JP2003128465A - Sintered translucent scandium oxide and process for making the same - Google Patents

Sintered translucent scandium oxide and process for making the same

Info

Publication number
JP2003128465A
JP2003128465A JP2001320813A JP2001320813A JP2003128465A JP 2003128465 A JP2003128465 A JP 2003128465A JP 2001320813 A JP2001320813 A JP 2001320813A JP 2001320813 A JP2001320813 A JP 2001320813A JP 2003128465 A JP2003128465 A JP 2003128465A
Authority
JP
Japan
Prior art keywords
sintered body
wtppm
scandium oxide
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001320813A
Other languages
Japanese (ja)
Other versions
JP3883106B2 (en
Inventor
Hideki Yagi
秀喜 八木
Takakimi Yanagiya
高公 柳谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP2001320813A priority Critical patent/JP3883106B2/en
Publication of JP2003128465A publication Critical patent/JP2003128465A/en
Application granted granted Critical
Publication of JP3883106B2 publication Critical patent/JP3883106B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sintered scandium oxide showing a good translucency within visible and infrared regions, using an industrially applicable method. SOLUTION: A molded product whose green density is >=58% of the theoretical density and Al content is 5-100 wt.ppm, is prepared using a raw material powder of highly pure scandium oxide with a Si content of <=30 wt.ppm and a purity of >=99.9%. The molded product is burned at 1,400-1,800 deg.C under a vacuum, from which binders have been removed through heating. The process yields translucent ceramics showing a linear transmittance of >=77% at a wavelength of 500 nm-5 μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の利用分野】本発明は、Sc2O3で表わされる透光
性酸化スカンジウム焼結体、及びその製造方法に関す
る。本発明の焼結体は、例えば赤外透過窓材、偏光板、
放電ランプ用エンベロープ、光学部品、レーザー発振子
として好適に使用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent scandium oxide sintered body represented by Sc 2 O 3 and a method for producing the same. The sintered body of the present invention is, for example, an infrared transmission window material, a polarizing plate,
It is preferably used as a discharge lamp envelope, an optical component, and a laser oscillator.

【0002】[0002]

【従来技術】Sc2O3で表わされる酸化スカンジウムは、
その結晶構造が立方晶であり複屈折が無い。そのため、
気孔や不純物による偏析を完全に除去する事により、透
光性に優れた焼結体を得ることが可能である。酸化スカ
ンジウムは、融点が2485℃を越えており(化学便覧、日
本化学会編)、耐熱性、耐アルカリ性に優れた素材であ
る事が知られている。更に高い熱伝導率を有するため、
固体レーザー用ホスト材料として期待されている。
2. Description of the Related Art Scandium oxide represented by Sc 2 O 3 is
Its crystal structure is cubic and has no birefringence. for that reason,
By completely removing the pores and the segregation due to the impurities, it is possible to obtain a sintered body having excellent translucency. Scandium oxide has a melting point of higher than 2485 ° C. (Chemical Handbook, edited by the Chemical Society of Japan) and is known to be a material having excellent heat resistance and alkali resistance. Since it has higher thermal conductivity,
It is expected as a host material for solid-state lasers.

【0003】しかしながら、酸化スカンジウムは高価で
あることから、結晶の作成方法に関してはほとんど研究
がなされていない。また、その融点が極めて高いため、
既存の単結晶合成技術では光学的に優れた大型結晶を合
成することは困難である。
However, since scandium oxide is expensive, little research has been conducted on the method for producing crystals. Also, because its melting point is extremely high,
It is difficult to synthesize a large crystal that is optically excellent by the existing single crystal synthesis technology.

【0004】この一方で、セラミックス(多結晶体)は、
融点以下の比較的低い温度での合成が可能であるため、
酸化スカンジウム同様、高融点の酸化イットリウム(イ
ットリア)や希土類元素の酸化物に関して、従来より赤
外用高温窓材、放電ランプ用エンベロープ、耐食部材等
に適用すべく検討が盛んに行なわれている。酸化スカン
ジウムの焼結体に関する報告例(例えば、Adv Powder Me
tall.vol5.pp347〜356(1991)やJ.A.Ceram.Soc.60(No3〜
4)pp167〜168(1977))は少ない為、比較的性質の似通っ
ているイットリアセラミックスの作成方法により、従来
技術を説明する。酸化スカンジウムに限らず、透光性焼
結体の作製においては、焼成の際、粒成長による気孔の
排出を上手く行なえるかどうかが最も重要であり、粒成
長速度を制御すべく焼結助剤を添加する手法が一般的で
ある。従来より多数報告されているイットリアの製造方
法に関しても、その多くは焼結助剤を添加した手法であ
る。
On the other hand, ceramics (polycrystal) is
Since it can be synthesized at a relatively low temperature below the melting point,
Similar to scandium oxide, yttrium oxide (yttria) having a high melting point and oxides of rare earth elements have been actively studied for application to infrared high temperature window materials, discharge lamp envelopes, corrosion resistant members, and the like. Examples of reports on sintered scandium oxide (for example, Adv Powder Me
tall.vol5.pp347 ~ 356 (1991) and JA Ceram.Soc.60 (No3 ~
4) Since pp167 to 168 (1977)) are few, the conventional technique will be explained by a method of producing yttria ceramics having relatively similar properties. Not only scandium oxide, but also the production of translucent sintered compacts, it is most important to successfully discharge pores due to grain growth during firing, and sintering aids should be used to control grain growth rate. The method of adding is common. Many of the yttria production methods that have been reported in the past are also methods in which a sintering aid is added.

【0005】焼結助剤を用いた透光性イットリア焼結体
の製造方法としては、(1)ThO2を添加して水素中210
0℃以上で焼成する方法(Ceramic BulletinVol.52,No5
(1973)),(2)AlF3を添加したY2O3粉末を真空ホットプレ
スで焼成する方法(特開昭53-120707号),(3)同様にLiF又
はKFを添加してホットプレスする方法(特開平4-59658
号),(4)La2O3やAl2O3を添加して低O2雰囲気中で焼結す
る方法(特開昭54-17911号,特開昭54-17910号)、(5)CaO
やZrO2を添加して窒素ガスの分圧を制御した雰囲気で焼
結する方法(特開平10-273364号)等が開示されている。
[0005] As a method for producing a sintering aid with translucent yttria sintered body in a hydrogen by adding (1) ThO 2 210
Method of firing above 0 ℃ (Ceramic Bulletin Vol.52, No5
(1973)), (2) a method of firing Y 2 O 3 powder added with AlF 3 by vacuum hot press (JP-A-53-120707), (3) hot pressing with addition of LiF or KF Method (JP-A-4-59658
No.), (4) A method of adding La 2 O 3 or Al 2 O 3 and sintering in a low O 2 atmosphere (JP-A-54-17911, JP-A-54-17910), (5) CaO
And a method of adding ZrO 2 and sintering in an atmosphere in which the partial pressure of nitrogen gas is controlled (JP-A-10-273364) and the like are disclosed.

【0006】(1)の手法に於いては、比較的透明度の高
い焼結体が得られるものの、入手及び取り扱いが容易で
ない放射性元素であるトリアを焼結助剤として添加して
いる。更に高温で長時間焼成を行なうため、平均粒子径
は100μm以上と非常に大きく、その材料強度は極めて低
い。従って民生品としての実用には不適である。(2)の
ホットプレス法では、比較的低温での焼成が可能である
ものの、可視部での直線透過率は60%程度のものしか得
られない。(3)の手法では、1500℃以上でホットプレス
処理を行なうことにより、波長2μm以上の赤外領域に
て、直線透過率が80%程度の焼結体が作製可能である。
可視部での透過率に関しては明記されておらず不明であ
るが、焼結助剤として添加されている弗化物は低融点物
質(LiF:842℃,KF:860℃)であり、焼成過程において蒸発
し、試料の外周部と内部で粒成長速度に差が生じるた
め、肉厚試料の場合には均一な焼結体を作製することは
困難である。また真島らによれば(日本金属学会誌第57
巻10号(1993)1221-1226)、LiFを助剤としてホットプレ
スした場合、その添加量の最適化を行なっても試料中心
部にフッ素が残留し、試料の外周部と比較してその透過
率は低くなることが述べられている。従って弗化物を焼
結助剤として用い、大型、肉厚焼結体を作製することは
容易ではない。
In the method (1), although a sintered body having a relatively high degree of transparency can be obtained, thoria, which is a radioactive element which is difficult to obtain and handle, is added as a sintering aid. Further, since firing is performed at a high temperature for a long time, the average particle size is very large, 100 μm or more, and the material strength is extremely low. Therefore, it is not suitable for practical use as a consumer product. The hot pressing method (2) allows firing at a relatively low temperature, but only a linear transmittance of about 60% in the visible portion can be obtained. In the method (3), a hot press treatment at 1500 ° C. or higher makes it possible to produce a sintered body having a linear transmittance of about 80% in the infrared region of a wavelength of 2 μm or more.
The transmittance in the visible part is unclear because it is not specified, but the fluoride added as a sintering aid is a low melting point substance (LiF: 842 ° C, KF: 860 ° C) and Evaporation causes a difference in grain growth rate between the outer peripheral portion and the inner portion of the sample, so that it is difficult to produce a uniform sintered body in the case of a thick sample. In addition, according to Mashima et al.
Vol. 10 (1993) 1221-1226), when hot pressing with LiF as an auxiliary agent, even if the addition amount was optimized, fluorine remained in the center of the sample and its permeation compared to the outer periphery of the sample. It is stated that the rate will be lower. Therefore, it is not easy to produce a large-sized, thick-walled sintered body by using fluoride as a sintering aid.

