JP2003120301A - Cylinder direct injection internal combustion engine - Google Patents

Cylinder direct injection internal combustion engine

Info

Publication number
JP2003120301A
JP2003120301A JP2001316294A JP2001316294A JP2003120301A JP 2003120301 A JP2003120301 A JP 2003120301A JP 2001316294 A JP2001316294 A JP 2001316294A JP 2001316294 A JP2001316294 A JP 2001316294A JP 2003120301 A JP2003120301 A JP 2003120301A
Authority
JP
Japan
Prior art keywords
cylinder
valve
intake
exhaust
anoxic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001316294A
Other languages
Japanese (ja)
Other versions
JP3690329B2 (en
Inventor
Atsushi Terachi
淳 寺地
Toru Noda
徹 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001316294A priority Critical patent/JP3690329B2/en
Publication of JP2003120301A publication Critical patent/JP2003120301A/en
Application granted granted Critical
Publication of JP3690329B2 publication Critical patent/JP3690329B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide a cylinder direct injection internal combustion engine of good fuel consumption using a low cost conventional three-way catalytic converter without NOx trap function. SOLUTION: A cylinder is filled with burned gas to get deficient in oxygen by internal EGR effect while keeping an exhaust valve 7 open until a last stage of a suction stroke. Air and fuel of quantities corresponding to an operating condition are injected and supplied into the cylinder via a two fluid injector 3 in a compression stroke, and combustible gas mixture layer Ga of theoretical air fuel ratio is formed in burned gas Gb in the cylinder and is ignited and burns. Since oxygen is not contained in exhaust gas after combustion, exhaust gas is effectively purified by the conventional three-way catalytic converter. Since a rich spike control is not necessary and pumping loss is reduced, fuel consumption is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、筒内直接噴射式内
燃機関に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylinder direct injection internal combustion engine.

【0002】[0002]

【従来の技術と解決すべき課題】筒内直接噴射式内燃機
関の一例として、特開平10-288039号公報に記載されて
いるものがある。これは圧縮行程後半に筒内に直接燃料
を噴射して点火栓近傍に可燃混合気を偏在させた成層燃
焼を行い、スロットル弁による空気量制御を行うことな
く部分負荷運転およびリーン燃焼運転を実現しようとす
るものである。しかしながら、このような燃焼方式によ
ると、排気ガス中に燃焼に用いられなかった多量の酸素
が存在しているため、理論空燃比付近での燃焼ガスを前
提とする三元触媒を適用することができないという問題
が生じる。
2. Description of the Related Art One example of a direct injection type internal combustion engine in a cylinder is disclosed in Japanese Patent Laid-Open No. 10-288039. In the latter half of the compression stroke, fuel is directly injected into the cylinder to perform stratified combustion in which flammable air-fuel mixture is unevenly distributed near the spark plug, and partial load operation and lean combustion operation are realized without controlling the air amount by the throttle valve. Is what you are trying to do. However, according to such a combustion method, since a large amount of oxygen that has not been used for combustion is present in the exhaust gas, it is possible to apply a three-way catalyst that assumes combustion gas near the stoichiometric air-fuel ratio. The problem arises that you can't.

【0003】前記の問題に対しては、NOxトラップ機
能を有する三元触媒を用いてリーン燃焼運転中のNOx
を触媒に吸着させておき、これをリッチスパイクという
一時的な空燃比濃化制御により浄化処理するものが提案
されている。しかしながら、NOxトラップ触媒を用い
た排気浄化装置は高価であり、また一時的であっても燃
料量を増大させるリッチスパイク制御は燃費悪化の要因
となる。
To solve the above problem, a three-way catalyst having a NOx trap function is used to NOx during lean combustion operation.
It has been proposed that the catalyst be adsorbed on a catalyst and the purification process is performed by a temporary spike control of air-fuel ratio called rich spike. However, the exhaust purification device using the NOx trap catalyst is expensive, and the rich spike control that increases the fuel amount even temporarily causes deterioration of fuel efficiency.

【0004】本発明はこのような問題点に着目してなさ
れたものであり、NOxトラップ触媒を用いることなく
リーン空燃比での運転を継続的に行うことができ、さら
にはポンピングロスを解消しうる筒内直接噴射式内燃機
関を提供することを目的としている。
The present invention has been made in view of these problems, and it is possible to continuously operate at a lean air-fuel ratio without using a NOx trap catalyst, and further to eliminate pumping loss. It is an object of the present invention to provide a direct injection type internal combustion engine having a direct injection type.

【0005】[0005]

【課題を解決するための手段】第1の発明は、筒内に燃
料と空気とを直接噴射供給する噴射弁と、吸入行程にて
筒内を無酸素状態とする無酸素状態形成手段と備え、無
酸素状態とした筒内に圧縮行程にて前記噴射弁により噴
射供給した燃料と空気とにより可燃混合気を形成して層
状燃焼させる。
A first aspect of the present invention comprises an injection valve for directly injecting fuel and air into a cylinder, and an anoxic state forming means for making the inside of the cylinder anoxic during an intake stroke. A combustible air-fuel mixture is formed by the fuel and air injected and supplied by the injection valve in the compression stroke in the cylinder, and stratified combustion is performed.

