JP2003119284A - Method for producing polyimide resin - Google Patents

Method for producing polyimide resin

Info

Publication number
JP2003119284A
JP2003119284A JP2001318818A JP2001318818A JP2003119284A JP 2003119284 A JP2003119284 A JP 2003119284A JP 2001318818 A JP2001318818 A JP 2001318818A JP 2001318818 A JP2001318818 A JP 2001318818A JP 2003119284 A JP2003119284 A JP 2003119284A
Authority
JP
Japan
Prior art keywords
polyimide resin
reaction
plate type
condensed water
polyamic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001318818A
Other languages
Japanese (ja)
Inventor
Wataru Okada
亘 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001318818A priority Critical patent/JP2003119284A/en
Publication of JP2003119284A publication Critical patent/JP2003119284A/en
Pending legal-status Critical Current

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a polyimide resin, which method can produce industrially advantageously a polyimide resin, which is of very high utility as electric and electronic materials, is excellent in thermal resistance and moldability, and is stable in quality. SOLUTION: The method for producing a polyimide resin comprises submitting a polyamic acid solution, which is prepared by subjecting a tetracarboxylic acid dianhydride and a diamine to a ring-opening polyaddition reaction in an organic polar solvent, thermally to an imide ring-closure reaction and removal of the by-produced condensed water, in a reactor equipped internally with a multiplate disc dryer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、テトラカルボン酸
二無水物とジアミンを有機極性溶媒中で開環重付加反応
させて得られるポリアミド酸溶液を、熱的にイミド閉環
反応と高分子量化を短時間で効率的に行うことが可能な
ポリイミド樹脂の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a polyamic acid solution obtained by subjecting a tetracarboxylic dianhydride and a diamine to a ring-opening polyaddition reaction in an organic polar solvent, to thermally conduct an imide ring-closure reaction and to increase the molecular weight. The present invention relates to a method for producing a polyimide resin that can be efficiently performed in a short time.

【0002】[0002]

【従来の技術】ポリイミド樹脂は、耐熱性が高く難燃性
で電気絶縁性に優れていることから電気、電子材料の分
野において幅広く使用されている。具体的にはフィルム
としてフレキシブル印刷配線板や耐熱性接着テープの基
材に、樹脂ワニスとして半導体の絶縁皮膜、保護皮膜な
どに使用されている。しかし、ポリイミド樹脂は吸湿性
が高く、耐熱性に優れている反面不溶不融であったり極
めて融点が高く、成形加工性の点で決して使いやすい材
料とはいえなかった。そこで近年になり、これら欠点を
克服した吸湿性が低く、耐熱性や成形加工性に優れた有
機溶剤に可溶なポリイミド樹脂が様々に提案されてい
る。
2. Description of the Related Art Polyimide resins are widely used in the fields of electric and electronic materials because of their high heat resistance, flame retardancy and excellent electric insulation. Specifically, it is used as a film for base materials of flexible printed wiring boards and heat-resistant adhesive tapes, and as a resin varnish for insulating films and protective films of semiconductors. However, the polyimide resin has high hygroscopicity and excellent heat resistance, but it is insoluble and infusible or has a very high melting point, so that it cannot be said to be a material that is easy to use in terms of moldability. Therefore, in recent years, various polyimide resins have been proposed which overcome these drawbacks, have low hygroscopicity, and are soluble in an organic solvent and have excellent heat resistance and molding processability.

【0003】従来、有機溶剤に可溶なポリイミド樹脂の
製造方法としては、テトラカルボン酸二無水物とジアミ
ンを有機極性溶媒中で公知の方法で反応して得られるポ
リアミド酸溶液を、常圧下において加熱し、疎水性溶媒
との共沸で副生する縮合水を留去しながらイミド閉環反
応と高分子量化を進行させる溶液熱閉環法(例えば特開
平5−33128号公報、特開平6−80777号公
報)が一般に知られている。しかし、従来の溶液熱閉環
法においては、加熱初期段階で酸アミド結合の脱水閉環
により副生する縮合水を系外に除去することができず、
加水分解によりポリマの重合活性が阻害されるといった
危険性や、また、充分に高分子量化が行えないために材
料としての機械的特性が低下し、品質不良を起こすとい
った問題があった。更には、工程に要する時間も長く工
業的にも非常に不利であった。
Conventionally, as a method for producing a polyimide resin soluble in an organic solvent, a polyamic acid solution obtained by reacting a tetracarboxylic dianhydride and a diamine in an organic polar solvent by a known method is used under normal pressure. A solution thermal cyclization method in which an imide ring closure reaction and a high molecular weight are promoted while heating and distilling off condensed water by-produced by azeotropy with a hydrophobic solvent (for example, JP-A-5-33128 and JP-A-6-80777). (Publication number) is generally known. However, in the conventional solution thermal cyclization method, it is not possible to remove the condensed water by-produced by dehydration cyclization of the acid amide bond to the outside of the system in the initial stage of heating,
There is a risk that the polymerization activity of the polymer may be hindered by hydrolysis, and that the mechanical properties of the material may be deteriorated due to insufficient high molecular weight, resulting in poor quality. Furthermore, the time required for the process is long, which is very disadvantageous industrially.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来のこれ
ら問題点を解決するためになされたもので、その目的と
するところは、耐熱性や成形加工性に優れ、かつ品質が
安定した、電気・電子材料の分野に好適な、ポリイミド
樹脂を短時間で効率的に製造する方法を提供することに
ある。
SUMMARY OF THE INVENTION The present invention has been made to solve these problems in the prior art, and its purpose is to provide excellent heat resistance and molding processability, and stable quality. It is intended to provide a method for efficiently producing a polyimide resin in a short time, which is suitable for the field of electric / electronic materials.

【0005】[0005]

【課題を解決するための手段】即ち本発明は、テトラカ
ルボン酸二無水物とジアミンを有機極性溶媒中で開環重
付加反応させて得られるポリアミド酸溶液を、多板型デ
ィスクドライヤーを内装した反応器を用いて、熱的にイ
ミド閉環反応と副生する縮合水の除去を行うことを特徴
とするポリイミド樹脂の製造方法である。
That is, according to the present invention, a polyamic acid solution obtained by subjecting a tetracarboxylic acid dianhydride and a diamine to a ring-opening polyaddition reaction in an organic polar solvent is equipped with a multi-plate type disc dryer. A method for producing a polyimide resin, which comprises thermally removing imide ring closure reaction and condensation water by-produced by using a reactor.

