JP2003121002A - Infrared stove with fan - Google Patents

Infrared stove with fan

Info

Publication number
JP2003121002A
JP2003121002A JP2001309990A JP2001309990A JP2003121002A JP 2003121002 A JP2003121002 A JP 2003121002A JP 2001309990 A JP2001309990 A JP 2001309990A JP 2001309990 A JP2001309990 A JP 2001309990A JP 2003121002 A JP2003121002 A JP 2003121002A
Authority
JP
Japan
Prior art keywords
thermocouple
series
burner
fan
metal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001309990A
Other languages
Japanese (ja)
Other versions
JP3837050B2 (en
Inventor
Hideo Chikasawa
英雄 近澤
Kazunori Kamiyama
和則 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paloma Kogyo KK
Original Assignee
Paloma Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paloma Kogyo KK filed Critical Paloma Kogyo KK
Priority to JP2001309990A priority Critical patent/JP3837050B2/en
Publication of JP2003121002A publication Critical patent/JP2003121002A/en
Application granted granted Critical
Publication of JP3837050B2 publication Critical patent/JP3837050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Direct Air Heating By Heater Or Combustion Gas (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate sufficient electric power for driving an air blowing fan from series type thermocouple installed in a limited space. SOLUTION: The series type thermocouple 13 is formed of front and rear thermocouple trains 18 and 17, so that much more thermocouple elements can be provided in the limited space in front of a combustion plate 7. The small-type front thermocouple train 18 is formed in a general L-shape inside the large-type rear thermocouple train 17 that is formed in a general L-shape, so that the hot contacts (a) of the rear thermocouple train 17 and the front thermocouple train 18 are easily arranged to have the same distance from a burning face 5. Thus, the hot contacts (a) of both the thermocouple trains 17 and 18 can be placed in a highest temperature portion, thereby obtaining thermal electromotive force efficiently.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は赤熱プレート式バー
ナからの輻射熱に加え温風によっても暖房を行うファン
付赤外線ストーブに関する。 【0002】 【従来の技術】従来から、赤熱プレート式のガスバーナ
を備えた赤外線ストーブに送風ファンを設けて、赤熱プ
レートからの輻射熱に加え温風によっても暖房を行うタ
イプのストーブが知られている。この種の赤外線ストー
ブとして、例えば実公平1−27008号公報において
は、図13に示すように、ガスバーナ104の燃焼熱を
直列型熱電対113により電力に変換して送風ファン1
09に通電するようにしたものが提案されている。この
赤外線ストーブ101では、複数の熱電対素子123を
赤熱プレート107に対向臨設し、直列に接続して直列
型熱電対113を作製して、送風ファン109のモータ
に接続している。 【0003】こうした直列型熱電対の一例として、図1
4,15に示すように、異なる二種類の金属部材21
9,220の端部を接続してジグザグ状に連結すること
により、複数個の熱電対素子223が連なって形成され
るものが知られている。すなわち、各熱電対素子223
の数だけ温接点a’と冷接点b’とを形成することによ
り、一つ一つの熱電対素子223から得られる熱起電力
は小さくても、全体としては大きな熱起電力を得る構成
である。そして、上述した赤外線ストーブ101におい
て、このような直列型熱電対213を赤熱プレート10
7の横幅内に送風ファン109に必要な電力を供給する
のに充分な数の熱電対素子123を組み込んで設置しよ
うとすると、金属部材219,220間の距離H’を狭
くする必要があった。 【0004】 【発明が解決しようとする課題】しかしながら、金属部
材219,220間の距離H’を狭くしすぎると、放熱
しにくくなり冷接点b’がかなりの温度に上昇して、冷
接点b’と温接点a’との温度差が小さくなって発生す
る熱起電力が低下してしまうという問題があった。本発
明のファン付赤外線ストーブは上記課題を解決し、限ら
れたスペース内に設置される直列型熱電対から、送風フ
ァンを駆動するのに充分な電力を発生させることを目的
とする。 【0005】 【課題を解決するための手段】上記課題を解決する本発
明の請求項1記載のファン付赤外線ストーブは、複数の
熱電対素子を直列に接続した直列型熱電対を赤熱プレー
ト式バーナの燃焼面に対向臨設し、該直列型熱電対から
得られる熱起電力により送風ファンを駆動することによ
って、該赤熱プレート式バーナからの輻射熱に加え温風
によっても暖房を行うファン付赤外線ストーブにおい
て、上記直列型熱電対は、略L字状に形成された二種類
の金属板を交互に複数並べて、その端部を接続してジグ
ザグ状に連結することにより形成した熱電対列を複数列
配列し、それぞれの温接点が上記燃焼面から等距離とな
るように設けられていることを要旨とする。 【0006】上記構成を有する本発明の請求項1記載の
ファン付赤外線ストーブは、直列型熱電対を複数列の熱
電対列で形成しているので同じ横幅のスペースに、熱電
対素子をより多く設けることができる。しかも、直列型
熱電対を構成する金属部材を略L字状に形成しているの
で、複数列配列される熱電対列の全ての温接点を燃焼面
から等距離に配置することができる。このため、最も高
温の位置に全ての温接点を配置することが可能となる。 【0007】 【発明の実施の形態】以上説明した本発明の構成・作用
を一層明らかにするために、以下本発明のファン付赤外
線ストーブの好適な実施形態について図1〜図12を用
いて説明する。 【0008】図1は、本発明の一実施形態としてのファ
ン付赤外線ストーブ1(以下、単にストーブ1と略称す
る)の断面概略図であり、図2は正面図であり、図3は
このストーブ1に備えられるバーナ4の正面図である。
尚、図1は、図2中の一点鎖線A−Aでの断面である。
ストーブ1は、前面に輻射開口2が設けられた本体ケー
ス3内に、この輻射開口2に対向させて赤熱プレート式
のバーナ4を備える。従って、このバーナ4は、燃焼面
5を略正面に向けて設けられる。バーナ4は、燃料ガス
と一次空気との混合室を形成するバーナ本体6と、バー
ナ本体6に装着される多数の炎孔が設けられたセラミッ
クス製の燃焼プレート7とを備えた全一次空気式バーナ
であり、図示しない吸入孔から吸入された燃料ガスと一
次空気とがバーナ本体6内で良好に混合され、その混合
気が燃焼プレート7の炎孔から噴出して、燃焼プレート
7上で表面燃焼する。また、バーナ本体6は、上バーナ
本体29と下バーナ本体30とに上下二段で分割形成さ
れる。そして、燃焼プレート7は、上バーナ本体29と
下バーナ本体30とにそれぞれ二枚ずつ設けられる構成
であり、全面から燃料ガスを噴出する強火力設定と下バ
ーナ本体30に設けられた二面のみから燃料ガスを噴出
する弱火力設定の二種類の火力切替が行える。 【0009】本体ケース3内の底部には、バーナ4の燃
焼ガスを本体ケース3前面下部に設けられた温風吹出口
8から噴出送出する送風ファン9が設けられる。バーナ
4の後方には、バーナ4の上方近傍に温風吸込口10を
有し、送風ファン9に燃焼ガスを導く燃焼ガス通路11
が設けられる。燃焼ガス通路11は、燃焼ガスを器具本
体の中心付近から背面側へと横方向に導く横ダクト11
aと、燃焼ガスを器具の上部から下部へと縦方向に導く
縦ダクト11bとから構成される。そして、送風ファン
9と温風吹出口8とは温風通路12によって連通され
る。また、器具背面上方で温風吸込口10と略対向する
位置に冷風吸込口31が開口され、この冷風吸込口31
と対向する位置の縦ダクト11bに冷風取込口41が開
口される。従って、送風ファン9が駆動すると、温風吸
込口10から燃焼ガスが吸引され、冷風吸込口31から
外部の空気が吸引されて、燃焼ガス通路11及び温風通
路12で混合される。そして、火傷しない程度の高温に
調整された燃焼ガスと外部空気の混合気が温風として温
風吹出口8から噴出送出される。 【0010】バーナ4の燃焼面5の前面には、前後二列
で配列された直列型熱電対13(後述)が対向して設け
られ、この直列型熱電対13で発生した熱起電力が送風
ファン9のモータの電源として用いられる。輻射開口2
と温風吹出口8とには複数のガード棒14が設けられ、
器具本体内に使用者の手等が入らないようになってい
る。また、器具正面には、向かって右側に点火レバー1
5が、左側にバーナ4の火力を切替える火力切替レバー
16が設けられる。 【0011】次に、直列型熱電対13について述べる。
直列型熱電対13は、図1及び図4に示すように、燃焼
面5に対して前後二列で配列された後熱電対列17と前
熱電対列18とで構成される。そして、図5〜7に示す
ように、後熱電対列17は、略L字状外形のステンレス
板からなる第一金属部材19と、第一金属部材19より
薄い略L字状外形のコンスタンタン板からなる第二金属
部材20とからなる。尚、第一金属部材19は、銅製、
クロメル製、鉄製でもよい。第二金属部材20は、下端
部が段差Hが生じるように折り曲げられて折曲下端部2
1が形成されると共に、先端部が下端部とは逆向きに段
差Hが生じるように折り曲げられて折曲先端部22が形
成される。第一金属部材19の先端部と下端部とは、折
り曲げられずそれぞれ平先端部33と平下端部32とを
形成している。また、平先端部33には肉薄となる切り
欠き部33aが形成される。そして、図7に示すよう
に、この第一金属部材19と第二金属部材20とを、平
先端部33と折曲先端部22とが向かい合い、平下端部
32と折曲下端部21とが向かい合うように交互に配列
し、先端部と下端部とを交互に溶接してジグザグ状に連
結することによって、複数の熱電対素子23が直列に繋
がって後熱電対列17が形成される。また、折曲先端部
22と平先端部33との接合点が温接点aとなり、折曲
下端部21と平下端部32との接合点が冷接点bとな
る。そして、平先端部33には切り欠き部33aが形成
されているので、温接点aの熱容量が小さくなる。 【0012】第二金属部材20の先端部と下端部とは、
それぞれ折り曲げられて段差Hが設けられているため、
上記の様に連結すると金属部材19,20間に距離Hの
隙間が形成され、温接点a及び冷接点b以外での金属部
材19,20間の絶縁が確保される。また、金属部材1
9,20間の絶縁を確実に行うために、図8及び図9に
示すように、金属部材19,20間に帯状の絶縁体24
を蛇行して挟み込んでもよい。この帯状の絶縁体24の
幅Mは、金属部材19,20の長さLに対して充分狭く
形成される。尚、図9は、図8中の一点鎖線B−Bでの
断面図である。 【0013】本実施形態における第二金属部材20の材
料であるコンスタンタンの材料費は、第一金属部材19
の材料であるステンレスの材料費のおよそ10倍であ
る。従って、通常のように第一金属部材19と第二金属
部材20とを同じ断面積すなわち同じ板厚、例えば板厚
1.0mmで形成した場合には、第一金属部材19一本
当たりの電気抵抗値は6.4mΩ、材料費はA円とする
と、第二金属部材20一本当たりの電気抵抗値は4.4
mΩ、材料費は10A円となるので、熱電対素子23一
つ当たりの電気抵抗値は10.8mΩ、材料費は11A
円である。これに対して、本実施形態では、第一金属部
材19と第二金属部材20とでは、断面積すなわち板厚
が異なっており、安価な材料であるステンレス製の第一
金属部材19(板厚X)の方が、高価な材料であるコン
スタンタン製の第二金属部材20(板厚Y)よりも厚く
形成される。例えば、本実施形態では、第一金属部材1
9の板厚Xは1.5mmであり、第二金属部材20の板
圧Yは0.8mmである。このように形成した場合の第
一金属部材19一本当たりの電気抵抗値は4.3mΩ、
材料費は1.5A円となり、第二金属部材20一本当た
りの電気抵抗値は5.5mΩ、材料費は8A円となるか
ら、熱電対素子23一つ当たりの電気抵抗値は9.8m
Ω、材料費は9.5A円となる。つまり、本実施形態の
ように直列型熱電対13を形成することにより、材料費
を低減し、かつ電気抵抗値を下げることができる。 【0014】前熱電対列18も後熱電対列17と同様
に、図10,11に示す略L字状外形のステンレス板か
らなる第一金属部材19’と、第一金属部材19’より
薄い略L字状外形のコンスタンタン板からなる第二金属
部材20’とからなる。これらの金属部材19’,2
0’は、後熱電対列17の金属部材19,20よりも小
型に形成される。そして、前熱電対列18の第二金属部
材20’の先端部と下端部とは、後熱電対列17の第二
金属部材20の先端部と下端部とは逆向きに折り曲げら
れ、段差Hが生じて折曲先端部22’と折曲下端部2
1’とが形成される。尚、前熱電対列18を形成する金
属部材19’,20’の先端部の突出距離は、後熱電対
列17を形成する金属部材19,20の先端部の突出距
離よりも短く形成される。そして、後熱電対列17と同
様に、第一金属部材19’と第二金属部材20’とを、
平先端部33’と折曲先端部22’とが向かい合い、平
下端部32’と折曲下端部21’とが向かい合うように
交互に配列し、先端部と下端部とを交互に溶接してジグ
ザグ状に連結することによって、複数の熱電対素子が後
熱電対列17とは逆向きの極性で直列に繋がって前熱電
対列18が形成される。また、折曲先端部22’と平先
端部33’との接合点が温接点aとなり、折曲下端部2
1’と平下端部32’との接合点が冷接点bとなる。 【0015】前熱電対列18と後熱電対列17とは、図
4に示すように、前板34と後板35とで挟まれビス3
6で止められて位置決めされる。後熱電対列17と前熱
電対列18との間に、絶縁板37を挟み、後熱電対列1
7を後絶縁ケース38でかこみ、前熱電対列18を前絶
縁ケース39でかこむことにより、後熱電対列17と前
熱電対列18との絶縁が確保される。また、後熱電対列
17と前熱電対列18とはリード線40によって直列に
接続される。 【0016】また、図1及び図3に示すように、バーナ
