよう
に、陽イオン交換樹脂を通常のイオン交換樹脂に代える
ことができる。
Further, in the method for operating a water electrolysis apparatus according to claim 5 or 6, instead of the step of contacting the tap water with a cation exchange resin to remove cations, cation exchange and anion exchange. This is a pure water purification step of contacting with an ion exchange resin having both the above functions (the invention of claim 7).
When an acid is added to adjust the water for electrolysis, the cation exchange resin can be replaced with a normal ion exchange resin as described above.

【0028】さらに、前記請求項2または6に記載の水
電解装置の運転方法において、前記pH値の下限設定値
は1.5とし、上限設定値は2.0とする(請求項8の
発明)。
Further, in the method for operating a water electrolysis apparatus according to claim 2 or 6, the lower limit set value of the pH value is 1.5 and the upper limit set value is 2.0 (the invention of claim 8). ).

【0029】また、酸添加方式の装置としては、下記請
求項9ないし10の発明が好ましい。即ち、請求項5に
記載の水電解装置の運転方法を実施するための水電解装
置であって、供給水としての水道水と接触させて陽イオ
ンを除去する陽イオン交換樹脂槽と、酸を添加する酸貯
槽および酸供給仕切り弁と、前記陽極側気液分離器から
排出される水のpH値を測定するpHメータと、前記陽
極室内の水を排出する排出管および排出制御弁と、電解
用水流量制御弁と、前記pHメータのpH測定値が所定
値に到達した際に、前記排出制御弁を操作して陽極室内
の水を排出し、かつ前記酸供給仕切り弁を閉じ、電解用
水流量制御弁を操作して電解用水の流量を調節する制御
装置とを備えるものとする(請求項9の発明)。
As the acid addition type apparatus, the inventions of claims 9 to 10 below are preferable. That is, a water electrolysis apparatus for carrying out the method for operating a water electrolysis apparatus according to claim 5, wherein a cation exchange resin tank for removing cations by contacting with tap water as feed water, and an acid Acid storage tank for addition and acid supply sluice valve, pH meter for measuring pH value of water discharged from the anode-side gas-liquid separator, discharge pipe and discharge control valve for discharging water in the anode chamber, and electrolysis When the pH measured value of the water flow rate control valve and the pH meter reaches a predetermined value, the discharge control valve is operated to discharge water in the anode chamber, and the acid supply partition valve is closed to set the flow rate of electrolysis water. A control device for operating a control valve to adjust the flow rate of electrolyzing water is provided (the invention of claim 9).

【0030】さらに、前記請求項9に記載の水電解装置
において、前記水道水と接触させて陽イオンを除去する
ための陽イオン交換樹脂槽に代えて、陽イオン交換およ
び陰イオン交換の両機能を有するイオン交換樹脂槽とす
る(請求項10の発明)。
Further, in the water electrolysis apparatus according to claim 9, instead of a cation exchange resin tank for contacting the tap water to remove cations, both functions of cation exchange and anion exchange are provided. An ion exchange resin tank having the above (claim 10).

【0031】[0031]

【発明の実施の形態】図1および図2に基づき、この発
明の実施の形態について以下に述べる。なお、図1およ
び図2に示す水電解装置おいて、図3に示す部材と同一
機能を有する部材には、同一番号を付して詳細説明を省
略する。また、図1および図2においては、図3におけ
る水素ガスおよび酸素ガスの系統を一部省略して示す。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIGS. 1 and 2. In the water electrolysis apparatus shown in FIGS. 1 and 2, members having the same functions as the members shown in FIG. 3 are designated by the same reference numerals, and detailed description thereof will be omitted. 1 and 2, the hydrogen gas and oxygen gas systems in FIG. 3 are partially omitted.