【0006】[0006]

【発明の実施の形態】本発明を適用するポリイミド樹脂
としては、有機極性溶媒中でテトラカルボン酸二無水物
とジアミンを熱的にイミド閉環化反応させて得られる有
機溶剤に可溶なポリイミド樹脂が好ましく、ここで用い
るテトラカルボン酸二無水物としては、4,4’−オキ
シジフタル酸二無水物、3,3’,4,4’−ベンゾフ
ェノンテトラカルボン酸二無水物、3,3’,4,4’
−ビフェニルテトラカルボン酸二無水物、3,3’,
4,4’−ジフェニルスルホンテトラカルボン酸二無水
物、無水ピロメリット酸等が挙げられ、1種又は2種以
上を組み合わせて使用することができる。
BEST MODE FOR CARRYING OUT THE INVENTION As a polyimide resin to which the present invention is applied, an organic solvent-soluble polyimide resin obtained by thermally imide-cyclizing tetracarboxylic dianhydride and diamine in an organic polar solvent The tetracarboxylic acid dianhydride used here is preferably 4,4′-oxydiphthalic acid dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid dianhydride, 3,3 ′, 4. , 4 '
-Biphenyltetracarboxylic dianhydride, 3,3 ',
4,4'-diphenylsulfone tetracarboxylic dianhydride, pyromellitic dianhydride, etc. are mentioned, and they can be used singly or in combination of two or more.

【0007】また、ここで用いるジアミン成分として
は、1,3−ビス(3−アミノフェノキシ)ベンゼン、
2,2’−ビス(4−(4−アミノフェノキシ)フェニ
ル)プロパン、2,5−ジメチル−p−フェニレンジア
ミン、2,4−ジメチル−m−フェニレンジアミン、
2,2’−ビス(4−アミノフェノキシ)ヘキサフルオ
ロプロパン等の芳香族ジアミン類、α,ω−ビス(3−
アミノプロピル)ポリジメチルシロキサン等のポリジメ
チルシロキサン構造を有するジアミン化合物を挙げるこ
とができる。これらのジアミン類も1種又は2種以上を
組み合わせ使用することができる。
As the diamine component used here, 1,3-bis (3-aminophenoxy) benzene,
2,2′-bis (4- (4-aminophenoxy) phenyl) propane, 2,5-dimethyl-p-phenylenediamine, 2,4-dimethyl-m-phenylenediamine,
Aromatic diamines such as 2,2′-bis (4-aminophenoxy) hexafluoropropane, α, ω-bis (3-
Examples thereof include diamine compounds having a polydimethylsiloxane structure such as aminopropyl) polydimethylsiloxane. These diamines can also be used alone or in combination of two or more.

【0008】また、得られるポリイミド樹脂の分子量を
制御するために、エンドキャップ剤として少量の酸無水
物や芳香族アミンを添加して反応を行うことも可能であ
る。エンドキャップ剤である酸無水物としては、無水フ
タル酸、無水マレイン酸、無水ナジック酸等が、芳香族
アミンとしては、p−メチルアニリン、p−メトキシア
ニリン、p−フェノキシアニリン等が挙げられる。これ
らエンドキャップ剤である酸無水物、又は芳香族アミン
の添加量は5モル%以下であることが好ましい。5モル
%を越えると、得られるポリイミド樹脂の分子量が著し
く低下し、耐熱性や機械的特性に問題を生じる。
Further, in order to control the molecular weight of the obtained polyimide resin, it is possible to carry out the reaction by adding a small amount of acid anhydride or aromatic amine as an end cap agent. Examples of acid anhydrides that are end-capping agents include phthalic anhydride, maleic anhydride, and nadic anhydride, and examples of aromatic amines include p-methylaniline, p-methoxyaniline, and p-phenoxyaniline. The addition amount of the acid anhydride or aromatic amine that is the end cap agent is preferably 5 mol% or less. When it exceeds 5 mol%, the molecular weight of the obtained polyimide resin is remarkably reduced, and problems occur in heat resistance and mechanical properties.

【0009】重縮合反応における酸成分とアミン成分の
当量比は、得られるポリアミド酸の分子量を決定する重
要な因子である。一般に、ポリマの分子量と機械的性質
の間に相関があることは良く知られており、分子量が大
きいほど機械的性質が優れている。従って、実用的に優
れた強度のポリイミド樹脂を得るためには、ある程度高
分子量であることが必要である。本発明では、使用する
酸成分とアミン成分の当量比を特に制限はしないが、ア
ミン成分に対する酸性分の当量比が0.90〜1.06
の範囲にあることが好ましい。0.90未満では、分子
量が低くて脆くなるため機械的強度が弱くなる。また、
1.06を越えると、未反応のカルボン酸が加熱時に脱
炭酸してガス発生、発泡の原因となり好ましくないこと
がある。
The equivalent ratio of the acid component and the amine component in the polycondensation reaction is an important factor that determines the molecular weight of the polyamic acid obtained. It is generally well known that there is a correlation between the molecular weight and the mechanical properties of polymers, and the higher the molecular weight, the better the mechanical properties. Therefore, in order to obtain a polyimide resin having practically excellent strength, it is necessary to have a high molecular weight to some extent. In the present invention, the equivalent ratio of the acid component and the amine component used is not particularly limited, but the equivalent ratio of the acidic component to the amine component is 0.90 to 1.06.
It is preferably in the range of. When it is less than 0.90, the molecular strength is low and the material becomes brittle, resulting in weak mechanical strength. Also,
If it exceeds 1.06, unreacted carboxylic acid may be decarboxylated during heating and cause gas generation and foaming, which is not preferable.

【0010】テトラカルボン酸二無水物とジアミンとの
反応は、有機極性溶媒中で公知の方法で行われる。有機
極性溶媒としては、N,N−ジメチルホルムアミド、
N,N−ジメチルアセトアミド、N−メチル−2−ピロ
リドン、テトラヒドロフラン、ジエチレングリコールジ
メチルエーテル、ジエチレングリコールジエチルエーテ
ル、シクロヘキサノン、1,4−ジオキサン等の非プロ
トン性極性溶媒類が挙げられ、1種類又は2種類以上を
組み合わせて用いてもよい。この時、上記非プロトン性
極性溶媒と相溶性がある非極性溶媒を混合して使用して
も良い。トルエン、エチルベンゼン、キシレン、メシチ
レン、ソルベントナフサ等の芳香族炭化水素類が良く使
用される。混合溶媒における非極性溶媒の割合について
は、溶媒の溶解度が低下し、反応して得られるポリアミ
ド酸樹脂が析出しない範囲であれば、攪拌装置能力や溶
液粘度等の樹脂性状に応じて任意に設定することができ
る。
The reaction between the tetracarboxylic dianhydride and the diamine is carried out by a known method in an organic polar solvent. As the organic polar solvent, N, N-dimethylformamide,
Aprotic polar solvents such as N, N-dimethylacetamide, N-methyl-2-pyrrolidone, tetrahydrofuran, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, cyclohexanone, and 1,4-dioxane can be mentioned, and one or more types can be used. You may use it in combination. At this time, a non-polar solvent compatible with the aprotic polar solvent may be mixed and used. Aromatic hydrocarbons such as toluene, ethylbenzene, xylene, mesitylene, and solvent naphtha are often used. Regarding the proportion of the non-polar solvent in the mixed solvent, the solubility of the solvent is lowered, so long as the polyamic acid resin obtained by the reaction does not precipitate, it is arbitrarily set according to the resin properties such as agitator capacity and solution viscosity. can do.