【0006】第2の発明は、前記噴射弁を、加圧された
燃料と空気とを共通のノズル部から同時に噴射供給する
2流体噴射弁で構成する。
According to a second aspect of the invention, the injection valve is a two-fluid injection valve that simultaneously supplies pressurized fuel and air from a common nozzle section.

【0007】第3の発明は、前記第1の発明の無酸素状
態形成手段を、排気通路から吸気通路へと排気を還流さ
せる排気還流装置で構成し、吸気行程において前記還流
排気を筒内に導入して無酸素状態を形成する。
According to a third aspect of the present invention, the oxygen-free state forming means of the first aspect is constituted by an exhaust gas recirculation device for recirculating exhaust gas from an exhaust passage to an intake passage, and the recirculated exhaust gas is introduced into a cylinder during an intake stroke. Introduced to form anoxic state.

【0008】第4の発明は、前記第1の発明の無酸素状
態形成手段を、吸気弁および排気弁の作動を制御可能な
可変動弁装置で構成し、吸気行程にて吸気弁の開弁を抑
制すると共に排気弁を開弁し続けることにより排気通路
からの排気ガスを筒内に導入して無酸素状態を形成す
る。
According to a fourth aspect of the present invention, the anoxic state forming means of the first aspect is constituted by a variable valve operating device capable of controlling the operation of the intake valve and the exhaust valve, and the intake valve is opened during the intake stroke. The exhaust gas from the exhaust passage is introduced into the cylinder by suppressing the above and continuing to open the exhaust valve to form an anoxic state.

【0009】第5の発明は、前記第1の発明の無酸素状
態形成手段を、排気弁の作動を制御可能な可変動弁装置
で構成し、排気弁を排気行程の初期に閉弁させることに
より既燃焼ガスを筒内に残留させて無酸素状態を形成す
る。
According to a fifth aspect of the present invention, the anoxic condition forming means of the first aspect is constituted by a variable valve operating device capable of controlling the operation of the exhaust valve, and the exhaust valve is closed at the beginning of the exhaust stroke. As a result, the burnt gas is left in the cylinder to form an anoxic state.

【0010】第6の発明は、前記第1の発明の無酸素状
態形成手段を、吸気弁の作動を制御可能な可変動弁装置
で構成し、吸気行程にて吸気弁の開弁を抑制することに
より新気の導入を制限して筒内に無酸素状態を形成す
る。
According to a sixth aspect of the present invention, the anoxic state forming means of the first aspect of the invention is constituted by a variable valve operating device capable of controlling the operation of the intake valve, and restrains the opening of the intake valve during the intake stroke. As a result, the introduction of fresh air is restricted to form an anoxic state in the cylinder.

【0011】第7の発明は、前記第1の発明の無酸素状
態形成手段を、吸気中の酸素を吸着する酸素トラップフ
ィルタで構成し、当該酸素トラップフィルタにより酸素
を除去した新気を導入することで筒内に無酸素状態を形
成する。
In a seventh aspect of the invention, the anoxic state forming means of the first aspect of the invention comprises an oxygen trap filter for adsorbing oxygen in intake air, and fresh air from which oxygen has been removed by the oxygen trap filter is introduced. As a result, an anoxic state is formed in the cylinder.

【0012】第8の発明は、前記層状燃焼を部分負荷運
転時にのみ行い、高負荷運転時には無酸素状態を形成す
ることなく、吸気通路からの新気と噴射燃料とにより形
成した可燃混合気により均質燃焼運転を行わせる。
An eighth aspect of the present invention performs the stratified combustion only during a partial load operation, and does not form an anoxic state during a high load operation by using a combustible mixture formed by fresh air from the intake passage and injected fuel. Allow homogeneous combustion operation.

【0013】[0013]

【作用・効果】第1の発明以下の各発明では、吸入行程
において筒内を無酸素状態としたうえで噴射弁により筒
内に直接噴射した空気と燃料とにより可燃混合気を形成
して層状燃焼させる。これにより部分負荷運転時におい
ても理論空燃比付近での運転を行って排気中の残存酸素
量を充分に抑制できるので、NOxトラップ機能を持た
ない三元触媒(以下「従来型三元触媒」という。)を適
用して低コストで排気浄化を図ることができ、またリッ
チスパイク制御が不要となるので燃費の点でも有利であ
る。
In the following inventions, the cylinder is made oxygen-free in the intake stroke, and a combustible mixture is formed by the air and fuel directly injected into the cylinder by the injection valve to form a stratified mixture. To burn. As a result, even during partial load operation, the operation can be performed near the stoichiometric air-fuel ratio to sufficiently suppress the residual oxygen amount in the exhaust gas. Therefore, a three-way catalyst without a NOx trap function (hereinafter referred to as "conventional three-way catalyst") .) Can be applied to purify exhaust gas at low cost, and rich spike control is unnecessary, which is also advantageous in terms of fuel consumption.

【0014】前記噴射弁としては、空気と燃料を個別に
噴射するものとしてもよいが、第2の発明として示した
ように空気と燃料とを共通のノズル部から同時に噴射供
給する2流体噴射弁を適用することにより、燃料の霧化
と空気との混合を促進してより良好な可燃混合気を形成
することができる。
The injection valve may be one that injects air and fuel separately, but as shown in the second invention, a two-fluid injection valve that simultaneously injects and supplies air and fuel from a common nozzle portion. By applying, it is possible to promote atomization of fuel and mixing with air to form a better combustible mixture.