【0007】(4)のLa2O3を添加する手法では、その添加
量が約6〜14モル%と多く、固溶できないLa2O3が偏析層
を生成し易く(例えばJournal of Materials Science 24
(1989)863-872 等による)、光学的に均一な焼結体を作
製することは容易ではない。また、Al2O3を添加する手
法では、その添加量を0.01wt%〜5wt%とし、Y4Al2O9とY 2
O3との間の共晶温度(1920℃)以上で液相焼結により緻密
体を作製している。しかしながら、高温で焼成を行なっ
ているにも関らず得られる焼結体の透過率は、理論透過
率に対して最大でも80%に留まっている。同様に(5)のCa
OないしZrOの添加量はそれぞれ100ppmから4%ある
いは200ppmから10%と多く、得られる焼結体の透過率
は、やはり理論透過率に対して最大でも80%に留まって
いる。
La of (4)2O3The method of adding
The amount is large, about 6 to 14 mol%, and La cannot be solid-dissolved.2O3Is the segregation layer
Is easily generated (for example, Journal of Materials Science 24
(1989) 863-872, etc.) to produce an optically uniform sintered body.
Not easy to make. Also, Al2O3Hand to add
In the method, the addition amount is set to 0.01 wt% to 5 wt%, and YFourAl2O9And Y 2
O3Dense by liquid phase sintering above the eutectic temperature (1920 ℃) between and
Making the body. However, firing at high temperature
However, the transmittance of the obtained sintered body is theoretical
The maximum rate remains at 80%. Similarly, Ca of (5)
O or ZrOTwoThe addition amount of each is 100ppm to 4%
Or as high as 200ppm to 10%, the transmittance of the resulting sintered body
Is still 80% at maximum of the theoretical transmittance
There is.

【0008】焼結助剤を添加しないイットリアの製造方
法は、例えば、(6)特許第2773193号や(7)特開平6-21157
3号に開示されている。(6)の手法は、BET値10m2/g以上
のイットリア粉末をホットプレスして理論密度比95%以
上に緻密化した後に、HIP処理を行なうものである。こ
れにより得られる焼結体の透過率は、波長3〜6μmの赤
外領域では80%程度と良好であるが、0.4〜3μmの波長域
では平均で75%程度に留まっている。HIP処理を行なって
いるにも関らず、短波長域での透光性が不充分なのは、
出発原料がハンドリングの困難な超微粉を用いているた
め、ホットプレスにより表面は緻密化したとしても、試
料内部にはHIP処理を行なっても除去出来ない大きな空
隙を含みやすいためであると推測される。また(7)の手
法では、平均粒径が0.01〜1μmの易焼結性原料粉末をCI
P成形した後に、1800℃以上で真空焼成若しくは1600℃
以上でHIP処理を行なうことにより透明体を作製してい
る。この手法により得られる焼結体は、可視領域におけ
る平均直線透過率が80%以上と高く、発光元素を添加す
ることによりレーザー発振可能な焼結体が作製可能であ
ると記されている。しかしながら、透明度の高い試料を
作製するためには、真空焼成及びHIP処理の何れの場合
においても2000℃前後の高温で焼成を行なう必要があ
り、工業的に連続生産を行なう場合、焼成炉の劣化が激
しく維持が大変である。更に、波長が短くなるにつれて
透過率の低下が著しく(波長1000nmから400nmでは10%以
上低下)、可視部の透光性を重視する光学部材への適用
は不適である。
A method for producing yttria without adding a sintering aid is, for example, (6) Japanese Patent No. 2773193 or (7) Japanese Patent Laid-Open No. 6-21157.
No. 3 is disclosed. In the method (6), yttria powder having a BET value of 10 m 2 / g or more is hot pressed to densify it to a theoretical density ratio of 95% or more, and then HIP treatment is performed. The transmittance of the sintered body obtained by this is as good as about 80% in the infrared region of the wavelength of 3 to 6 μm, but stays at about 75% on average in the wavelength region of 0.4 to 3 μm. Despite the HIP process, the reason why the transparency in the short wavelength range is insufficient is
It is presumed that this is because the starting material uses ultrafine powder that is difficult to handle, so even if the surface is densified by hot pressing, it is likely to contain large voids that cannot be removed by HIP treatment even inside the sample. It Further, in the method (7), the easily sinterable raw material powder having an average particle size of 0.01 to 1 μm is used as a CI.
After P molding, vacuum baking at 1800 ℃ or 1600 ℃
The transparent body is produced by performing the HIP process as described above. The sintered body obtained by this method has a high average linear transmittance of 80% or more in the visible region, and it is described that a laser-oscillated sintered body can be produced by adding a luminescent element. However, in order to prepare a sample with high transparency, it is necessary to perform firing at a high temperature of around 2000 ° C in both cases of vacuum firing and HIP treatment, and when performing industrial continuous production, deterioration of the firing furnace But it is hard to maintain. Further, the transmittance is remarkably reduced as the wavelength is shortened (10% or more is reduced in the wavelength range of 1000 nm to 400 nm), and it is unsuitable for application to an optical member that attaches importance to translucency in the visible region.

【0009】ところで、従来法において使用されている
希土類酸化物原料粉末は、一般には蓚酸塩を母塩とした
ものであるが、これを仮焼して得られる原料粉末は粒度
分布が不均一であり、凝集の激しい二次粒子から構成さ
れている。そのため成形によるパッキングが充分とれ
ず、緻密体を作製することは容易でない。近年、この点
を改善すべく易焼結性原料粉末を用いた低温焼成による
透明体作製法も開示されている(例えば、特開平9-31586
5号、同10-273364号、同11-189413号、同11-278933
号)。
The rare earth oxide raw material powder used in the conventional method is generally oxalate as a mother salt, but the raw material powder obtained by calcination of this has a non-uniform particle size distribution. Yes, it is composed of secondary particles that are highly agglomerated. Therefore, the packing cannot be sufficiently obtained by molding, and it is not easy to produce a dense body. In recent years, in order to improve this point, a method for producing a transparent body by low-temperature firing using easily sinterable raw material powder has also been disclosed (for example, JP-A-9-31586).
No. 5, No. 10-273364, No. 11-189413, No. 11-278933
issue).

【0010】上記の手法では、低温焼成のために炭酸塩
を母塩に用い、これを仮焼して得られる比較的粒度分布
が均一で、凝集の少ない粉末を出発原料として用いるこ
とにより、焼結体を作製している。しかしながら、これ
らの手法において得られる焼結体の可視部での直線透過
率は、最高でも70%程度であり、理論透過率(≒82%)と比
較すると単結晶に匹敵する透明体とは言い難い。
In the above method, a carbonate is used as a mother salt for low temperature firing, and a powder having a relatively uniform particle size distribution and less agglomeration obtained by calcination of this is used as a starting material. Making a union. However, the linear transmittance in the visible part of the sintered body obtained by these methods is about 70% at the maximum, and it is said that the transparent body is comparable to a single crystal in comparison with the theoretical transmittance (≈82%). hard.

【0011】以上に、既存の透光性イットリアの製造方
法について述べたが、可視部から赤外領域に渡って単結
晶と同等の優れた透光性を有する焼結体を工業的に容易
に製造する手法は皆無である。
The above-mentioned method of manufacturing the existing translucent yttria has been described above. Industrially, a sintered body having an excellent translucency equivalent to that of a single crystal in the visible region to the infrared region can be easily produced industrially. There is no manufacturing method.

【0012】[0012]

【発明の課題】本発明は、工業的に実用可能な手法によ
り、可視部から赤外領域に渡って良好な透光性を示す酸
化スカンジウム焼結体(請求項1,2)、及びその製造方
法(請求項3,4)を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a scandium oxide sintered body (Claims 1 and 2) which exhibits good translucency in the visible region to the infrared region, and a method for producing the same by an industrially practical method. It is intended to provide a method (claims 3, 4).

【0013】[0013]

【発明の構成】本発明の透光性酸化スカンジウム焼結体
は、Alの含有量が5wtppm以上100wtppm以下であり、かつ
波長500nmから5μmの領域に渡っての直線透過率が1mm厚
みで77%以上である(請求項1)。
The translucent scandium oxide sintered body of the present invention has an Al content of 5 wtppm or more and 100 wtppm or less, and has a linear transmittance of 77% at a thickness of 1 mm over a wavelength range of 500 nm to 5 μm. That is all (claim 1).

【0014】好ましくは、透光性酸化スカンジウム焼結
体はSi量が30wtppm以下であり、平均粒径が1μm以上30
μm以下である(請求項2)。AlやSiは金属換算で含有量
を表示する。
Preferably, the translucent scandium oxide sintered body has a Si content of 30 wtppm or less and an average particle size of 1 μm or more and 30
It is not more than μm (claim 2). Al and Si indicate the content in terms of metal.