【0011】テトラカルボン酸二無水物とジアミンとの
反応は、良く乾燥したジアミン成分を脱水精製した前述
反応溶媒に溶解し、これに閉環率98%、より好ましく
は99%以上の良く乾燥したテトラカルボン酸二無水物
を添加して、40℃以下、より好ましくは30℃以下の
温度で2〜10時間反応を進める。またこの時、溶媒中
におけるテトラカルボン酸二無水物とジアミン両成分の
濃度は適宜選択することができるが、10〜30重量%
程度にすることが適当である。濃度が10重量%に満た
ない場合は製品歩留まりが低下し経済的ではなく、ま
た、30重量%を越えると溶液粘度が高くなり攪拌装置
への負荷が大きくなるばかりか、均一反応が行えない場
合がある。
The reaction between the tetracarboxylic dianhydride and the diamine is carried out by dissolving a well-dried diamine component in the aforementioned dehydrated and purified reaction solvent, and adding a ring-closing ratio of 98%, more preferably 99% or more to the well-dried tetraamine. Carboxylic dianhydride is added, and the reaction is allowed to proceed for 2 to 10 hours at a temperature of 40 ° C or lower, more preferably 30 ° C or lower. At this time, the concentrations of both the tetracarboxylic dianhydride and the diamine components in the solvent can be appropriately selected, but they are 10 to 30% by weight.
It is appropriate to set the degree. If the concentration is less than 10% by weight, the product yield is reduced and it is not economical, and if it exceeds 30% by weight, not only does the solution viscosity increase and the load on the stirrer increases, but uniform reaction cannot be performed. There is.

【0012】このようにして得たポリアミド酸溶液を、
多板型ディスクドライヤーを内装した反応器に移送し、
副生する縮合水を効率的に除去しながら熱的にイミド閉
環反応と高分子量化を行う。この時、多板型ディスクド
ライヤーを内装した反応器に供給するポリアミド酸溶液
には、縮合水を共沸で留去するための疎水性溶媒をあら
かじめ添加しておくことが好ましい。共沸で水を留去す
るための疎水性溶媒としては、ジクロルベンゼンが一般
に良く知られているが、エレクトロニクス用としては塩
素成分が混入する恐れがあり、好ましくはトルエン、エ
チルベンゼン、キシレン、メシチレン、ソルベントナフ
サ等の前記芳香族炭化水素類を使用する。その添加量に
ついてはポリアミド酸及びポリアミド酸を脱水閉環して
得られるポリイミド樹脂が析出しない範囲であれば任意
に設定することができる。疎水性溶媒を添加しない場合
は、脱水閉環反応により副生した縮合水を反応溶液から
十分に留去することができず、酸アミド結合が加水分解
を引き起こす恐れがあり、イミド閉環反応を阻害するば
かりか、重合活性をも低下させ、得られるポリイミド樹
脂の機械的物性にも悪影響を与える場合がある。
The polyamic acid solution thus obtained is
Transferred to a reactor equipped with a multi-plate type disk dryer,
The imide ring-closure reaction and the increase in molecular weight are thermally performed while efficiently removing the condensed water generated as a by-product. At this time, it is preferable to add a hydrophobic solvent for distilling condensed water azeotropically in advance to the polyamic acid solution supplied to the reactor equipped with the multi-plate type disk dryer. As a hydrophobic solvent for azeotropically distilling off water, dichlorobenzene is generally well known, but for electronics use, chlorine components may be mixed, and preferably toluene, ethylbenzene, xylene, mesitylene. , The above aromatic hydrocarbons such as solvent naphtha are used. The addition amount can be arbitrarily set as long as it does not cause precipitation of the polyamic acid and the polyimide resin obtained by dehydration ring closure of the polyamic acid. If a hydrophobic solvent is not added, the condensation water produced as a byproduct of the dehydration ring closure reaction cannot be sufficiently distilled off from the reaction solution, and the acid amide bond may cause hydrolysis, which hinders the imide ring closure reaction. In addition, the polymerization activity may be lowered and the mechanical properties of the resulting polyimide resin may be adversely affected.

【0013】本発明において用いる多板型ディスクドラ
イヤーを内装した反応器は、発生した縮合水と疎水性溶
媒の共沸物より縮合水だけを分離除去するセパレーター
を装備するものがより好ましい。多板型ディスクドライ
ヤーを内装した反応器がセパレーターを装備しない場
合、処理の進行に伴って系内の反応液は高濃縮・高粘度
化し、ポンプ類への負荷が大きくなるばかりか、プロセ
ス配管の内壁にスケールが付着して閉塞させてしまう恐
れや、熱交換面であるディスク表面上にスケールが堆積
し装置の伝熱効率をも低下させてしまう危険性がある。
The reactor equipped with the multi-plate type disk dryer used in the present invention is more preferably equipped with a separator for separating and removing only the condensed water from the azeotrope of the generated condensed water and the hydrophobic solvent. If the reactor equipped with the multi-plate type disk dryer does not have a separator, the reaction liquid in the system becomes highly concentrated and highly viscous as the treatment progresses, not only increasing the load on the pumps but also the process piping. There is a risk that the scale will adhere to the inner wall and block it, or that the scale will be deposited on the surface of the disk, which is the heat exchange surface, and the heat transfer efficiency of the device will be reduced.

