JP2003121589A - Detection method for inner pressure creep rupture - Google Patents

Detection method for inner pressure creep rupture

Info

Publication number
JP2003121589A
JP2003121589A JP2001317997A JP2001317997A JP2003121589A JP 2003121589 A JP2003121589 A JP 2003121589A JP 2001317997 A JP2001317997 A JP 2001317997A JP 2001317997 A JP2001317997 A JP 2001317997A JP 2003121589 A JP2003121589 A JP 2003121589A
Authority
JP
Japan
Prior art keywords
temperature
creep rupture
irradiation capsule
internal pressure
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001317997A
Other languages
Japanese (ja)
Other versions
JP3871912B2 (en
Inventor
Masatoshi Soroe
政敏 揃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Nuclear Cycle Development Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Nuclear Cycle Development Institute filed Critical Japan Nuclear Cycle Development Institute
Priority to JP2001317997A priority Critical patent/JP3871912B2/en
Publication of JP2003121589A publication Critical patent/JP2003121589A/en
Application granted granted Critical
Publication of JP3871912B2 publication Critical patent/JP3871912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify the system of inner pressure creep rupture detection, constitute at a low cost and drastically improve reliability of the detection of ruptures. SOLUTION: A cylindrical test piece 44 filled with high pressure gas is contained in a irradiation capsule 30, which is inserted in a reactor using liquid coolant to test inner creep rupture strength. At this time, temperature signal from a temperature sensor (thermocouple 48) installed in the irradiation capsule is detected; when the temperature variation exceeds as upper limit or a lower limit set at the maximum and the minimum of temperature fluctuation amplitude at normal time, this is determined as being an occurrence of creep rupture. Another method is one in which the temperature signal from the sensor is detected at a constant period, the times of exceeding the upper limit or the lower limit set, above and below the prediction line of temperature by considering a temperature fluctuation amplitude are counted, and when the count value exceeds a set times due to the temperature variation within a certain elapsed time, this is determined as being an occurrence of creep rupture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液体冷却材を使用
する原子炉内で内圧クリープ破断強度試験を行う際に試
験片の破断を検出する方法に関し、更に詳しく述べる
と、内圧封入型の試験片が破断した際に、周りの液体中
にガスが放出されボイド(泡)となることにより熱伝導
率が変化し特異な温度変化が生じることを利用し、それ
によりクリープ破断の発生を判定する内圧クリープ破断
検出方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting breakage of a test piece during an internal pressure creep rupture strength test in a nuclear reactor using a liquid coolant, and more specifically, an internal pressure sealed type test. When a piece breaks, gas is released into the surrounding liquid to form voids (bubbles), which changes the thermal conductivity and causes a peculiar temperature change, which is used to determine the occurrence of creep rupture. The present invention relates to an internal pressure creep rupture detection method.

【0002】[0002]

【従来の技術】高速実験炉「常陽」では、原子炉等で使
用する材料の研究開発の一環として、高温の放射線環境
下における液体冷却材中での材料のクリープ破断強度試
験が行われている。この試験では、高圧ガスを封入した
円筒状の試験片を照射キャプセル内に収納し、それを原
子炉内に挿入して、放射線環境下の液体中で試験片が破
断するまでの時間を測定する。
2. Description of the Related Art In the fast experimental reactor "JOYO", as a part of research and development of materials used in nuclear reactors, creep rupture strength test of materials in liquid coolant under high temperature radiation environment is conducted. . In this test, a cylindrical test piece containing high-pressure gas is housed in an irradiation capsule, and it is inserted into a nuclear reactor to measure the time until the test piece breaks in a liquid under a radiation environment. .

【0003】従って、この内圧クリープ破断強度試験で
は、試験片がいつ破断したかを正確に検出することが重
要である。従来技術としては、破断時に発生するボイド
を直接検出する方法がある(特開平9−145891号
公報参照)。ここでは、照射キャプセルの冷却材出口管
の出口直上にボイド計センサを取り付け、このボイド計
センサの出力信号に基づいてボイドが発生したことを検
出するボイド検出回路を設けている。
Therefore, in this internal pressure creep rupture strength test, it is important to accurately detect when the test piece breaks. As a conventional technique, there is a method of directly detecting a void generated at the time of breaking (see Japanese Patent Laid-Open No. 9-145891). Here, a void meter sensor is attached directly above the outlet of the coolant outlet tube of the irradiation capsule, and a void detection circuit for detecting the occurrence of a void based on the output signal of this void meter sensor is provided.

【0004】[0004]

【発明が解決しようとする課題】しかし、このようなボ
イドを直接検出する方法では、破断検出のためにボイド
計センサやボイド検出回路等の機器類を多く付設する必
要があるため、検出システムが高価となる問題がある。
However, in such a method for directly detecting a void, many devices such as a void meter sensor and a void detection circuit are required to be attached for detecting breakage. There is a problem of becoming expensive.