【0032】まず、図1の実施の形態について述べる。
図1の水電解装置の系統において、図3と異なる点は、
陽イオンを除去する陽イオン交換樹脂槽40と、陽極室
1bから排出される水のpH値を測定するpHメータ5
4と、前記陽極室内の水を排出する排出管44および排
出制御弁46と、電解用水流量制御弁48と、pHメー
タ54のpH測定値が所定値に到達した際に、排出制御
弁46を操作して陽極室内の水を排出し、かつ電解用水
流量制御弁48を操作して電解用水の流量を調節する制
御装置45とを備える点である。42は電解用水の給水
タンク、18は水道水の給水口を示す。なお、図1にお
いて、pHメータ54の位置は、陽極室からの出口ライ
ン23上に設けることもできる。
First, the embodiment of FIG. 1 will be described.
1 is different from the system of the water electrolysis apparatus of FIG.
A cation exchange resin tank 40 for removing cations, and a pH meter 5 for measuring the pH value of water discharged from the anode chamber 1b.
4, the discharge pipe 44 and the discharge control valve 46 for discharging the water in the anode chamber, the electrolysis water flow rate control valve 48, and the discharge control valve 46 when the pH measurement value of the pH meter 54 reaches a predetermined value. The control unit 45 is operated to discharge water in the anode chamber and to operate the electrolysis water flow rate control valve 48 to adjust the flow rate of electrolysis water. 42 is a water supply tank for electrolysis water, and 18 is a tap water supply port. In addition, in FIG. 1, the position of the pH meter 54 may be provided on the outlet line 23 from the anode chamber.

【0033】上記構成において、水道水が給水口18か
ら陽イオン交換樹脂槽40に流入し、陽イオンを除去し
た陰イオンを多く含む酸性の水が給水タンク42に貯水
される。この水が供給ポンプ14によって陽極気液分離
器25に供給され、循環ポンプ5によって水電解槽1の
陽極室1bに流入して電気分解される。これにより水素
は陰極室1aに発生する。一方、酸素は陽極室1bに発
生する。
In the above structure, tap water flows into the cation exchange resin tank 40 from the water supply port 18, and acidic water containing a large amount of anions from which cations have been removed is stored in the water supply tank 42. This water is supplied to the anode gas-liquid separator 25 by the supply pump 14 and flows into the anode chamber 1b of the water electrolysis tank 1 by the circulation pump 5 to be electrolyzed. As a result, hydrogen is generated in the cathode chamber 1a. On the other hand, oxygen is generated in the anode chamber 1b.

【0034】水素イオンが陽極室から陰極室に移動する
際に、電気浸透現象により、水も陰極室に移動する。こ
の過程で微量の陽イオンが陽極側に残留するが、給水タ
ンク42より供給される水は、陽イオンを除去した陰イ
オンを多く含む、例えばpH2から3の酸性であるた
め、残留した陽イオンは電解質膜3としての陽イオン交
換膜に付着蓄積すること無く水に溶出したままとなる。
この陽イオン濃度の高い水を陽極室1bに取付けた排出
管44によって排出し、給水タンク42から陽イオンを
除去した陰イオンを多く含む酸性の水を供給することに
よって、陽イオンの濃度を低くし陽イオンが付着し電解
性能が低下することを防止すると共に、水のpH値を好
適な範囲に保つことによって、pH値が低下し過ぎて接
液材料が腐食するのを防止することができる。
When hydrogen ions move from the anode chamber to the cathode chamber, water also moves to the cathode chamber due to the electroosmosis phenomenon. Although a small amount of cations remain on the anode side in this process, the water supplied from the water supply tank 42 contains a large amount of anions from which the cations have been removed, for example, is acidic at pH 2 to 3, and thus the remaining cations Remains dissolved in water without accumulating and accumulating on the cation exchange membrane as the electrolyte membrane 3.
The water having a high concentration of cations is discharged by a discharge pipe 44 attached to the anode chamber 1b, and acidic water containing a large amount of anions from which the cations have been removed is supplied from the water supply tank 42 to reduce the concentration of cations. It is possible to prevent cations from adhering to lower the electrolytic performance and prevent the liquid contact material from being corroded by keeping the pH value of water in a suitable range. .