【0014】更に本発明において用いる多板型ディスク
ドライヤーを内装した反応器は、系内を減圧雰囲気に保
持することが可能なケーシングと真空吸引手段を有する
ものが好ましい。上述したポリアミド酸溶液を多板型デ
ィスクドライヤーを内装した反応器を用いて処理を行う
に際して、イミド閉環反応と発生する縮合水の除去を、
減圧条件下で行うことにより、縮合水の除去効率を飛躍
的に向上させることができる。反応器内の圧力は35k
Pa〜95kPaの減圧状態に制御することが好まし
い。圧力が35kPaに満たない場合は、溶媒の沸点が
著しく低下して液温が上がらないため、実用的な反応速
度を得ることができず、95kPaを越える場合は常圧
(大気圧)下での処理と比べ顕著な優位性を見出すこと
はできない。
Further, the reactor equipped with the multi-plate type disk dryer used in the present invention preferably has a casing capable of maintaining a reduced pressure atmosphere in the system and a vacuum suction means. When the above-mentioned polyamic acid solution is treated using a reactor equipped with a multi-plate type disk dryer, the imide ring-closing reaction and the removal of condensed water generated are performed.
By performing the treatment under reduced pressure, the efficiency of removing the condensed water can be dramatically improved. Pressure in the reactor is 35k
It is preferable to control to a reduced pressure state of Pa to 95 kPa. When the pressure is less than 35 kPa, the boiling point of the solvent is significantly lowered and the liquid temperature does not rise, so that a practical reaction rate cannot be obtained, and when it exceeds 95 kPa, the temperature under normal pressure (atmospheric pressure) No significant advantage over treatment can be found.

【0015】公知の反応器において合成された上述のポ
リアミド酸溶液は、本発明で用いられる多板型ディスク
ドライヤーを内装した反応器に移送され、その後、予め
加熱しておいたディスク表面上に循環供給ラインを通じ
て吹き付けらる。ディスク表面に接触したポリアミド酸
溶液は、イミド閉環反応を起こし、発生した縮合水は疎
水性溶媒との共沸で急速に系外に除去される。この時用
いられるディスクの伝熱面積及び枚数について特に限定
はなく、被処理物であるポリアミド酸の容量や発生する
縮合水量に応じて、蒸発効率が最良となるように任意に
選択することができる。
The above-mentioned polyamic acid solution synthesized in a known reactor is transferred to a reactor equipped with a multi-plate type disc dryer used in the present invention, and then circulated on a disc surface which has been preheated. Spray through the supply line. The polyamic acid solution brought into contact with the disk surface causes an imide ring closure reaction, and the generated condensed water is rapidly removed from the system by azeotroping with a hydrophobic solvent. The heat transfer area and the number of disks used at this time are not particularly limited, and can be arbitrarily selected in accordance with the capacity of the polyamic acid as the object to be treated and the amount of condensed water generated so that the evaporation efficiency becomes the best. .

【0016】多板型ディスクドライヤーの具体的な操作
条件については、ディスク表面の伝熱面温度を80℃〜
250℃の範囲に設定することが好ましい。温度が80
℃に満たない場合は実用的な反応速度が得られ難く、2
50℃を越える温度ではディスク表面へのスケールの堆
積や、樹脂の着色、副反応等が生じ、いずれの場合も好
ましくない。
Regarding the specific operating conditions of the multi-plate type disk dryer, the heat transfer surface temperature of the disk surface is from 80 ° C to
It is preferable to set in the range of 250 ° C. Temperature is 80
If it is less than ℃, it is difficult to obtain a practical reaction rate.
If the temperature exceeds 50 ° C., deposition of scale on the disk surface, coloring of the resin, side reaction, etc. occur, which is not preferable in any case.

【0017】また、ディスクの回転速度は2rpm〜5
0rpmの範囲で運転することが好ましい。回転速度が
2rpmに満たない場合はディスク表面での反応液の滞
留時間が長過ぎて、スケール付着の原因となる恐れがあ
り、50rpmを越える回転速度では反応液との接触時
間が短すぎるため、イミド閉環反応が充分に行えないば
かりか縮合水の除去すら困難となり、加水分解、重合活
性の低下等、ポリイミド樹脂の品質に影響を及ぼし、い
ずれの場合も好ましくない。
The rotation speed of the disk is 2 rpm to 5 rpm.
It is preferable to operate in the range of 0 rpm. If the rotation speed is less than 2 rpm, the residence time of the reaction solution on the disk surface is too long, which may cause scale adhesion. At a rotation speed of more than 50 rpm, the contact time with the reaction solution is too short. Not only the imide ring-closure reaction cannot be sufficiently performed, but even removal of condensed water becomes difficult, which affects the quality of the polyimide resin such as hydrolysis and deterioration of polymerization activity.

【0018】本発明で用いられる反応器に内装される多
板型ディスクドライヤーには市販品を供することもで
き、例えば(株)西村鉄工所製のCDドライヤー等が挙
げられる。
A commercially available product may be used as the multi-plate type disk dryer incorporated in the reactor used in the present invention, and examples thereof include a CD dryer manufactured by Nishimura Iron Works Co., Ltd.

【0019】更に図1の設備及びフロー概略図、及び図
2の多板型ディスクドライヤーを内装した反応器の断面
図を用いて、本発明の製造方法を詳細に説明する。テト
ラカルボン酸二無水物とジアミンを反応器1(1)で反
応してポリアミド酸溶液を得る。次いで得られたポリア
ミド酸溶液を、移送ポンプ(2)により多板型ディスク
ドライヤーを内装した反応器2(3)の混合循環槽
(4)に供給する。その後、ポリアミド酸溶液は循環供
給ポンプ(5)で供給ノズル(6)の先端より中空ディ
スク(7)の伝熱面に吹き付けられ、ディスクに付着し
なかったポリアミド酸溶液は混合循環槽(4)へと落下
する。この時、中空回転ディスク(7)は、支柱(8)
の頂部間に渡された梁上に固定した軸受け(9)に支持
された回転自在な円筒構造の回転軸(10)を中心軸と
して電動モーター(10)で回転駆動させておく。ま
た、中空ディスク(7)及び回転軸(10)には、あら
かじめ加熱蒸気を蒸気入口(12)及びドレイン出口
(13)を通じて循環させておき、所定温度に調整して
おく。ディスク表面に吹き付けられたポリアミド酸溶液
は、伝熱面で加熱されて、イミド閉環反応を起こし縮合
水を発生する。発生した縮合水とポリアミド酸溶液中の
疎水性溶媒はディスク表面で共沸し、蒸発槽(14)内
でベーパーとなる。発生した疎水性溶媒と縮合水の共沸
物であるベーパーは、ベーパー配管(15)を通じて凝
縮器(16)にて冷却液化後、凝縮液配管(17)を通
りセパレーター(18)にて貯留される。セパーレータ
ー(18)内に貯留した凝縮液は、比重差により疎水性
溶媒と縮合水に上下二層分離し、縮合水だけを排出口
(19)より抜き出しながら、疎水性溶媒を回収配管
(20)を通じて反応器2(3)に回収する。減圧下で
処理を行う場合については、真空ポンプ(21)にて反
応器2(3)の系内を減圧状態にして処理を行う。以上
の工程を縮合水の発生が確認できなくなるまで繰り返し
行い反応を完結させ、ポリイミド樹脂溶液を得る。
Further, the production method of the present invention will be described in detail with reference to the equipment and flow schematic diagram of FIG. 1 and the cross-sectional view of the reactor incorporating the multi-plate type disk dryer of FIG. Tetracarboxylic dianhydride and diamine are reacted in reactor 1 (1) to obtain a polyamic acid solution. Then, the obtained polyamic acid solution is supplied to the mixing circulation tank (4) of the reactor 2 (3) equipped with the multi-plate type disk dryer by the transfer pump (2). Thereafter, the polyamic acid solution was sprayed from the tip of the supply nozzle (6) onto the heat transfer surface of the hollow disk (7) by the circulation supply pump (5), and the polyamic acid solution that did not adhere to the disk was mixed in the circulation tank (4). To fall. At this time, the hollow rotating disk (7) is attached to the column (8).
A rotary shaft (10) of a rotatable cylindrical structure supported by a bearing (9) fixed on a beam passed between the tops of the is used as a central axis to be rotationally driven by an electric motor (10). In addition, heating steam is circulated in the hollow disk (7) and the rotating shaft (10) in advance through the steam inlet (12) and the drain outlet (13) and adjusted to a predetermined temperature. The polyamic acid solution sprayed onto the disk surface is heated on the heat transfer surface to cause an imide ring closure reaction to generate condensed water. The generated condensed water and the hydrophobic solvent in the polyamic acid solution azeotrope on the disk surface, and become vapor in the evaporation tank (14). The generated vapor, which is an azeotrope of the hydrophobic solvent and condensed water, is cooled and liquefied in the condenser (16) through the vapor pipe (15) and then stored in the separator (18) through the condensate pipe (17). It The condensate stored in the separator (18) is separated into a hydrophobic solvent and condensed water into upper and lower layers due to the difference in specific gravity, and only the condensed water is extracted from the discharge port (19), and the hydrophobic solvent is collected in a pipe (20). To the reactor 2 (3). When the treatment is performed under reduced pressure, the pressure inside the system of the reactor 2 (3) is reduced by the vacuum pump (21). The above steps are repeated until the generation of condensed water can no longer be confirmed to complete the reaction and obtain a polyimide resin solution.