4には、燃焼面5の周囲を覆うように枠体25が設けら
れ、枠体25の下方の一部には冷却孔26が開口され
る。そして、直列型熱電対13はこの冷却孔26に冷接
点bを臨ませて取り付けられる。つまり、冷却孔26の
縁と直列型熱電対13との間には空気が通過する隙間が
存在する。また、枠体25の上方の一部には、通過孔2
7が開口される。 【0017】上述した構成のストーブ1によれば、点火
レバー15を操作すると、四つの燃焼プレート7全面か
ら燃料ガスが噴出し、図示しない電極からの放電により
点火される。そして、赤熱した燃焼プレート7からの輻
射熱により器具正面の使用者を直接温める。また、火力
切替レバー16を操作すると、燃料ガスが四つの燃焼プ
レート7全面から噴出する強火力設定と下バーナ本体3
0に設けられた二面のみから噴出する弱火力設定とを切
替えて、バーナ4の火力を使用者の好みに合わせて調節
できる。バーナ4が燃焼するとその燃焼熱により直列型
熱電対13の温接点aが加熱され熱起電力が発生し、送
風ファン9が駆動する。そして、送風ファン9によりバ
ーナ4の燃焼ガスを温風吸込口10から、外部空気を冷
風吸込口31から吸い込み、それらの混合気を温風吹出
口8から器具前面に向かって噴出送出することにより、
温風で室内全体を均一に加熱する。 【0018】そして、直列型熱電対13を後熱電対列1
7と前熱電対列18の前後二列で形成しているので、燃
焼プレート7の前面という限られたスペースに、より多
くの熱電対素子23を設けることができる。従って、送
風ファン9を駆動するのに必要な熱電対素子23の数を
確保したまま、金属部材19,20間の距離Hを広げる
ことができるので、放熱を促進して冷接点bの温度上昇
を抑制でき、効率良く熱起電力を得ることができる。さ
らに、直列型熱電対13は、略L字状に形成された大型
の後熱電対列17の内側に略L字状に形成された小型の
前熱電対列18を設けているので、後熱電対列17の温
接点aと前熱電対列18の温接点aとを容易に燃焼面5
から等距離となるように設置することができる。そし
て、燃焼プレート7上で表面燃焼している火炎の温度
は、燃焼プレート7からの水平距離によって決まるの
で、後熱電対列17及び前熱電対列18の温接点aを容
易に最も高温部に設置することができ、効率よく熱起電
力を得ることができる。しかも、燃料ガスが噴出する燃
焼プレート7を切替えて火力を調節しても、直列型熱電
対13の温接点aが、常に燃焼ガスによって加熱される
位置に設置されているので、送風ファン9へ安定して電
力を供給することができる。加えて、平先端部33に切
り欠き部33aを形成して、温接点aの熱容量を小さく
しているので、温接点aの温度がすばやく上昇すると共
に、温接点aが高温に加熱され直列型熱電対13の出力
が向上する。 【0019】また、安価な材料であるステンレス製の第
一金属部材19の板厚Xすなわち断面積を大きくし、高
価な材料であるコンスタンタン製の第二金属部材20の
板厚Yすなわち断面積を小さくすることにより、直列型
熱電対13の材料費を低減し、かつ電気抵抗値を下げる
ことができる。従って、高出力な直列型熱電対13を安
価に作製することが可能となる。つまり、金属種が異な
る二種類の略同一形状の金属板を交互に配して形成した
直列型熱電対においては、安価な金属板の板厚を厚く
し、高価な金属板の板厚を薄くすることにより、安価に
高出力の直列型熱電対を得ることができる。特に、コン
スタンタンとステンレスの様に値段の格差の大きな組み
合わせでは、コストメリットが大きい。 【0020】また、バーナ4の燃焼によって発生したド
ラフト力によりバーナ4の周りの空気は下方から上方へ
と流れるため、バーナ4の燃焼面5の周囲を覆うように
枠体25を設けたことにより、バーナ4の周りの空気
は、枠体25に開口された冷却孔26を通して集中的に
吸引される。そして、この直列型熱電対13の冷接点b
をこの冷却孔26に臨ませて設置しているので、空気の
流れにより冷接点bを集中的に冷やすことができ、効率
よく熱起電力を得ることができる。ドラフト力によって
冷却孔26から吸引された空気は、バーナ4によって加
熱され、通過孔27やバーナ4の前面を通って上方へと
スムーズに流れていく。尚、バーナ4が全一次空気式バ
ーナであるからこのように燃焼面5の周囲を枠体25で
覆っても燃焼性能は悪化しないが、ブンゼン式バーナの
ように二次空気を必要とするバーナであった場合には、
枠体25で周囲を囲むと二次空気を取り込みにくい位置
が生じて燃焼性能が悪化する。 【0021】また、金属部材19,20間に距離Hの隙
間を形成することにより、温接点a及び冷接点b以外で
の金属部材19,20間の絶縁を確保できる。さらに、
金属部材19,20間に帯状の絶縁体24を蛇行して挟
み込めば、この絶縁を確実に行うことができる。しか
も、帯状の絶縁体24は、蛇行して挟み込むだけで金属
部材19,20間に固定することができるので、絶縁体
24を金属部材19,20間に固定するための固定部材
をわざわざ設ける必要がなく、コストアップを抑制でき
る。また、帯状の絶縁体24の幅Mを金属部材19,2
0の長さLに対して充分狭くしても、蛇行して挟み込め
ば金属部材19,20間に容易に固定できるので、金属
部材19,20間の隙間を充分に維持することができ、
冷接点bの温度上昇を抑制できる。 【0022】また、器具外部の空気を吸引する冷風吸込
口31を器具背面の上方に設けているため、床上のホコ
リをこの冷風吸込口31から吸込むことはなく、しか
も、真上に向けて開口しているわけでもないので、空気
中を浮遊しているホコリが器具内に落下することもな
い。従って、ホコリによるファン詰まりを防止できる。
特に、このような熱発電で送風ファン9を駆動する場合
には、一般の電源を用いるものに比べて大きな電力が得
られないため、ホコリ詰まりは影響が大きいものである
から、このようにしてホコリの浸入を防ぐことは非常に
有用である。尚、ここでいう器具背面の上方とは、器具
の高さ方向の中間位置よりも上方のことである。更に、
温風吸込口10をバーナ4の上方近傍に設けることによ
り、ドラフト力で上方に向かって流れていくバーナ4の
燃焼ガスを効率良く吸込むことができると共に、燃焼ガ
ス通路11をできるだけ短くできるので、送風ファン9
の駆動力が弱くても効果的な暖房効果を得ることができ
る。加えて、温風吹出口8を器具正面下方に設けること
により、温風を室内の下方に吹出すことができより効率
的な暖房効果を得ることができる。また、冷風吸込口3
1を真上に向けて開口しないことにより、そこから紙く
ずのようなゴミ等の落下物が器具内に落ち込むことを防
止でき、安全に使用できる。 【0023】以上本発明の実施形態について説明した
が、本発明はこうした実施形態に何等限定されるもので
はなく、本発明の要旨を逸脱しない範囲において、種々
なる態様で実施し得ることは勿論である。例えば、本実
施形態では、バーナ4の燃焼面5の全周囲を覆うように
枠体25を設けているが、図12に示すように、燃焼面
5の下半分の周囲を覆うように枠体28を設けても構わ
ない。この場合には、ドラフト力によって吸引された空
気や燃焼ガスが枠体28内に溜まることはなく、空気や
燃焼ガスの流れをさらにスムーズにすることができる。
従って、冷却孔26からの空気の吸引が阻害される不都
合も生じず、良好に冷接点bを冷却できる。また、温接
点aを形成する折曲先端部22と平先端部33の内、平
先端部33にのみ切り欠き部33aを形成して肉薄にし
ているが、折曲先端部22にも肉薄となる切り欠き部を
形成しても構わない。また、金属部材19,20間に帯
状の絶縁体24を複数本挟み込んでもよい。また、直列
型熱電対13を前熱電対列18と後熱電対列19の内外
二列で形成しているがこれに限ったものではなく、金属
部材の大きさが異なる複数の熱電対列を、小型の熱電対
列から大型の熱電対列へと順次内側から外側へと配列し
ていればよい。つまり、直列型熱電対は、熱電対列を二
列に並べて形成したものに限定されず、熱電対列を複列
にして形成していればよいのである。 【0024】 【発明の効果】以上詳述したように、本発明の請求項1
記載のファン付赤外線ストーブによれば、限られたスペ
ースに必要な熱電対素子の数を確保したまま、直列型熱
電対を構成する金属部材間の距離を広げて設けることが
できる。このため、放熱しにくくなり冷接点の温度が上
昇して高い熱起電力を得ることができなくなってしまう
といった不具合は生じず、効率よく熱起電力を得ること
ができる。しかも、直列型熱電対の全ての温接点を最も
温度が高い位置に設置することができるのでより一層効
率よく熱起電力を得ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared stove with a fan for heating by hot air in addition to radiant heat from an incandescent plate burner. [0002] Conventionally, a stove of a type in which a ventilation fan is provided in an infrared stove provided with a gas burner of a red hot plate type and heats by hot air in addition to radiant heat from the red hot plate is known. . As this type of infrared stove, for example, in Japanese Utility Model Publication No. 27008/1990, as shown in FIG. 13, the heat of combustion of the gas burner 104 is converted into electric power by a
A configuration in which the power is supplied to the power supply terminal 09 is proposed. In the infrared stove 101, a plurality of thermocouple elements 123 are provided facing the red heat plate 107 and connected in series to form a series thermocouple 113, which is connected to the motor of the blower fan 109. FIG. 1 shows an example of such a series thermocouple.
As shown in FIGS. 4 and 15, two different types of metal members 21 are used.
It is known that a plurality of thermocouple elements 223 are continuously formed by connecting the end portions of the thermocouple elements 9 and 220 in a zigzag shape. That is, each thermocouple element 223
By forming the hot junction a ′ and the cold junction b ′ as many as the number, the thermoelectromotive force obtained from each thermocouple element 223 is small, but a large thermoelectromotive force is obtained as a whole. . Then, in the infrared stove 101 described above, such a series thermocouple 213 is connected to the glowing plate 10.
In order to incorporate and install a sufficient number of thermocouple elements 123 to supply necessary power to the blower fan 109 within the width of 7, the distance H ′ between the metal members 219 and 220 had to be reduced. . [0004] However, if the distance H 'between the metal members 219 and 220 is too small, it becomes difficult to dissipate heat, and the cold junction b' rises to a considerable temperature, and the cold junction b ' There is a problem in that the temperature difference between 'and the hot junction a' becomes small and the generated thermoelectromotive force is reduced. The infrared stove with a fan of the present invention solves the above-mentioned problem, and aims to generate sufficient electric power to drive a blowing fan from a series-type thermocouple installed in a limited space. [0005] To solve the above-mentioned problems, an infrared stove with a fan according to the present invention comprises a series thermocouple in which a plurality of thermocouple elements are connected in series and a red-hot plate burner. In the infrared stove with a fan, which faces the combustion surface of the stove and drives the blower fan by the thermoelectromotive force obtained from the series-type thermocouple, in addition to the radiant heat from the red hot plate type burner, the heater also heats with hot air. The series-type thermocouple has a plurality of two-type metal plates formed in a substantially L-shape, and a plurality of two-type metal plates are alternately arranged, and the end portions thereof are connected and connected in a zigzag manner to form a plurality of thermocouple arrays. The gist is that each of the hot junctions is provided at an equal distance from the combustion surface. In the infrared stove with a fan according to the first aspect of the present invention having the above-described structure, since the series-type thermocouples are formed by a plurality of thermocouple rows, more thermocouple elements can be provided in the same space. Can be provided. In addition, since the metal members forming the series-type thermocouple are formed in a substantially L shape, all the hot junctions of the thermocouple array arranged in a plurality of rows can be arranged at the same distance from the combustion surface. For this reason, it becomes possible to arrange all the hot junctions at the highest temperature position. DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to further clarify the structure and operation of the present invention described above, a preferred embodiment of an infrared stove with a fan of the present invention will be described below with reference to FIGS. I do. FIG. 1 is a schematic sectional view of an infrared stove 1 with a fan (hereinafter, simply referred to as a stove 1) according to an embodiment of the present invention, FIG. 2 is a front view, and FIG. FIG. 2 is a front view of a burner 4 provided in 1.