【0035】次に、図2の実施の形態について述べる。
図2の系統において、図3と異なる主な点は、陽イオン
を除去する陽イオン交換樹脂槽40と、酸を添加する酸
貯槽50および酸供給仕切り弁52と、陽極側気液分離
器25から排出される水のpH値を測定するpHメータ
54と、陽極室内の水を排出する排出管44および排出
制御弁46と、電解用水流量制御弁48と、pHメータ
54のpH測定値が所定値に到達した際に、前記排出制
御弁46を操作して陽極室内の水を排出し、かつ前記酸
供給仕切り弁52を閉じ、電解用水流量制御弁48を操
作して電解用水の流量を調節する制御装置45aとを備
える点であり、図1とは、酸の添加系統を追加した点と
制御装置の構成が異なる。図2の動作や作用について
は、前述と同様であるので、説明を省略する。
Next, the embodiment of FIG. 2 will be described.
The main points of the system of FIG. 2 different from those of FIG. 3 are a cation exchange resin tank 40 for removing cations, an acid storage tank 50 for adding an acid and an acid supply sluice valve 52, and an anode-side gas-liquid separator 25. PH meter 54 for measuring the pH value of water discharged from the discharge chamber, discharge pipe 44 and discharge control valve 46 for discharging water in the anode chamber, electrolysis water flow rate control valve 48, and pH measured value of pH meter 54 are predetermined. When the value is reached, the discharge control valve 46 is operated to discharge the water in the anode chamber, the acid supply partition valve 52 is closed, and the electrolysis water flow control valve 48 is operated to adjust the flow rate of electrolysis water. 1 is different from that of FIG. 1 in that an acid addition system is added and the configuration of the control device is different. Since the operation and action of FIG. 2 are the same as those described above, the description thereof will be omitted.

【0036】[0036]

【発明の効果】前述のように、この発明によれば、電解
用水に酸を添加するか、および/または、陽イオン交換
樹脂と接触させ陽イオンを除去し陰イオンを多く含む酸
性の水を陽極室に供給すると共に、防食を考慮し、電解
用水を所定のpH値範囲とするために、陽極室内の水を
排出し、排出した分の水を供給するように制御すること
としたので、電解される水に含まれる陽イオンが固体高
分子電解質膜に付着し蓄積するのを防止することができ
る。
As described above, according to the present invention, an acid is added to water for electrolysis and / or an acid water containing anions is removed by contacting with a cation exchange resin to remove cations. In addition to supplying to the anode chamber, in consideration of anticorrosion, in order to bring the electrolyzing water into a predetermined pH value range, the water in the anode chamber was discharged, and it was decided to control to supply the discharged water. It is possible to prevent cations contained in electrolyzed water from adhering to and accumulating on the solid polymer electrolyte membrane.

【0037】従って、電解電圧が上昇し電解性能が低下
することなく良好な状態で電解をすることができる。ま
た、水電解槽の陽極水再循環の系外に陽イオン交換樹脂
槽を設けることとしたので、高価な耐熱性イオン交換樹
脂を使用せずに長期継続運転が可能な水電解装置とその
運転方法が提供できる。
Therefore, it is possible to electrolyze in a good state without increasing the electrolysis voltage and decreasing the electrolysis performance. In addition, since a cation exchange resin tank was installed outside the anode water recirculation system of the water electrolysis tank, a water electrolysis device that can be operated continuously for a long time without using expensive heat-resistant ion exchange resin and its operation A method can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の水電解装置の実施例の系統図FIG. 1 is a system diagram of an embodiment of a water electrolysis device of the present invention.

【図2】この発明の水電解装置の異なる実施例の系統図FIG. 2 is a system diagram of a different embodiment of the water electrolysis apparatus of the present invention.

【図3】従来の水電解装置の一例を示す系統図FIG. 3 is a system diagram showing an example of a conventional water electrolysis device.