【0015】前記無酸素状態形成手段は、例えば第3〜
第7の発明として示したように構成することができる。
第3の発明によれば、排気還流により無酸素状態を形成
するので、既存の排気還流装置を有する内燃機関の構成
を大幅に変更することなく本発明を実施することができ
る。第4〜第6の発明によれば、可変動弁装置を介して
吸気弁または排気弁の開閉を制御することで筒内に無酸
素状態を形成するので、可変動弁装置を備えた内燃機関
においては排気還流通路等の付加装置を設けることなく
本発明の実施が可能となる。また、特に第3、第4の発
明では、スロットルによる絞り損失ないしポンピング損
失の発生がなく、燃費性能をより向上させることができ
る。なお第5の発明においてはさらに吸気弁の作動を停
止させるようにしてもよい。
The anoxic state forming means is, for example, the third to
It can be configured as shown as the seventh invention.
According to the third aspect of the invention, since the anoxic state is formed by the exhaust gas recirculation, the present invention can be implemented without significantly changing the configuration of the internal combustion engine having the existing exhaust gas recirculation device. According to the fourth to sixth aspects of the invention, since the anoxic state is formed in the cylinder by controlling the opening / closing of the intake valve or the exhaust valve via the variable valve operating device, an internal combustion engine provided with the variable valve operating device. In the above, the present invention can be implemented without providing an additional device such as an exhaust gas recirculation passage. Further, particularly in the third and fourth aspects of the invention, throttle loss or pumping loss due to the throttle does not occur, and fuel efficiency can be further improved. In addition, in the fifth invention, the operation of the intake valve may be further stopped.

【0016】第7の発明によれば、新気から酸素を除去
する構成であるので、排気還流や可変動弁装置を適用す
ることなく、簡潔な構造で無酸素状態を形成することが
できる。
According to the seventh aspect of the invention, since oxygen is removed from the fresh air, the oxygen-free state can be formed with a simple structure without applying exhaust gas recirculation or a variable valve operating device.

【0017】新気内に充分な量の酸素を必要とする高負
荷運転時には筒内を無酸素状態とする運転を行う必要は
なく、したがって第8の発明として示したように、無酸
素状態を形成して層状燃焼を行わせる運転は部分負荷時
にのみ行うものとしてもよい。
During a high load operation that requires a sufficient amount of oxygen in the fresh air, it is not necessary to perform an operation in which the inside of the cylinder is anoxic. Therefore, as shown as the eighth invention, the anoxic condition is maintained. The operation for forming and performing stratified combustion may be performed only during partial load.

【0018】前記各発明は、火花点火式または圧縮着火
式の何れの方式の内燃機関にも適用可能である。第6の
発明は吸気作用を抑制した状態では高圧縮比を得にくい
ので火花点火方式が適しているが、高圧縮比機関におい
ては本発明により部分負荷での実圧縮比を低減して効率
向上を図ることも可能である。
The above inventions can be applied to any internal combustion engine of either spark ignition type or compression ignition type. The sixth invention is suitable for the spark ignition system because it is difficult to obtain a high compression ratio when the intake action is suppressed, but in a high compression ratio engine, the present invention reduces the actual compression ratio at partial load to improve efficiency. It is also possible to achieve

【0019】ここで、本明細書において「無酸素状態」
とは、必ずしも酸素が完全に排除された状態のみを示す
ものではなく、技術的に可能な限り酸素を除去した状
態、もしくは三元触媒により所期の排気浄化作用が得ら
れる限度で酸素が除去されている状態をも意味するもの
である。
Here, in the present specification, "anoxic state"
The term does not necessarily mean that oxygen is completely eliminated, but it is the state where oxygen is removed as technically possible, or oxygen is removed to the extent that the desired exhaust purification action can be obtained with a three-way catalyst. It also means the state in which it is being operated.

【0020】[0020]

【発明の実施の形態】以下本発明の実施形態を図面に基
づいて説明する。図1は本発明に係る内燃機関を火花点
火式のガソリンエンジンに適用した第1の実施形態の概
略構成を示している。図中の1はピストン、2は燃焼
室、3は燃料と空気とを同時に噴射供給する2流体噴射
弁、4は吸気通路、5は吸気弁、6は排気通路、7は排
気弁、8は点火プラグ、9は吸気弁6または排気弁7の
開閉作動を制御する可変動弁装置、10は運転状態に応
じて2流体噴射弁3による空気−燃料噴射、点火プラグ
8による点火、および可変動弁装置9による吸気弁5ま
たは排気弁7の開閉作動を制御するコントローラであ
る。11と12は前記コントローラ10に運転状態信号
としてエンジン回転数信号と負荷信号を出力する回転数
センサおよび負荷センサである。前記負荷センサ12に
より検出される負荷としてはアクセルペダル操作量やス
ロットル弁開度または燃料供給量等である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of a first embodiment in which an internal combustion engine according to the present invention is applied to a spark ignition type gasoline engine. In the figure, 1 is a piston, 2 is a combustion chamber, 3 is a two-fluid injection valve for simultaneously injecting fuel and air, 4 is an intake passage, 5 is an intake valve, 6 is an exhaust passage, 7 is an exhaust valve, 8 is an A spark plug, 9 is a variable valve operating device that controls the opening / closing operation of the intake valve 6 or the exhaust valve 7, and 10 is air-fuel injection by the two-fluid injection valve 3, ignition by the spark plug 8, and variable operation according to the operating state. It is a controller that controls the opening / closing operation of the intake valve 5 or the exhaust valve 7 by the valve device 9. Reference numerals 11 and 12 are a rotation speed sensor and a load sensor for outputting an engine rotation speed signal and a load signal to the controller 10 as operation state signals. The load detected by the load sensor 12 is an accelerator pedal operation amount, a throttle valve opening degree, a fuel supply amount, or the like.