【0015】本発明の透光性酸化スカンジウム焼結体の
製造方法は、Si含有量が30wtppm以下であり純度99.9%以
上の高純度酸化スカンジウム原料粉末を用いて、成形密
度が理論密度比58%以上で、Alの含有量が5wtppm以上100
wtppm以下の成形体を作製し、熱処理により脱バインダ
ーした後に、非酸化性雰囲気中で、1400℃以上1800℃以
下の温度で焼成することを特徴とする(請求項3)。
The method for producing a translucent scandium oxide sintered body of the present invention uses a high-purity scandium oxide raw material powder having a Si content of 30 wtppm or less and a purity of 99.9% or more, and a molding density of 58%. With the above, the Al content is 5 wtppm or more 100
It is characterized in that a molded body of wtppm or less is produced, debindered by heat treatment, and then fired in a non-oxidizing atmosphere at a temperature of 1400 ° C or higher and 1800 ° C or lower (claim 3).

【0016】好ましくは、前記の焼成の後に、1000℃か
ら1800℃の温度及び49MPaから196MPaの圧力で、熱間静
水圧加圧(HIP)処理を施す(請求項4)。
Preferably, after the firing, hot isostatic pressing (HIP) treatment is performed at a temperature of 1000 ° C. to 1800 ° C. and a pressure of 49 MPa to 196 MPa (claim 4).

【0017】[0017]

【発明の作用と効果】本発明者らは、前記課題を解決す
るため種々検討を行なった結果、特定のAl含有量におい
て、波長500nmから5μmの領域に渡っての、直線透過率
が1mm厚みで77%以上の酸化スカンジウム焼結体を作製で
きることを見出した(請求項1)。ここでSi含有量を30wt
ppm以下にすることが、粒成長を抑制して光透過率を向
上させることに有効である(請求項2)。
As a result of various investigations for solving the above-mentioned problems, the present inventors have found that, at a specific Al content, the linear transmittance over a wavelength range of 500 nm to 5 μm is 1 mm. It has been found that 77% or more of scandium oxide sintered body can be produced by (Claim 1). Here, the Si content is 30 wt.
Setting the content to ppm or less is effective for suppressing the grain growth and improving the light transmittance (claim 2).

【0018】酸化スカンジウム焼結体の製造では、原料
の純度、特にSi含有量を管理して、Al含有量と密度とを
管理した成形体を作成し、熱処理により脱バインダーし
た後に、非酸化性雰囲気中で、例えば水素、希ガスある
いはこれらの混合雰囲気もしくは真空中で、1400℃以上
1800℃以下の温度範囲で焼成すれば良い(請求項3)。こ
の雰囲気の焼成により得られた焼結体に、1000℃から18
00℃の温度で49MPaから196MPaの圧力で、熱間静水圧加
圧処理を施すと、サブミクロン以下の気孔を排出でき、
500nm以下での光透過率の低下を防止できる(請求項
4)。
In the production of scandium oxide sintered bodies, the purity of raw materials, especially the Si content is controlled to prepare a molded body in which the Al content and the density are controlled, and the binder is heat-treated to remove the non-oxidizing property. 1400 ° C or higher in an atmosphere such as hydrogen, a rare gas or a mixed atmosphere of these or in a vacuum
It suffices to perform firing in a temperature range of 1800 ° C or lower (claim 3). The sintered body obtained by firing in this atmosphere was
When hot isostatic pressing is performed at a temperature of 00 ° C and a pressure of 49MPa to 196MPa, pores of submicron or less can be discharged,
It is possible to prevent a decrease in light transmittance below 500 nm (claim 4).

【0019】[0019]

【発明の実施の態様】以下に本発明の実施の態様を説明
する。酸化スカンジウムの焼成においては、極微量(5wt
ppm〜100wtppm)のAlが焼結助剤として大きな効果を発揮
している。従来技術で述べた様に、焼結助剤を添加する
手法は種々開示されているが、これらはほとんど全ての
場合において、助剤が粒界に偏析して粒界の移動速度を
減少させることにより、粒成長速度を制御し緻密化を行
なっている。Alを極微量含有した場合の焼成による緻密
化機構の詳細に関しては不明であるが、焼結体の平均粒
径が1μm〜30μm程度の範囲においてのみ緻密化促進剤
としての効果を発揮し、それ以上では偏析相を生成す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. When firing scandium oxide, a very small amount (5 wt
(ppm to 100 wtppm) Al has a great effect as a sintering aid. As described in the prior art, various methods of adding a sintering aid have been disclosed, but in almost all of these cases, the aid segregates to the grain boundaries to reduce the migration speed of the grain boundaries. In this way, the grain growth rate is controlled to achieve densification. Although the details of the densification mechanism by firing when a trace amount of Al is contained are unknown, it exhibits the effect as a densification accelerator only when the average particle size of the sintered body is in the range of about 1 μm to 30 μm. In the above, a segregation phase is generated.

【0020】すなわち、焼成温度が1400℃未満の場合、
Alの有無に関係なく、粒成長による緻密化が充分進行し
ないため、不透明若しくは半透明の焼結体しか得られな
い。通常この場合の平均粒径は1μm未満である。焼成温
度が1400℃以上1800℃以下で、Si含有量やAl含有量及び
成形体密度を適切に制御すると、使用原料の焼結性にも
よるが、得られる焼結体の平均粒径は1〜30μmの範囲に
あり、透光性に優れた焼結体が得られる。Al含有量が5w
tppm以下の試料を同様に焼成した場合、その平均粒径は
やはり1〜30μm程度であるが、得られる焼結体は半透明
体若しくは不透明体である。
That is, when the firing temperature is less than 1400 ° C.,
Regardless of the presence or absence of Al, densification due to grain growth does not proceed sufficiently, so only an opaque or translucent sintered body can be obtained. Usually the average particle size in this case is less than 1 μm. If the firing temperature is 1400 ° C or higher and 1800 ° C or lower, and the Si content and Al content and the compact density are appropriately controlled, the average grain size of the obtained sintered body is 1 depending on the sinterability of the raw material used. It is in the range of up to 30 μm, and a sintered body having excellent translucency can be obtained. Al content is 5w
When a sample of tppm or less is similarly fired, the average particle size is still about 1 to 30 μm, but the obtained sintered body is a translucent body or an opaque body.

【0021】Alが100wtppmを超えて含有する試料の場合
には、それ以下の場合と比較して粒成長しており、その
平均粒径は大きくなっている。しかしながら、得られる
焼結体は Al含有量が5wtppm以下の場合と同様に、半透
明体若しくは不透明体である。焼結助剤としてのAlの効
果は、その量が5〜100wtppmの範囲においては緻密化促
進剤として作用しており、その場合においてのみ良好な
透明体が得られる。しかしながら、100wtppmを超える場
合には主として粒成長促進剤として作用しており、気孔
の排出が十分行なえないため、満足な透明体が得られな
い。
In the case of the sample containing Al in excess of 100 wtppm, the grains grew and the average grain size was larger than in the case of less than that. However, the obtained sintered body is a translucent body or an opaque body as in the case where the Al content is 5 wtppm or less. The effect of Al as a sintering aid acts as a densification accelerator in the range of 5 to 100 wtppm, and only in that case, a good transparent body can be obtained. However, when it exceeds 100 wtppm, it acts mainly as a grain growth promoter, and pores cannot be discharged sufficiently, so that a satisfactory transparent body cannot be obtained.

【0022】1800℃以上の温度で焼成を行なった場合、
Alの有無に関らず粒成長が著しく進行するため、気孔の
排出が充分行われず、充分な透光性を有する焼結体を作
製することは容易ではない。この場合の平均粒径は35μ
m以上である。1800℃以上の焼成温度においては、Alの
含有量が100wtppm以下であっても、粒界にAlの偏析相が
生じる。Alの析出は焼結体の平均粒径に依存しており、
30μm以下の場合は如何なる焼成雰囲気においても析出
は認められない。しかしながら、焼結体の平均粒径が30
μmを超えると、粒界相にAlの偏析が生じ始め、平均粒
径が40μm以上になるとその現象は顕著になる。
When firing at a temperature of 1800 ° C. or higher,
Since grain growth proceeds remarkably regardless of the presence or absence of Al, pores are not sufficiently discharged, and it is not easy to produce a sintered body having sufficient translucency. The average particle size in this case is 35μ
It is more than m. At a firing temperature of 1800 ° C. or higher, an Al segregation phase occurs at grain boundaries even if the Al content is 100 wtppm or less. The precipitation of Al depends on the average grain size of the sintered body,
When it is 30 μm or less, no precipitation is observed in any firing atmosphere. However, the average particle size of the sintered body is 30
When it exceeds μm, segregation of Al starts to occur in the grain boundary phase, and when the average grain size becomes 40 μm or more, the phenomenon becomes remarkable.

【0023】従って、Alの含有量が5wtppm以上100wtppm
以下の場合においてのみ、緻密化促進剤としての効果を
発揮し、析出の生じない1400℃以上1800℃以下の温度範
囲で、平均粒径が1μm以上30μm以下となる様に焼成さ
れた場合においてのみ、透光性に優れた焼結体を作製す
ることが可能となる。
Therefore, the content of Al is 5 wtppm or more and 100 wtppm
Only in the following cases, the effect as a densification accelerator is exerted, and only when it is fired so that the average particle size is 1 μm or more and 30 μm or less in the temperature range of 1400 ° C. or more and 1800 ° C. or less where precipitation does not occur Thus, it becomes possible to produce a sintered body having excellent translucency.

【0024】但し、極微量のAlによる緻密化促進効果を
充分発揮し透光性に優れた焼結体を作製するためには、
原料中に含まれるSi量を厳密に管理する必要があり、そ
の量を30wtppm以下とすると共に、更に成形体密度を58%
以上とする必要がある。
However, in order to produce a sintered body excellent in translucency by sufficiently exerting the effect of promoting densification by an extremely small amount of Al,
It is necessary to strictly control the amount of Si contained in the raw material, and the amount should be 30 wtppm or less, and the compact density should be 58%.
It is necessary to be above.

【0025】通常市販されている酸化スカンジウムとし
て99.9%以上の高純度酸化スカンジウム粉末中に含まれ
る不純物は、各元素毎に見ると数wtppm程度であり、多
くても10wtppm程度に満たない。しかしながら、Siは30w
tppm程度、多い場合には100wtppmに近い量含まれている
場合がある。この理由は定かでないが、有機酸塩ないし
無機酸塩として湿式法によりスカンジウム原料を精製し
た後、仮焼する際に使用する匣鉢が石英製のものであ
り、付着水が石英容器と僅かに反応するためと考えられ
る。また反応槽がガラスやグラスライニング製であった
り、沈殿剤中にSiが含まれる場合があるためと考えられ
る。
Impurities contained in high-purity scandium oxide powder of 99.9% or more as commercially available scandium oxide are about several wtppm for each element, and are less than about 10 wtppm at most. However, Si is 30w
About tppm, and if it is large, it may be contained in an amount close to 100 wtppm. The reason for this is not clear, but after purifying the scandium raw material by the wet method as an organic acid salt or an inorganic acid salt, the casket used when calcining is made of quartz, and the adhered water is slightly different from the quartz container. It is thought to react. It is also considered that the reaction tank may be made of glass or glass lining, or the precipitant may contain Si.

【0026】Siは、粒界に液相を生成し粒成長を促進す
るため、その量が多いと微量のAlによる緻密化促進効果
を打ち消してしまう。そのため、使用する酸化スカンジ
ウム原料粉末に含まれるSiは30wtppm以下とし、好まし
くは5wtppm以下とする。高純度酸化スカンジウム原料中
に含まれるSiは、その殆どが仮焼用匣鉢や反応容器から
混入しており、例えばアルミナ製坩堝を使用すること
や、反応容器にポリテトラフルオロエチレンライニング
を施すことによりSi量の低い原料を得ることは容易に可
能である。
Since Si forms a liquid phase at the grain boundaries and promotes grain growth, a large amount of Si cancels the densification promoting effect by a trace amount of Al. Therefore, Si contained in the scandium oxide raw material powder to be used is 30 wtppm or less, preferably 5 wtppm or less. Most of the Si contained in the high-purity scandium oxide raw material is mixed from the calcination sagger and the reaction vessel.For example, use an alumina crucible or apply polytetrafluoroethylene lining to the reaction vessel. Thus, it is possible to easily obtain a raw material having a low Si content.

【0027】成形体は、内部に大きな気泡や空隙を含ま
ない均質で高密度のものにする必要がある。一般的な透
光性セラミックスは、融点より100℃〜300℃程度低い温
度で焼成され、その平均粒径は50μm程度若しくはそれ
以上である。すなわち成形体内部の空孔を粒成長により
排出するため、空孔の多い(成形体密度の低い)成形体を
焼成する際には、著しく粒成長させることにより緻密体
を作製している。これに対して、1800℃以下の比較的低
温で焼成するとAlの析出も生じず、焼結体の平均粒径を
30μm以下と比較的小さくできる。従って粒成長による
気孔の排出効果を過度に期待せず、透光性に優れた焼結
体を作製するためには、均質で高密度な成形体を作製
し、焼成する必要がある。
The molded product must be homogeneous and have a high density without containing large bubbles or voids inside. General translucent ceramics are fired at a temperature about 100 ° C. to 300 ° C. lower than the melting point, and the average particle size is about 50 μm or more. That is, since the voids inside the compact are discharged by grain growth, when a compact having many voids (low compact density) is fired, the dense body is produced by significantly growing the grains. On the other hand, when firing at a relatively low temperature of 1800 ° C or less, precipitation of Al does not occur, and the average particle size of the sintered body is
It can be made relatively small, 30 μm or less. Therefore, in order to produce a sintered body having excellent translucency without excessively expecting the effect of discharging pores due to grain growth, it is necessary to produce a homogeneous and high-density molded body and fire it.

【0028】成形密度が58%未満の成形体内部には、パ
ッキングが不充分なため大きな空孔が多数存在してお
り、このような成形体を1800℃以下の温度で充分緻密化
させることは容易でない。この一方で、成形密度が58%
以上の成形体は比較的その内部の空孔が少なく、低温で
も充分緻密化させることは可能である。従って透光性に
優れた焼結体を作製するためには、その成形密度を58%
以上とする必要があり、好ましくは60%以上のものとす
る。
Inside the molded product having a molded density of less than 58%, a large number of large voids are present due to insufficient packing. It is impossible to sufficiently densify such a molded product at a temperature of 1800 ° C. or lower. Not easy. On the other hand, the molding density is 58%
The above-mentioned molded product has relatively few pores inside, and can be sufficiently densified even at a low temperature. Therefore, in order to produce a sintered body with excellent translucency, its molding density should be 58%.
It is necessary to be above, preferably 60% or more.

【0029】適切な作製条件が選ばれれば十分な直線光
透過率を有する焼結体が得られるが、希に500nm以下の
光透過率が極端に低下したものとなることがある。これ
は、炉内の温度分布等により気孔の排出が充分に行われ
ず、サブミクロン以下の小さな気孔が多数焼結体中に残
存した為である。この様な焼結体は、熱間静水圧加圧(H
IP)処理により良好な光透過スペクトルを有する焼結体
とすることが出来る。加圧ガスは通常用いられるArガス
で十分であり、処理温度は1000℃から1800℃が好まし
い。1000℃よりも低いと処理効果がなく、1800℃よりも
高いと粒成長が進行し、Alの偏析相が生じる。また処理
圧力は49MPa以上、196MPa以下が好ましい。49MPa以下で
は処理効果がなく、196MPa以上ではいたずらに装置を大
掛かりにするのみで、処理効果の向上はない。
If proper manufacturing conditions are selected, a sintered body having a sufficient linear light transmittance can be obtained, but the light transmittance of 500 nm or less may be extremely lowered. This is because the pores were not sufficiently discharged due to the temperature distribution in the furnace and many small pores of submicron size or less remained in the sintered body. Such a sintered body is hot isostatically pressed (H
By the IP) treatment, a sintered body having a good light transmission spectrum can be obtained. Ar gas that is normally used is sufficient as the pressurized gas, and the treatment temperature is preferably 1000 ° C to 1800 ° C. If it is lower than 1000 ° C, there is no treatment effect, and if it is higher than 1800 ° C, grain growth proceeds and an Al segregation phase occurs. The processing pressure is preferably 49 MPa or more and 196 MPa or less. If the pressure is 49 MPa or less, there is no treatment effect, and if the pressure is 196 MPa or more, the device is unnecessarily large-scaled and the treatment effect is not improved.

【0030】以下に焼結体の作製方法を説明する。焼結
体の作製には、純度99.9%以上の高純度易焼結性原料粉
末で、Si含有量が30wtppm以下のものを使用する。Fe等
の遷移元素は焼結体の着色源となるため好ましくない。
従って、出発原料は充分精製されたものを選択する必要
がある。ただし、レーザー媒質やカラーフィルターなど
の着色ガラス等の場合のように、意図的に添加する場合
はこの限りでない。
The method for producing the sintered body will be described below. For the production of the sintered body, a high-purity easy-sintering raw material powder having a purity of 99.9% or more and having a Si content of 30 wtppm or less is used. Transition elements such as Fe are not preferable because they serve as a coloring source for the sintered body.
Therefore, it is necessary to select a sufficiently purified starting material. However, this is not the case when intentionally added, as in the case of a laser medium or colored glass such as a color filter.

【0031】原料粉末の焼結性は、母塩に依存すると言
われており、例えばイットリウムの場合であれば、一般
的には(1)炭酸塩(2)水酸化物(3)蓚酸塩(4)アンモニウム
硫酸塩(5)硫酸塩の順である(例えば、L.R.Furlong,L.P.
Domingues,Bull.Am.Ceram.Soc,45,1051(1966))。しかし
ながら、これらの母塩の種類は特に限定されるものでは
なく、入手しやすいものを使用すれば良い。
The sinterability of the raw material powder is said to depend on the mother salt. For example, in the case of yttrium, generally, (1) carbonate (2) hydroxide (3) oxalate ( 4) Ammonium sulfate (5) Sulfate in that order (e.g. LRFurlong, LP
Domingues, Bull. Am. Ceram. Soc, 45, 1051 (1966)). However, the types of these mother salts are not particularly limited, and those that are easily available may be used.

【0032】また使用する原料粉末の一次粒子径につい
ても特に限定されるものではなく、成形、焼成プロセス
に適合したものを選択すれば良い。すなわち、超微粉は
焼結活性が高く比較的低温でよく緻密化するものの、ハ
ンドリングが容易でないばかりか、凝集粒子が多く成形
密度を高くすることが容易ではない。また粗粒の場合、
パッキングは容易なものの焼結活性が低く、低温で緻密
化させることは出来ない。従って、焼結性、パッキング
性及びハンドリング性の観点から、使用原料の比表面積
は3〜12m2/g程度が好ましく、4〜10m2/g程度のものがよ
り好ましい。更には、凝集が少なく粒度分布の均一なも
のを使用するのが最も好ましい。
The primary particle diameter of the raw material powder to be used is not particularly limited, and a material suitable for the molding and firing process may be selected. That is, although the ultrafine powder has high sintering activity and densifies well at a relatively low temperature, it is not easy to handle, and it is not easy to increase the compacting density because there are many agglomerated particles. In the case of coarse particles,
Although the packing is easy, the sintering activity is low and it cannot be densified at low temperature. Therefore, sinterability, in view of the packing property and handling property, the specific surface area of the raw materials used is preferably about 3~12m 2 / g, more preferably about 4~10m 2 / g. Furthermore, it is most preferable to use the one having less aggregation and a uniform particle size distribution.

【0033】次に前記酸化スカンジウム原料粉末を用い
て、所望の形状の成形体を作製する。セラミックスの成
形方法としては、押し出し成形、射出成形、プレス成形
や鋳込み成形等が挙げられる。成形はいずれかの手法に
限定されるものではなく、成形密度が58%以上となり不
純物の混入が少ない手法により行なえば良い。またこの
際、必要に応じて焼結助剤のAlを各種成形法に応じ均一
に分散する様に添加する。例えば、プレス成形の場合で
あれば、顆粒作製用スラリー中に適量のAlを添加し、ボ
ールミル等により充分混合した後にスプレードライヤ等
により乾燥し、成形用顆粒とすれば良い。
Next, a molded body having a desired shape is prepared using the scandium oxide raw material powder. Examples of ceramics molding methods include extrusion molding, injection molding, press molding, and casting molding. The molding is not limited to any one of the methods, and the molding density may be 58% or more and the mixing of impurities is small. At this time, if necessary, Al as a sintering aid is added so as to be uniformly dispersed according to various molding methods. For example, in the case of press molding, an appropriate amount of Al may be added to the slurry for producing granules, sufficiently mixed by a ball mill or the like, and then dried by a spray dryer or the like to obtain granules for molding.

【0034】Alの添加時期に関しては、成形体中に均一
に分散させることが可能であれば特に限定されるもので
はなく、例えば原料合成段階や仮焼段階で添加しても問
題ない。極微量のAlでその効果を充分発揮させるには、
原料中に混合させておくのが最も好ましい。
The timing of adding Al is not particularly limited as long as it can be uniformly dispersed in the molded body, and there is no problem even if it is added at the raw material synthesis stage or the calcination stage. To make full use of the effect with a trace amount of Al,
Most preferably, it is mixed in the raw material.

【0035】またその添加形態については特に限定され
るものではなく、例えば成形段階で混合するのであれ
ば、アルミナゾルや水酸化アルミニウム粉末、あるいは
γ-ないしα-Al2O3粉末等のアルミニウム化合物を適量
添加すれば良い。また原料合成時に添加する場合には、
塩化アルミニウムや水酸化アルミニウム等で添加すれば
良い。添加剤の純度に関しては、その添加量が微量であ
るため特に限定されるものではないが、原料粉末同様、
高純度なものを使用するのが好ましい。また粉末で添加
する場合には、その大きさは原料粉末の一次粒子径と同
程度、若しくはそれ以下のものを使用するのが好まし
い。
The form of addition is not particularly limited. For example, when mixing in the molding step, alumina sol, aluminum hydroxide powder, or an aluminum compound such as γ- or α-Al 2 O 3 powder is used. It may be added in an appropriate amount. In addition, when added during raw material synthesis,
It may be added with aluminum chloride or aluminum hydroxide. Regarding the purity of the additive, it is not particularly limited because the added amount is very small, like the raw material powder,
It is preferable to use a highly pure one. When added in the form of powder, it is preferable to use those having the same size as or smaller than the primary particle diameter of the raw material powder.

【0036】得られた成形体は、熱分解により脱バイン
ダーする。この際の処理温度、時間、雰囲気は添加した
成形助剤の種類により異なるが、試料の表面が閉空孔化
してしまうと脱バインダーが困難となる。そのため表面
の閉空孔化しない温度以下で充分時間をかけて行なう。
この温度は、使用原料粉末の仮焼温度や焼結性、及び成
形体のパッキングにもよるが、通常900℃〜1400℃程度
であり、それ以下の温度で行なうのが好ましい。また雰
囲気は酸素雰囲気が最も一般的であるが、必要に応じ加
湿水素やAr、若しくは減圧下で行なっても問題ない。
The obtained molded body is debindered by thermal decomposition. The treatment temperature, time, and atmosphere at this time differ depending on the type of the molding aid added, but if the surface of the sample becomes closed pores, it becomes difficult to remove the binder. For this reason, the surface is closed for a sufficient period of time below the temperature at which it does not become closed pores.
Although this temperature depends on the calcination temperature of the raw material powder used, the sinterability, and the packing of the molded body, it is usually about 900 ° C to 1400 ° C, and it is preferable to carry out at a temperature below that. The atmosphere is most commonly an oxygen atmosphere, but if necessary, humidified hydrogen, Ar, or reduced pressure may be used without any problem.

【0037】脱バインダー後に、試料を水素、希ガスあ
るいはこれらの混合雰囲気もしくは真空中で、1400℃以
上1800℃以下の温度で焼成する。焼成雰囲気や試料の厚
みにもよるが、通常1〜5mm程度の試料厚みであれば、0.
5時間から10時間程度の焼成が好ましい。
After debinding, the sample is fired at a temperature of 1400 ° C. or more and 1800 ° C. or less in hydrogen, a rare gas, a mixed atmosphere of these, or a vacuum. Depending on the firing atmosphere and the thickness of the sample, if the sample thickness is usually about 1 to 5 mm, it is 0.
Firing for about 5 to 10 hours is preferable.

【0038】歩留り良く透光性の良好な焼結体を得るに
は、この雰囲気焼結の後に1000℃から1800℃の温度及び
49MPaから196MPa圧力でHIP処理を行なう。この時間も、
試料厚みによるが、1〜5mm程度のものであれば、一般的
には0.1〜10時間とし、好ましくは0.1〜2時間とし、最
も好ましくは0.5〜2時間とする。
In order to obtain a sintered body with a good yield and a good light-transmitting property, after this atmosphere sintering, a temperature of 1000 ° C. to 1800 ° C. and
HIP treatment is performed at a pressure of 49 MPa to 196 MPa. This time also
Depending on the sample thickness, if it is about 1 to 5 mm, it is generally 0.1 to 10 hours, preferably 0.1 to 2 hours, and most preferably 0.5 to 2 hours.

【0039】以上の操作により、波長500nmから5μmの
領域に渡っての直線透過率が1mm厚みで77%以上と、透光
性に優れた酸化スカンジウム焼結体が得られる。なお、
酸化スカンジウム焼結体がカラーフィルターやレーザー
媒質として利用される場合には、NdやYb等の附活剤が添
加され特異吸収が生じる。この場合の直線光透過率が、
特異吸収波長以外で測定されるものであることは、業界
関係者には周知のことである。
By the above operation, a scandium oxide sintered body having an excellent light-transmitting property, which has a linear transmittance of 77% or more at a thickness of 1 mm over a wavelength range of 500 nm to 5 μm, can be obtained. In addition,
When the scandium oxide sintered body is used as a color filter or a laser medium, an activator such as Nd or Yb is added to cause specific absorption. In this case, the linear light transmittance is
It is well known to those in the industry that it is measured at a wavelength other than the specific absorption wavelength.

【0040】[0040]

【実施例1】純度99.9%以上Si5ppmの酸化スカンジウム
を塩酸に溶解させ、濃度0.25M(mol・dm-3)の塩化スカ
ンジウム水溶液を調製した。この溶液500mlをポリテト
ラフルオロエチレン製ビーカーに入れ攪拌した。塩化ス
カンジウム水溶液に、濃度0.5M(mol・dm-3)の炭酸水素
アンモニウム溶液を5ml/minの速さでpH8.0となるまで滴
下し、攪拌を続けながら室温で10日間養生を行なった。
養生後、濾過及び超純水を用いた水洗を数回繰り返した
後、150℃の乾燥機に入れ2日間乾燥した。得られた前駆
体粉末をアルミナ製坩堝に入れ、電気炉で仮焼(1250℃
×3時間)することにより、平均一次粒子径0.35μmの酸
化スカンジウム原料粉末を作製した。
Example 1 Scandium oxide having a purity of 99.9% or more and Si 5 ppm was dissolved in hydrochloric acid to prepare an aqueous scandium chloride solution having a concentration of 0.25 M (mol · dm −3 ). 500 ml of this solution was placed in a beaker made of polytetrafluoroethylene and stirred. A 0.5 M (mol dm −3 ) concentration of ammonium hydrogen carbonate solution was added dropwise to the scandium chloride aqueous solution at a rate of 5 ml / min until the pH reached 8.0, and curing was continued at room temperature for 10 days while stirring.
After curing, filtration and washing with ultrapure water were repeated several times, and then the product was placed in a dryer at 150 ° C and dried for 2 days. The obtained precursor powder was put into an alumina crucible and calcined in an electric furnace (1250 ° C
X 3 hours) to prepare scandium oxide raw material powder having an average primary particle diameter of 0.35 μm.

【0041】この原料粉末2gをアルミナ製乳鉢に入れ、
原料に対してAl金属換算で45wtppm相当のアルミナゾル
(日産化学製)を添加し、混合・粉砕した。この粉末をφ
10mmの金型に挿入し、20MPaで一次成形を行なった後
に、250MPaの圧力にてCIP成形を行なった。成形体中に
含まれるAl量をICP発光分析法により測定した結果、48w
tppmであった。またアルキメデス法により成形密度を測
定した結果、61.2%であった。この成形体を、真空炉に
て100℃/hrで1625℃ まで昇温し、2時間保持した後に20
0℃/hrで冷却した。焼結時の真空度は10-1Pa以下とし
た。得られた焼結体は、ダイヤモンドスラリーを用いて
鏡面研磨を行ない、分光光度計にて直線透過率を測定し
た。その結果、波長500nm及び800nmにおける直線透過率
(t=1mm)は、それぞれ77.9%,80.0%であった。実施例1の
焼結体の直線透過率を図1に示す。
2 g of this raw material powder was placed in an alumina mortar,
Alumina sol equivalent to 45 wtppm in terms of Al metal with respect to the raw material
(Manufactured by Nissan Kagaku Co., Ltd.) was added and mixed and crushed. This powder φ
After inserting into a 10 mm die and performing primary molding at 20 MPa, CIP molding was performed at a pressure of 250 MPa. As a result of measuring the amount of Al contained in the molded body by ICP emission spectrometry, 48w
It was tppm. Moreover, the result of measuring the molding density by the Archimedes method was 61.2%. This molded product was heated to 1625 ° C at 100 ° C / hr in a vacuum furnace and held for 2 hours before being heated to 20 ° C.
Cooled at 0 ° C / hr. The degree of vacuum during sintering was set to 10 -1 Pa or less. The obtained sintered body was mirror-polished using diamond slurry, and the linear transmittance was measured with a spectrophotometer. As a result, linear transmittance at wavelengths of 500 nm and 800 nm
(t = 1 mm) was 77.9% and 80.0%, respectively. The linear transmittance of the sintered body of Example 1 is shown in FIG.

【0042】この試料を大気中1500℃にて2時間サーマ
ルエッチングを行ない、微構造を観察した結果、平均粒
径は15.8μmであった。ここで平均粒径は、SEM等の高分
解能画像上で任意に引いた線の長さをCとし、この線上
の粒子数をN、倍率をMとして、平均粒径=1.56C/(MN)
として求めた。また、アルキメデス法により焼結体密度
を求めた結果、理論密度比99.97%であった。なおこの焼
結体をオートクレーブにより溶解後、ICP発光分析法に
よりAl及びSi量を求めた結果、Al48wtppm,Si5wtppmであ
った。
This sample was subjected to thermal etching in the air at 1500 ° C. for 2 hours, and the microstructure was observed. As a result, the average particle size was 15.8 μm. Here, the average particle size is 1.56C / (MN), where C is the length of a line arbitrarily drawn on a high-resolution image such as SEM, N is the number of particles on this line, and M is the magnification.
Sought as. The theoretical density ratio was 99.97% as a result of obtaining the sintered body density by the Archimedes method. After dissolving this sintered body in an autoclave, the amounts of Al and Si were determined by ICP emission spectrometry, and the results were Al 48 wtppm and Si 5 wtppm.

【0043】[0043]

【実施例2−4及び比較例1−3】実施例1と同様にし
て調製したSi量として10wtppmの原料粉末を用い、成形
圧力を種々変更してCIP成形を行なう事により、成形密
度の異なる成形体を作製した。これらの成形体を、実施
例1と同様にして真空中1550℃で5時間焼成した。得られ
た焼結体の波長500nmでの直線透過率(t=1.0mm)を表1に
示す。尚、焼結体中に含まれるAl量は全ての場合におい
て、45〜55wtppmの範囲内にあった。
[Examples 2-4 and Comparative Examples 1-3] Using a raw material powder having a Si content of 10 wtppm prepared in the same manner as in Example 1 and performing CIP molding under various molding pressures, the molding density was changed. A molded body was produced. These molded bodies were fired in vacuum at 1550 ° C. for 5 hours in the same manner as in Example 1. Table 1 shows the linear transmittance (t = 1.0 mm) at a wavelength of 500 nm of the obtained sintered body. The amount of Al contained in the sintered body was in the range of 45 to 55 wtppm in all cases.

【0044】比較例1では、緻密に焼結している部分
と、焼結がほとんど進んでおらず大量に気孔が残留して
いる部分とが任意に連なった構造となっており、平均的
な組織及び光透過率の観察は不可能であった。成形密度
の向上に伴い組織は次第に均一となっていき、これに伴
い光透過率も向上している。表1の結果より、77%以上の
透光性に優れた焼結体を得るためには、その成形密度が
58%以上必要であることが判る。
Comparative Example 1 has a structure in which a densely sintered portion and a portion in which sintering has hardly progressed and a large amount of pores are continuously connected, and the average Observation of tissue and light transmission was not possible. The structure gradually becomes more uniform as the molding density is improved, and the light transmittance is also improved accordingly. From the results in Table 1, in order to obtain a sintered body having a light transmittance of 77% or more, the molding density is
It turns out that more than 58% is required.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【実施例5−8及び比較例4−8】純度99.9%以上Si2wt
ppmで平均一次粒子径0.3μmの酸化スカンジウム原料粉
末50gと、原料粉末に対してAl金属換算で35wtppm相当の
アルミナ粉末(大明化学製TM-DAR 平均一次粒子径0.3μ
m,TM-DARは商品名)をナイロンポットに入れた。更にナ
イロンボールとエチルアルコール50gを添加し、50時間
ボールミル混合を行なった。このスラリーを減圧下、55
℃で乾燥し、得られた粉末をアルミナ製乳鉢で軽くほぐ
した後、実施例1と同様にしてCIP成形により成形密度6
2.9%の成形体を作製した。この成形体を、種々異なる焼
成温度により2時間真空焼成を行なった。焼成温度、及
び得られた焼結体の平均粒径と波長500nmでの直線透過
率を表2に示す。
[Examples 5-8 and Comparative Examples 4-8] Purity 99.9% or more Si2wt
50 g of scandium oxide raw material powder having an average primary particle diameter of 0.3 μm in ppm, and alumina powder equivalent to 35 wtppm in terms of Al metal with respect to the raw material powder (TM-DAR average primary particle diameter of 0.3 μm manufactured by Daimei Kagaku)
m, TM-DAR is a product name) put in a nylon pot. Further, nylon balls and 50 g of ethyl alcohol were added and ball mill mixing was carried out for 50 hours. This slurry was put under vacuum 55
After drying at ℃, lightly loosen the obtained powder in an alumina mortar and then CIP molding in the same manner as in Example 1 to obtain a molding density of 6
A 2.9% molded body was produced. This molded body was vacuum fired for 2 hours at various firing temperatures. Table 2 shows the firing temperature, the average particle size of the obtained sintered body, and the linear transmittance at a wavelength of 500 nm.

【0047】[0047]

【表2】 [Table 2]

【0048】焼成温度が1300℃の場合(比較例4)、緻密
な焼結体が得られず、透過率を測定することは不可能で
あった。この場合の焼結体密度は、理論密度比89.2%で
あった。1350℃から1380℃で焼成した場合(比較例5,6),
焼結体密度は99%以上であり、透光感が見られるものの
充分な透明体は得られなかった。走査型電子顕微鏡でそ
の内部を観察した結果、1μm以下のポア(気孔)が多数観
察された。焼成温度が1400℃以上1800℃以下の場合(実
施例5-8)には、直線透過率が77%以上の透光性に優れた
焼結体が得られた。なおこれらの試料の直線透過率は、
波長500nmから5μmの範囲において77%以上と良好であっ
た。またこの温度範囲においては、粒成長により緻密化
が進行しているため、平均粒径と直線透過率は比例関係
にあることが判る。焼成温度が1800℃を超える場合(比
較例7,8)、急激に粒成長が進行し更にAlの析出が生じる
ため、焼成温度が高くなるにつれて直線透過率は低下す
る。
When the firing temperature was 1300 ° C. (Comparative Example 4), a dense sintered body was not obtained, and it was impossible to measure the transmittance. The sintered body density in this case was 89.2% of the theoretical density ratio. When fired at 1350 ° C to 1380 ° C (Comparative Examples 5 and 6),
The density of the sintered body was 99% or more, and although a translucent feeling was observed, a sufficient transparent body could not be obtained. As a result of observing the inside with a scanning electron microscope, many pores (pores) of 1 μm or less were observed. When the firing temperature was 1400 ° C. or higher and 1800 ° C. or lower (Example 5-8), a sintered body having a linear transmittance of 77% or more and having excellent translucency was obtained. The linear transmittance of these samples is
It was good at 77% or more in the wavelength range of 500 nm to 5 μm. Further, in this temperature range, since the densification progresses due to grain growth, it can be seen that the average grain size and the linear transmittance are in a proportional relationship. When the firing temperature is higher than 1800 ° C. (Comparative Examples 7 and 8), since the grain growth rapidly progresses and Al is further precipitated, the linear transmittance decreases as the firing temperature increases.

【0049】[0049]

【実施例9−11及び比較例9−14】実施例1に基づ
き、Sc2O3原料粉末を作製した。原料粉末の仮焼には石
英製匣鉢を用い、匣鉢中でのサンプリング位置を変える
ことにより、Si含有量の異なる原料粉末を得た。(但
し、比較例9,10,14及び実施例9に使用した原料の仮焼に
は、高純度アルミナ製匣鉢を使用した。)得られた原料
粉末を用い、実施例1と同様にして、Al含有量の異なる
酸化スカンジウム焼結体を作製した。原料中に含まれる
Si量、焼結体中に含まれるAl量と波長500nmでの直線透
過率(試料厚み1mm)を表3に示す。尚、成形体密度は全て
の場合において58%以上であった。
Examples 9-11 and Comparative Examples 9-14 Based on Example 1, Sc 2 O 3 raw material powder was produced. Quartz saggers were used for calcination of the raw material powders, and the raw material powders with different Si contents were obtained by changing the sampling position in the sagger. (However, in the calcination of the raw materials used in Comparative Examples 9, 10, and 14 and Example 9, a high-purity alumina sagger was used.) The obtained raw material powder was used in the same manner as in Example 1. , Scandium oxide sintered bodies with different Al contents were prepared. Contained in raw materials
Table 3 shows the amount of Si, the amount of Al contained in the sintered body, and the linear transmittance (sample thickness 1 mm) at a wavelength of 500 nm. The compact density was 58% or more in all cases.

【0050】[0050]

【表3】 実施例9-11,比較例9〜14 試料 Si量/wtppm Al/wtppm 平均粒径/μm 直線透過率/% 比較例9 5 1 13.6 45.7 比較例10 3 3 14.1 49.3 実施例9 3 7 14.5 77.2 実施例10 24 15 13.9 77.0 比較例11 32 15 25.0 52.4 比較例12 74 30 31.1 59.5 比較例13 35 75 23.8 62.2 実施例11 28 77 25.4 77.8 比較例14 3 115 53.3 39.8[Table 3] Examples 9-11, Comparative Examples 9 to 14 Sample Si amount / wtppm Al / wtppm Average particle size / μm Linear transmittance /% Comparative Example 9 5 1 13.6 45.7 Comparative Example 10 3 3 14.1 49.3 Example 9 3 7 14.5 77.2 Example 10 24 15 13.9 77.0 Comparative Example 11 32 15 25.0 52.4 Comparative Example 12 74 30 31.1 59.5 Comparative Example 13 35 75 23.8 62.2 Example 11 28 77 25.4 77.8 Comparative Example 14 3 115 53.3 39.8

【0051】比較例9,10のように、焼結体中に含まれる
Al量が少ない場合には、その効果が充分発揮されないた
め、Siの混入量が少ないにも関らず、透光性は高くな
い。比較例14のAl含有量が100wtppmを超える場合には、
その平均粒径は53μmと実施例1の3倍以上であり、粒内
ポアが多数認められた。この試料をEDX(エネルギー分散
型X線分析)を装備したSEMにより観察した結果、粒界に
Alの偏析相が確認された。また逆に比較例11-13より、
原料中に含まれるSi量が30wtppmを超える場合には、充
分な透光性が得られないことが判る。
As in Comparative Examples 9 and 10, included in the sintered body
When the amount of Al is small, the effect is not sufficiently exerted, and therefore the translucency is not high even though the amount of Si mixed is small. When the Al content of Comparative Example 14 exceeds 100 wtppm,
The average particle size was 53 μm, which was more than three times that of Example 1, and many intragranular pores were observed. As a result of observing this sample by SEM equipped with EDX (energy dispersive X-ray analysis),
An Al segregation phase was confirmed. Conversely, from Comparative Example 11-13,
It can be seen that when the amount of Si contained in the raw material exceeds 30 wtppm, sufficient translucency cannot be obtained.

【0052】[0052]

【実施例12−23及び比較例15,16】実施例5と
同様にして得られた焼結体(500nm及び400nmでの直線透
過率77.2%,58.0%,平均粒径1.3μm)に、HIP処理を施し透
過率の改善を図った。種々の温度、時間、圧力で行なっ
た場合の、平均粒径と波長400,500nmでの直線透過率を
表4に示す。HIP処理は、圧力媒体としてArガスを用いた
同時昇温昇圧法により、800℃/hrで昇温し所定時間保持
した後に、1000℃/hrで冷却した。
Examples 12-23 and Comparative Examples 15 and 16 Sintered bodies obtained in the same manner as in Example 5 (linear transmittance at 500 nm and 400 nm: 77.2%, 58.0%, average particle size: 1.3 μm) were coated with HIP. Treatment was applied to improve the transmittance. Table 4 shows the average particle diameters and the linear transmittances at wavelengths of 400 and 500 nm when they are performed at various temperatures, times and pressures. The HIP treatment was carried out by a simultaneous temperature rising method using Ar gas as a pressure medium, and the temperature was raised at 800 ° C./hr and kept for a predetermined time, and then cooled at 1000 ° C./hr.

【0053】[0053]

【表4】 HIP条件と平均粒径、透過率 直線透過率/%試料 温度/℃×時間/hr 圧力/MPa 平均粒径/μm 500nm 400nm 実施例12 950×1 196 1.3 77.2 58.0 実施例13 1025×1 196 1.3 77.5 62.3 実施例14 1200×0.5 49 1.3 77.6 65.4 実施例15 1200×2 45 1.3 77.3 58.0 実施例16 1500×0.5 98 12.1 77.7 68.8 実施例17 1500×0.5 196 12.3 77.9 70.5 実施例18 1500×1 45 12.5 77.3 58.0 実施例19 1625×0.5 98 17.9 78.3 71.3 実施例20 1800×1 49 24.2 78.5 74.8 実施例21 1800×0.5 196 25.0 78.7 75.1 実施例22 1800×2 196 27.1 79.0 77.0 実施例23 1800×2 45 24.6 77.2 55.0 比較例15 1825×1 196 33.4 65.3 37.8 比較例16 1850×1 196 52.2 38.1 17.2[Table 4] HIP conditions and average particle size, transmittance Linear transmittance /% Sample temperature / ° C x time / hr Pressure / MPa Average particle size / μm 500 nm 400 nm Example 12 950 × 1 196 1.3 77.2 58.0 Example 13 1025 × 1 196 1.3 77.5 62.3 Example 14 1200 × 0.5 49 1.3 77.6 65.4 Example 15 1200 × 2 45 1.3 77.3 58.0 Example 16 1500 × 0.5 98 12.1 77.7 68.8 Example 17 1500 × 0.5 196 12.3 77.9 70.5 Example 18 1500 × 1 45 12.5 77.3 58.0 Example 19 1625 × 0.5 98 17.9 78.3 71.3 Example 20 1800 × 1 49 24.2 78.5 74.8 Example 21 1800 × 0.5 196 25.0 78.7 75.1 Example 22 1800 × 2 196 27.1 79.0 77.0 Example 23 1800 × 2 45 24.6 77.2 55.0 Comparative example 15 1825 × 1 196 33.4 65.3 37.8 Comparative example 16 1850 × 1 196 52.2 38.1 17.2

【0054】HIP処理前の焼結体は、波長500nmでの透過
率は77%以上であるにも関らず、波長400nmでのそれは58
%と著しく低下している。これは、サブミクロン以下の
微細な気孔が焼結体内部に多数含まれているためであ
る。実施例の結果から、HIP処理によりこの微細な気孔
が押し潰され、特に400nmでの透過率が著しく改善され
ていることが判る。またHIP処理を行なっても処理圧力
や温度が低い場合にはその効果が発揮されないことが判
る。更にHIP温度が高すぎる場合には、雰囲気焼成の場
合と同様、Alの析出や異常粒成長を生じるため、逆に透
過率は低下してしまう。
The sintered body before HIP treatment had a transmittance of 77% or more at a wavelength of 500 nm, but had a transmittance of 58% at a wavelength of 400 nm.
It is significantly reduced to%. This is because many fine pores of submicron or smaller are contained inside the sintered body. From the results of the examples, it can be seen that the HIP treatment crushed the fine pores and significantly improved the transmittance particularly at 400 nm. Moreover, it is understood that the effect is not exhibited even if the HIP treatment is performed when the treatment pressure and temperature are low. Further, if the HIP temperature is too high, Al precipitation or abnormal grain growth occurs as in the case of the atmosphere firing, and conversely the transmittance decreases.

【0055】[0055]

【実施例24−30及び比較例17,18】実施例5と
同様にして、成形密度63.3%,Si及びAlの含有量がそれぞ
れ5,58wtppmの酸化スカンジウム成形体を作製した。こ
れらの成形体を、真空炉(真空度10-1Pa以下)にて所定の
温度及び保持時間で焼成した。この際、昇温速度及び降
温速度は、それぞれ400,600℃/hrとした。得られた焼結
体の平均粒径と厚さ1mmでの直線透過率(測定波長500nm)
を表5に示す。表5から明らかなように、焼成温度は140
0〜1800℃が好ましく、焼成時間(最高温度での保持時
間)は0.5時間以上で10時間以下が好ましい。
Examples 24-30 and Comparative Examples 17 and 18 In the same manner as in Example 5, scandium oxide compacts having a compact density of 63.3% and Si and Al contents of 5,58 wtppm were produced. These molded bodies were fired at a predetermined temperature and holding time in a vacuum furnace (vacuum degree 10-1 Pa or less). At this time, the heating rate and the cooling rate were 400 and 600 ° C./hr, respectively. Average particle size of the obtained sintered body and linear transmittance at a thickness of 1 mm (measurement wavelength 500 nm)
Is shown in Table 5. As is clear from Table 5, the firing temperature is 140
The temperature is preferably 0 to 1800 ° C., and the firing time (holding time at the maximum temperature) is preferably 0.5 hours or more and 10 hours or less.

【0056】[0056]

【表5】 焼成条件と平均粒径、直線透過率 試料 温度/℃×時間/hr 平均粒径/μm 直線透過率/%(500nm) 実施例24 1400×1.0 1.2 77.0 比較例17 1450×0.1 2.7 57.3 実施例25 1450×0.5 3.1 77.3 実施例26 1450×1.5 4.0 77.6 比較例18 1600×0.1 5.3 62.7 実施例27 1600×0.5 17.5 77.9 実施例28 1780×0.5 24.2 78.4 実施例29 1780×2.0 26.5 78.6 実施例30 1780×8.0 28.9 78.8[Table 5] Firing conditions and average particle size, linear transmittance Sample temperature / ° C x time / hr Average particle size / μm Linear transmittance /% (500 nm) Example 24 1400 x 1.0 1.2 77.0 Comparative Example 17 1450 x 0.1 2.7 57.3 Example 25 1450 × 0.5 3.1 77.3 Example 26 1450 × 1.5 4.0 77.6 Comparative Example 18 1600 × 0.1 5.3 62.7 Example 27 1600 × 0.5 17.5 77.9 Example 28 1780 × 0.5 24.2 78.4 Example 29 1780 × 2.0 26.5 78.6 Implementation Example 30 1780 × 8.0 28.9 78.8

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例での直線透過率のスペクトルを示す特
性図
FIG. 1 is a characteristic diagram showing a spectrum of linear transmittance in an example.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Al含有量が5wtppm以上100wtppm以下で、
波長500nmから5μmの領域に渡っての直線透過率が1mm厚
みで77%以上の、酸化スカンジウム透光性焼結体。
1. An Al content of 5 wtppm or more and 100 wtppm or less,
A scandium oxide translucent sintered body having a linear transmittance of 77% or more at a thickness of 1 mm over a wavelength range of 500 nm to 5 μm.
【請求項2】 Si含有量が30wtppm以下で、平均粒径が1
μm以上30μm以下である事を特徴とする、請求項1に記
載の酸化スカンジウム透光性焼結体。
2. The Si content is 30 wtppm or less and the average particle size is 1.
The scandium oxide translucent sintered body according to claim 1, which has a size of not less than 30 μm and not more than 30 μm.
【請求項3】 Si含有量が30wtppm以下であり純度99.9%
以上の高純度酸化スカンジウム原料粉末を用いて、成形
密度が理論密度比58%以上で、Al含有量が5wtppm以上100
wtppm以下の成形体を作製し、熱処理により脱バインダ
ーした後に、非酸化性雰囲気中で、1400℃以上1800℃以
下の温度で焼成することを特徴とする、透光性酸化スカ
ンジウム焼結体の製造方法。
3. The Si content is 30 wtppm or less and the purity is 99.9%.
Using the above high-purity scandium oxide raw material powder, the molding density is 58% or more of the theoretical density, the Al content is 5 wtppm or more 100
Manufacture of a translucent scandium oxide sintered body, which is characterized by producing a molded body of wtppm or less, debinding by heat treatment, and then firing at a temperature of 1400 ° C to 1800 ° C in a non-oxidizing atmosphere. Method.
【請求項4】 前記焼成後に、1000℃から1800℃の温度
及び49MPaから196MPaの圧力で、熱間静水圧加圧処理を
施すことを特徴とする、請求項3に記載の透光性酸化ス
カンジウム焼結体の製造方法。
4. The translucent scandium oxide according to claim 3, wherein, after the firing, a hot isostatic pressing treatment is performed at a temperature of 1000 ° C. to 1800 ° C. and a pressure of 49 MPa to 196 MPa. Manufacturing method of sintered body.
JP2001320813A 2001-10-18 2001-10-18 Translucent scandium oxide sintered body and method for producing the same Expired - Lifetime JP3883106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001320813A JP3883106B2 (en) 2001-10-18 2001-10-18 Translucent scandium oxide sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001320813A JP3883106B2 (en) 2001-10-18 2001-10-18 Translucent scandium oxide sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003128465A true JP2003128465A (en) 2003-05-08
JP3883106B2 JP3883106B2 (en) 2007-02-21

Family

ID=19138142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001320813A Expired - Lifetime JP3883106B2 (en) 2001-10-18 2001-10-18 Translucent scandium oxide sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3883106B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006091482A (en) * 2004-09-24 2006-04-06 Casio Comput Co Ltd Ceramics lens for optical device
JP2007086787A (en) * 2005-09-21 2007-04-05 Schott Ag Optical lens, lens group, optical image acquisition apparatus and their manufacturing methods
JP2007254166A (en) * 2006-03-20 2007-10-04 Toshiba Ceramics Co Ltd Translucent ceramic sintered compact and method of manufacturing the same
EP1867617A1 (en) * 2006-06-14 2007-12-19 Schott AG Opto-ceramics, optical elements prepared therefrom as well as mapping optics
EP1867618A1 (en) * 2006-06-14 2007-12-19 Schott AG Optical elements as well as mapping optics
JP2010241656A (en) * 2009-04-09 2010-10-28 National Institute For Materials Science Corundum-type scandium oxide crystal
JP2014040350A (en) * 2012-08-23 2014-03-06 Konoshima Chemical Co Ltd Optical ceramics and production method of the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006091482A (en) * 2004-09-24 2006-04-06 Casio Comput Co Ltd Ceramics lens for optical device
JP2007086787A (en) * 2005-09-21 2007-04-05 Schott Ag Optical lens, lens group, optical image acquisition apparatus and their manufacturing methods
JP4686426B2 (en) * 2005-09-21 2011-05-25 ショット アクチエンゲゼルシャフト Optical lens, lens group, optical image collection device, and manufacturing method thereof
US8025818B2 (en) 2005-09-21 2011-09-27 Schott Ag Process for the production of an optical lens
JP2007254166A (en) * 2006-03-20 2007-10-04 Toshiba Ceramics Co Ltd Translucent ceramic sintered compact and method of manufacturing the same
EP1867617A1 (en) * 2006-06-14 2007-12-19 Schott AG Opto-ceramics, optical elements prepared therefrom as well as mapping optics
EP1867618A1 (en) * 2006-06-14 2007-12-19 Schott AG Optical elements as well as mapping optics
US7700510B2 (en) 2006-06-14 2010-04-20 Schott Ag Opto-ceramics made from In2O3 or oxides Y, Lu, Sc, Yb, In, Gd, and La, optical elements made therefrom, and mapping optics including the optical elements
US7751123B2 (en) 2006-06-14 2010-07-06 Schott Ag Optical elements made from ceramics comprising one or more oxides of Y, Sc, in and/or lanthanide elements and mapping optics including the optical elements
JP2010241656A (en) * 2009-04-09 2010-10-28 National Institute For Materials Science Corundum-type scandium oxide crystal
JP2014040350A (en) * 2012-08-23 2014-03-06 Konoshima Chemical Co Ltd Optical ceramics and production method of the same

Also Published As

Publication number Publication date
JP3883106B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
KR100885199B1 (en) Translucent rare earth oxide sintered article and method for production thereof
JP5366398B2 (en) Composite ceramics and manufacturing method thereof
JP4995920B2 (en) Method for producing transparent polycrystalline aluminum oxynitride
US20100048378A1 (en) Sintered polycrystalline yttrium aluminum garnet and use thereof in optical devices
JP4033451B2 (en) Translucent rare earth oxide sintered body and method for producing the same
JP5000934B2 (en) Translucent rare earth gallium garnet sintered body, manufacturing method thereof and optical device
JP2002326862A (en) Light transmitting ceramic and method for producing the same
US20040109808A1 (en) Yttrium aluminum garnet powders and processing
JP2939535B2 (en) Manufacturing method of transparent yttrium oxide sintered body
JPH06211573A (en) Production of transparent y2o3 sintered compact
EP1518843A2 (en) Aluminum nitride sintered body and method of producing the same
JP4251649B2 (en) Translucent lutetium oxide sintered body and method for producing the same
WO1995006622A1 (en) Light-permeable ceramic material and method of manufacturing the same
JP3883106B2 (en) Translucent scandium oxide sintered body and method for producing the same
EP3560905B1 (en) Transparent aln sintered body and production method therefor
JP2010126430A (en) Translucent yag polycrystal body and method of manufacturing the same
JP2001158660A (en) Optically transmitting rare earth-aluminum garnet sintered product and production method therefor
JPH04238864A (en) Light transmittable sintered material of yttria and production thereof
JP2000203933A (en) Production of transparent yttrium/aluminum/garnet sintered body by dry mixing method
JP4666640B2 (en) Translucent magnesium oxide sintered body and method for producing the same
EP1433764B1 (en) Method of producing sintered bodies of yttrium-aluminium-garnet and a shaped body
JPH0772102B2 (en) Method for manufacturing zirconia sintered body
JP2566737B2 (en) Method for producing translucent aluminum magnesium oxynitride sintered body
JP3245234B2 (en) Method for producing translucent yttrium-aluminum-garnet sintered body
JP3700176B2 (en) Translucent ceramics and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061110

R150 Certificate of patent or registration of utility model

Ref document number: 3883106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7