【符号の説明】[Explanation of symbols]

1:水電解槽、1a:陰極室、1b:陽極室、3:固体
高分子電解質膜、11:陰極側気液分離器、13:陰極
水戻りライン、25:陽極側気液分離器、40:陽イオ
ン交換樹脂槽、44:排出管、45,45a:制御装
置、46:排出制御弁、48:電解用水流量制御弁、5
0:酸貯槽、52:酸供給仕切り弁、54:pHメー
タ。
1: Water electrolysis tank, 1a: Cathode chamber, 1b: Anode chamber, 3: Solid polymer electrolyte membrane, 11: Cathode side gas-liquid separator, 13: Cathode water return line, 25: Anode side gas-liquid separator, 40 : Cation exchange resin tank, 44: discharge pipe, 45, 45a: control device, 46: discharge control valve, 48: electrolysis water flow control valve, 5
0: Acid storage tank, 52: Acid supply sluice valve, 54: pH meter.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜によって内部が陽極
室と陰極室とに区画された水電解槽と、陽極側気液分離
器および陰極側気液分離器とを備えた水電解装置の運転
方法において、 供給水としての水道水を陽イオン交換樹脂と接触させて
陽イオンを除去した水を電解用水として前記陽極室に供
給して水電解を行い、前記陽極室から排出される水の陽
イオン濃度が上昇して所定値に到達した際に、前記陽極
室内の水を排出し、この排出に伴って前記電解用水を補
給することを特徴とする水電解装置の運転方法。
1. An operation of a water electrolysis apparatus comprising a water electrolysis tank whose interior is divided into an anode chamber and a cathode chamber by a solid polymer electrolyte membrane, and an anode-side gas-liquid separator and a cathode-side gas-liquid separator. In the method, tap water as feed water is brought into contact with a cation exchange resin to remove cations, and water is supplied to the anode chamber as electrolysis water to perform water electrolysis, and the water discharged from the anode chamber is treated with cations. A method of operating a water electrolysis device, characterized in that, when the ion concentration rises to reach a predetermined value, the water in the anode chamber is discharged, and the water for electrolysis is replenished with this discharge.
【請求項2】 請求項1に記載の水電解装置の運転方法
において、前記陽イオン濃度の所定値は、予め前記陽イ
オン濃度との相関によって求めたpH値により設定し、
pH値が低下して下限設定値に到達した際に前記陽極室
内の水を排出し、電解用水を補給することによってpH
値が上昇して上限設定値に到達した際に、前記陽極室内
の水の排出を停止することを特徴とする水電解装置の運
転方法。
2. The method for operating a water electrolysis apparatus according to claim 1, wherein the predetermined value of the cation concentration is set by a pH value previously obtained by correlation with the cation concentration,
When the pH value decreases and reaches the lower limit set value, the water in the anode chamber is discharged and the pH is adjusted by replenishing the electrolysis water.
A method of operating a water electrolysis device, characterized in that the discharge of water in the anode chamber is stopped when the value increases and reaches the upper limit set value.
【請求項3】 請求項1または2に記載の水電解装置の
運転方法において、前記陰極側気液分離器内の水を前記
陽極室内に還流することを特徴とする水電解装置の運転
方法。
3. The method of operating a water electrolysis device according to claim 1, wherein the water in the cathode-side gas-liquid separator is returned to the anode chamber.
【請求項4】 請求項2に記載の水電解装置の運転方法
を実施するための水電解装置であって、 供給水としての水道水と接触させて陽イオンを除去する
陽イオン交換樹脂槽と、前記陽極室から排出される水の
pH値を測定するpHメータと、前記陽極室内の水を排
出する排出管および排出制御弁と、電解用水流量制御弁
と、前記pHメータのpH測定値が所定値に到達した際
に、前記排出制御弁を操作して陽極室内の水を排出し、
かつ前記電解用水流量制御弁を操作して電解用水の流量
を調節する制御装置とを備えることを特徴とする水電解
装置。
4. A water electrolysis apparatus for carrying out the method of operating a water electrolysis apparatus according to claim 2, wherein a cation-exchange resin tank for contacting tap water as supply water to remove cations is provided. A pH meter for measuring a pH value of water discharged from the anode chamber, a discharge pipe and a discharge control valve for discharging water in the anode chamber, a water flow control valve for electrolysis, and a pH measured value of the pH meter. When the predetermined value is reached, the discharge control valve is operated to discharge the water in the anode chamber,
And a controller for operating the electrolysis water flow rate control valve to adjust the flow rate of electrolysis water.
【請求項5】 固体高分子電解質膜によって内部が陽極
室と陰極室とに区画された水電解槽と、陽極側気液分離
器および陰極側気液分離器とを備えた水電解装置の運転
方法において、 供給水としての水道水を陽イオン交換樹脂と接触させて
陽イオンを除去した後、酸を添加して接液材料が腐食し
ない程度の酸性とした水を電解用水として前記陽極室に
供給して水電解を行い、陽極室から排出される水と混合
して陽極室に供給する水のpH値が低下して所定値に到
達した際に、酸の添加を停止し、かつ前記陽極室内の水
を排出し、この排出に伴って前記電解用水を補給するこ
とを特徴とする水電解装置の運転方法。
