JP2003123752A - Composite electrode material, method of manufacturing the same, and composite electrode using composite electrode material - Google Patents

Composite electrode material, method of manufacturing the same, and composite electrode using composite electrode material

Info

Publication number
JP2003123752A
JP2003123752A JP2001312777A JP2001312777A JP2003123752A JP 2003123752 A JP2003123752 A JP 2003123752A JP 2001312777 A JP2001312777 A JP 2001312777A JP 2001312777 A JP2001312777 A JP 2001312777A JP 2003123752 A JP2003123752 A JP 2003123752A
Authority
JP
Japan
Prior art keywords
composite electrode
electrode material
metal oxide
conductive substance
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001312777A
Other languages
Japanese (ja)
Inventor
Hiroshi Abe
浩史 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2001312777A priority Critical patent/JP2003123752A/en
Publication of JP2003123752A publication Critical patent/JP2003123752A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite electrode material superior in high reversible capacity and filling characteristic, and suitably used as an electrode material for a lithium ion battery and an electrochemical super capacity. SOLUTION: In this composite electrode material prepared by coating a surface of a conductive material having an average particle size of primary particles of 10-60 nm, and a specific surface area by nitrogen adsorption of 50-300 m<2> /g, with metallic oxide capable of absorbing and desorbing lithium, the conductive material is carbonaceous material, and the metallic oxide is the oxide of at least one kind of metal selected from the metals belonging to a range of the fourth to the sixth cycle and the groups 3 to 12 in the periodic table.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン電
池や電気化学スーパーキャパシタなどの電極材料として
使用するのに適した複合電極材料及びその製造方法、並
びにその複合電極材料を用いた複合電極に関する。
TECHNICAL FIELD The present invention relates to a composite electrode material suitable for use as an electrode material for lithium ion batteries, electrochemical supercapacitors and the like, a method for producing the same, and a composite electrode using the composite electrode material.

【0002】[0002]

【従来の技術】リチウムイオン電池の電極、特に正極
は、LiCoO2などの正極活物質とカーボンなどの導
電性物質の粉末を、バインダーを有機溶剤に溶解させた
バインダー溶液又はバインダーを水に分散させた分散液
と混合して、正極合剤含有ペーストを調製し、その正極
合剤含有ペーストを金属箔などからなる集電体に塗布
し、乾燥させることによって、集電体上に薄膜状の正極
合剤層を形成する工程を経て作製されている。
2. Description of the Related Art An electrode of a lithium-ion battery, especially a positive electrode, is prepared by dispersing a powder of a positive electrode active material such as LiCoO 2 and a conductive material such as carbon into a binder solution prepared by dissolving a binder in an organic solvent or a binder dispersed in water. To prepare a positive electrode mixture-containing paste, apply the positive electrode mixture-containing paste to a current collector made of metal foil, etc., and dry it to form a thin film positive electrode on the current collector. It is manufactured through the step of forming the mixture layer.

【0003】しかしながら、上記のように作製された正
極を有するリチウムイオン電池は、高いエネルギー密度
を有するものの、正極活物質がもともと絶縁体であるた
め、高電流密度下(高負荷下)では充放電に充分に対応
することができず、高容量が得られないという問題があ
った。
However, the lithium ion battery having the positive electrode manufactured as described above has a high energy density, but since the positive electrode active material is originally an insulator, it is charged and discharged under high current density (under high load). However, there is a problem in that a high capacity cannot be obtained.

【0004】また、リチウムの酸化還元反応を利用した
電気化学スーパーキャパシタについても研究が行われて
おり、活物質の微粒子化や導電性物質の多量混合により
高出力化を図っている。しかし、微粒子化を行った場合
は活物質がかさ(嵩)高になり、また導電性物質も一般
にかさ高であるため、電極の充填性が悪くなり、高いエ
ネルギー密度が得られないという問題があった。さら
に、充填性が悪いと活物質と導電性物質との間に隙間が
生じて接触性が必ずしも良好ではなくなるため、充分な
導電性が確保できないという問題もあった。
Further, studies have also been conducted on electrochemical supercapacitors utilizing the oxidation-reduction reaction of lithium, aiming at higher output by finely dividing the active material and mixing a large amount of conductive materials. However, when finely divided, the active material becomes bulky (bulk), and the conductive material is also generally bulky, so that the filling property of the electrode is deteriorated and a high energy density cannot be obtained. there were. Further, if the filling property is poor, a gap is generated between the active material and the conductive substance, and the contact property is not always good, so that there is a problem that sufficient conductivity cannot be secured.

【0005】そこで、本発明者らは、導電性物質にリチ
ウムを挿入及び脱離することが可能な金属酸化物を被覆
させた新規な複合電極材料を提案した(特願2000−
269531)。この複合電極材料は、前記金属酸化物
のコロイド溶液に導電性物質を加えて加熱処理すること
により得られるもので、電極の充填性も高く、導電性物
質と複合化されているため高出力特性を示すという特徴
を有している。
Therefore, the present inventors have proposed a novel composite electrode material in which a conductive material is coated with a metal oxide capable of inserting and releasing lithium (Japanese Patent Application No. 2000-
269531). This composite electrode material is obtained by adding a conductive substance to a colloidal solution of the above metal oxide and subjecting it to heat treatment, and also has a high electrode filling property, and since it is compounded with a conductive substance, it has high output characteristics. It has the feature of indicating.

【0006】[0006]

【発明が解決しようとする課題】上記複合電極材料は、
リチウムを挿入及び脱離することが可能な金属酸化物と
導電性物質とが複合化されているため、活物質である金
属酸化物の利用率も向上し、ほぼ理論値通りの放電容量
を確保することが可能である。
The above-mentioned composite electrode material is
Since the metal oxide capable of inserting and removing lithium and the conductive material are combined, the utilization rate of the metal oxide, which is the active material, is improved, and the discharge capacity that is almost the theoretical value is secured. It is possible to

【0007】しかし、前記金属酸化物として五酸化バナ
ジウムを使用した場合を例にとると、五酸化バナジウム
の結晶質体を使用した場合の放電容量は高くても200
mAh/gであり、その非晶質体を使用した場合の放電
容量は360mAh/g程度にとどまるのが現状であ
る。これでは、最近のさらなる高容量化の市場要求に対
応するには十分とはいえない。
However, taking the case of using vanadium pentoxide as the metal oxide, the discharge capacity when using a crystalline body of vanadium pentoxide is at most 200.
It is mAh / g, and at present, the discharge capacity when using the amorphous material is about 360 mAh / g. This is not enough to meet the recent market demand for higher capacity.

【0008】本発明は、前記複合電極材料について高電
流密度下でも高い放電容量を示し、且つ充填性に優れる
という利点を維持しつつ、活物質の理論容量を大幅に超
える高い可逆容量を示すリチウムイオン電池や電気化学
スーパーキャパシタなどの電極材料として使用するのに
適した複合電極材料を提供することを目的とする。
The present invention provides lithium which exhibits a high discharge capacity even under a high current density, and has a high reversible capacity which greatly exceeds the theoretical capacity of the active material, while maintaining the advantage that the composite electrode material has a high filling capacity. It is an object to provide a composite electrode material suitable for use as an electrode material for ion batteries, electrochemical supercapacitors and the like.

【0009】[0009]

【課題を解決するための手段】本発明者らは前記問題を
解決すべく種々研究を重ねた結果、金属酸化物を被覆さ
せる導電性物質について、その一次粒子の平均粒子径が
10〜60nmであり且つ窒素吸着による比表面積が5
0〜300m2/gである導電性物質、特に炭素質材料
を用いれば、リチウムを電気化学的に挿入及び脱離する
ことが可能な金属酸化物の理論容量を大幅に向上させる
ことができることを見出した。
The inventors of the present invention have conducted various studies to solve the above-mentioned problems, and as a result, regarding a conductive substance coated with a metal oxide, the average particle size of primary particles thereof is 10 to 60 nm. And has a specific surface area of 5 due to nitrogen adsorption
By using a conductive substance having a content of 0 to 300 m 2 / g, particularly a carbonaceous material, it is possible to significantly improve the theoretical capacity of a metal oxide capable of electrochemically inserting and removing lithium. I found it.

【0010】即ち、本発明の複合電極材料は、一次粒子
の平均粒子径が10〜60nmであり且つ窒素吸着によ
る比表面積が50〜300m2/gである導電性物質の
表面に、リチウムを挿入・脱離することが可能な金属酸
化物を被覆したことを特徴とする。
That is, in the composite electrode material of the present invention, lithium is inserted into the surface of a conductive substance having an average primary particle size of 10 to 60 nm and a specific surface area of 50 to 300 m 2 / g due to nitrogen adsorption. -Characterized by being coated with a metal oxide capable of being desorbed.

【0011】また、本発明の複合電極材料は、前記導電
性物質が炭素質材料であることが好ましい。炭素質材料
は、導電性に優れ、且つ軽量だからである。
In the composite electrode material of the present invention, it is preferable that the conductive substance is a carbonaceous material. This is because the carbonaceous material has excellent conductivity and is lightweight.

【0012】また、本発明の複合電極材料は、前記金属
酸化物が周期表の第4周期から第6周期で且つ第3族か
ら第12族の範囲内に属する金属から選択された少なく
とも1種類の金属の酸化物であることが好ましい。これ
らの金属酸化物は、リチウムの挿入及び脱離の特性に優
れているからである。
In the composite electrode material of the present invention, the metal oxide is at least one kind selected from metals belonging to groups 4 to 6 and groups 3 to 12 of the periodic table. It is preferable that the metal oxide is. This is because these metal oxides are excellent in lithium insertion and desorption characteristics.

【0013】また、本発明の複合電極材料の製造方法
は、一次粒子の平均粒子径が10〜60nmであり且つ
窒素吸着による比表面積が50〜300m2/gである
前記導電性物質と、リチウムを挿入・脱離することが可
能な前記金属酸化物のコロイド溶液とを混合した後に加
熱することを特徴とする。これにより、導電性物質の表
面に金属酸化物の強固な被膜を形成することができる。
The method for producing a composite electrode material according to the present invention comprises: a conductive material having an average particle size of primary particles of 10 to 60 nm and a specific surface area of 50 to 300 m 2 / g by nitrogen adsorption; Is mixed with a colloidal solution of the above-mentioned metal oxide capable of being inserted and removed, and then heated. As a result, a strong metal oxide film can be formed on the surface of the conductive substance.