【0020】本発明で得られたポリイミド樹脂溶液は溶
媒等で希釈し、塗布用ワニスとしてそのまま使用するこ
とができる。また、この溶液を貧溶媒中に投入してポリ
イミド樹脂を再沈殿析出させて未反応モノマーを除去
し、乾燥固化させたもの再び有機溶剤に溶解し精製品と
して用いることもできる。特に不純物や異物が問題にな
る用途では、再び有機溶剤に溶解して濾過精製ワニスと
することが好ましい。
The polyimide resin solution obtained in the present invention can be diluted with a solvent or the like and used as it is as a coating varnish. Further, this solution may be put into a poor solvent to reprecipitate and precipitate a polyimide resin to remove unreacted monomers, dried and solidified, and then dissolved in an organic solvent again to be used as a purified product. In particular, in applications where impurities and foreign matters are a problem, it is preferable to dissolve it again in an organic solvent to obtain a filtration / purification varnish.

【0021】[0021]

【実施例】以下、実施例及び比較例により本発明を詳細
に説明する。なお、各例中においてAPBは1,3−ビ
ス(3−アミノフェノキシ)ベンゼンを、BAPPは
2,2’−ビス(4−(4−アミノフェノキシ)フェニ
ル)プロパンを、25DPXは2,5−ジメチル−p−
フェニレンジアミンを、24DPXは2,4−ジメチル
−m−フェニレンジアミンを、APPSはα,ω−ビス
(3−アミノプロピル)ポリジメチルシロキサンを、O
DPAは4,4’−オキシジフタル酸二無水物を、BP
DAは3,3’,4,4’−ベンゾフェノンテトラカル
ボン酸二無水物を、BTDAは3,3’,4,4’−ビ
フェニルテトラカルボン酸二無水物を、PMDAは無水
ピロメリット酸をそれぞれ略記したものである。また各
例中の物性の測定方法は以下の通りである。
EXAMPLES The present invention will be described in detail below with reference to examples and comparative examples. In each example, APB is 1,3-bis (3-aminophenoxy) benzene, BAPP is 2,2′-bis (4- (4-aminophenoxy) phenyl) propane, and 25DPX is 2,5-. Dimethyl-p-
Phenylenediamine, 24DPX is 2,4-dimethyl-m-phenylenediamine, APPS is α, ω-bis (3-aminopropyl) polydimethylsiloxane, O
DPA is 4,4'-oxydiphthalic dianhydride, BP
DA is 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride, BTDA is 3,3', 4,4'-biphenyltetracarboxylic dianhydride, and PMDA is pyromellitic dianhydride. It is an abbreviation. Moreover, the measuring method of the physical property in each example is as follows.

【0022】(重量平均分子量)東ソー(株)製カラム
(TSKgel α−M:2本)を用い、流量1.0m
l/min、溶離液:0.01mol/Lの臭化リチウ
ムを含有するN−メチル−2−ピロリドン溶液、カラム
温度40℃の分析条件でRI検出器を用いて、単分散ポ
リスチレンを標準物質とするゲルパーミエーションクロ
マトグラフ法(以下GPCと略記)により測定した。
(Weight average molecular weight) A column (TSKgel α-M: 2) manufactured by Tosoh Corporation was used, and the flow rate was 1.0 m.
1 / min, eluent: N-methyl-2-pyrrolidone solution containing 0.01 mol / L lithium bromide, using a RI detector under analysis conditions of a column temperature of 40 ° C., using monodisperse polystyrene as a standard substance. Was measured by gel permeation chromatography (hereinafter abbreviated as GPC).

【0023】(実施例1)乾燥窒素ガス導入管、熱交換
器、加熱・冷却装置及び攪拌装置を装備した100Lの
反応器に脱水精製したN−メチル−2−ピロリドン3
9.00kgを入れ、窒素ガスを流しながら10分間激
しくかき混ぜる。次にAPB4.893kg、BAPP
1.963kg、及びAPPS2.012kg(アミン
当量換算の平均分子量840.36)を投入し、系を6
0℃に加熱し均一になるまでかき混ぜる。均一に溶解
後、系を20℃まで冷却し、ODPA6.679kgと
BPDA0.704kgを15分間かけて添加した。反
応器の温度を20℃に保ったまま3時間撹拌した後、疎
水性溶媒としてトルエン3.70kg、キシレン6.0
5kgを系中に添加混合しポリアミド酸溶液を得た。
(Example 1) N-methyl-2-pyrrolidone 3 dehydrated and refined in a 100 L reactor equipped with a dry nitrogen gas inlet tube, a heat exchanger, a heating / cooling device and a stirring device.
Add 9.00 kg and stir vigorously for 10 minutes while flowing nitrogen gas. Next, APB4.893kg, BAPP
1.963 kg and 2.012 kg of APPS (average molecular weight of amine equivalent 840.36) were added and the system was cooled to 6
Heat to 0 ° C and stir until uniform. After being uniformly dissolved, the system was cooled to 20 ° C., and 6.679 kg of ODPA and 0.704 kg of BPDA were added over 15 minutes. After stirring for 3 hours while maintaining the temperature of the reactor at 20 ° C., 3.70 kg of toluene as a hydrophobic solvent and 6.0 of xylene were used as a hydrophobic solvent.
5 kg was added and mixed into the system to obtain a polyamic acid solution.