5. An operation of a water electrolysis apparatus comprising a water electrolysis tank whose interior is divided into an anode chamber and a cathode chamber by a solid polymer electrolyte membrane, and an anode-side gas-liquid separator and a cathode-side gas-liquid separator. In the method, tap water as feed water is brought into contact with a cation exchange resin to remove cations, and then acid is added to the anode chamber as water for electrolysis, which is acidified to such an extent that the wetted material does not corrode. When the pH value of the water supplied to perform the water electrolysis and mixed with the water discharged from the anode chamber and supplied to the anode chamber decreases to a predetermined value, the addition of the acid is stopped, and A method for operating a water electrolysis device, characterized in that water in a room is discharged and the water for electrolysis is replenished with the discharge.
【請求項6】 請求項5に記載の水電解装置の運転方法
において、前記pH値が低下して下限設定値に到達した
際に酸の添加を停止し、かつ前記陽極室内の水を排出し
電解用水を補給することによってpH値が上昇して上限
設定値に到達した際に、前記陽極室内の水の排出を停止
し、かつ酸の添加を再度開始することを特徴とする水電
解装置の運転方法。
6. The method for operating a water electrolysis apparatus according to claim 5, wherein the addition of acid is stopped and the water in the anode chamber is discharged when the pH value reaches a lower limit set value. When the pH value rises by replenishing water for electrolysis and reaches the upper limit set value, the discharge of water in the anode chamber is stopped, and the addition of acid is restarted. how to drive.
【請求項7】 請求項5または6に記載の水電解装置の
運転方法において、前記水道水を陽イオン交換樹脂と接
触させて陽イオンを除去する工程に代えて、陽イオン交
換および陰イオン交換の両機能を有するイオン交換樹脂
と接触する純水化工程とすることを特徴とする水電解装
置の運転方法。
7. The method of operating a water electrolysis apparatus according to claim 5, wherein instead of the step of contacting the tap water with a cation exchange resin to remove cations, cation exchange and anion exchange. A method of operating a water electrolysis device, which comprises performing a deionization step of contacting an ion exchange resin having both of the above functions.
【請求項8】 請求項2または6に記載の水電解装置の
運転方法において、前記pH値の下限設定値は1.5と
し、上限設定値は2.0とすることを特徴とする水電解
装置の運転方法。
8. The method for operating a water electrolysis apparatus according to claim 2 or 6, wherein the lower limit set value of the pH value is 1.5 and the upper limit set value is 2.0. How to operate the device.
【請求項9】 請求項5に記載の水電解装置の運転方法
を実施するための水電解装置であって、 供給水としての水道水と接触させて陽イオンを除去する
陽イオン交換樹脂槽と、酸を添加する酸貯槽および酸供
給仕切り弁と、前記陽極側気液分離器から排出される水
のpH値を測定するpHメータと、前記陽極室内の水を
排出する排出管および排出制御弁と、電解用水流量制御
弁と、前記pHメータのpH測定値が所定値に到達した
際に、前記排出制御弁を操作して陽極室内の水を排出
し、かつ前記酸供給仕切り弁を閉じ、電解用水流量制御
弁を操作して電解用水の流量を調節する制御装置とを備
えることを特徴とする水電解装置。
9. A water electrolysis apparatus for carrying out the method of operating a water electrolysis apparatus according to claim 5, wherein the cation exchange resin tank is contacted with tap water as feed water to remove cations. An acid storage tank for adding an acid and an acid supply sluice valve, a pH meter for measuring the pH value of water discharged from the anode-side gas-liquid separator, and a discharge pipe and discharge control valve for discharging water in the anode chamber A water flow control valve for electrolysis, when the pH measurement value of the pH meter reaches a predetermined value, the discharge control valve is operated to discharge water in the anode chamber, and the acid supply sluice valve is closed, A water electrolysis apparatus comprising: a control device that operates a water flow control valve for electrolysis to adjust the flow rate of electrolysis water.
【請求項10】 請求項9に記載の水電解装置におい
て、前記水道水と接触させて陽イオンを除去するための
陽イオン交換樹脂槽に代えて、陽イオン交換および陰イ
オン交換の両機能を有するイオン交換樹脂槽とすること
を特徴とする水電解装置。
10. The water electrolysis apparatus according to claim 9, wherein the cation exchange resin tank for contacting the tap water to remove cations is replaced with both cation exchange and anion exchange functions. A water electrolysis device comprising an ion-exchange resin tank having the same.
JP2001324685A 2001-10-23 2001-10-23 Water electrolyzer and method for operating the same Pending JP2003129265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001324685A JP2003129265A (en) 2001-10-23 2001-10-23 Water electrolyzer and method for operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001324685A JP2003129265A (en) 2001-10-23 2001-10-23 Water electrolyzer and method for operating the same