【0005】また、この方法は、ボイド計センサにボイ
ドが確実に接触することによって検出可能なものである
が、ボイドをボイド計センサに確実に接触させることは
困難であり、ボイドの大きさに原理的に左右されやすい
など信頼性が必ずしも高くない。例えば、試験片の内封
ガスが短時間に放出され多量のボイドが短時間に発生す
るような破断形態の場合には検出精度が高い。しかし、
試験片の内封ガスがピンホールやヘアクラックと呼ばれ
る微小破損孔から徐々に漏洩し、ガス放出が数十分〜数
時間にもわたるような破断形態の場合には、ボイドを検
出できなかったり、検出できないという問題があった。
Further, although this method can detect the void by surely contacting the void meter sensor with the void, it is difficult to reliably contact the void with the void meter sensor, and the size of the void is reduced. The reliability is not always high because it is easily influenced by the principle. For example, the detection accuracy is high in the case of a fracture mode in which the gas inside the test piece is released in a short time and a large amount of voids are generated in a short time. But,
In the case of a rupture mode in which the gas inside the test piece gradually leaks from minute damage holes called pinholes and hair cracks, and the gas is released for several tens of minutes to several hours, voids cannot be detected. , There was a problem that could not be detected.

【0006】本発明の目的は、既存の温度計測システム
の有効利用を図ることにより、システムを単純化でき、
しかも安価に構成できる内圧クリープ破断検出方法を提
供することである。本発明の他の目的は、破断形態にか
かわらず、破断検出の信頼性を大幅に向上できる内圧ク
リープ破断検出方法を提供することである。
The object of the present invention is to simplify the system by making effective use of the existing temperature measuring system,
Moreover, it is an object of the present invention to provide an internal pressure creep rupture detection method which can be constructed at low cost. Another object of the present invention is to provide an internal pressure creep rupture detection method capable of significantly improving the reliability of rupture detection regardless of the rupture form.

【0007】[0007]

【課題を解決するための手段】本発明は、高圧ガスを封
入した筒状の試験片を照射キャプセル内に配置し、その
照射キャプセルを、液体冷却材を使用する原子炉内に挿
入して内圧クリープ破断強度試験を行う際のクリープ破
断検出方法である。内圧封入型の試験片が破断すると、
封入されていた高圧ガスが、照射キャプセル内の液体冷
却材中に放出され、ボイド(泡)となる。このボイドが
照射キャプセル内に生じると、熱伝導率は、それまでの
液体冷却材の熱伝導率にガスの熱伝導率をあわせたもの
に変化するため、結果として照射キャプセル温度の変化
となって現れる。本発明は、このような現象を利用する
ものであり、温度センサにより温度変動を計測すること
でクリープ破断判定を行うものである。
According to the present invention, a cylindrical test piece containing a high-pressure gas is placed in an irradiation capsule, and the irradiation capsule is inserted into a nuclear reactor using a liquid coolant. This is a method for detecting creep rupture when performing a creep rupture strength test. When the internal pressure sealed type test piece breaks,
The enclosed high-pressure gas is released into the liquid coolant in the irradiation capsule and becomes a void. When this void occurs in the irradiation capsule, the thermal conductivity changes to the sum of the thermal conductivity of the liquid coolant and the thermal conductivity of the gas so far, resulting in a change in the irradiation capsule temperature. appear. The present invention utilizes such a phenomenon, and makes a creep rupture determination by measuring temperature fluctuations with a temperature sensor.

【0008】具体的には、例えば、照射キャプセル内に
装填されている温度センサからの温度信号を検出し、通
常時の温度揺らぎ幅の上下に設けた上限設定値又は下限
設定値を超えて明らかな温度変動が生じたときに、それ
をもってクリープ破断が発生したと判定する。あるい
は、照射キャプセル内に装填されている温度センサから
の温度信号を一定周期で検出し、温度の予測線の上下に
温度揺らぎ幅を考慮して設けた上限設定値又は下限設定
値を超えた回数を計数し、一定経過時間内の計数値が設
定回数を超えて温度変動が生じたときに、それをもって
クリープ破断が発生したと判定する。
Specifically, for example, a temperature signal from a temperature sensor mounted in the irradiation capsule is detected, and the upper limit set value or the lower limit set value provided above and below the normal temperature fluctuation width is exceeded and it is clear. When such a temperature change occurs, it is determined that creep rupture has occurred. Alternatively, the temperature signal from the temperature sensor loaded in the irradiation capsule is detected at a constant cycle, and the number of times the temperature exceeds the upper limit setting value or the lower limit setting value that is set considering the temperature fluctuation width above and below the temperature prediction line. When the count value within a certain elapsed time exceeds the set number of times and the temperature fluctuates, it is determined that the creep rupture has occurred.