【0024】その後、ポリアミド酸溶液を伝熱面積0.
2m2のディスク3枚を有した多板型ディスクドライヤ
ーを内装した反応器に移送し、ディスクドライヤーでの
処理を行いながら反応器を180℃まで昇温してイミド
化反応を行った。この時、中空ディスクは800kPa
の蒸気であらかじめ加熱しておき、回転数15rpmの
速度で処理を行った。系から縮合水の発生が確認できな
くなるまでに要した時間は150分間であり、ポリイミ
ド樹脂溶液62.0kgを得た。またGPC測定による
ポリイミド樹脂の重量平均分子量は100200であっ
た。
Thereafter, the polyamic acid solution was heated to a heat transfer area of 0.
The mixture was transferred to a reactor equipped with a multi-plate type disc dryer having three 2 m 2 discs, and the temperature of the reactor was raised to 180 ° C. to carry out the imidization reaction while the treatment with the disc dryer was carried out. At this time, the hollow disk is 800 kPa
It was preheated with the steam and was processed at a rotation speed of 15 rpm. The time required until generation of condensed water from the system could not be confirmed was 150 minutes, and 62.0 kg of a polyimide resin solution was obtained. The weight average molecular weight of the polyimide resin measured by GPC was 100200.

【0025】(実施例2)ジアミン成分をBAPP7.
549kg、25DPX0.147kg、APPS1.
820kg(アミン当量換算の平均分子量840.3
6)、酸無水物成分をBPDA2.548kg、BTD
A4.185kg、疎水性溶媒をキシレン3.50k
g、メシチレン6.25kgに変更すること以外は実施
例1と同様にしてポリアミド酸溶液を得た。その後、ポ
リアミド酸溶液を伝熱面積0.2m2のディスク4枚を
有した多板型ディスクドライヤーを内装した反応器に移
送し、ディスクドライヤーでの処理を行いながら反応器
を180℃まで昇温してイミド化反応を行った。この
時、中空ディスクは750kPaの蒸気であらかじめ加
熱しておき、回転数10rpmの速度で処理を行った。
系から縮合水の発生が確認できなくなるまでに要した時
間は120分間であり、ポリイミド樹脂溶液62.5k
gを得た。またGPC測定によるポリイミド樹脂の重量
平均分子量は119200であった。
(Example 2) The diamine component was replaced by BAPP7.
549 kg, 25 DPX 0.147 kg, APPS1.
820 kg (average molecular weight of amine equivalent 840.3
6), the acid anhydride component is BPDA 2.548 kg, BTD
A 4.185kg, hydrophobic solvent xylene 3.50k
g and mesitylene was changed to 6.25 kg to obtain a polyamic acid solution in the same manner as in Example 1. Then, the polyamic acid solution was transferred to a reactor equipped with a multi-plate type disc dryer having four discs having a heat transfer area of 0.2 m 2 , and the temperature of the reactor was raised to 180 ° C while the treatment with the disc dryer was performed. Then, the imidization reaction was performed. At this time, the hollow disk was preheated with steam of 750 kPa and treated at a rotation speed of 10 rpm.
It took 120 minutes until the generation of condensed water could not be confirmed from the system, and the polyimide resin solution was 62.5 k.
g was obtained. The weight average molecular weight of the polyimide resin measured by GPC was 119200.

【0026】(実施例3)ジアミン成分をAPB5.9
45kg、APPS2.139kg(アミン当量換算の
平均分子量840.36)、25DPX0.346k
g、酸無水物成分をPMDA0.166kg、ODPA
7.653kg、疎水性溶媒をメシレン9.75kgに
変更すること以外は実施例1と同様にしてポリアミド酸
溶液を得た。その後、ポリアミド酸溶液を伝熱面積0.
2m2のディスク4枚を有した多板型ディスクドライヤ
ーを内装した反応器に移送し、ディスクドライヤーでの
処理を行いながら反応器を170℃まで昇温して、60
kPaの減圧常態でイミド化反応を行った。この時、中
空ディスクは800kPaの蒸気であらかじめ加熱して
おき、回転数20rpmの速度で処理を行った。系から
縮合水の発生が確認できなくなるまでに要した時間は1
15分間であり、ポリイミド樹脂溶液61.5kgを得
た。またGPC測定によるポリイミド樹脂の重量平均分
子量は109800であった。
Example 3 A diamine component was added to APB5.9.
45 kg, APPS 2.139 kg (average molecular weight of amine equivalent 840.36), 25 DPX 0.346 k
g, acid anhydride component PMDA 0.166 kg, ODPA
A polyamic acid solution was obtained in the same manner as in Example 1 except that 7.653 kg and the hydrophobic solvent was changed to 9.75 kg of mesylene. After that, the polyamic acid solution was heated to a heat transfer area of 0.
Transfer to a reactor equipped with a multi-plate type disc dryer having 4 discs of 2 m 2 and raise the temperature of the reactor to 170 ° C. while performing treatment with the disc dryer.
The imidization reaction was performed under a reduced pressure of kPa. At this time, the hollow disk was preheated with steam of 800 kPa and treated at a rotation speed of 20 rpm. The time required until the generation of condensed water cannot be confirmed from the system is 1
It took 15 minutes, and 61.5 kg of a polyimide resin solution was obtained. The weight average molecular weight of the polyimide resin measured by GPC was 109,800.