【0021】前記2流体噴射弁3は、図示しない空気お
よび燃料の供給系統から筒内圧に対抗しうる高圧に加圧
された空気と燃料の供給をうけ、それぞれを所定の割合
で燃焼室2に噴射する。この実施形態では、2流体噴射
弁3からの空気および燃料は理論空燃比の可燃混合気を
形成する。
The two-fluid injection valve 3 is supplied with air and fuel pressurized to a high pressure capable of counteracting the in-cylinder pressure from an air and fuel supply system (not shown), and supplies them to the combustion chamber 2 at a predetermined ratio. To jet. In this embodiment, the air and the fuel from the two-fluid injection valve 3 form a combustible mixture having a stoichiometric air-fuel ratio.

【0022】コントローラ10はCPUおよびその周辺
装置からなるマイクロコンピュータとして構成され、前
記検出運転状態に応じて、吸気行程中に空気と燃料を供
給する均質燃焼制御または圧縮行程から膨張行程のある
期間内に空気と燃料を噴射する成層燃焼制御とを切り換
える。このために、コントローラ10には、運転条件に
応じて均質燃焼と成層燃焼のいずれかの燃焼方式で運転
を行うかを判定する燃焼パターン判定部10aと、均質
燃焼運転時の制御パラメータを決定する均質燃焼制御部
10bと、成層燃焼運転時の制御パラメータを決定する
成層燃焼制御部10cとを備える。
The controller 10 is configured as a microcomputer including a CPU and its peripheral devices, and in accordance with the detected operating state, homogeneous combustion control for supplying air and fuel during the intake stroke or within a period from the compression stroke to the expansion stroke. The stratified charge combustion control for injecting air and fuel is switched to. To this end, the controller 10 determines a combustion pattern determination unit 10a that determines whether to perform operation in homogeneous combustion or stratified combustion according to operating conditions, and a control parameter during homogeneous combustion operation. A homogeneous combustion control unit 10b and a stratified combustion control unit 10c that determines control parameters during stratified combustion operation are provided.

【0023】コントローラ10の燃焼パターン判定部1
0aでは、図2に示したように均質燃焼領域と成層燃焼
領域を割り付けたマップを参照してエンジン回転数と負
荷とから運転領域を判定する。この場合、図示したよう
に中速中負荷以下の運転域では成層燃焼運転を行い、そ
れよりも負荷または回転数が高い運転域では均質燃焼運
転を行う。
Combustion pattern determination unit 1 of controller 10
At 0a, the operating region is determined from the engine speed and the load by referring to the map in which the homogeneous combustion region and the stratified combustion region are allocated as shown in FIG. In this case, as shown in the figure, the stratified charge combustion operation is performed in the operation range of medium speed to medium load or less, and the homogeneous combustion operation is performed in the operation range in which the load or the rotation speed is higher than that.

【0024】均質燃焼領域では均質燃焼制御部10b
が、成層燃焼領域では成層燃焼制御部10cが、それぞ
れ運転状態に応じて燃料の噴射量および噴射時期を演算
し、その結果に基づいて噴射弁8を制御する。このとき
の燃料噴射量および噴射時期の演算手法は任意であり、
例えば噴射量については、吸入空気量とエンジン回転数
に基づいてマップ検索により基本燃料噴射量を定め、こ
れを冷却水温や始動対応などの必要に応じて補正したも
のを制御量とする。なお、成層燃焼運転時の空気および
燃料は基本的に2流体噴射弁3のみから供給されるが、
均質燃焼運転時には他の燃料供給装置、例えば吸気ポー
トに燃料噴射を行う低圧燃料噴射弁から燃料供給を行う
ようにしてもよい。
In the homogeneous combustion region, the homogeneous combustion control section 10b
However, in the stratified combustion region, the stratified combustion control unit 10c calculates the fuel injection amount and the injection timing according to the operating state, and controls the injection valve 8 based on the result. The calculation method of the fuel injection amount and the injection timing at this time is arbitrary,
For example, with respect to the injection amount, a basic fuel injection amount is determined by a map search based on the intake air amount and the engine speed, and the control amount is obtained by correcting the basic fuel injection amount as necessary such as the cooling water temperature and the starting correspondence. The air and fuel during the stratified charge combustion operation are basically supplied only from the two-fluid injection valve 3,
During the homogeneous combustion operation, the fuel may be supplied from another fuel supply device, for example, a low pressure fuel injection valve that injects fuel to the intake port.