【0009】温度センサとしては、通常、シース型の熱
電対を使用する。照射キャプセル内には、その温度を計
測するために以前から熱電対が装填されている。本発明
の内圧クリープ破断検出方法では、その熱電対をそのま
ま利用することができる。また、検出感度を上げるため
に、装填済みの熱電対の他に熱電対を照射キャプセル内
に分散装填して複数化することも有効である。
A sheath type thermocouple is usually used as the temperature sensor. A thermocouple has previously been loaded in the irradiation capsule to measure its temperature. In the internal pressure creep rupture detection method of the present invention, the thermocouple can be used as it is. Further, in order to increase the detection sensitivity, it is also effective to disperse and load a plurality of thermocouples in the irradiation capsule in addition to the loaded thermocouples.

【0010】[0010]

【実施例】内圧クリープ破断検出装置を装着した原子炉
断面を模式的に図1のAに示し、原子炉に挿入する照射
装置の試料部の構造を図1のBに示す。原子炉(ここで
は高速増殖炉)10は、原子炉容器12内に炉心14を
設置し、充填されている液体冷却材16が配管によって
循環するような構造である。炉心14は、六角管状の燃
料集合体や制御棒集合体などの炉心構成要素が多数配列
されて構成されている。液体冷却材としては液体ナトリ
ウムを使用しており、その液面はアルゴンガスなどのカ
バーガスで覆われている。原子炉容器12の上部開口に
は蓋体18が取り付けられている。蓋体18は、遮蔽プ
ラグ18aと回転プラグ18bの組み合わせからなり、
該回転プラグ18bに炉心上部機構20が搭載されてい
る。
EXAMPLE A cross section of a reactor equipped with an internal pressure creep rupture detection device is schematically shown in A of FIG. 1, and a structure of a sample portion of an irradiation device to be inserted into a reactor is shown in B of FIG. The reactor (here, fast breeder reactor) 10 has a structure in which a reactor core 12 is installed in a reactor vessel 12, and a liquid coolant 16 filled therein is circulated through a pipe. The core 14 is configured by arranging a large number of core constituent elements such as a hexagonal tubular fuel assembly and a control rod assembly. Liquid sodium is used as the liquid coolant, and its liquid surface is covered with a cover gas such as argon gas. A lid 18 is attached to the upper opening of the reactor vessel 12. The lid 18 is composed of a combination of a shield plug 18a and a rotary plug 18b,
An upper core mechanism 20 is mounted on the rotary plug 18b.

【0011】炉心上部機構20には長尺円筒状の照射装
置本体22が装着されている。照射装置本体22は、駆
動部24、保持部26、試料部28等からなり、該試料
部28を炉心14に挿入できるようになっている。そし
て、試料部28には複数の照射キャプセル30が装填さ
れる(図1のB参照)。
A long cylindrical irradiation device body 22 is mounted on the core upper mechanism 20. The irradiation device main body 22 includes a driving unit 24, a holding unit 26, a sample unit 28, and the like, and the sample unit 28 can be inserted into the core 14. Then, the sample unit 28 is loaded with a plurality of irradiation capsules 30 (see B in FIG. 1).

【0012】照射キャプセルの縦断面を図2のAに、横
断面(x−x断面)を図2のBに示す。照射キャプセル
30は、内筒32及び外筒34からなる二重壁構造の円
筒容器を有し、その上下にはそれぞれ上部ガス室36及
び下部ガス室38が設けられている。円筒容器の二重壁
の間には温度制御用のガスが出し入れできるようになっ
ており、下部ガス室38の下側にはガスを入れるための
温度制御用ガス入口管40が取り付けられ、二重壁上部
の外筒34にはガスを排出するための温度制御用ガス出
口管42が取り付けられている。原子炉内に照射キャプ
セル30を挿入して照射試験を行う場合、炉心14から
出てくるガンマ線による照射キャプセルなどのガンマ発
熱を利用している。照射キャプセル30の温度調節は、
二重壁構造内のガスの濃度(例えばアルゴンガスとヘリ
ウムガスの混合比)を変更することによって、照射キャ
プセルからの熱の移動を調節することで行う。なお、上
部ガス室36と下部ガス室38は、照射キャプセル30
の上下方向への熱の移動を抑制して、内筒32内の軸方
向の温度差を小さくする機能を果たしている。
A longitudinal section of the irradiation capsule is shown in FIG. 2A, and a transverse section (xx section) thereof is shown in FIG. 2B. The irradiation capsule 30 has a double-walled cylindrical container including an inner cylinder 32 and an outer cylinder 34, and an upper gas chamber 36 and a lower gas chamber 38 are provided above and below the container. A gas for temperature control can be taken in and out between the double walls of the cylindrical container, and a temperature control gas inlet pipe 40 for putting gas in is attached to the lower side of the lower gas chamber 38. A temperature control gas outlet pipe 42 for discharging gas is attached to the outer cylinder 34 above the heavy wall. When performing the irradiation test by inserting the irradiation capsule 30 into the nuclear reactor, gamma heat of the irradiation capsule or the like by the gamma rays emitted from the core 14 is used. The temperature adjustment of the irradiation capsule 30 is
This is done by adjusting the heat transfer from the irradiation capsule by changing the concentration of the gas in the double-walled structure (eg the mixing ratio of argon gas and helium gas). The upper gas chamber 36 and the lower gas chamber 38 are provided in the irradiation capsule 30.
It suppresses the movement of heat in the up and down direction and reduces the axial temperature difference in the inner cylinder 32.