【0027】(実施例4)ジアミン成分をAPB5.0
68kg、APPS2.083kg(アミン当量換算の
平均分子量840.36)、BAPP1.016kg、
24DPX0.337kg、酸無水物成分をODPA
6.149kg、BTDA1.597kg、疎水性溶媒
をトルエン4.50kg、キシレン5.25kgに変更
すること以外は実施例1と同様にしてポリアミド酸溶液
を得た。その後、ポリアミド酸溶液を伝熱面積0.2m
2のディスク4枚を有した多板型ディスクドライヤーを
内装した反応器に移送し、ディスクドライヤーでの処理
を行いながら反応器を175℃まで昇温して、55kP
aの減圧常態でイミド化反応を行った。この時、中空デ
ィスクは750kPaの蒸気であらかじめ加熱してお
き、回転数12rpmの速度で処理を行った。系から縮
合水の発生が確認できなくなるまでに要した時間は11
5分間であり、ポリイミド樹脂溶液62.5kgを得
た。またGPC測定によるポリイミド樹脂の重量平均分
子量は99600であった。
(Example 4) A diamine component was added to APB5.0
68 kg, APPS 2.083 kg (average molecular weight of amine equivalent 840.36), BAPP 1.016 kg,
24DPX 0.337kg, acid anhydride component ODPA
A polyamic acid solution was obtained in the same manner as in Example 1 except that 6.149 kg, BTDA 1.597 kg, the hydrophobic solvent was changed to toluene 4.50 kg, and xylene 5.25 kg. After that, heat transfer area of the polyamic acid solution 0.2 m
It was transferred to a reactor equipped with a multi-plate type disk dryer having 4 disks of 2 , and the temperature of the reactor was raised to 175 ° C while performing the treatment with the disk dryer, and 55 kP
The imidation reaction was carried out under the reduced pressure normal condition of a. At this time, the hollow disk was preheated with steam of 750 kPa and treated at a rotation speed of 12 rpm. It took 11 hours until the generation of condensed water could not be confirmed from the system.
It took 5 minutes, and 62.5 kg of a polyimide resin solution was obtained. The weight average molecular weight of the polyimide resin measured by GPC was 99600.

【0028】(比較例1)実施例1と同様にしてポリア
ミド酸溶液を得た。その後、多板型ディスクドライヤー
での処理を行わずに反応器を180℃まで加熱し、発生
する縮合水を系外に留去しながらイミド化反応を行い、
ポリイミド樹脂溶液61.0kgを得た。系から縮合水
の発生が認められなくなるまでに要した時間は380分
間であった。またGPC測定によるポリイミド樹脂の重
量平均分子量は74200であった。
Comparative Example 1 A polyamic acid solution was obtained in the same manner as in Example 1. After that, the reactor was heated to 180 ° C. without performing the treatment with the multi-plate type disk dryer, and the imidization reaction was performed while distilling the generated condensed water out of the system,
61.0 kg of a polyimide resin solution was obtained. The time required until generation of condensed water from the system was not observed was 380 minutes. The weight average molecular weight of the polyimide resin measured by GPC was 74200.

【0029】(比較例2)実施例2と同様にしてポリア
ミド酸溶液を得た。その後、多板型ディスクドライヤー
での処理を行わずに反応器を180℃まで加熱し、発生
する縮合水を系外に留去しながらイミド化反応を行い、
ポリイミド樹脂溶液60.5kgを得た。系から縮合水
の発生が認められなくなるまでに要した時間は365分
間であった。またGPC測定によるポリイミド樹脂の重
量平均分子量は68200であった。
Comparative Example 2 A polyamic acid solution was obtained in the same manner as in Example 2. After that, the reactor was heated to 180 ° C. without performing the treatment with the multi-plate type disk dryer, and the imidization reaction was performed while distilling the generated condensed water out of the system,
60.5 kg of a polyimide resin solution was obtained. The time required until generation of condensed water from the system was not observed was 365 minutes. The weight average molecular weight of the polyimide resin measured by GPC was 68200.

【0030】(比較例3)実施例3と同様にしてポリア
ミド酸溶液を得た。その後、多板型ディスクドライヤー
での処理を行わずに反応器を170℃まで加熱し、発生
する縮合水を系外に留去しながらイミド化反応を行い、
ポリイミド樹脂溶液61.0kgを得た。系から縮合水
の発生が認められなくなるまでに要した時間は400分
間であった。またGPC測定によるポリイミド樹脂の重
量平均分子量は66300であった。
Comparative Example 3 A polyamic acid solution was obtained in the same manner as in Example 3. After that, the reactor was heated to 170 ° C. without performing the treatment with the multi-plate type disk dryer, and the imidization reaction was performed while distilling the generated condensed water out of the system,
61.0 kg of a polyimide resin solution was obtained. The time required until generation of condensed water from the system was not observed was 400 minutes. The weight average molecular weight of the polyimide resin measured by GPC was 66300.

【0031】(比較例4)実施例4と同様にしてポリア
ミド酸溶液を得た。その後、多板型ディスクドライヤー
での処理を行わずに反応器を175℃まで加熱し、発生
する縮合水を系外に除去せずにイミド化反応を12時間
行い、ポリイミド樹脂溶液64.0kgを得た。またG
PC測定によるポリイミド樹脂の重量平均分子量は13
100であった。
Comparative Example 4 A polyamic acid solution was obtained in the same manner as in Example 4. Then, the reactor was heated to 175 ° C. without treatment with a multi-plate type disk dryer, and the imidization reaction was carried out for 12 hours without removing the generated condensed water to the outside of the system to obtain 64.0 kg of a polyimide resin solution. Obtained. Also G
The weight average molecular weight of the polyimide resin measured by PC is 13
It was 100.

【0032】[0032]

【発明の効果】本発明の方法に従うと、テトラカルボン
酸二無水物とジアミンを有機極性溶媒中で開環重付加反
応させて得られるポリアミド酸溶液を、多板型ディスク
ドライヤーを内装した反応器で加熱処理し、副生する縮
合水の除去とイミド閉環反応を行うという簡便な設備と
操作で、短時間で効率的にポリイミド樹脂を得ることが
できるうえに、従来の欠陥である樹脂の加水分解や重合
活性の低下といった品質変動要因が除かれるので、工業
的なポリイミド樹脂の製造方法として好適である。
According to the method of the present invention, a polyamic acid solution obtained by subjecting a tetracarboxylic dianhydride and a diamine to a ring-opening polyaddition reaction in an organic polar solvent is used as a reactor equipped with a multi-plate type disc dryer. The polyimide resin can be efficiently obtained in a short time by the simple equipment and operation of performing heat treatment with, removing the condensation water produced as a by-product, and performing an imide ring-closure reaction. This is suitable as an industrial method for producing a polyimide resin, since quality fluctuation factors such as decomposition and deterioration of polymerization activity are eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の設備及びフローを示す概略図。FIG. 1 is a schematic diagram showing the equipment and flow of the present invention.

【図2】 多板型ディスクドライヤーを内装した反応器
の断面図
FIG. 2 is a sectional view of a reactor equipped with a multi-plate type disk dryer.