【0025】また、均質燃焼制御部10bと成層燃焼制
御部10cは、それぞれの運転領域において可変動弁装
置9を介して吸気弁5または排気弁7の作動を制御す
る。図3は前記可変動弁装置9による弁作動制御パター
ンの一例を示したバルブタイミングチャートである。図
において(a)は均質燃焼運転時、(b)は成層燃焼運転時の
弁作動状態をそれぞれ示している。図示したように、均
質燃焼運転時には排気弁は排気行程域にて、吸気弁は吸
気行程域にて開弁する通常のタイミングで開閉作動する
ように制御される。これに対して、成層燃焼運転時には
排気弁は排気行程の初期から吸気行程の終了に至るまで
開いたままに制御される。このとき、吸気弁は均質燃焼
運転時と同様のタイミングで開閉するか、もしくは閉弁
保持する。
Further, the homogeneous combustion control section 10b and the stratified combustion control section 10c control the operation of the intake valve 5 or the exhaust valve 7 via the variable valve operating device 9 in their respective operating regions. FIG. 3 is a valve timing chart showing an example of a valve operation control pattern by the variable valve operating device 9. In the figure, (a) shows the valve operating state during homogeneous combustion operation, and (b) shows the valve operating state during stratified combustion operation. As shown in the figure, during the homogeneous combustion operation, the exhaust valve is controlled to open / close at the normal timing of opening in the exhaust stroke region and the intake valve in the intake stroke region. On the other hand, during the stratified charge combustion operation, the exhaust valve is controlled to remain open from the beginning of the exhaust stroke to the end of the intake stroke. At this time, the intake valve is opened or closed at the same timing as in the homogeneous combustion operation, or is kept closed.

【0026】次に、前記各燃焼領域での作用について説
明する。均質燃焼領域では、吸入行程にて吸気通路4か
らの新気が筒内に吸入され、この間に噴射弁3から噴射
された燃料および空気により筒内にストイキ付近の空燃
比を有する均質な混合気が形成される。続く圧縮行程の
末期付近で点火プラグ8により混合気に着火され燃焼が
開始される。燃焼行程終了付近で排気弁7が開弁し、排
気行程の末期までに筒内の燃焼ガスは排気通路6を介し
て外部に排出される。理論空燃比域での燃焼であるの
で、このときの排気は従来型三元触媒により容易に浄化
できる。この運転領域での負荷変動に対しては必要に応
じてスロットルバルブにより空気量を制御することで対
応する。高負荷運転域ではスロットルバルブを使用して
もポンピングロスはそれほど大きくない。
Next, the operation in each combustion region will be described. In the homogeneous combustion region, the fresh air from the intake passage 4 is sucked into the cylinder during the intake stroke, and the fuel and air injected from the injection valve 3 during this period cause a homogeneous air-fuel mixture having an air-fuel ratio near the stoichiometry in the cylinder. Is formed. Near the end of the subsequent compression stroke, the mixture is ignited by the spark plug 8 and combustion is started. The exhaust valve 7 opens near the end of the combustion stroke, and the combustion gas in the cylinder is discharged to the outside through the exhaust passage 6 by the end of the exhaust stroke. Since the combustion is in the stoichiometric air-fuel ratio range, the exhaust gas at this time can be easily purified by the conventional three-way catalyst. The load variation in this operating range is dealt with by controlling the air amount with a throttle valve as needed. In the high load operating range, the pumping loss is not so large even if the throttle valve is used.

【0027】一方、成層燃焼領域では、図4の(a)に示
したように吸入行程においても排気弁7が開き続けてい
るので、内部EGR作用により筒内は前サイクルにおけ
る燃焼ガスで満たされ、無酸素状態となる。ついで吸入
行程の終了時期付近で排気弁7が閉ざされ、続く圧縮行
程の途中、所定のタイミングで噴射弁3から運転状態に
応じた量の空気および燃料が燃焼室2に噴射供給され、
これにより図4の(b)に示したように既燃ガスGbで満
たされた燃焼室2の点火プラグ8の付近にストイキの可
燃混合気層Gaが形成される。この可燃混合気には圧縮
上死点付近で点火プラグ8により着火され、膨張行程に
入る。膨張行程の末期には図4の(c)に示したように、
排気弁7が開き筒内の燃焼ガスは排気通路6へと押し出
されるが、次の吸入行程においても排気弁7は開き続い
ているため、排気通路6から燃焼ガスの一部が筒内へと
吸い戻され(図4の(a))、再び前述した無酸素状態と
なる。このサイクルの繰り返しにより運転が継続される
ことにより、排気通路6は常に酸素が存在しない無酸素
状態に保たれるので、リーン燃焼運転でありながらリッ
チスパイク制御は不要であり、安価な従来型三元触媒に
よる排気浄化を行うことが可能である。また比較的負荷
および回転数の低い領域でスロットルバルブを用いずに
負荷変動に対応できるので絞り損失も発生せず、総合し
て大きな燃費改善効果が得られる。
On the other hand, in the stratified charge combustion region, the exhaust valve 7 continues to open even during the intake stroke as shown in FIG. 4 (a), so the internal EGR action fills the cylinder with the combustion gas in the previous cycle. , Become anoxic. Then, the exhaust valve 7 is closed in the vicinity of the end timing of the intake stroke, and during the subsequent compression stroke, the injection valve 3 injects and supplies the combustion chamber 2 with an amount of air and fuel at a predetermined timing,
As a result, a stoichiometric combustible mixture layer Ga is formed in the vicinity of the spark plug 8 of the combustion chamber 2 filled with the burned gas Gb as shown in FIG. This combustible air-fuel mixture is ignited by the ignition plug 8 near the compression top dead center and enters the expansion stroke. At the end of the expansion stroke, as shown in Fig. 4 (c),
The exhaust valve 7 opens and the combustion gas in the cylinder is pushed out to the exhaust passage 6. However, since the exhaust valve 7 continues to open in the next intake stroke as well, part of the combustion gas from the exhaust passage 6 enters the cylinder. It is sucked back ((a) in FIG. 4), and the above-described anoxic state is again established. By continuing the operation by repeating this cycle, the exhaust passage 6 is always kept in an oxygen-free state in which oxygen does not exist. Therefore, the rich spike control is not necessary even though it is the lean combustion operation, and the inexpensive conventional type three It is possible to purify exhaust gas with the original catalyst. In addition, since it is possible to cope with load fluctuations without using a throttle valve in a region where the load and the rotational speed are relatively low, throttling loss does not occur, and a large effect of improving fuel efficiency can be obtained.