【0013】内筒32内には、多数の試験片44と、そ
れらを収納するバスケット46、該バスケット46を所
定の位置に保持すると共に温度測定用のシース型熱電対
48を収納するための心棒50、バスケット46を固定
するためのストッパ52等が設けられている。更に内筒
32内では、原子炉内の冷却材と同じ液体ナトリウム
が、ナトリウム入口管54から入り、上部のナトリウム
出口管56から流出するようになっている。
In the inner cylinder 32, a large number of test pieces 44, a basket 46 for accommodating them, a mandrel for holding the basket 46 at a predetermined position and accommodating a sheath type thermocouple 48 for temperature measurement. 50, a stopper 52 for fixing the basket 46, and the like are provided. Further, in the inner cylinder 32, the same liquid sodium as the coolant in the reactor enters through the sodium inlet pipe 54 and flows out through the upper sodium outlet pipe 56.

【0014】図1のAに戻って、照射キャプセル30に
取り付けられている熱電対48の計測線58、及び温度
制御用ガス入口管や温度制御用ガス出口管等の配管60
は、試料部28から保持部26、駆動部24を経由して
外部に引き出され、データ収集装置62や判定回路6
4、及び温度制御用ガス設備66に接続されている。
Returning to FIG. 1A, a measurement line 58 of the thermocouple 48 attached to the irradiation capsule 30 and a pipe 60 such as a temperature control gas inlet pipe or a temperature control gas outlet pipe.
Is drawn from the sample unit 28 to the outside via the holding unit 26 and the driving unit 24, and the data collecting device 62 and the determination circuit 6
4 and the temperature control gas facility 66.

【0015】試験片44は、図2のCに示すように、円
筒状の被検材料70の両端に端栓72,74を取り付け
て、その内部に高圧ガス(例えば最高数百気圧)を封入
したものである。同一の照射キャプセル30には同一材
料の試験片44を収納し、試験片44の各々が破断の予
測誤差を上回る十分な時間間隔をおいて順番に破断する
ように準備する。そして、原子炉内に挿入して照射試験
を行う。
As shown in FIG. 2C, the test piece 44 has end plugs 72 and 74 attached to both ends of a cylindrical test material 70, and a high pressure gas (for example, several hundreds of atmospheric pressure maximum) is enclosed therein. It was done. Test pieces 44 made of the same material are housed in the same irradiation capsule 30, and each test piece 44 is prepared so as to be sequentially broken at sufficient time intervals exceeding a prediction error of breakage. Then, the irradiation test is performed by inserting it into the reactor.

【0016】照射キャプセル30内で試験片44のクリ
ープ破断が生じた場合、試験片44内の高圧ガスが放出
されボイドとなって内筒32内の液体ナトリウム中に入
り、上部のナトリウム出口管56から液体ナトリウムと
一緒に照射キャプセル30の外に流出していく。ボイド
が内筒32内の液体ナトリウムに入ると、それまでの熱
伝導と異なるガスの熱伝導が加わるために熱の移動が悪
くなる。照射キャプセル自体のガンマ発熱量は、原子炉
出力が一定であれば変化しないことから、内筒32内に
ボイドが発生して熱の移動が悪くなると内筒32内の温
度は上昇し、ボイドが排出されると液体ナトリウムのみ
の熱伝導に戻るため温度が下がる現象が見られる。この
現象を利用すると、温度の変動が発生したことでボイド
の発生を検出することができる。
When the creep rupture of the test piece 44 occurs in the irradiation capsule 30, the high-pressure gas in the test piece 44 is released and becomes a void, which enters the liquid sodium in the inner cylinder 32 and the upper sodium outlet pipe 56. Flows out of the irradiation capsule 30 together with liquid sodium. When the voids enter the liquid sodium in the inner cylinder 32, the heat transfer is deteriorated because the heat transfer of the gas different from the heat transfer up to that time is added. The gamma calorific value of the irradiation capsule itself does not change as long as the reactor output is constant. Therefore, when a void is generated in the inner cylinder 32 and the heat transfer becomes poor, the temperature in the inner cylinder 32 rises and the void is generated. When it is discharged, the phenomenon that the temperature drops because it returns to the heat conduction of liquid sodium only. By utilizing this phenomenon, it is possible to detect the occurrence of voids due to the temperature change.