FIG. 1 is a cross-sectional view taken along a dashed line AA in FIG.
The stove 1 includes a glowing plate-type burner 4 in a main body case 3 having a radiation opening 2 provided on the front surface thereof, facing the radiation opening 2. Therefore, the burner 4 is provided with the combustion surface 5 facing substantially in front. The burner 4 includes an all-primary pneumatic system including a burner main body 6 forming a mixing chamber of fuel gas and primary air, and a ceramic combustion plate 7 provided with a large number of flame holes mounted on the burner main body 6. A fuel gas and primary air sucked from a suction hole (not shown) are satisfactorily mixed in the burner main body 6, and the air-fuel mixture blows out from a flame hole of the combustion plate 7, and burns on the combustion plate 7. Burn. The burner main body 6 is divided into an upper burner main body 29 and a lower burner main body 30 in two upper and lower stages. Further, two combustion plates 7 are provided on each of the upper burner main body 29 and the lower burner main body 30, and only the two surfaces provided on the lower burner main body 30 are set to a high heat power setting for injecting fuel gas from the entire surface. It is possible to switch between two types of heat power setting of a low heat power setting for injecting fuel gas from the fuel cell. A blower fan 9 is provided at the bottom of the main body case 3 for blowing out the combustion gas from the burner 4 from a hot air outlet 8 provided at a lower portion of the front surface of the main body case 3. Behind the burner 4, a hot air suction port 10 is provided near the upper side of the burner 4, and a combustion gas passage 11 that guides a combustion gas to the blower fan 9.
Is provided. The combustion gas passage 11 is provided with a horizontal duct 11 for guiding the combustion gas laterally from near the center of the appliance body to the rear side.
a and a vertical duct 11b for vertically guiding the combustion gas from the upper part to the lower part of the appliance. The blower fan 9 and the hot air outlet 8 are communicated with each other by a hot air passage 12. Further, a cool air suction port 31 is opened at a position substantially opposite to the warm air suction port 10 above the rear surface of the appliance.
The cold air intake 41 is opened in the vertical duct 11b at a position opposite to the above. Accordingly, when the blower fan 9 is driven, the combustion gas is sucked from the hot air suction port 10, the external air is sucked from the cold air suction port 31, and mixed in the combustion gas passage 11 and the hot air passage 12. Then, a mixture of combustion gas and external air adjusted to a high temperature that does not cause burns is blown out and sent out from the hot air outlet 8 as hot air. On the front surface of the combustion surface 5 of the burner 4, serial thermocouples 13 (described later) arranged in front and rear two rows are provided to face each other, and the thermoelectromotive force generated by the serial thermocouples 13 blows air. Used as a power supply for the motor of the fan 9. Radiation aperture 2
And the hot air outlet 8 are provided with a plurality of guard rods 14,
The hand and the like of the user are prevented from entering the instrument body. In addition, the ignition lever 1
5, a heating power switching lever 16 for switching the heating power of the burner 4 is provided on the left side. Next, the series thermocouple 13 will be described.
As shown in FIGS. 1 and 4, the series-type thermocouple 13 includes a rear thermocouple row 17 and a front thermocouple row 18 arranged in two rows before and after the combustion surface 5. As shown in FIGS. 5 to 7, the rear thermocouple train 17 includes a first metal member 19 made of a stainless steel plate having a substantially L-shaped outer shape and a constant L plate having a substantially L-shaped outer shape thinner than the first metal member 19. And a second metal member 20 made of The first metal member 19 is made of copper.
It may be made of chromel or iron. The lower end of the second metal member 20 is bent so that a step H is formed, and the bent lower end 2 is formed.
1 is formed, and the front end is bent in the opposite direction to the lower end so as to form a step H, thereby forming a bent front end 22. The front end and the lower end of the first metal member 19 are not bent and form a flat front end 33 and a flat lower end 32, respectively. Further, the flat tip portion 33 is formed with a notch portion 33a which becomes thin. Then, as shown in FIG. 7, the flat tip 33 and the bent tip 22 face each other, and the flat lower end 32 and the bent lower end 21 of the first metal member 19 and the second metal member 20 face each other. By alternately arranging them so as to face each other and alternately welding the front end and the lower end thereof and connecting them in a zigzag shape, the plurality of thermocouple elements 23 are connected in series to form the rear thermocouple row 17. The junction between the bent front end 22 and the flat front end 33 becomes a hot junction a, and the junction between the bent lower end 21 and the flat lower end 32 becomes a cold junction b. Since the notch 33a is formed in the flat tip 33, the heat capacity of the hot junction a is reduced. The front end and the lower end of the second metal member 20 are
Since each is bent and provided with a step H,
When connected as described above, a gap having a distance H is formed between the metal members 19 and 20, and insulation between the metal members 19 and 20 other than the hot junction a and the cold junction b is ensured. Also, the metal member 1
As shown in FIGS. 8 and 9, in order to ensure insulation between the metal members 9 and 20, a strip-shaped insulator 24 is provided between the metal members 19 and 20.
May be pinched meandering. The width M of the band-shaped insulator 24 is formed sufficiently narrower than the length L of the metal members 19 and 20. FIG. 9 is a cross-sectional view taken along dashed line BB in FIG. The material cost of the constantan, which is the material of the second metal member 20 in the present embodiment, is