【0028】図5に本発明によるNOx低減効果を示
す。従来の筒内直噴式内燃機関において従来型三元触媒
を適用し、中〜低負荷域でリーン燃焼を行うと、この負
荷域では排気中に多量に存在する酸素により触媒が機能
しなくなるため多量のNOxが排出されてしまう。これ
に対して本発明によれば、幅広い負荷域にわたって排気
中の酸素量を抑制して触媒の転化効率を高く維持できる
ので、運転状態にかかわらずNOxの排出量を低減する
ことができる。
FIG. 5 shows the NOx reduction effect according to the present invention. When a conventional three-way catalyst is applied to a conventional direct injection type internal combustion engine and lean combustion is performed in the medium to low load range, a large amount of oxygen in the exhaust gas in this load range causes the catalyst to stop functioning, resulting in a large amount. NOx will be emitted. On the other hand, according to the present invention, since the amount of oxygen in the exhaust gas can be suppressed over a wide load range and the conversion efficiency of the catalyst can be maintained high, the NOx emission amount can be reduced regardless of the operating state.

【0029】次に吸入行程から圧縮行程にかけて筒内を
無酸素状態とするための吸気弁5または排気弁7の開閉
タイミングに関する他の実施形態につき説明する。図3
の(c)は排気弁を排気行程の早い時期に閉弁させるよう
にしたものである。このようにすると排気行程で筒内残
留ガスを圧縮するためのポンピングロスが発生するが、
続く吸入行程時まで筒内を既燃ガスによる無酸素状態と
することができる。この場合、吸気弁は図(a)に示した
ような通常のタイミングで開閉させてもよいし、または
閉弁保持としてもよい。図の(d)は排気弁は通常のタイ
ミングで開閉させる一方、吸気弁を閉弁保持するように
した実施形態である。この場合、排気行程に続く吸気行
程において吸入作用が妨げられることから、筒内は残留
既燃焼ガスで一部満たされた無酸素状態となる。
Next, another embodiment concerning the opening / closing timing of the intake valve 5 or the exhaust valve 7 for making the inside of the cylinder free of oxygen from the intake stroke to the compression stroke will be described. Figure 3
In (c), the exhaust valve is closed at an early stage of the exhaust stroke. In this way, pumping loss for compressing the residual gas in the cylinder occurs in the exhaust stroke,
Until the subsequent suction stroke, the inside of the cylinder can be kept in anoxic state due to burned gas. In this case, the intake valve may be opened / closed at a normal timing as shown in FIG. (A), or may be kept closed. (D) of the figure shows an embodiment in which the exhaust valve is opened and closed at normal timing while the intake valve is held closed. In this case, since the intake action is hindered in the intake stroke following the exhaust stroke, the inside of the cylinder is in an anoxic state in which the remaining burned gas is partially filled.

【0030】前記第7の発明として示したように、吸気
通路4の途中または上流に吸気中の酸素を吸着する酸素
トラップフィルタ(図示せず)を設けて、当該酸素トラ
ップフィルタにより酸素を除去した新気を導入すること
でも無酸素状態を形成できる。この場合、吸気通路に酸
素トラップフィルタをバイパスする通路と切換弁とを設
けて、無酸素状態と通常状態との切換を可能とすること
が望ましい。このような構成によれば可変動弁装置を用
いることなく所期の目的を達成することができる。
As shown in the seventh aspect of the invention, an oxygen trap filter (not shown) for adsorbing oxygen in intake air is provided in the intake passage 4 or upstream thereof, and oxygen is removed by the oxygen trap filter. An anoxic state can also be formed by introducing fresh air. In this case, it is desirable to provide a passage bypassing the oxygen trap filter and a switching valve in the intake passage to enable switching between the anoxic state and the normal state. With such a configuration, the intended purpose can be achieved without using the variable valve operating device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による筒内直噴式内燃機関の一実施形態
の概略を示す縦断面図。
FIG. 1 is a vertical cross-sectional view schematically showing an embodiment of a direct injection type internal combustion engine according to the present invention.

【図2】均質燃焼領域と成層燃焼領域に関する説明図。FIG. 2 is an explanatory diagram regarding a homogeneous combustion region and a stratified combustion region.

【図3】実施形態による成層燃焼運転時の作用説明図。FIG. 3 is an operation explanatory view during stratified charge combustion operation according to the embodiment.

【図4】成層燃焼運転時の吸排気弁の作動パターンを示
すタイミングチャート。
FIG. 4 is a timing chart showing an operation pattern of intake and exhaust valves during stratified charge combustion operation.

【図5】本発明による効果を従来例との比較において示
した説明図。
FIG. 5 is an explanatory diagram showing the effect of the present invention in comparison with a conventional example.

【符号の説明】[Explanation of symbols]

1 ピストン 2 燃焼室 3 2流体噴射弁 4 吸気通路 5 吸気弁 6 排気通路 7 排気弁 8 点火プラグ 9 可変動弁装置 10 コントローラ 11 回転数センサ 12 負荷センサ 1 piston 2 combustion chamber 32 fluid injection valve 4 Intake passage 5 intake valve 6 exhaust passage 7 exhaust valve 8 spark plugs 9 Variable valve device 10 controller 11 Speed sensor 12 Load sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 41/04 330 F02D 41/04 330C F02M 25/07 570 F02M 25/07 570A 67/02 67/02 Fターム(参考) 3G023 AA02 AA05 AA18 AB01 AC01 AC04 AF00 AG01 3G062 AA07 AA10 BA04 BA05 BA09 CA07 DA01 GA04 GA06 3G066 AA02 AA05 AB02 AD12 BA17 BA25 CC46 3G092 AA01 AA06 AA09 AA11 AA17 CB02 DA01 DA02 DA08 DE17S EA01 EA02 EA03 FA17 FA24 GA05 HA03X HA13X HD07X 3G301 HA01 HA02 HA13 HA16 JA02 JA25 KA06 KA09 LA00 LA01 LA07 MA01 MA11 NC02 ND03 NE14 PA01Z PA11Z PB03A PB03Z PD15A PD15Z PE01Z PE03Z ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F02D 41/04 330 F02D 41/04 330C F02M 25/07 570 F02M 25/07 570A 67/02 67/02 F Term (reference) 3G023 AA02 AA05 AA18 AB01 AC01 AC04 AF00 AG01 3G062 AA07 AA10 BA04 BA05 BA09 CA07 DA01 GA04 GA06 3G066 AA02 AA05 AB02 AD12 BA17 BA25 CC46 3G092 GAAHA FA03 FA17 FA03 FA17 FA02 FA17 DA02 DA17 DA02 DA01 DA01 DA02 DA17 DA02 DA17 DA02 DA17 DA02 HD07X 3G301 HA01 HA02 HA13 HA16 JA02 JA25 KA06 KA09 LA00 LA01 LA07 MA01 MA11 NC02 ND03 NE14 PA01Z PA11Z PB03A PB03Z PD15A PD15Z PE01Z PE03Z