Publications (1)

Publication Number Publication Date
JP2003129265A true JP2003129265A (en) 2003-05-08

Family

ID=19141369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001324685A Pending JP2003129265A (en) 2001-10-23 2001-10-23 Water electrolyzer and method for operating the same

Country Status (1)

Country Link
JP (1) JP2003129265A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113578057A (en) * 2021-07-16 2021-11-02 嘉兴诚凯环保科技股份有限公司 Automobile-used urea's apparatus for producing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113578057A (en) * 2021-07-16 2021-11-02 嘉兴诚凯环保科技股份有限公司 Automobile-used urea's apparatus for producing
CN113578057B (en) * 2021-07-16 2024-02-02 嘉兴诚凯环保科技股份有限公司 Apparatus for producing of automobile-used urea

Similar Documents

Publication Publication Date Title
US5980703A (en) Electrolytic cell for producing acidic water and alkaline water
KR100351311B1 (en) Electrolyzer producing mixed oxidant gas
JP2906986B2 (en) Wet treatment apparatus, electrolytic activated water generation method, and wet treatment method
JP3048612B2 (en) Electrolytic ozone generator
JP2008069458A (en) Electrolysis cell for restoring concentration of metal ion in electroplating process
KR101361651B1 (en) A device using electrolyzer with a bipolar membrane and the method of producing hypochlorite solution and hydrogen gas thereby
JPS5949318B2 (en) Electrolytic production method of alkali metal hypohalite salt
CN112714803A (en) Plating solution production and regeneration process and device for insoluble anode acid copper electroplating
WO2018168876A1 (en) Organic substance generation system and method for producing organic substance
JP2015208735A (en) Method and device for processing exhaust gas
JP2009226315A (en) Electric deionized water manufacturing device and manufacturing method of deionized water
KR20130077164A (en) Water treatment apparatus for fuel cell
CN212476405U (en) Water quality regulation and control system
JP3773178B2 (en) Electric deionized water production apparatus and production method
JP2003129265A (en) Water electrolyzer and method for operating the same
JPH11269690A (en) Method for stopping membrane electrolytic cell having oxygen reduction cathode
JP2004042025A (en) Electrolytic ion water generation method and device therefor
JPH09279376A (en) Production of chlorine dioxide
JP2002302784A (en) Water electrolyzing apparatus using solid polymer electrolyte membrane and method of operating the same
US20180194648A1 (en) Electrolytic apparatus
JP2008161795A (en) Ozone water generator
JP4662277B2 (en) Electrodeionization equipment
JP2004277870A (en) Method for operating water electrolyzer
JP2000104191A (en) Hydrogen and oxygen generating device
JPH08311676A (en) Method for removing dissolved hydrogen of electrolyzer and device therefor