About 10 times the material cost of stainless steel. Therefore, when the first metal member 19 and the second metal member 20 are formed in the same cross-sectional area, that is, the same plate thickness, for example, 1.0 mm in thickness as usual, the electric power per one first metal member 19 is obtained. Assuming that the resistance value is 6.4 mΩ and the material cost is A yen, the electric resistance value per one second metal member 20 is 4.4.
mΩ, the material cost is 10 A yen, so the electric resistance per thermocouple element 23 is 10.8 mΩ, and the material cost is 11 A
It is a circle. On the other hand, in the present embodiment, the first metal member 19 and the second metal member 20 have different cross-sectional areas, that is, plate thicknesses, and the first metal member 19 (plate thickness) made of stainless steel, which is an inexpensive material. X) is formed to be thicker than the second metal member 20 (plate thickness Y) made of Constantan, which is an expensive material. For example, in the present embodiment, the first metal member 1
9, the plate thickness X is 1.5 mm, and the plate pressure Y of the second metal member 20 is 0.8 mm. The electric resistance value per one first metal member 19 when formed in this manner is 4.3 mΩ,
Since the material cost is 1.5 A yen, the electric resistance value per one second metal member 20 is 5.5 mΩ, and the material cost is 8 A yen, the electric resistance value per thermocouple element 23 is 9.8 m.
Ω, material cost is 9.5A yen. That is, by forming the series-type thermocouple 13 as in the present embodiment, the material cost can be reduced and the electric resistance value can be reduced. Similarly to the rear thermopile 17, the front thermopile 18 has a first metal member 19 'made of a stainless steel plate having a substantially L-shaped outer shape shown in FIGS. 10 and 11, and is thinner than the first metal member 19'. And a second metal member 20 'formed of a constantan plate having a substantially L-shaped outer shape. These metal members 19 ', 2
0 ′ is formed smaller than the metal members 19 and 20 of the rear thermopile 17. The front end and the lower end of the second metal member 20 ′ of the front thermopile 18 are bent in the opposite directions to the front end and the lower end of the second metal member 20 of the rear thermopile 17, and the step H Occurs, and the bent front end portion 22 'and the bent lower end portion 2
1 ′ are formed. The protruding distance of the distal ends of the metal members 19 ′ and 20 ′ forming the front thermopile 18 is shorter than the protruding distance of the distal ends of the metal members 19 and 20 forming the rear thermopile 17. . And, like the rear thermopile 17, the first metal member 19 'and the second metal member 20'
The flat tip portion 33 'and the bent tip portion 22' face each other, the flat lower end portion 32 'and the bent lower end portion 21' are alternately arranged so as to face each other, and the tip portion and the lower end portion are alternately welded. By connecting in a zigzag manner, a plurality of thermocouple elements are connected in series with a polarity opposite to that of the rear thermocouple row 17 to form a front thermocouple row 18. Further, the junction between the bent front end 22 ′ and the flat front end 33 ′ becomes the hot junction a, and the bent lower end 2
The junction between 1 'and the flat lower end 32' becomes the cold junction b. As shown in FIG. 4, the front thermopile train 18 and the rear thermopile train 17 are sandwiched between a front plate 34 and a rear plate 35,
It is stopped at 6 and positioned. An insulating plate 37 is interposed between the rear thermopile row 17 and the front thermopile row 18, and the rear thermopile row 1
By enclosing 7 in the rear insulating case 38 and enclosing the front thermopile 18 in the front insulating case 39, insulation between the rear thermopile 17 and the front thermopile 18 is ensured. Further, the rear thermopile 17 and the front thermopile 18 are connected in series by a lead wire 40. As shown in FIGS. 1 and 3, the burner 4 is provided with a frame 25 so as to cover the periphery of the combustion surface 5, and a cooling hole 26 is provided in a part below the frame 25. It is opened. The serial thermocouple 13 is attached with the cold junction b facing the cooling hole 26. That is, there is a gap through which air passes between the edge of the cooling hole 26 and the series-type thermocouple 13. The upper part of the frame 25 has a through hole 2
7 is opened. According to the stove 1 having the above-described structure, when the ignition lever 15 is operated, fuel gas is ejected from the entire surface of the four combustion plates 7 and ignited by discharge from electrodes (not shown). Then, the user in front of the appliance is directly heated by the radiant heat from the red hot combustion plate 7. Further, when the heating power switching lever 16 is operated, the high heating power setting at which the fuel gas is ejected from the entire four combustion plates 7 and the lower burner main body 3 are set.
By switching between the setting of the low heating power spouting from only the two surfaces provided at 0, the heating power of the burner 4 can be adjusted according to the user's preference. When the burner 4 burns, the combustion heat of the burner 4 heats the hot junction a of the series thermocouple 13 to generate a thermoelectromotive force, and the blower fan 9 is driven. Then, the blower fan 9 sucks the combustion gas of the burner 4 from the warm air inlet 10 and the external air from the cool air inlet 31, and blows out and emits the mixture from the warm air outlet 8 toward the front of the appliance.
Heat the entire room uniformly with warm air. The series thermocouple 13 is connected to the rear thermocouple train 1
7 and the front thermocouple row 18, so that more thermocouple elements 23 can be provided in a limited space such as the front surface of the combustion plate 7. Therefore, the distance H between the metal members 19 and 20 can be increased while securing the number of thermocouple elements 23 necessary for driving the blower fan 9, so that heat radiation is promoted and the temperature of the cold junction b rises. Can be suppressed, and a thermoelectromotive force can be obtained efficiently. Further, the series-type thermocouple 13 is provided with a small front thermocouple row 18 formed substantially in an L shape inside a large rear thermocouple row 17 formed in a substantially L-shape. The hot junction a of the twin row 17 and the hot junction a of the front thermopile row 18 are easily connected to the combustion surface 5.