【0017】そこで、照射キャプセル30内に装填され
ている熱電対48からの温度信号を検出し、ボイドが発
生していない状態での温度変動と、ボイドが発生した場
合の温度変動を比べ、後者が前者に比べて大きい場合に
ボイド発生と判断する。判定方法の一例を図3に示す。
通常時の温度揺らぎ幅の上下に上限設定値及び下限設定
値を設け、上限設定値又は下限設定値を超えて温度変動
が生じたときに、それをもってクリープ破断が発生した
と判定する。即ち、温度変動幅≦設定幅(上限設定値−
下限設定値)のときは「ボイド無し」温度変動幅>設定
幅(上限設定値−下限設定値)のときは「ボイド発生」
と判定するのである。図3においては、前半は通常時の
温度変動を示しており、後半の温度変動部分が破断と判
定した状態を示している。この場合、原子炉出力の変動
や温度制御動作による温度の変動については、それを勘
案して除外する。また、ノイズによる誤判定を防止する
ために、温度信号にフィルタを組み込むことによって信
頼性を増大させることができる。
Therefore, the temperature signal from the thermocouple 48 loaded in the irradiation capsule 30 is detected, and the temperature fluctuation in the state where no void is generated is compared with the temperature fluctuation when the void is generated. Is larger than the former, it is judged that a void has occurred. An example of the determination method is shown in FIG.
An upper limit set value and a lower limit set value are provided above and below the normal temperature fluctuation range, and when the temperature change exceeds the upper limit set value or the lower limit set value, it is determined that creep rupture has occurred. That is, the temperature fluctuation range ≤ setting range (upper limit setting value-
"Lower limit setting value""novoid" Temperature fluctuation range> Setting range (upper limit setting value-lower limit setting value) "void"
Is determined. In FIG. 3, the first half shows the temperature fluctuation in the normal state, and the second half shows the state in which the temperature fluctuation part is determined to be fracture. In this case, fluctuations in reactor output and temperature fluctuations due to temperature control operations are excluded in consideration of such fluctuations. Moreover, in order to prevent erroneous determination due to noise, reliability can be increased by incorporating a filter in the temperature signal.

【0018】高速実験炉「常陽」での測定では、通常時
の照射キャプセル温度の揺らぎの幅は、平均的に1℃程
度である。上限設定値及び下限設定値は、現在の照射キ
ャプセル温度が、ある時間経過した場合に変化するであ
ろう温度の予測線を作成し、その温度予測線の上下に設
定する。具体的には、例えば温度揺らぎの幅が1℃あっ
た場合、温度予測線に対して上下に揺らぎ幅の半分に若
干の上乗せを行って設定する方法がある。「常陽」のよ
うな実験用の原子炉では出力調整を一日に数回一定の間
隔で行うため、出力調整から次の出力調整の間は出力が
徐々に変化し、これに伴って照射キャプセル内の温度も
変化することから、この温度変化を予測して温度の予測
線を作成する。作成した温度の予測線は、その後に得ら
れる照射キャプセルの温度データを用いて随時予測を行
い、先に作成した予測線を補正していく。
In the measurement in the fast experimental reactor "JOYO", the fluctuation range of the irradiation capsule temperature in the normal state is about 1 ° C on average. The upper limit setting value and the lower limit setting value are set by creating a prediction line of the temperature at which the current irradiation capsule temperature will change when a certain time elapses, and setting the temperature prediction line above and below. Specifically, for example, when the width of the temperature fluctuation is 1 ° C., there is a method in which the temperature prediction line is set by adding a small amount to the half of the fluctuation width up and down. In experimental reactors such as "JOYO", power adjustment is performed several times a day at fixed intervals, so the output gradually changes from one power adjustment to the next, and the irradiation capsule changes accordingly. Since the internal temperature also changes, a temperature prediction line is created by predicting this temperature change. The prediction line of the created temperature is predicted at any time using the temperature data of the irradiation capsule obtained after that, and the prediction line created previously is corrected.

【0019】このような判定方法では、設定値によって
は、ノイズや単発的な揺らぎでも破断と判断する「過剰
な判定」が発生することがある。そのような場合には、
図4に示す判定方法が有効である。即ち、照射キャプセ
ル30内に装填されている熱電対48からの温度信号を
一定周期(例えば1分間隔)で検出し、温度の予測線の
上下に温度揺らぎ幅を考慮して設けた上限設定値又は下
限設定値を超えた回数を計数する。そして、一定経過時
間T内の計数値nが特定の設定回数Nを超えて温度変動
が生じたときに、それをもってボイド発生(即ち、クリ
ープ破断が発生した)と判定する方法である。図4で
は、前半はボイド無し、後半はボイド発生と判定されて
いる。
In such a determination method, "excessive determination" may occur, which is determined to be a break even with noise or a single fluctuation depending on the set value. In such cases,
The determination method shown in FIG. 4 is effective. That is, the temperature signal from the thermocouple 48 loaded in the irradiation capsule 30 is detected at a constant cycle (for example, every 1 minute), and the upper limit set value provided above and below the temperature prediction line in consideration of the temperature fluctuation range. Or, count the number of times the lower limit setting value has been exceeded. Then, when the count value n within the fixed elapsed time T exceeds the specific set number N and the temperature fluctuates, it is determined that a void has occurred (that is, a creep rupture has occurred). In FIG. 4, it is determined that there are no voids in the first half and that voids have occurred in the second half.

【0020】図5のAは、高速実験炉「常陽」において
内圧クリープ破断試験時に、クリープ破断によりボイド
が放出された時の照射キャプセル温度の時系列データ例
を示したものである。同図の中央付近で1時間以上にわ
たって測定温度が大きく変動している箇所がボイド発生
によるもので、それ以前の温度変動よりも大きいことが
分かる。因みに、破断した試験片には約35cc(0℃換
算)のガスが封入されていた。このような温度の揺らぎ
の場合には、従来のボイド計センサによる方法ではボイ
ド検出はできていない。
FIG. 5A shows an example of time-series data of the irradiation capsule temperature when voids are released due to creep rupture in the internal pressure creep rupture test in the fast experimental reactor "JOYO". It can be seen that the portion where the measured temperature fluctuates greatly over 1 hour near the center of the figure is due to the occurrence of voids and is larger than the temperature fluctuation before that. Incidentally, about 35 cc of gas (converted at 0 ° C.) was enclosed in the broken test piece. In the case of such temperature fluctuation, void detection cannot be performed by the conventional method using a void meter sensor.

【0021】このような場合には図5のBに示すよう
に、温度の予測線とその上下に判定用の設定値(ここで
は温度の予測線±0.5℃を上限設定値と下限設定値と
した)を設ける。このようにすると、ボイド判定用の上
下の設定値を超える箇所が明確になり、ボイド発生箇所
とそれ以外の箇所では、上下限の設定値を超える箇所の
数が明らかに異なることが分かる。更に、この超えた箇
所の数を一定時間間隔Tで数えて、その数nが設定回数
Nを超えた場合に破断と判断すれば、ボイド発生箇所以
外の箇所においてノイズ等で誤った判定を下すことも無
くなる。
In such a case, as shown in FIG. 5B, the temperature prediction line and the set values for judgment above and below the temperature prediction line (here, the temperature prediction line ± 0.5 ° C. is set as the upper limit value and the lower limit value). Value)). By doing so, it is clear that the upper and lower set values for void determination are clearly defined, and that the number of places where the upper and lower limit set values are exceeded is clearly different between the void occurrence part and other places. Furthermore, if the number of the exceeded points is counted at a constant time interval T and if the number n exceeds the set number N, it is determined that the breakage occurs, an erroneous determination is made due to noise or the like at the points other than the void occurrence point Things will disappear.

【0022】ところで上記の実施例では、図2に示すよ
うに、熱電対は心棒の長さ方向のほぼ中央に位置してい
ることから、もし、それより上側でクリープ破断が発生
した場合はボイド検出を行い難いことも予想される。こ
の場合、検出感度を上げるために、心棒の長さ方向中央
の既設の熱電対以外に、心棒の上部に別の熱電対を設置
してもよい。更に、ボイドの検出感度を上げる方法とし
ては、別の熱電対を内筒とバスケットの間の液体ナトリ
ウムの中に設置する方法もある。
By the way, in the above embodiment, as shown in FIG. 2, since the thermocouple is located substantially at the center in the length direction of the mandrel, if creep rupture occurs above that, the void is generated. It is also expected that detection will be difficult. In this case, in order to increase the detection sensitivity, a thermocouple other than the existing thermocouple at the center of the mandrel in the longitudinal direction may be installed above the mandrel. Further, as a method of increasing the void detection sensitivity, there is also a method of installing another thermocouple in the liquid sodium between the inner cylinder and the basket.

【0023】照射キャプセル内における熱電対の設置状
況の例を図6に示す。照射キャプセルの基本的な構成は
図2と同様なので、対応する部分に同一符号を付し、そ
れらについての説明は省略する。図6のAは、心棒50
の内部の孔を深くし、従来の中央に位置する熱電対48
の他に、その上部深くまで熱電対80を挿入した例であ
る。図6のBは、照射キャプセル内の液体ナトリウム中
に別の熱電対82を配置するもので、ここでは内筒32
とバスケット46の間で試験片44の配置された任意の
位置に1本又は複数本(図6のBでは1本のみ描いてあ
る)配置した例である。
FIG. 6 shows an example of the installation status of thermocouples in the irradiation capsule. Since the basic structure of the irradiation capsule is the same as that of FIG. 2, the corresponding parts are designated by the same reference numerals and the description thereof will be omitted. FIG. 6A shows a mandrel 50.
The deep inside hole of the thermocouple 48
In addition, the thermocouple 80 is inserted deeply into the upper part. In FIG. 6B, another thermocouple 82 is placed in the liquid sodium in the irradiation capsule.
This is an example in which one or a plurality of test pieces 44 (only one is drawn in FIG. 6B) are arranged at an arbitrary position where the test pieces 44 are arranged between the basket 46 and the basket 46.

【0024】[0024]

【発明の効果】本発明は上記のように、既存の温度計測
システムをそのまま利用することで対応できるため、シ
ステムを単純化でき、且つ安価に構成できる。また、試
験片の内封ガスが微小破損孔から徐々に漏洩し、ガス放
出が数時間にもわたるような破断形態の場合でも、内圧
クリープ破断を確実に検出できるため、破断検出の信頼
性を大幅に向上できる。
As described above, the present invention can be applied by using the existing temperature measuring system as it is, so that the system can be simplified and the cost can be reduced. In addition, the internal pressure creep rupture can be reliably detected even in the case of a rupture mode in which the internal sealing gas of the test piece gradually leaks from the minute damage hole and the gas release extends for several hours. Can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施するための原子炉とその照射
装置の試料部の説明図。
FIG. 1 is an explanatory diagram of a sample part of a nuclear reactor and its irradiation device for carrying out the method of the present invention.

【図2】照射キャプセルと試験片の説明図。FIG. 2 is an explanatory view of an irradiation capsule and a test piece.

【図3】ボイド検出方法の一例を示すグラフ。FIG. 3 is a graph showing an example of a void detection method.

【図4】ボイド検出方法の他の例を示すグラフ。FIG. 4 is a graph showing another example of the void detection method.

【図5】ボイド発生時の温度変動の実測例とボイド検出
方法の実際例を示すグラフ。
FIG. 5 is a graph showing an actual measurement example of temperature fluctuations when a void occurs and an actual example of a void detection method.

【図6】照射キャプセルの他の例を示す説明図。FIG. 6 is an explanatory view showing another example of the irradiation capsule.

【符号の説明】[Explanation of symbols]

30 照射キャプセル 32 内筒 34 外筒 36 上部ガス室 38 下部ガス室 40 温度制御用ガス入口管 42 温度制御用ガス出口管 44 試験片 46 バスケット 48 熱電対 50 心棒 54 ナトリウム入口管 56 ナトリウム出口管 30 irradiation capsule 32 inner cylinder 34 outer cylinder 36 Upper gas chamber 38 Lower gas chamber 40 Temperature control gas inlet pipe 42 Temperature control gas outlet pipe 44 test pieces 46 baskets 48 thermocouple 50 mandrel 54 Sodium inlet tube 56 Sodium outlet tube

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高圧ガスを封入した筒状の試験片を照射
キャプセル内に収納し、その照射キャプセルを、液体冷
却材を使用する原子炉内に挿入して内圧クリープ破断強
度試験を行う方法において、 照射キャプセル内に装填されている温度センサからの温
度信号を検出し、通常時の温度揺らぎ幅の上下に設けた
上限設定値又は下限設定値を超えて温度変動が生じたと
きに、それをもってクリープ破断が発生したと判定する
ことを特徴とする内圧クリープ破断検出方法。
1. A method for carrying out an internal pressure creep rupture strength test by accommodating a cylindrical test piece containing high-pressure gas in an irradiation capsule, and inserting the irradiation capsule into a nuclear reactor using a liquid coolant. , The temperature signal from the temperature sensor installed in the irradiation capsule is detected, and when the temperature fluctuation exceeds the upper limit setting value or the lower limit setting value provided above and below the temperature fluctuation width during normal operation, the temperature fluctuation is generated. An internal pressure creep rupture detection method characterized by determining that a creep rupture has occurred.
【請求項2】 高圧ガスを封入した筒状の試験片を照射
キャプセル内に配置し、その照射キャプセルを、液体冷
却材を使用する原子炉内に挿入して内圧クリープ破断強
度試験を行う方法において、 照射キャプセル内に装填されている温度センサからの温
度信号を一定周期で検出し、温度の予測線の上下に温度
揺らぎ幅を考慮して設けた上限設定値又は下限設定値を
超えた回数を計数し、一定経過時間内の計数値が設定回
数を超えて温度変動が生じたときに、それをもってクリ
ープ破断が発生したと判定することを特徴とする内圧ク
リープ破断検出方法。
2. A method for carrying out an internal pressure creep rupture strength test by arranging a cylindrical test piece containing high-pressure gas in an irradiation capsule and inserting the irradiation capsule in a nuclear reactor using a liquid coolant. , The temperature signal from the temperature sensor loaded in the irradiation capsule is detected at a constant cycle, and the number of times the upper limit set value or the lower limit set value set above and below the temperature prediction line in consideration of the temperature fluctuation width is exceeded. A method for detecting internal pressure creep rupture, which comprises counting and determining that a creep rupture has occurred when a temperature fluctuation occurs when a count value within a certain elapsed time exceeds a set number of times.
【請求項3】 温度センサとしてシース型の熱電対を使
用し、複数の熱電対を照射キャプセル内に分散装填し
て、照射キャプセル内の異なる位置での温度を検出する
請求項2記載の内圧クリープ破断検出方法。
3. The internal pressure creep according to claim 2, wherein a sheath-type thermocouple is used as the temperature sensor, and a plurality of thermocouples are dispersedly loaded in the irradiation capsule to detect temperatures at different positions in the irradiation capsule. Breakage detection method.
【請求項4】 熱電対の1個以上を照射キャプセル内の
液体冷却材中に装填する請求項3記載の内圧クリープ破
断検出方法。
4. The internal pressure creep rupture detection method according to claim 3, wherein one or more thermocouples are loaded into the liquid coolant in the irradiation capsule.
JP2001317997A 2001-10-16 2001-10-16 Internal pressure creep rupture detection method Expired - Fee Related JP3871912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001317997A JP3871912B2 (en) 2001-10-16 2001-10-16 Internal pressure creep rupture detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001317997A JP3871912B2 (en) 2001-10-16 2001-10-16 Internal pressure creep rupture detection method

Publications (2)

Publication Number Publication Date
JP2003121589A true JP2003121589A (en) 2003-04-23
JP3871912B2 JP3871912B2 (en) 2007-01-24

Family

ID=19135778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001317997A Expired - Fee Related JP3871912B2 (en) 2001-10-16 2001-10-16 Internal pressure creep rupture detection method

Country Status (1)

Country Link
JP (1) JP3871912B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697446B2 (en) * 2001-08-20 2004-02-24 Korea Atomic Energy Research Institute Instrumented capsule for materials irradiation tests in research reactor
US6782069B1 (en) * 2002-09-18 2004-08-24 Korea Atomic Energy Research Institute In-pile creep test system
JP2005003458A (en) * 2003-06-10 2005-01-06 Japan Nuclear Cycle Development Inst States Of Projects Sensing method for inside pressure creep rupture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697446B2 (en) * 2001-08-20 2004-02-24 Korea Atomic Energy Research Institute Instrumented capsule for materials irradiation tests in research reactor
US6782069B1 (en) * 2002-09-18 2004-08-24 Korea Atomic Energy Research Institute In-pile creep test system
JP2005003458A (en) * 2003-06-10 2005-01-06 Japan Nuclear Cycle Development Inst States Of Projects Sensing method for inside pressure creep rupture

Also Published As

Publication number Publication date
JP3871912B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
US8616053B2 (en) Method and device for monitoring the fill level of a liquid in a liquid container
JPH0365696A (en) In-fixed type reactor calibrating apparatus for thermal neutron detector of boiling water reactor
US20080130817A1 (en) Method and apparatus for measurement of terminal solid solubility temperature in alloys capable of forming hydrides
US11728057B2 (en) Nuclear fuel failure protection system
US20070201601A1 (en) Apparatus and method for measuring a temperature of coolant in a reactor core, and apparatus for monitoring a reactor core
JP3871912B2 (en) Internal pressure creep rupture detection method
JP5038158B2 (en) Neutron flux measurement system and method
US5473644A (en) Apparatus for measuring power of nuclear reactor and method for manufacturing the same
RU2327122C1 (en) Temperature sensor
JP2005003458A (en) Sensing method for inside pressure creep rupture
JP2966333B2 (en) Internal pressure creep rupture detector
JP4644871B2 (en) Physical quantity measuring device and measuring method in airtight container
GB2330659A (en) Sodium leakage detection apparatus
JPH11101890A (en) Output-monitoring device in reactor
US3453867A (en) Detection of fuel element sheathing failures in nuclear reactors
JP2000137093A (en) Fixed in-pile nuclear instrumentation system of reactor, nuclear instrumentation process, power distribution calculating device and method, and power distribution monitoring system and method
JP3790752B2 (en) In-furnace creep rupture detection method
JP4881033B2 (en) Neutron detector lifetime determination apparatus, lifetime determination method thereof, and reactor core monitoring apparatus
JP2014173928A (en) Corrosion potential sensor
JPH10104388A (en) Reactor output measuring equipment
RU2072572C1 (en) Method for detection of gas permeability of fuel column of heat elements and for detection of position of gas-tight lock
CN116907680A (en) Offline temperature detection device for nuclear reactor
JP2015219163A (en) Nuclear instrumentation sensor system and nuclear reactor output monitoring system
CN116153539A (en) Method for evaluating damage condition of fuel element in pressurized water reactor
CZ20457U1 (en) Apparatus for measuring volume of gas in sand and core mixtures

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees