JP2003126044A - Ophthalmologic measurement device - Google Patents
Ophthalmologic measurement deviceInfo
- Publication number
- JP2003126044A JP2003126044A JP2001327277A JP2001327277A JP2003126044A JP 2003126044 A JP2003126044 A JP 2003126044A JP 2001327277 A JP2001327277 A JP 2001327277A JP 2001327277 A JP2001327277 A JP 2001327277A JP 2003126044 A JP2003126044 A JP 2003126044A
- Authority
- JP
- Japan
- Prior art keywords
- optical system
- light receiving
- lens
- aperture stop
- eye
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Eye Examination Apparatus (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、1つのパルス光の
先端から末尾にかけて色が時間と共に連続して変化する
ようにチャープされた超短パルス光を用いる眼科計測装
置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ophthalmologic measuring apparatus using ultra-short pulsed light that is chirped so that the color of one pulsed light continuously changes from time to time.
【0002】[0002]
【従来の技術】従来の眼科計測においては、被検眼に指
標を投影し、被検眼から反射してきた指標像のぼけやず
れ等から被検眼の寸法や形状を求めている。2. Description of the Related Art In conventional ophthalmologic measurement, an index is projected on an eye to be examined, and the size and shape of the eye to be examined are obtained from blurring or deviation of the index image reflected from the eye to be examined.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、このよ
うの方法で三次元情報を得るには光走査等による手間や
時間的な遅れ、被検眼からの反射光強度のばらつきや指
標の粗さの限界等による精度上の限界がある。However, in order to obtain three-dimensional information by such a method, there is a labor and time delay due to optical scanning or the like, variations in the intensity of reflected light from the eye to be examined, and the limit of the roughness of the index. There is a limit in accuracy due to the above.
【0004】本発明の目的は、上述の課題を解決し、超
短パルス光を用いて時間的な遅れなく被検眼の三次元情
報を得ることができる眼科計測装置を提供することにあ
る。An object of the present invention is to solve the above problems and to provide an ophthalmologic measuring apparatus which can obtain three-dimensional information of an eye to be inspected by using ultrashort pulsed light without time delay.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
の本発明に係る眼科計測装置は、1つのパルス光の先端
から末尾にかけて色が時間と共に連続して変化するよう
にチャープされた超短パルス光発生手段と、前記パルス
光を被検眼に向けて投影する投影光学系と、被検眼の所
定部位で反射した前記超短パルス光を受光する受光光学
系と、該受光光学系中に配置し前記所定部位で反射した
前記超短パルス光を所定のタイミングで切り出す超高速
光学シャッタと、該超高速光学シャッタにより切り出し
た光束を受光するために前記受光光学系に関して前記所
定部位と共役位置に配置した受光手段と、該受光手段で
得た分光分布情報から前記所定部位の形状特性を算出す
る算出手段と、前記分光分布特性又は前記算出手段によ
り得た前記形状特性を出力する出力手段とを有すること
を特徴とするIn order to achieve the above object, an ophthalmologic measuring apparatus according to the present invention is an ultrashort chirp that is such that the color of one pulsed light changes continuously from time to time. Pulsed light generating means, a projection optical system for projecting the pulsed light toward the eye to be examined, a light receiving optical system for receiving the ultrashort pulsed light reflected at a predetermined part of the eye to be examined, and arranged in the light receiving optical system An ultra-high-speed optical shutter that cuts out the ultra-short pulsed light reflected at the predetermined portion at a predetermined timing, and a conjugate position with the predetermined portion with respect to the light-receiving optical system for receiving the light beam cut out by the ultra-high-speed optical shutter. The arranged light receiving means, a calculating means for calculating the shape characteristic of the predetermined portion from the spectral distribution information obtained by the light receiving means, and the spectral distribution characteristic or the shape characteristic obtained by the calculating means. And an outputting means for outputting
【0006】[0006]
【発明の実施の形態】本発明を図示の実施の形態に基づ
いて詳細に説明する。図1は第1の実施の形態における
超短パルス光を用いた眼底計測装置の構成図を示してお
り、被検眼Eの前方には対物レンズ1、ビームスプリッ
タ2、照明側ピンホールである第1の開口絞り3、リレ
ーレンズ4、チャープされた超短パルス光発生装置5、
モード同期チタンサファイアレーザー光源6を順次に配
列する。また、ビームスプリッタ2の反射方向には、受
光側ピンホールである第2の開口絞り7、投影レンズ
8、二硫化炭素分子液体から成る超高速非線形光学シャ
ッタ9、二次元カラー撮像素子10を配置する。また、
超高速非線形光学シャッタ9とモード同期チタンサファ
イアレーザー光源6の間には、画像を切り出すためのタ
イミング装置11を接続する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail based on the illustrated embodiments. FIG. 1 is a configuration diagram of a fundus measuring apparatus using ultrashort pulsed light according to the first embodiment, in which an objective lens 1, a beam splitter 2, and an illumination side pinhole are provided in front of an eye E to be inspected. 1 aperture stop 3, relay lens 4, chirped ultra-short pulsed light generator 5,
Mode-locked titanium sapphire laser light sources 6 are sequentially arranged. Further, in the reflecting direction of the beam splitter 2, a second aperture stop 7 which is a light receiving side pinhole, a projection lens 8, an ultrafast nonlinear optical shutter 9 made of carbon disulfide molecular liquid, and a two-dimensional color image pickup device 10 are arranged. To do. Also,
A timing device 11 for cutting out an image is connected between the ultra-high speed nonlinear optical shutter 9 and the mode-locked titanium sapphire laser light source 6.
【0007】モード同期チタンサファイアレーザー光源
6から出射された光は、チャープされた超短パルス光発
生装置5により色が規則的に経時変化する光パルスに変
換される。このチャープ光は屈折率の高い極めて細いコ
アを有するファイバに光を閉じ込めて導波することによ
り、非線形光学効果を生じさせ光パルスの周波数変調を
起こさせたものであり、更にこのパルス光はリレーレン
ズ4により第1の開口絞り3に集光される。この第1の
開口絞り3からの光はビームスプリッタ2を通過後に、
対物レンズ1を介して被検眼Eの虹彩付近に集光後に眼
底Erに照射される。The light emitted from the mode-locked titanium sapphire laser light source 6 is converted by the chirped ultrashort pulse light generator 5 into an optical pulse whose color changes regularly with time. This chirp light is a light that confines light in a fiber having an extremely thin core with a high refractive index and guides it to cause a nonlinear optical effect and frequency modulation of an optical pulse. The light is focused on the first aperture stop 3 by the lens 4. The light from the first aperture stop 3 passes through the beam splitter 2 and
After the light is focused near the iris of the eye E through the objective lens 1, the fundus Er is irradiated.
【0008】次に、眼底Erで反射された光は再び虹彩
を出射して対物レンズ1に入射し、ビームスプリッタ2
で反射された後に、ビームスプリッタ2に関して第1の
開口絞り3と共役に置かれた第2の開口絞り7を経て投
影レンズ8に入射する。この投影レンズ8は第2の開口
絞り7が前側焦点位置になるように配置しており、投影
レンズ8を通過した眼底Erからの光を集光する。Next, the light reflected by the fundus Er exits the iris again and enters the objective lens 1, and the beam splitter 2
After being reflected by the beam splitter 2, the light enters the projection lens 8 via the second aperture stop 7 which is placed conjugate with the first aperture stop 3 with respect to the beam splitter 2. The projection lens 8 is arranged such that the second aperture stop 7 is at the front focal position, and collects the light from the fundus Er that has passed through the projection lens 8.