It can be installed so as to be equidistant from. Since the temperature of the flame burning on the surface of the combustion plate 7 is determined by the horizontal distance from the combustion plate 7, the hot junction a of the rear thermopile train 17 and the front thermopile train 18 can be easily set to the highest temperature. It can be installed and a thermoelectromotive force can be obtained efficiently. In addition, even if the heating power is adjusted by switching the combustion plate 7 from which the fuel gas is ejected, the hot junction a of the series-type thermocouple 13 is always located at a position heated by the combustion gas. Power can be supplied stably. In addition, since the notch 33a is formed in the flat tip portion 33 to reduce the heat capacity of the hot junction a, the temperature of the hot junction a quickly rises, and the hot The output of the thermocouple 13 improves. The thickness X, ie, the cross-sectional area of the first metal member 19 made of inexpensive material, stainless steel, is increased, and the thickness Y, ie, the cross-sectional area of the second metal member 20, made of expensive material, constantan is increased. By reducing the size, the material cost of the series-type thermocouple 13 can be reduced, and the electric resistance value can be reduced. Accordingly, it is possible to manufacture the high-output series thermocouple 13 at low cost. In other words, in a series-type thermocouple formed by alternately arranging two types of metal plates having different metal types and having substantially the same shape, the thickness of an inexpensive metal plate is increased, and the thickness of an expensive metal plate is reduced. By doing so, a high-output series thermocouple can be obtained at low cost. In particular, the cost merit is great in a combination with a large price difference such as constantan and stainless steel. Further, since the air around the burner 4 flows upward from below due to the draft force generated by the combustion of the burner 4, the frame 25 is provided so as to cover the periphery of the combustion surface 5 of the burner 4. The air around the burner 4 is intensively sucked through the cooling holes 26 opened in the frame 25. And, the cold junction b of this series thermocouple 13
Are arranged facing the cooling holes 26, the cold junction b can be intensively cooled by the flow of air, and a thermoelectromotive force can be obtained efficiently. The air sucked from the cooling hole 26 by the draft force is heated by the burner 4 and smoothly flows upward through the passage hole 27 and the front surface of the burner 4. Since the burner 4 is an all-primary air burner, the combustion performance does not deteriorate even if the periphery of the combustion surface 5 is covered with the frame 25 in this way, but a burner that requires secondary air, such as a Bunsen burner. If
If the frame 25 surrounds the periphery, a position where secondary air is hardly taken in is generated, and the combustion performance deteriorates. Further, by forming a gap having a distance H between the metal members 19 and 20, insulation between the metal members 19 and 20 other than the hot junction a and the cold junction b can be ensured. further,
If the strip-shaped insulator 24 is meanderingly sandwiched between the metal members 19 and 20, this insulation can be reliably performed. Moreover, since the band-shaped insulator 24 can be fixed between the metal members 19 and 20 only by meandering and sandwiching it, it is necessary to provide a fixing member for fixing the insulator 24 between the metal members 19 and 20. And cost increase can be suppressed. Further, the width M of the band-shaped insulator 24 is set to the metal members 19 and 2.
Even if it is sufficiently narrower than the length L, it can be easily fixed between the metal members 19 and 20 by meandering and sandwiching, so that the gap between the metal members 19 and 20 can be sufficiently maintained.
The temperature rise of the cold junction b can be suppressed. Further, since the cool air suction port 31 for sucking the air outside the apparatus is provided above the rear surface of the apparatus, dust on the floor is not sucked from the cool air suction port 31 and is opened directly upward. Because it does not mean that dust floating in the air does not fall into the device. Therefore, fan clogging due to dust can be prevented.
In particular, when the blower fan 9 is driven by such thermal power generation, a large amount of power cannot be obtained as compared with a general power source, and dust clogging has a large effect. It is very useful to prevent dust from entering. Here, the upper side of the back surface of the device means a position higher than an intermediate position in the height direction of the device. Furthermore,
By providing the hot air suction port 10 near the upper side of the burner 4, the combustion gas of the burner 4 flowing upward by the draft force can be efficiently sucked, and the combustion gas passage 11 can be made as short as possible. Blower fan 9
However, an effective heating effect can be obtained even if the driving force is weak. In addition, by providing the hot air outlet 8 below the front of the appliance, warm air can be blown downward in the room, and a more efficient heating effect can be obtained. In addition, cold air inlet 3
By not opening the device 1 directly upward, falling objects such as dust such as paper waste can be prevented from dropping into the apparatus, and can be used safely. Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments at all, and it goes without saying that the present invention can be implemented in various modes without departing from the gist of the present invention. is there. For example, in the present embodiment, the frame 25 is provided so as to cover the entire periphery of the combustion surface 5 of the burner 4, but as shown in FIG. 28 may be provided. In this case, the air and the combustion gas sucked by the draft force do not accumulate in the frame 28, and the flow of the air and the combustion gas can be further smoothed.
Therefore, there is no inconvenience that air suction from the cooling holes 26 is obstructed, and the cold junction b can be cooled well. Of the bent front end portion 22 and the flat front end portion 33 forming the hot junction a, the notch portion 33a is formed only in the flat front end portion 33 to make it thinner. A notch may be formed. Further, a plurality of band-shaped insulators 24 may be interposed between the metal members 19 and 20. Further, the series-type thermocouple 13 is formed by two inner and outer rows of the front thermocouple row 18 and the rear thermocouple row 19, but the present invention is not limited to this, and a plurality of thermocouple rows having different sizes of metal members are used. It is sufficient that the thermocouples are arranged sequentially from the inside to the outside from the small thermopile to the large thermopile. That is, the series-type thermocouple is not limited to a thermocouple formed by arranging thermocouples in two rows, but may be formed by forming thermocouples in multiple rows. As described in detail above, claim 1 of the present invention
According to the infrared stove with a fan described above, the distance between the metal members constituting the series-type thermocouple can be increased while securing the necessary number of thermocouple elements in a limited space. Therefore, there is no problem that heat is hardly dissipated and the temperature of the cold junction rises and it becomes impossible to obtain a high thermoelectromotive force, and the thermoelectromotive force can be obtained efficiently. In addition, since all the hot junctions of the series-type thermocouple can be installed at the position where the temperature is the highest, the thermoelectromotive force can be obtained more efficiently.