【0014】さらに、本発明の複合電極は、前記複合電
極材料を用いたことを特徴とする。
Further, the composite electrode of the present invention is characterized by using the composite electrode material.

【0015】[0015]

【発明の実施の形態】先ず、本発明の複合電極材料の実
施の形態について説明する。本発明の複合電極材料に用
いる金属酸化物は、周期表の第4周期から第6周期で且
つ第3族から第12族の範囲内に属する金属の酸化物で
ある。具体的には、例えば、Sc、Ti、V、Cr、M
n、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、
Mo、Tc、Ru、Pd、Ag、Cd、ランタノイド、
Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg
などの金属の酸化物が挙げられ、特にV、Cr、Mn、
Fe、Co、Niなどの周期表の第4周期の第5族から
第10族の範囲内に属する金属の酸化物や、これらの金
属を少なくとも1種類以上含む複合金属酸化物などが好
ましい。
BEST MODE FOR CARRYING OUT THE INVENTION First, an embodiment of the composite electrode material of the present invention will be described. The metal oxide used in the composite electrode material of the present invention is an oxide of a metal belonging to the fourth to sixth periods of the periodic table and within the groups of the third to twelfth groups. Specifically, for example, Sc, Ti, V, Cr, M
n, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb,
Mo, Tc, Ru, Pd, Ag, Cd, lanthanoid,
Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg
And oxides of metals such as V, Cr, Mn,
Preferred are oxides of metals such as Fe, Co, and Ni that belong to groups 5 to 10 of the fourth period of the periodic table, and complex metal oxides containing at least one of these metals.

【0016】また、本発明の複合電極材料に用いる導電
性物質は、一次粒子の平均粒子径が10〜60nmであ
り且つ窒素吸着による比表面積が50〜300m2/g
である導電性物質あれば特に材質等は限定されることは
ないが、実質的には炭素質材料が好適に用いられる。具
体的には、例えば、カーボンブラック、微粒子化した無
定形炭素、炭素繊維、天然黒鉛又は人造黒鉛などが挙げ
られる。
The conductive substance used in the composite electrode material of the present invention has an average primary particle size of 10 to 60 nm and a specific surface area of 50 to 300 m 2 / g due to nitrogen adsorption.
The material is not particularly limited as long as it is a conductive substance, but a carbonaceous material is substantially preferably used. Specifically, for example, carbon black, atomized amorphous carbon, carbon fiber, natural graphite or artificial graphite can be used.

【0017】上記導電性物質は、その一次粒子の平均粒
子径が10〜60nmの範囲内にあることが必要であ
る。即ち、平均粒子径を10nm以上とすることによ
り、良好な導電性が付与される。一方、金属酸化物を広
範囲にわたって被覆させ、活物質の理論容量を大幅に超
えた高い可逆容量を示す複合電極材料を得るには、導電
性物質の平均粒子径を60nm以下と小さくして、その
比表面積を50m2/g以上と大きくする必要がある。
しかし、平均粒子径が上記範囲内にあっても、活性炭な
どのように比表面積の大部分が2nm未満の細孔(ミク
ロ孔)に由来するものであれば、比表面積は300m2
/gを超える大きな値となるが、それでは金属酸化物の
コロイド溶液がミクロ孔中に浸透しないので、金属酸化
物を効果的に被覆させることは困難であり、本発明の目
的を達成することはできない。従って、導電性物質は、
その一次粒子の平均粒子径が10〜60nmであり且つ
窒素吸着による比表面積が50〜300m2/gの範囲
内にあることが必要である。
It is necessary that the average particle diameter of the primary particles of the above-mentioned conductive material is within the range of 10 to 60 nm. That is, good conductivity is imparted by setting the average particle diameter to 10 nm or more. On the other hand, in order to obtain a composite electrode material which is coated with a metal oxide over a wide range and exhibits a high reversible capacity that greatly exceeds the theoretical capacity of the active material, the average particle diameter of the conductive material is reduced to 60 nm or less, It is necessary to increase the specific surface area to 50 m 2 / g or more.
However, even if the average particle diameter is within the above range, the specific surface area is 300 m 2 as long as most of the specific surface area originates from pores (micropores) of less than 2 nm, such as activated carbon.
However, since the colloidal solution of the metal oxide does not penetrate into the micropores, it is difficult to effectively coat the metal oxide, and it is difficult to achieve the object of the present invention. Can not. Therefore, the conductive material is
It is necessary that the average particle size of the primary particles is 10 to 60 nm and the specific surface area due to nitrogen adsorption is within the range of 50 to 300 m 2 / g.

【0018】ここで、前記導電性物質の平均粒子径は、
走査型電子顕微鏡(SEM)により撮影した写真から1
000個の粒子を選び、それぞれの粒子径を測定して平
均したものである。また、比表面積は窒素吸着によるB
ET法で測定される。
Here, the average particle diameter of the conductive material is
From the photograph taken by the scanning electron microscope (SEM) 1
This is the average of 000 particles selected and the particle diameters measured. The specific surface area is B due to nitrogen adsorption.
It is measured by the ET method.

【0019】次に、本発明の複合電極材料の製造方法の
実施の形態について説明する。なお、本発明の複合電極
材料の製造方法に用いる導電性物質及び金属酸化物は、
前述の本発明の複合電極材料の実施の態様で説明したも
のと同様であるので、説明を省略する。
Next, an embodiment of the method for producing the composite electrode material of the present invention will be described. Incidentally, the conductive substance and the metal oxide used in the method for producing the composite electrode material of the present invention,
The description is omitted because it is the same as that described in the embodiment of the composite electrode material of the present invention.

【0020】本発明の製造方法では、前記金属酸化物は
コロイド溶液にしてから前記導電性物質と混合するが、
その金属酸化物と導電性物質との混合比率としては、質
量比で70:30〜10:90が好ましく、特に50:
50〜25:75がより好ましい。この範囲内であれ
ば、放電容量も導電性も良好に確保できるからである。
In the production method of the present invention, the metal oxide is made into a colloidal solution and then mixed with the conductive substance.
The mixing ratio of the metal oxide and the conductive substance is preferably 70:30 to 10:90 in terms of mass ratio, and particularly 50:
50 to 25:75 is more preferable. This is because if it is within this range, good discharge capacity and conductivity can be secured.

【0021】前記金属酸化物のコロイド溶液の調製は、
通常、金属酸化物そのものを直接コロイド溶液にするこ
とが困難であるので、金属粉末と例えば過酸化水素など
の酸化剤を含む溶液とを混合するか、あるいは金属の酢
酸塩、硝酸塩、炭酸塩などを酸化性物質を含む溶液と混
合して調整することが好ましい。
The preparation of the colloidal solution of the metal oxide is
Usually, it is difficult to directly convert the metal oxide itself into a colloidal solution, so either mix the metal powder with a solution containing an oxidizing agent such as hydrogen peroxide, or use metal acetate, nitrate, carbonate, etc. Is preferably mixed with a solution containing an oxidizing substance to prepare.

【0022】また、前記金属酸化物のコロイド溶液と前
記導電性物質との混合分散にあたっては、スターラー、
ボールミル、超音波分散などのいずれの混合手段も採用
することができる。また、その混合時の温度や時間に関
しては特に限定されることはないが、例えば、0〜40
℃で1〜12時間程度混合分散することが好ましい。
When mixing and dispersing the colloidal solution of the metal oxide and the conductive substance, a stirrer,
Any mixing means such as a ball mill and ultrasonic dispersion can be adopted. Further, the temperature and time during the mixing are not particularly limited, but are, for example, 0 to 40.
It is preferable to mix and disperse at a temperature of about 1 to 12 hours.

【0023】混合分散後の加熱処理は、濾過、遠心分離
などにより金属酸化物と導電性物質との混合物を分散液
からある程度分離してから行ってもよいし、また、混合
分散液をそのまま用いて行ってもよい。この加熱処理の
条件は特に限定されることはないが、温度は50℃以上
が好ましく、80℃以上がより好ましく、また、450
℃以下が好ましく、300℃以下がより好ましい。特
に、導電性物質として炭素質材料を用いる場合には、4
50℃を超えると炭素の酸化分解反応が生じるので、金
属粉末を用いる場合に比べて低い温度で加熱処理を行う
ことが好ましく、300℃以下で加熱処理を行うことが
より好ましい。また、加熱時間は1時間以上が好まし
く、3時間以上がより好ましく、また、24時間以下が
好ましく、10時間以下がより好ましい。
The heat treatment after mixing and dispersing may be carried out after the mixture of the metal oxide and the conductive substance is separated from the dispersion liquid to some extent by filtration, centrifugation or the like, or the mixed dispersion liquid is used as it is. You may go. The conditions for this heat treatment are not particularly limited, but the temperature is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, and 450
C. or lower is preferable, and 300.degree. C. or lower is more preferable. Especially when a carbonaceous material is used as the conductive substance, 4
If the temperature exceeds 50 ° C, an oxidative decomposition reaction of carbon occurs. Therefore, it is preferable to perform the heat treatment at a temperature lower than that in the case of using the metal powder, and more preferable to perform the heat treatment at 300 ° C or lower. The heating time is preferably 1 hour or longer, more preferably 3 hours or longer, and is preferably 24 hours or shorter, more preferably 10 hours or shorter.

【0024】上記加熱処理を経て得られた金属酸化物と
導電性物質との複合体からなる複合電極材料は、単に金
属酸化物と導電性物質とを混合して得られる混合粉末よ
り、かさが低く、これをかさ(嵩)密度で表現すると、
かさ密度が高く、電極材料としての充填性が優れてい
る。即ち、かさ密度とは、粉末を容器内に振動させずに
充填した時に個々の粉末間に存在する空間も含めた密度
であり、所定の体積内に充填しうる質量をその体積の値
で割ることによって求めることができる。そのかさ密度
の値が高いほど、粉末のかさが低く、本発明の複合電極
材料では充填性が優れていることを示すことになる。た
だし、このかさ密度は、金属酸化物や導電性物質が異な
るとその好適な値が異なるので、一概にどの範囲が好ま
しいということはできないが、本発明によれば、複合電
極材料のかさ密度をその真密度の約1/2近くまで高め
ることができる。
The composite electrode material comprising the composite of the metal oxide and the conductive substance obtained through the above heat treatment has a bulkiness larger than that of the mixed powder obtained by simply mixing the metal oxide and the conductive substance. It is low, and when expressed in bulk (bulk) density,
It has a high bulk density and excellent filling properties as an electrode material. That is, the bulk density is the density including the space existing between the individual powders when the powders are filled in the container without vibrating, and the mass that can be filled in a predetermined volume is divided by the value of the volume. Can be determined by The higher the value of the bulk density, the lower the bulk of the powder, which means that the composite electrode material of the present invention has excellent filling properties. However, since this bulk density has different preferable values when the metal oxide and the conductive substance are different, it cannot be generally determined which range is preferable, but according to the present invention, the bulk density of the composite electrode material is The true density can be increased to about ½.

【0025】以上のようにして得られた本発明の複合電
極材料を用いて電極を作製するには、上記複合電極材料
にポリテトラフルオロエチレンやポリフッ化ビニリデン
などのバインダーを加えて混合し、得られた電極合剤を
適宜の手段で成形すればよい。例えば、上記電極合剤を
加圧成形するか、あるいは上記電極合剤を溶剤に分散さ
せて電極合剤含有ペーストを調製する。
To manufacture an electrode using the composite electrode material of the present invention obtained as described above, a binder such as polytetrafluoroethylene or polyvinylidene fluoride is added to the composite electrode material and mixed to obtain an electrode. The electrode mixture thus obtained may be molded by an appropriate means. For example, the electrode mixture is pressure-molded, or the electrode mixture is dispersed in a solvent to prepare an electrode mixture-containing paste.

【0026】この電極合剤含有ペーストを調製する場
合、バインダーはあらかじめ溶剤に溶解させておいてか
ら複合電極材料と混合してもよい。その後、得られた電
極合剤含有ペーストを金属箔や金属網などからなる集電
体に塗布し、乾燥して薄膜状の電極合剤層を形成する工
程を経ることによって電極が作製される。
When preparing this electrode mixture-containing paste, the binder may be dissolved in a solvent in advance and then mixed with the composite electrode material. Then, the obtained electrode mixture-containing paste is applied to a current collector made of a metal foil, a metal net, or the like, and dried to form a thin film electrode mixture layer, whereby an electrode is produced.

【0027】ただし、電極の作製方法は上記例示の方法
に限られることなく他の方法によってもよい。例えば、
上記金属酸化物のコロイド溶液と導電性物質との混合分
散液を上記と同様の集電体の片面又は両面に塗布し、そ
の後加熱処理することによって電極を作製してもよい。
また、上記金属酸化物のコロイド溶液と導電性物質との
混合分散液にポリテトラフルオロエチレンの水性分散液
を適量加え、混合してペースト状にし、そのペーストを
集電体に塗布し、加熱処理することによって電極を作製
してもよい。
However, the method for producing the electrodes is not limited to the above-exemplified method, and other methods may be used. For example,
The electrode may be prepared by applying the mixed dispersion liquid of the colloidal solution of the metal oxide and the conductive substance on one or both sides of a current collector similar to the above, and then performing heat treatment.
In addition, an appropriate amount of an aqueous dispersion of polytetrafluoroethylene was added to a mixed dispersion of the colloidal solution of the above metal oxide and a conductive substance, mixed to form a paste, and the paste was applied to a current collector, followed by heat treatment. You may produce an electrode by doing.

【0028】本発明の複合電極材料は、リチウムイオン
のドープ・脱ドープ機能を有していることから、リチウ
ムイオン電池や電気化学スーパーキャパシタなどの電極
材料として用いることができる。特に、本発明の複合電
極材料は、高電流密度下でも高い放電容量を示すので、
電気自動車や電動自転車などの高出力を必要とする用途
の駆動電源としてのリチウムイオン電池や電気化学スー
パーキャパシタなどの電極材料として適している。
Since the composite electrode material of the present invention has a function of doping / dedoping lithium ions, it can be used as an electrode material for lithium ion batteries, electrochemical supercapacitors and the like. In particular, since the composite electrode material of the present invention exhibits a high discharge capacity even under a high current density,
It is suitable as an electrode material for lithium-ion batteries and electrochemical supercapacitors as a driving power source for applications requiring high output such as electric vehicles and electric bicycles.

【0029】本発明の複合電極材料は、周期表の第4周
期から第6周期で且つ第3族から第12族の範囲内に属
する金属の酸化物と導電性物質との複合体で構成されて
いるが、その特性に悪影響を及ぼさない範囲内で他の物
質を含んでいてもよく、そのような添加物質によって、
安全性やサイクル特性などを向上させることが期待でき
る。
The composite electrode material of the present invention is composed of a composite of an oxide of a metal and a conductive substance, which belong to the fourth to sixth periods of the periodic table and within the range of the third to twelfth periods. However, other substances may be contained within a range that does not adversely affect the characteristics, and by such an added substance,
It can be expected to improve safety and cycle characteristics.

【0030】また、本発明の複合電極材料を透過型電子
顕微鏡(TEM)で観察したところ、導電性物質単体で
は見られなかった黒い輪郭が粒子の表面に存在していた
こと、エネルギー分散型X線微小分析器によりその黒い
輪郭が金属酸化物であること、をそれぞれ確認した。こ
れにより、本発明の複合電極材料は、導電性物質の粒子
表面を金属酸化物の被膜が覆っている構造と考えられ
る。また、その金属酸化物の被膜の厚さは、0.5〜1
0nmであることが好ましい。0.5nmを下回るとそ
れだけ活物質層が薄くなるため十分な放電容量が得られ
なくなり、また、10nmを上回ると活物質層の厚さが
大きくなりすぎて導電性が低下し、十分な出力特性が得
られない。
When the composite electrode material of the present invention was observed with a transmission electron microscope (TEM), black contours which were not seen in the conductive substance alone were present on the surface of the particles, and the energy dispersive X It was confirmed by a line microanalyzer that the black contours were metal oxides. Therefore, it is considered that the composite electrode material of the present invention has a structure in which the surface of the particles of the conductive substance is covered with the metal oxide film. The thickness of the metal oxide coating is 0.5 to 1
It is preferably 0 nm. If the thickness is less than 0.5 nm, the active material layer becomes thin accordingly, so that a sufficient discharge capacity cannot be obtained, and if it exceeds 10 nm, the thickness of the active material layer becomes too large and the conductivity decreases, resulting in sufficient output characteristics. Can't get

【0031】さらに、本発明においては、複合電極材料
の表現にあたって、導電性物質の表面に金属酸化物を被
覆した複合体と表現している場合もあるが、これは複合
電極材料が上記金属酸化物と導電性物質とを原料として
構成されていればよいという意味であり、必ずしも金属
酸化物と導電性物質とがすべて反応して一体化している
ことを意味するものではない。即ち、上記複合電極材料
において金属酸化物と導電性物質の大部分は変化するこ
となくそのままの状態で存在していると考えられるが、
一部は上記加熱処理により反応して一体化している場合
もあると考えられる。
Further, in the present invention, the expression of the composite electrode material may be expressed as a composite in which the surface of a conductive substance is coated with a metal oxide. This means that the material and the conductive substance may be formed as raw materials, and does not necessarily mean that the metal oxide and the conductive substance are all reacted and integrated. That is, in the composite electrode material, it is considered that most of the metal oxide and the conductive substance remain unchanged without any change.
It is considered that some of them may react with each other by the heat treatment to be integrated.

【0032】[0032]

【実施例】次に、実施例を挙げて本発明をより具体的に
説明する。ただし、本発明はそれらの実施例のみに限定
されるものではない。
EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only those examples.

【0033】(実施例1)金属バナジウム1gと30質
量%の過酸化水素水100cm3を混合し、氷浴中で3
時間攪拌混合した。これを室温で24時間放置して五酸
化バナジウム(V 25)がゾル化したコロイド溶液を得
た。
Example 1 1 g of metallic vanadium and 30 substances
100% of hydrogen peroxide water of volume%3And mix in an ice bath for 3
Stir and mix for hours. Leave this for 24 hours at room temperature
Vanadium iodide (V 2OFive) Was obtained as a colloidal solution
It was

【0034】得られた五酸化バナジウム(金属酸化物)
のコロイド溶液5gに、SEMを用いて求めた平均粒子
径が23nm、BET5点法で求めた窒素吸着による比
表面積が133m2/gであるカーボンブラック(導電
性物質)0.1g、水2g及びアセトン1gを加え、ス
ターラーで3時間攪拌して混合分散させて分散液を得
た。
Obtained vanadium pentoxide (metal oxide)
0.1 g of carbon black (conductive substance) having an average particle diameter of 23 nm determined by SEM and a specific surface area of 133 m 2 / g determined by the BET 5-point method by nitrogen adsorption, in 2 g of water, Acetone (1 g) was added, and the mixture was stirred for 3 hours with a stirrer, mixed and dispersed to obtain a dispersion liquid.

【0035】次に、厚さ15μmのアルミニウム箔上に
アプリケーターを用いて上記分散液を塗布した。塗布量
は、2mg/cm2とした。その後、120℃で5時間
加熱処理して本発明の複合電極を得た。この複合電極に
おける五酸化バナジウムとカーボンブラックとの比率は
質量比で7:10であった。
Next, the above dispersion liquid was applied onto an aluminum foil having a thickness of 15 μm using an applicator. The coating amount was 2 mg / cm 2 . Then, it heat-processed at 120 degreeC for 5 hours, and obtained the composite electrode of this invention. The mass ratio of vanadium pentoxide to carbon black in this composite electrode was 7:10.

【0036】(実施例2)導電性物質として平均粒子径
40nm、比表面積70m2/gのアセチレンブラック
を使用したこと以外はすべて実施例1と同様の方法で本
発明の複合電極を得た。
Example 2 A composite electrode of the present invention was obtained in the same manner as in Example 1, except that acetylene black having an average particle size of 40 nm and a specific surface area of 70 m 2 / g was used as the conductive substance.

【0037】(比較例1)導電性物質として平均粒子径
70nm、比表面積が32m2/gのアセチレンブラッ
クを使用したこと以外はすべて実施例1と同様の方法で
比較例の複合電極を得た。
Comparative Example 1 A composite electrode of Comparative Example was obtained in the same manner as in Example 1 except that acetylene black having an average particle size of 70 nm and a specific surface area of 32 m 2 / g was used as a conductive substance. .

【0038】(比較例2)導電性物質として平均粒子径
25μm、比表面積が2500m2/gのフェノール樹
脂系活性炭を使用したこと以外はすべて実施例1と同様
の方法で比較例の複合電極を得た。
Comparative Example 2 A composite electrode of Comparative Example was prepared in the same manner as in Example 1 except that a phenol resin-based activated carbon having an average particle size of 25 μm and a specific surface area of 2500 m 2 / g was used as a conductive substance. Obtained.

【0039】上記実施例1、2及び比較例1、2で作製
した複合電極を直径10mmの円形に打ち抜き、それら
をそれぞれ作用極とし、対極に厚さ1mm、直径17m
mの円板状のリチウムを用い、エチレンカーボネート
(EC)とジエチルカーボネート(DEC)とを体積比
1:1で混合した溶媒にLiPF6を1mol/dm3
解させて調整した電解液を用いて、直径20mm、高さ
1.6mmのコイン形リチウム電池を作製した。
The composite electrodes prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were punched out into a circle having a diameter of 10 mm, and these were used as working electrodes, and the counter electrode had a thickness of 1 mm and a diameter of 17 m.
m of disc-shaped lithium was used, and an electrolyte prepared by dissolving 1 mol / dm 3 of LiPF 6 in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 1: 1 was used. A coin-shaped lithium battery having a diameter of 20 mm and a height of 1.6 mm was produced.

【0040】この電池をそれぞれ充電カット電圧4.2
V、放電カット電圧2.0Vとして1mA/cm2の高
電流密度で充放電試験を行い、初回放電後の放電容量を
測定した。その結果を表1に示す。なお、ここで放電容
量は複合電極材料中に含まれる金属酸化物の質量当りに
相当する放電容量を意味する。
This battery is charged with a charge cut voltage of 4.2.
V and discharge cut voltage were 2.0 V, and a charge / discharge test was performed at a high current density of 1 mA / cm 2 to measure the discharge capacity after the initial discharge. The results are shown in Table 1. Here, the discharge capacity means the discharge capacity corresponding to the mass of the metal oxide contained in the composite electrode material.

【0041】[0041]

【表1】 [Table 1]

【0042】非晶質体の五酸化バナジウムはリチウム極
に対して2Vまで放電させた場合、LiX25として
X=2.5までリチウムの挿入が可能である。即ち、そ
の理論容量は360mAh/gと見積もられる。表1に
示す結果から明らかなように、本発明の複合電極を用い
た実施例1及び実施例2では理論容量を超えた400m
Ah/g以上の放電容量を得ることができた。一方、平
均粒子径が大きく、比表面積の小さいアセチレンブラッ
クを用いた比較例1では実施例1、2より放電容量は低
く、高比表面積を有する活性炭を用いた比較例2ではさ
らに放電容量が低くなった。
When vanadium pentoxide in an amorphous form is discharged up to 2 V with respect to a lithium electrode, lithium can be inserted up to X = 2.5 as Li X V 2 O 5 . That is, its theoretical capacity is estimated to be 360 mAh / g. As is clear from the results shown in Table 1, in Examples 1 and 2 using the composite electrode of the present invention, 400 m exceeding the theoretical capacity.
A discharge capacity of Ah / g or more could be obtained. On the other hand, Comparative Example 1 using acetylene black having a large average particle diameter and small specific surface area has a lower discharge capacity than Examples 1 and 2, and Comparative Example 2 using activated carbon having a high specific surface area has a lower discharge capacity. became.

【0043】[0043]

【発明の効果】以上のように本発明の複合電極材料を用
いると高電流密度下でも高い放電容量を示し、且つ充填
性が優れるという利点を維持すると同時に、活物質の理
論容量を大幅に超える高い可逆容量を示すリチウムイオ
ン電池や電気化学スーパーキャパシタなどを提供するこ
とができる。
As described above, when the composite electrode material of the present invention is used, a high discharge capacity is exhibited even under a high current density, and the advantage that the filling property is excellent is maintained, while the theoretical capacity of the active material is greatly exceeded. It is possible to provide a lithium-ion battery, an electrochemical supercapacitor, or the like that exhibits a high reversible capacity.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/62 H01G 9/00 301A 10/40 9/22 Fターム(参考) 5H029 AJ03 AK02 AK03 AK05 AL12 AM03 AM05 AM07 CJ02 CJ08 DJ08 DJ16 EJ04 HJ05 HJ07 5H050 AA08 BA06 BA16 BA17 CA02 CA07 CA11 CB12 DA10 EA08 FA17 FA18 GA02 GA10 HA05 HA07 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01M 4/62 H01G 9/00 301A 10/40 9/22 F term (reference) 5H029 AJ03 AK02 AK03 AK05 AL12 AM03 AM05 AM07 CJ02 CJ08 DJ08 DJ16 EJ04 HJ05 HJ07 5H050 AA08 BA06 BA16 BA17 CA02 CA07 CA11 CB12 DA10 EA08 FA17 FA18 GA02 GA10 HA05 HA07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一次粒子の平均粒子径が10〜60nm
であり且つ窒素吸着による比表面積が50〜300m2
/gである導電性物質の表面に、リチウムを挿入・脱離
することが可能な金属酸化物を被覆したことを特徴とす
る複合電極材料。
1. The average particle size of primary particles is 10 to 60 nm.
And has a specific surface area of 50 to 300 m 2 due to nitrogen adsorption.
A composite electrode material characterized in that the surface of a conductive substance having a weight ratio of / g is coated with a metal oxide capable of inserting and releasing lithium.
【請求項2】 前記導電性物質が、炭素質材料である請
求項1に記載の複合電極材料。
2. The composite electrode material according to claim 1, wherein the conductive substance is a carbonaceous material.
【請求項3】 前記金属酸化物が、周期表の第4周期か
ら第6周期で且つ第3族から第12族の範囲内に属する
金属から選択された少なくとも1種類の金属の酸化物で
ある請求項1又は2に記載の複合電極材料。
3. The metal oxide is an oxide of at least one kind of metal selected from metals belonging to groups 4 to 6 and groups 3 to 12 of the periodic table. The composite electrode material according to claim 1 or 2.
【請求項4】 一次粒子の平均粒子径が10〜60nm
であり且つ窒素吸着による比表面積が50〜300m2
/gである導電性物質と、リチウムを挿入・脱離するこ
とが可能な金属酸化物のコロイド溶液とを混合した後に
加熱することを特徴とする複合電極材料の製造方法。
4. The average particle diameter of primary particles is 10 to 60 nm.
And has a specific surface area of 50 to 300 m 2 due to nitrogen adsorption.
/ G of a conductive substance and a colloidal solution of a metal oxide capable of inserting and releasing lithium are mixed and then heated, which is a method for producing a composite electrode material.
【請求項5】 請求項1〜3のいずれかに記載の複合電
極材料を用いたことを特徴とする複合電極。
5. A composite electrode using the composite electrode material according to claim 1.
JP2001312777A 2001-10-10 2001-10-10 Composite electrode material, method of manufacturing the same, and composite electrode using composite electrode material Withdrawn JP2003123752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001312777A JP2003123752A (en) 2001-10-10 2001-10-10 Composite electrode material, method of manufacturing the same, and composite electrode using composite electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001312777A JP2003123752A (en) 2001-10-10 2001-10-10 Composite electrode material, method of manufacturing the same, and composite electrode using composite electrode material

Publications (1)

Publication Number Publication Date
JP2003123752A true JP2003123752A (en) 2003-04-25

Family

ID=19131379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001312777A Withdrawn JP2003123752A (en) 2001-10-10 2001-10-10 Composite electrode material, method of manufacturing the same, and composite electrode using composite electrode material

Country Status (1)

Country Link
JP (1) JP2003123752A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081851A1 (en) * 2006-12-27 2008-07-10 Tokyo Institute Of Technology Carbon composite materials and process for production thereof
JP2015225876A (en) * 2014-05-26 2015-12-14 旭化成株式会社 Positive electrode active material for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081851A1 (en) * 2006-12-27 2008-07-10 Tokyo Institute Of Technology Carbon composite materials and process for production thereof
JP2008162821A (en) * 2006-12-27 2008-07-17 Tokyo Institute Of Technology Carbon composite material and its manufacturing method
JP2015225876A (en) * 2014-05-26 2015-12-14 旭化成株式会社 Positive electrode active material for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by use thereof

Similar Documents

Publication Publication Date Title
JP6236006B2 (en) Electrode material for lithium ion secondary battery, method for producing the electrode material, and lithium ion secondary battery
JP4043852B2 (en) Method for producing electrode material
JP5534363B2 (en) Composite nanoporous electrode material, production method thereof, and lithium ion secondary battery
JP5986035B2 (en) Lithium ion secondary battery negative electrode material and method for producing the same, lithium ion secondary battery negative electrode and lithium ion secondary battery
US20110045350A1 (en) Mesoporous materials for electrodes
US7625673B2 (en) Electrode material for electrochemical element and method for production thereof, and electrochemical element
CN107845781B (en) Negative electrode active material for lithium ion secondary battery, method for producing same, and lithium ion secondary battery
KR101981654B1 (en) Negative electrode active material for rechargable battery, method for manufacturing the same, and rechargable battery including the same
JP2022501787A (en) Negative electrode active material for lithium secondary batteries and lithium secondary batteries containing them
JPWO2015133586A1 (en) Conductive carbon, electrode material containing this conductive carbon, and electrode using this electrode material
WO2018156355A1 (en) Core-shell electrochemically active particles with modified microstructure and use for secondary battery electrodes
JP2003217583A (en) Composite electrode and electrochemical element using the same
JP6931185B2 (en) A conductive carbon mixture, an electrode using this mixture, and a power storage device equipped with this electrode.
JP6319741B2 (en) Electrode manufacturing method
WO2016036091A1 (en) Electrode material mixture additive for secondary battery, method for preparing same, electrode for secondary battery comprising same, and secondary battery
JP2019021421A (en) Conductive carbon mixture, electrode arranged by use of the mixture, and power storage device having the electrode
JP2003123737A (en) Composite electrode material, method of manufacturing the same, and composite electrode using the composite electrode material
JP5032038B2 (en) Non-aqueous electrolyte battery electrode material, non-aqueous electrolyte battery and battery pack
JP3578272B2 (en) Electrode for electrochemical device and electrochemical device
JP7421372B2 (en) Method for manufacturing positive electrode active material composite for lithium ion secondary battery
JP2003123752A (en) Composite electrode material, method of manufacturing the same, and composite electrode using composite electrode material
JP2003151533A (en) Electrode, its manufacturing method and battery
JP2003217971A (en) Electrochemical element
WO2011125202A1 (en) Lithium secondary battery
JP2023089836A (en) Positive electrode for lithium ion secondary battery, and, lithium ion secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104