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】筒内に燃料と空気とを直接噴射供給する噴
射弁と、吸入行程にて筒内を無酸素状態とする無酸素状
態形成手段と備え、無酸素状態とした筒内に圧縮行程に
て前記噴射弁により噴射供給した燃料と空気とにより可
燃混合気を形成して層状燃焼させることを特徴とする筒
内直接噴射式内燃機関。
1. An injection valve for directly injecting fuel and air into a cylinder, and an anoxic state forming means for making the inside of the cylinder anoxic during an intake stroke, and compressing into the anoxic cylinder. An in-cylinder direct injection internal combustion engine characterized in that a combustible air-fuel mixture is formed by the fuel and air injected and supplied by the injection valve in a stroke to perform stratified combustion.
【請求項2】前記噴射弁は、加圧された燃料と空気とを
共通のノズル部から同時に噴射供給する2流体噴射弁で
ある請求項1に記載の筒内直接噴射式内燃機関。
2. The in-cylinder direct injection internal combustion engine according to claim 1, wherein the injection valve is a two-fluid injection valve that simultaneously supplies pressurized fuel and air from a common nozzle section.
【請求項3】前記無酸素状態形成手段は、排気通路から
吸気通路へと排気を還流させる排気還流装置で構成し、
吸気行程において前記還流排気を筒内に導入して無酸素
状態を形成する請求項1に記載の筒内直接噴射式内燃機
関。
3. The anoxic condition forming means comprises an exhaust gas recirculation device for recirculating exhaust gas from the exhaust passage to the intake passage,
The in-cylinder direct injection internal combustion engine according to claim 1, wherein the recirculated exhaust gas is introduced into the cylinder during an intake stroke to form an anoxic state.
【請求項4】前記無酸素状態形成手段は、吸気弁および
排気弁の作動を制御可能な可変動弁装置で構成し、吸気
行程にて吸気弁の開弁を抑制すると共に排気弁を開弁し
続けることにより排気通路からの排気ガスを筒内に導入
して無酸素状態を形成する請求項1に記載の筒内直接噴
射式内燃機関。
4. The anoxic condition forming means comprises a variable valve operating device capable of controlling the operation of an intake valve and an exhaust valve, and suppresses the opening of the intake valve during the intake stroke and opens the exhaust valve. The in-cylinder direct injection internal combustion engine according to claim 1, wherein the exhaust gas from the exhaust passage is introduced into the cylinder by continuing the operation to form an anoxic state.
【請求項5】前記無酸素状態形成手段は、排気弁の作動
を制御可能な可変動弁装置で構成し、排気弁を排気行程
の初期に閉弁させることにより既燃焼ガスを筒内に残留
させて無酸素状態を形成する請求項1に記載の筒内直接
噴射式内燃機関。
5. The anoxic condition forming means is composed of a variable valve device capable of controlling the operation of an exhaust valve, and the burned gas remains in the cylinder by closing the exhaust valve at the beginning of the exhaust stroke. The in-cylinder direct injection internal combustion engine according to claim 1, wherein the in-cylinder state is formed by allowing the oxygen-free state.
【請求項6】前記無酸素状態形成手段は、吸気弁の作動
を制御可能な可変動弁装置で構成し、吸気行程にて吸気
弁の開弁を抑制することにより新気の導入を制限して筒
内に無酸素状態を形成する請求項1に記載の筒内直接噴
射式内燃機関。
6. The anoxic condition forming means comprises a variable valve operating device capable of controlling the operation of an intake valve, and restricts the introduction of fresh air by suppressing the opening of the intake valve during the intake stroke. The in-cylinder direct injection internal combustion engine according to claim 1, wherein an oxygen-free state is formed in the cylinder.
【請求項7】前記無酸素状態形成手段は、吸気中の酸素
を吸着する酸素トラップフィルタで構成し、当該酸素ト
ラップフィルタにより酸素を除去した新気を導入するこ
とで筒内に無酸素状態を形成する請求項1に記載の筒内
直接噴射式内燃機関。
7. The anoxic state forming means is composed of an oxygen trap filter that adsorbs oxygen in intake air, and introduces fresh air from which oxygen has been removed by the oxygen trap filter to create an anoxic state in the cylinder. The in-cylinder direct injection internal combustion engine according to claim 1, which is formed.
【請求項8】前記層状燃焼は部分負荷運転時にのみ行
い、高負荷運転時には無酸素状態を形成することなく、
吸気通路からの新気と噴射燃料とにより形成した可燃混
合気により均質燃焼運転を行わせる請求項1に記載の筒
内直接噴射式内燃機関。
8. The stratified combustion is performed only during partial load operation, and during high load operation without forming an anoxic state,
The in-cylinder direct injection internal combustion engine according to claim 1, wherein a homogeneous combustion operation is performed by a combustible mixture formed by fresh air from the intake passage and injected fuel.
JP2001316294A 2001-10-15 2001-10-15 In-cylinder direct injection internal combustion engine Expired - Lifetime JP3690329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001316294A JP3690329B2 (en) 2001-10-15 2001-10-15 In-cylinder direct injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001316294A JP3690329B2 (en) 2001-10-15 2001-10-15 In-cylinder direct injection internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003120301A true JP2003120301A (en) 2003-04-23
JP3690329B2 JP3690329B2 (en) 2005-08-31

Family

ID=19134330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001316294A Expired - Lifetime JP3690329B2 (en) 2001-10-15 2001-10-15 In-cylinder direct injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP3690329B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080370A (en) * 2009-10-05 2011-04-21 Daimler Ag Control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080370A (en) * 2009-10-05 2011-04-21 Daimler Ag Control device for internal combustion engine

Also Published As

Publication number Publication date
JP3690329B2 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
US6499456B1 (en) Cylinder injection engine and control apparatus and method thereof
US6622690B2 (en) Direct injection type internal combustion engine and controlling method therefor
US6443108B1 (en) Multiple-stroke, spark-ignited engine
US7168409B2 (en) Controller for direct injection internal combustion engine
US20100242901A1 (en) Control of internal combustion engine
US20040244766A1 (en) Control device and control method for direct injection engine
US6390056B1 (en) Method for operating a spark ignition engine with direct fuel injection
JP2001152919A (en) Compressed self-ignition gasoline engine
JP2004156473A (en) Control device of internal combustion engine having variable valve system
KR20040074595A (en) Control device for supercharged engine
JP3496593B2 (en) Control device for spark ignition type direct injection engine
JP4232590B2 (en) Combustion control system for compression ignition internal combustion engine
JP2004257331A (en) Engine capable of compression self-ignition operation
JP2001336435A (en) Six-cycle internal combustion engine
JP3690329B2 (en) In-cylinder direct injection internal combustion engine
JP4078737B2 (en) In-cylinder injection type 4-cycle engine
JP3763177B2 (en) Diesel engine control device
JP2005054676A (en) Spark ignition type engine
JP2005105974A (en) Controller of spark ignition engine
JP3711941B2 (en) Control device for spark ignition engine
JP2004232577A (en) Engine capable of compressed self-ignition operation
JP4123122B2 (en) Control device for spark ignition engine
JP3312514B2 (en) In-cylinder internal combustion engine
JP2004027959A (en) Compressive self-ignition-type internal combustion engine
JP3894083B2 (en) Control device for spark ignition engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5