【符号の説明】[Explanation of symbols]

1 反応器1 2 移送ポンプ 3 反応器2 4 循環混合槽 5 循環供給ポンプ 6 供給ノズル 7 中空ディスク 8 支柱 9 軸受け 10 回転軸 11 電動モーター 12 蒸気入口 13 蒸気出口 14 蒸発槽 15 ベーパー配管 16 凝縮器 17 凝縮液配管 18 セパレーター 19 排出口 20 回収配管 21 真空ポンプ 1 reactor 1 2 Transfer pump 3 reactor 2 4 circulating mixing tank 5 Circulation supply pump 6 supply nozzles 7 hollow disc 8 props 9 bearings 10 rotation axis 11 electric motor 12 Steam inlet 13 Steam outlet 14 evaporation tank 15 vapor piping 16 condenser 17 Condensate piping 18 separator 19 outlet 20 Recovery pipe 21 vacuum pump

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 テトラカルボン酸二無水物とジアミンを
有機極性溶媒中で開環重付加反応させて得られるポリア
ミド酸溶液を、多板型ディスクドライヤーを内装した反
応器を用いて、熱的にイミド閉環反応と副生する縮合水
の除去を行うことを特徴とするポリイミド樹脂の製造方
法。
1. A polyamic acid solution obtained by subjecting a tetracarboxylic dianhydride and a diamine to ring-opening polyaddition reaction in an organic polar solvent is thermally treated using a reactor equipped with a multi-plate type disk dryer. A method for producing a polyimide resin, which comprises performing an imide ring-closing reaction and removing condensation water produced as a by-product.
【請求項2】 多板型ディスクドライヤーを内装した反
応器での処理が35kPa〜95kPaの減圧条件下で
行われることを特徴とする請求項1記載のポリイミド樹
脂の製造方法。
2. The method for producing a polyimide resin according to claim 1, wherein the treatment in a reactor equipped with a multi-plate type disk dryer is performed under a reduced pressure condition of 35 kPa to 95 kPa.
【請求項3】 多板型ディスクドライヤーを内装した反
応器で処理を行うにあたって、イミド閉環反応により副
生した縮合水を、疎水性溶媒との共沸で留去することを
特徴とする請求項1又は2記載のポリイミド樹脂の製造
方法。
3. When the treatment is carried out in a reactor equipped with a multi-plate type disk dryer, the condensed water by-produced by the imide ring closure reaction is distilled off azeotropically with a hydrophobic solvent. 1. The method for producing a polyimide resin according to 1 or 2.
【請求項4】 多板型ディスクドライヤーを内装した反
応器が、疎水性溶媒との共沸で留去した縮合水を分離除
去するためのセパレーターを装備していることを特徴と
する請求項1〜3のいずれかに記載のポリイミド樹脂の
製造方法。
4. A reactor equipped with a multi-plate type disk dryer is equipped with a separator for separating and removing condensed water distilled off azeotropically with a hydrophobic solvent. 4. The method for producing a polyimide resin according to any one of 3 to 3.
JP2001318818A 2001-10-17 2001-10-17 Method for producing polyimide resin Pending JP2003119284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001318818A JP2003119284A (en) 2001-10-17 2001-10-17 Method for producing polyimide resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001318818A JP2003119284A (en) 2001-10-17 2001-10-17 Method for producing polyimide resin

Publications (1)

Publication Number Publication Date
JP2003119284A true JP2003119284A (en) 2003-04-23

Family

ID=19136453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001318818A Pending JP2003119284A (en) 2001-10-17 2001-10-17 Method for producing polyimide resin

Country Status (1)

Country Link
JP (1) JP2003119284A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078477B2 (en) * 2003-06-26 2006-07-18 Mitsubishi Gas Chemical Company, Inc. Process for producing solvent-soluble polyimide
JP2020149894A (en) * 2019-03-14 2020-09-17 トヨタ自動車株式会社 Method for producing solid electrolyte powder
WO2021118165A1 (en) * 2019-12-12 2021-06-17 한화솔루션 주식회사 Polyamide preparation apparatus and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078477B2 (en) * 2003-06-26 2006-07-18 Mitsubishi Gas Chemical Company, Inc. Process for producing solvent-soluble polyimide
JP2020149894A (en) * 2019-03-14 2020-09-17 トヨタ自動車株式会社 Method for producing solid electrolyte powder
JP7088090B2 (en) 2019-03-14 2022-06-21 トヨタ自動車株式会社 Method for manufacturing solid electrolyte powder
WO2021118165A1 (en) * 2019-12-12 2021-06-17 한화솔루션 주식회사 Polyamide preparation apparatus and method
CN114829453A (en) * 2019-12-12 2022-07-29 韩华思路信株式会社 Apparatus and method for producing polyamide

Similar Documents

Publication Publication Date Title
JP4998040B2 (en) Polyamic acid imidized polymer insulating film, film-forming composition and production method thereof
JPH03200838A (en) Novel polyamide-polyimide and polybenzoazole- polyimide polymer
JP2006104440A (en) Soluble terminal-modified imide oligomer and varnish and cured product thereof
KR20170125973A (en) A novel tetracarboxylic acid dianhydride, and a polyimide and polyimide copolymer obtained from an acid dianhydride
JP4263182B2 (en) Soluble end-modified imide oligomer and varnish and cured product thereof
US5177176A (en) Soluble pseudo rod-like polyimides having low coefficient of thermal expansion
Mehdipour‐Ataei et al. Use of new diimide–dinaphthols in preparation of novel thermally stable poly (ester–imide) s
JP4398650B2 (en) Novel thermoplastic polyimides and imide oligomers
JPH02142830A (en) Copolyimide obtained from 2-(3-aminophenyl)- 2-(4-aminophenyl)hexafluoropropane
WO2017130703A1 (en) Production method for polyimide molded body
JP2003119284A (en) Method for producing polyimide resin
JP2008063298A (en) Imide oligomer and method for producing the same
JP4364691B2 (en) Soluble polyimide
JPH07242820A (en) Resin composition improved in physical property at high temperature
JPH08333450A (en) Production of polyimide
JP2003119283A (en) Method for producing polyimide resin
JP2002265600A (en) Method of manufacturing polyimide resin
JP3578545B2 (en) Soluble polyimide resin
JPS6128526A (en) Production of organic solvent-soluble polyimide compound
JP2002241498A (en) Process for preparation of polyimide resin
JP3093061B2 (en) Soluble polyimide resin
JPH05331446A (en) High-molecular weight polyimide resin film adhesive
CN114854011B (en) Polyamide acid solution, polyimide film and preparation method thereof
JP2740075B2 (en) Soluble polyimide resin
Yang et al. Synthesis and characterization of organosoluble poly (arylate‐imide) s prepared from direct polycondensation of bis (trimellitimide)‐diacids and various bisphenols