【図面の簡単な説明】 【図1】本実施形態としてのファン付赤外線ストーブの
断面概略図である。 【図2】本実施形態としてのファン付赤外線ストーブの
正面図である。 【図3】本実施形態のバーナの正面図である。 【図4】本実施形態の直列型熱電対の斜視図である。 【図5】本実施形態の後熱電対列を構成する第一金属部
材の三面図である。 【図6】本実施形態の後熱電対列を構成する第二金属部
材の三面図である。 【図7】本実施形態の後熱電対列の正面図である。 【図8】本実施形態の後熱電対列に帯状の絶縁体を挟み
込んだ場合の正面図である。 【図9】本実施形態の後熱電対列に帯状の絶縁体を挟み
込んだ場合の断面図である。 【図10】本実施形態の前熱電対列を構成する第一金属
部材の三面図である。 【図11】本実施形態の前熱電対列を構成する第二金属
部材の三面図である。 【図12】別の実施形態のバーナの正面図である。 【図13】従来例としてのファン付赤外線ストーブの断
面概略図である。 【図14】従来例としての直列方熱電対の正面図であ
る。 【図15】従来例としての金属部材の正面図である。 【符号の説明】 1…ストーブ、4…バーナ、5…燃焼面、7…燃焼プレ
ート、9…送風ファン、13…直列型熱電対、17…後
熱電対列、18…前熱電対列、19…第一金属部材、2
0…第二金属部材、21…折曲下端部、22…折曲先端
部、23…熱電対素子、32…平先端部、33…平下端
部、a…温接点、b…冷接点。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view of an infrared stove with a fan as an embodiment. FIG. 2 is a front view of the infrared stove with a fan according to the embodiment. FIG. 3 is a front view of the burner of the embodiment. FIG. 4 is a perspective view of the series thermocouple of the present embodiment. FIG. 5 is a three-view drawing of a first metal member constituting a rear thermopile of the present embodiment. FIG. 6 is a three-view drawing of a second metal member constituting a rear thermopile of the present embodiment. FIG. 7 is a front view of a rear thermopile according to the embodiment. FIG. 8 is a front view of a case where a band-shaped insulator is sandwiched in the rear thermocouple row of the embodiment. FIG. 9 is a cross-sectional view when a band-shaped insulator is sandwiched in the rear thermopile of the present embodiment. FIG. 10 is a three-view drawing of a first metal member constituting the front thermopile of the present embodiment. FIG. 11 is a three-view drawing of a second metal member constituting the front thermopile of the present embodiment. FIG. 12 is a front view of a burner according to another embodiment. FIG. 13 is a schematic sectional view of an infrared stove with a fan as a conventional example. FIG. 14 is a front view of a series thermocouple as a conventional example. FIG. 15 is a front view of a metal member as a conventional example. [Description of Signs] 1 stove, 4 burner, 5 combustion surface, 7 combustion plate, 9 blower fan, 13 series thermocouple, 17 rear thermocouple train, 18 front thermocouple train, 19 ... First metal member, 2
0: second metal member, 21: bent lower end, 22: bent tip, 23: thermocouple element, 32: flat tip, 33: flat lower end, a: hot junction, b: cold junction.