【0009】投影レンズ8を通過した光は、超高速非線
形光学シャッタ9を介して二次元カラー撮像素子10に
投影されるが、眼底Erからの反射光をタイミング装置1
1により或るタイミングで切り出すことにより、眼底E
rの奥行き形状に応じた色の分布を有する二次元の色画
像が得られるので、これを形状特性に変換して図示しな
いカラーモニタ、カラープリンタ等に出力する。The light that has passed through the projection lens 8 is projected onto the two-dimensional color image pickup device 10 through the ultra-high speed nonlinear optical shutter 9, and the reflected light from the fundus Er is converted into the timing device 1.
By cutting out at a certain timing with 1, the fundus E
Since a two-dimensional color image having a color distribution according to the depth shape of r is obtained, this is converted into shape characteristics and output to a color monitor, a color printer, or the like (not shown).
【0010】図2は色画像の切り出しの原理の説明図を
示しており、被検物体Sで反射したパルス光は反射位置
における被検物体Sの凹凸により、光パルスの進行位置
が異なり、高位置で反射した光パルスP1は低位置で反
射した光パルスP2よりも進行した位置にある。FIG. 2 is an explanatory view of the principle of cutting out a color image. The pulsed light reflected by the object S to be inspected differs in the traveling position of the optical pulse due to the unevenness of the object S to be inspected at the reflection position, and the high position. The light pulse P1 reflected at the position is at a position more advanced than the light pulse P2 reflected at the low position.
【0011】チャープされたパルス光はパルスの先端が
末尾よりも波長が長く、高位置で反射した光パルスP1
と低位置で反射した光パルスP2は切り出しタイミング
軸L上での切り出しタイミングTにおける切出位置Aに
おいて、その場所での周波数fは異なり、切り出された
二次元画像として、青寄りの色画像Pbと赤寄りの色画
像Prが得られる。The chirped pulsed light has a longer wavelength at the front end of the pulse than at the end of the pulsed light, and is a light pulse P1 reflected at a high position.
And the light pulse P2 reflected at a low position has a different frequency f at the cut-out position A at the cut-out timing T on the cut-out timing axis L, and the cut-out two-dimensional image is a blue-colored image Pb. A red-colored image Pr is obtained.
【0012】図3は二次元カラー撮像素子10の受光面
10aにおけるカラー画像分布をイソプタ表示したもの
であり、反射面の高さによって赤色領域R、橙色領域
O、黄色領域Y、緑色領域G、青色領域B等となる。FIG. 3 shows the color image distribution on the light receiving surface 10a of the two-dimensional color image pickup device 10 in isopter display. The red area R, the orange area O, the yellow area Y, and the green area G are shown according to the height of the reflecting surface. It becomes the blue region B and the like.
【0013】図4は二次元カラー撮像素子10で撮像し
た画像をカラーモニタ画面に表示したものであり、撮像
領域Xの中に複数のカラー分布C1、C2等が表示され
る。これらのカラー分布C1、C2は高さ情報に変換さ
れるものであり、詳細な色と高さの関係はカラースケー
ル21によって表示される。なお、複数のカラー分布と
カラースケールについては、連続スペクトル又はステッ
プ状に表示される。FIG. 4 shows an image picked up by the two-dimensional color image pickup device 10 on a color monitor screen, and a plurality of color distributions C1, C2 and the like are displayed in the image pickup area X. These color distributions C1 and C2 are converted into height information, and the detailed relationship between color and height is displayed by the color scale 21. A plurality of color distributions and color scales are displayed in a continuous spectrum or step form.
【0014】また、この高さ情報は種々の断面での値と
して表示することが可能であり、例えば断面Yにおける
高さはスケール21と標高線Hにより示される。なお、
断面は自由に回転移動可能であり、第2の断面Y’を取
れば、それに応じた標高線が示される。The height information can be displayed as values at various cross sections, and the height at the cross section Y is indicated by the scale 21 and the elevation line H, for example. In addition,
The cross section can be freely rotated and moved, and if the second cross section Y ′ is taken, the corresponding elevation line is shown.
【0015】図5は第2の実施の形態における眼科計測
装置の構成図を示しており、アフォーカルな受光系を有
している。眼底照明系は第1の実施の形態と共通であ
り、図示を省略している。本実施の形態においては、被
検眼Eと対物レンズ1の間にアダプタレンズ31を設け
ている。なお、被検眼Eの前眼部Efはアダプタレンズ
31、対物レンズ1、ビームスプリッタ2、第2の開口
絞り7、投影レンズ8、超高速非線形光学シャッタ9に
関して、二次元カラー撮像素子10と共役位置になって
いる。FIG. 5 is a block diagram of the ophthalmologic measuring apparatus according to the second embodiment, which has an afocal light receiving system. The fundus illumination system is common to that of the first embodiment and is not shown. In the present embodiment, the adapter lens 31 is provided between the eye E to be examined and the objective lens 1. The anterior segment Ef of the eye E to be examined is conjugated with the two-dimensional color imaging device 10 with respect to the adapter lens 31, the objective lens 1, the beam splitter 2, the second aperture stop 7, the projection lens 8, and the ultra-high-speed nonlinear optical shutter 9. It is in the position.
【0016】レーザー光源から第1の開口絞り3を経て
出射した光はビームスプリッタ2を通過後、対物レンズ
1により一旦集光した後に、集光位置を後側焦点位置に
配置したアダプタレンズ31により平行光となり、被検
眼Eに向かい前眼部Efで反射される。The light emitted from the laser light source through the first aperture stop 3 passes through the beam splitter 2 and is once condensed by the objective lens 1 and then by the adapter lens 31 arranged at the rear focal point. It becomes parallel light and is reflected by the anterior segment Ef toward the eye E to be examined.
【0017】次に、前眼部Efで反射された光は再びア
ダプタレンズ31を経て対物レンズ1に入射し、ビーム
スプリッタ2において反射された後に、第2の開口絞り
7を経て、その前側焦点位置が第2の開口絞り7の位置
になるように配置した投影レンズ8に入射する。Next, the light reflected by the anterior segment Ef again enters the objective lens 1 through the adapter lens 31, is reflected by the beam splitter 2, and then passes through the second aperture stop 7 and its front focal point. The light enters the projection lens 8 arranged so that its position is the position of the second aperture stop 7.
【0018】投影レンズ8を通過した光は超高速非線形
光学シャッタ9を経て二次元カラー撮像素子10に投影
されるが、反射光をタイミング装置11により或るタイ
ミングで切り出すと、前眼部Efの形状に応じた色の分
布を持つ二次元の画像が得られる。なお、この画像の扱
いに関しては、眼底からの反射光の扱いと同様である。The light that has passed through the projection lens 8 is projected onto the two-dimensional color image pickup device 10 through the ultra-high speed nonlinear optical shutter 9. When the reflected light is cut out at a certain timing by the timing device 11, the anterior segment Ef of the anterior segment Ef. A two-dimensional image having a color distribution according to the shape is obtained. The handling of this image is the same as the handling of the reflected light from the fundus.
【0019】[0019]
【発明の効果】以上説明したように本発明に係る眼科計
測装置は、1つのパルス光の先端から末尾にかけて色が
時間と共に連続して変化する超短パルス光を被検眼に投
影し、被検眼から反射した前記超短パルス光を超高速光
学シャッタにより所定のタイミングで切り出すことによ
り、光走査のような時間的な遅れなく被検眼の三次元情
報を得ることができる。As described above, the ophthalmologic measuring apparatus according to the present invention projects ultrashort pulsed light whose color continuously changes with time from the tip to the end of one pulsed light onto the eye to be examined. By cutting out the ultrashort pulsed light reflected from the eyepiece at a predetermined timing with an ultrafast optical shutter, it is possible to obtain three-dimensional information of the eye to be inspected without a time delay such as optical scanning.
【0020】また、本発明に係る眼科計測装置は、光走
査等の特別な操作を必要とすることもなく、極短時間に
つまり高速で変動している場合においても、被検眼の三
次元形状測定が可能である。Further, the ophthalmologic measuring apparatus according to the present invention does not require a special operation such as optical scanning, and the three-dimensional shape of the eye to be inspected even in the case of fluctuating in an extremely short time, that is, at a high speed. It is possible to measure.
【0021】更に、本発明に係る眼科計測装置は、被検
対象物と二次元カラー撮像素子とを光学的に略共役に保
つことにより、測定値と測定位置を正確に対応させるこ
とができる。Further, the ophthalmologic measuring apparatus according to the present invention can accurately correspond the measured value and the measured position by keeping the object to be inspected and the two-dimensional color image pickup device optically substantially conjugate.
【図1】第1の実施の形態における眼科計測装置の構成
図である。FIG. 1 is a configuration diagram of an ophthalmologic measuring apparatus according to a first embodiment.
【図2】色画像の切り出しの原理の説明図である。FIG. 2 is an explanatory diagram of a principle of cutting out a color image.
【図3】二次元カラー撮像素子上の切出画像の説明図で
ある。FIG. 3 is an explanatory diagram of a clipped image on a two-dimensional color image sensor.
【図4】二次元カラー撮像素子から得られる計測データ
の表示画面の説明図である。FIG. 4 is an explanatory diagram of a display screen of measurement data obtained from a two-dimensional color image sensor.
【図5】第2の実施における眼科計測装置の構成図であ
る。FIG. 5 is a configuration diagram of an ophthalmologic measuring apparatus according to a second embodiment.
1 対物レンズ 2 ビームスプリッタ 3 第1の開口絞り 4 リレーレンズ 5 超短パルス光発生装置 6 モード同期チタンサファイアレーザー光源 7 第2の開口絞り 8 投影レンズ 9 超高速非線形光学シャッタ 10 二次元カラー撮像素子 11 タイミング装置 31 アダプタレンズ 1 Objective lens 2 beam splitter 3 First aperture stop 4 relay lens 5 Ultrashort pulse light generator 6 mode-locked titanium sapphire laser light source 7 Second aperture stop 8 Projection lens 9 Ultra-high speed nonlinear optical shutter 10 Two-dimensional color image sensor 11 Timing device 31 Adapter lens
Claims (9)
色が時間と共に連続して変化するようにチャープされた
超短パルス光発生手段と、前記パルス光を被検眼に向け
て投影する投影光学系と、被検眼の所定部位で反射した
前記超短パルス光を受光する受光光学系と、該受光光学
系中に配置し前記所定部位で反射した前記超短パルス光
を所定のタイミングで切り出す超高速光学シャッタと、
該超高速光学シャッタにより切り出した光束を受光する
ために前記受光光学系に関して前記所定部位と共役位置
に配置した受光手段と、該受光手段で得た分光分布情報
から前記所定部位の形状特性を算出する算出手段と、前
記分光分布特性又は前記算出手段により得た前記形状特
性を出力する出力手段とを有することを特徴とする眼科
計測装置。1. An ultra-short pulsed light generation means that is chirped so that the color of one pulsed light continuously changes from time to time, and a projection optical system that projects the pulsed light toward an eye to be examined. And a light receiving optical system that receives the ultrashort pulsed light reflected at a predetermined portion of the eye to be inspected, and an ultra-high speed that cuts out the ultrashort pulsed light that is placed in the light receiving optical system and reflected at the predetermined portion. An optical shutter,
A light receiving unit disposed at a conjugate position with the predetermined region with respect to the light receiving optical system for receiving the light beam cut out by the ultra-high-speed optical shutter, and a shape characteristic of the predetermined region is calculated from spectral distribution information obtained by the light receiving unit. An ophthalmologic measuring apparatus, comprising: a calculating unit that outputs the spectral distribution characteristic or an output unit that outputs the shape characteristic obtained by the calculating unit.
スプリッタと、前記対物レンズに関して被検眼前眼部と
略共役に配置した第1の開口絞りとを有し、前記受光光
学系は前記対物レンズと、前記対物レンズに関して被検
眼前眼部と略共役に配置した第2の開口絞りと、該第2
の開口絞りが前側焦点位置になるように配置した投影レ
ンズとを有し、前記投影光学系と前記受光光学系は前記
ビームスプリッタにより光路を分割したことを特徴とす
る請求項1に記載の眼科計測装置。2. The projection optical system includes an objective lens, a beam splitter, and a first aperture stop arranged substantially conjugate with the anterior ocular segment of the subject's eye with respect to the objective lens, and the light receiving optical system includes the objective. A lens, a second aperture stop arranged substantially conjugate with the anterior ocular segment of the eye to be examined with respect to the objective lens, and the second aperture stop.
2. The ophthalmology according to claim 1, further comprising: a projection lens arranged so that the aperture stop of the lens is located at a front focal position, and the projection optical system and the light receiving optical system divide an optical path by the beam splitter. Measuring device.
記受光手段は前記受光光学系に関して眼底と略共役に配
置したことを特徴とする請求項1に記載の眼科計測装
置。3. The ophthalmologic measuring apparatus according to claim 1, wherein the predetermined portion of the eye to be inspected is a fundus, and the light receiving unit is arranged substantially conjugate with the fundus with respect to the light receiving optical system.
高線及びスケールであることを特徴とする請求項1に記
載の眼科計測装置。4. The ophthalmologic measuring apparatus according to claim 1, wherein the shape characteristic is a two-dimensional contour line and scale converted into a distance.
びスケールであることを特徴とする請求項1に記載の眼
科計測装置。5. The ophthalmologic measuring apparatus according to claim 1, wherein the shape characteristic is a bird's-eye view and a scale converted into a distance.
高線及び所定の断面であることを特徴とする請求項1に
記載の眼科計測装置6. The ophthalmologic measuring apparatus according to claim 1, wherein the shape characteristic is a two-dimensional contour line converted into a distance and a predetermined cross section.
て表示することを特徴とする請求項6に記載の眼科計測
装置。7. The ophthalmologic measuring apparatus according to claim 6, wherein the two-dimensional contour line is displayed so as to be superimposed on the fundus image of the eye to be inspected.
と、前記対物レンズと、ビームスプリッタと、ピンホー
ルとを有し、前記受光光学系は前記対物補助レンズと対
物レンズと、前記ビームスプリッタに関して略共役に配
置した第2の開口絞りと、該第2の開口絞りが前側焦点
位置になるように配置した投影レンズとを有し、前記受
光光学系はアフォーカル光学系としたことを特徴とする
請求項1に記載の眼科計測装置。8. The projection optical system sequentially comprises an objective auxiliary lens, the objective lens, a beam splitter, and a pinhole, and the light receiving optical system relates to the objective auxiliary lens, the objective lens, and the beam splitter. A second aperture stop arranged substantially conjugate, and a projection lens arranged so that the second aperture stop is located at a front focal position, and the light receiving optical system is an afocal optical system. The ophthalmic measurement device according to claim 1.
前記投影光学系は順に対物補助レンズと、前記対物レン
ズと、ビームスプリッタと開口絞りとを有し、前記受光
光学系は前記対物補助レンズと対物レンズと前記ビーム
スプリッタに関して略共役に配置した第2の開口絞り
と、該第2の開口絞りが前側焦点位置になるように配置
した投影レンズとを有し、前記受光光学系はアフォーカ
ル光学系であると共に、前記対物補助レンズの前記対物
レンズで側焦点面と前記受光手段は略共役であることを
特徴とする請求項1に記載の眼科計測装置。9. The predetermined part of the subject's eye is an anterior segment,
The projection optical system sequentially includes an objective auxiliary lens, the objective lens, a beam splitter, and an aperture stop, and the light receiving optical system is arranged in a substantially conjugate manner with respect to the objective auxiliary lens, the objective lens, and the beam splitter. Aperture stop and a projection lens arranged so that the second aperture stop is located at the front focal position, the light receiving optical system is an afocal optical system, and the objective lens of the objective auxiliary lens is The ophthalmologic measuring apparatus according to claim 1, wherein the side focal plane and the light receiving unit are substantially conjugate with each other.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001327277A JP2003126044A (en) | 2001-10-25 | 2001-10-25 | Ophthalmologic measurement device |
US10/268,980 US6702441B2 (en) | 2001-10-17 | 2002-10-11 | Ophthalmic measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001327277A JP2003126044A (en) | 2001-10-25 | 2001-10-25 | Ophthalmologic measurement device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003126044A true JP2003126044A (en) | 2003-05-07 |
Family
ID=19143529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001327277A Withdrawn JP2003126044A (en) | 2001-10-17 | 2001-10-25 | Ophthalmologic measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003126044A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011007511A (en) * | 2009-06-23 | 2011-01-13 | Honda Motor Co Ltd | Three-dimensional shape measuring apparatus |
WO2017149912A1 (en) * | 2016-03-02 | 2017-09-08 | 国立大学法人電気通信大学 | Shape measurement method and shape measurement device |
-
2001
- 2001-10-25 JP JP2001327277A patent/JP2003126044A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011007511A (en) * | 2009-06-23 | 2011-01-13 | Honda Motor Co Ltd | Three-dimensional shape measuring apparatus |
WO2017149912A1 (en) * | 2016-03-02 | 2017-09-08 | 国立大学法人電気通信大学 | Shape measurement method and shape measurement device |
US10760900B2 (en) | 2016-03-02 | 2020-09-01 | The University Of Electro-Communications | Shape measurement method and shape measurement device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3269665B2 (en) | Alignment detection device and ophthalmic apparatus using the alignment detection device | |
US9820645B2 (en) | Ophthalmologic apparatus | |
US5152295A (en) | Fundus examination device | |
DE3201801C2 (en) | ||
JPS6171032A (en) | Apparatus for displaying plane or thin layer range of human eye | |
EP1437084B1 (en) | Eye optical characteristic measuring instrument | |
CN105534474B (en) | Detected with aberration and analyze optical system with the objective visual quality of compensation | |
JPH1075931A (en) | Ophthalmodiaphanoscope | |
EP2016888A1 (en) | Corneal topography apparatus with further integrated devices | |
JP4722853B2 (en) | Device for the measurement of the front of the eye | |
KR100722162B1 (en) | Method for controlling position of examined eye using mire ring and eye examining apparatus using the same | |
JPH0556136B2 (en) | ||
JP2003126044A (en) | Ophthalmologic measurement device | |
US6699198B2 (en) | Ocular-blood-flow meter | |
JPH07280703A (en) | Space refractometer | |
JP2003116791A (en) | Ophthalmologic measuring device | |
CN209712877U (en) | A kind of breakdown formula all -fiber reference arm frequency sweep OCT system | |
US6702441B2 (en) | Ophthalmic measuring device | |
US6685650B2 (en) | Fundus blood flowmeter | |
JP3762025B2 (en) | Ophthalmic examination equipment | |
US7802885B2 (en) | Imaging unit for ophthalmological devices, in particular, for fundus cameras and method for the use thereof | |
JP4250245B2 (en) | Fundus examination device | |
JP3610139B2 (en) | Fundus examination device | |
KR102116618B1 (en) | Inspection apparatus for surface of optic specimen and controlling method thereof | |
JP3762035B2 (en) | Ophthalmic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040714 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050802 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20050907 |