Claims (1)

【特許請求の範囲】 【請求項1】 複数の熱電対素子を直列に接続した直列
型熱電対を赤熱プレート式バーナの燃焼面に対向臨設
し、該直列型熱電対から得られる熱起電力により送風フ
ァンを駆動することによって、該赤熱プレート式バーナ
からの輻射熱に加え温風によっても暖房を行うファン付
赤外線ストーブにおいて、 上記直列型熱電対は、略L字状に形成された二種類の金
属板を交互に複数並べて、その端部を接続してジグザグ
状に連結することにより形成した熱電対列を複数列配列
し、それぞれの温接点が上記燃焼面から等距離となるよ
うに設けられていることを特徴とするファン付赤外線ス
トーブ。
Claims: 1. A series thermocouple, in which a plurality of thermocouple elements are connected in series, is opposed to a combustion surface of an incandescent plate burner, and a thermoelectromotive force obtained from the series thermocouple is used. In the infrared stove with a fan, which drives the blower fan and also heats with hot air in addition to the radiant heat from the glowing plate type burner, the series-type thermocouple includes two types of metal formed in a substantially L shape. A plurality of plates are alternately arranged, and a plurality of thermocouple arrays formed by connecting ends thereof in a zigzag manner are arranged in a plurality of arrays, and each hot junction is provided so as to be equidistant from the combustion surface. An infrared stove with a fan.
JP2001309990A 2001-10-05 2001-10-05 Infrared stove with fan Expired - Fee Related JP3837050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001309990A JP3837050B2 (en) 2001-10-05 2001-10-05 Infrared stove with fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001309990A JP3837050B2 (en) 2001-10-05 2001-10-05 Infrared stove with fan

Publications (2)

Publication Number Publication Date
JP2003121002A true JP2003121002A (en) 2003-04-23
JP3837050B2 JP3837050B2 (en) 2006-10-25

Family

ID=19129048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001309990A Expired - Fee Related JP3837050B2 (en) 2001-10-05 2001-10-05 Infrared stove with fan

Country Status (1)

Country Link
JP (1) JP3837050B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278560A (en) * 2006-04-04 2007-10-25 Paloma Ind Ltd Gas combustion device
US8567386B2 (en) 2011-08-10 2013-10-29 Ty Cox Self-powered air circulating device for use in connection with a radiant heat oven

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278560A (en) * 2006-04-04 2007-10-25 Paloma Ind Ltd Gas combustion device
US8567386B2 (en) 2011-08-10 2013-10-29 Ty Cox Self-powered air circulating device for use in connection with a radiant heat oven

Also Published As

Publication number Publication date
JP3837050B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
US4639213A (en) Confined spaced infrared burner system and method of operation
US20030232300A1 (en) Microcombustion heater having heating surface which emits radiant heat
JP2022554295A (en) gas equipment
JP3837050B2 (en) Infrared stove with fan
JP3837051B2 (en) Infrared stove with fan
JP3871954B2 (en) Infrared stove with fan
JP2003124533A (en) Series thermocouple
JP2003130461A (en) Fan-equipped infrared heater
JP2003114152A (en) Series-type thermocouple
JP2003130460A (en) Fan-equipped infrared heater
JP3704569B2 (en) Manufacturing method of series thermocouple
JP3854886B2 (en) Infrared stove with fan
JP3824552B2 (en) Series thermocouple
JP2003294320A (en) Infrared stove with fan
JP2004156811A (en) Combustion room heating apparatus
JP3511150B2 (en) Series thermocouple
JP3594693B2 (en) Rectifying plate for forced air grill and method of manufacturing the same
JPS6298149A (en) Hot air flow generator
JP4905923B2 (en) Gas combustion equipment
JP2547649Y2 (en) Hot air heater
JP2002267270A (en) Heater
US3392778A (en) Switch mounting arrangement
JP2003042570A (en) Warm air heater
JPS624838Y2 (en)
JP2004270956A (en) Infrared radiation heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150804

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees