JP2003117402A - Photoreduction catalyst comprised of ruthenium polypyridine complex system - Google Patents

Photoreduction catalyst comprised of ruthenium polypyridine complex system

Info

Publication number
JP2003117402A
JP2003117402A JP2001321504A JP2001321504A JP2003117402A JP 2003117402 A JP2003117402 A JP 2003117402A JP 2001321504 A JP2001321504 A JP 2001321504A JP 2001321504 A JP2001321504 A JP 2001321504A JP 2003117402 A JP2003117402 A JP 2003117402A
Authority
JP
Japan
Prior art keywords
complex
polypyridine complex
ruthenium
catalyst system
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001321504A
Other languages
Japanese (ja)
Other versions
JP3860008B2 (en
Inventor
Takuji Hirose
卓司 廣瀬
Yoshito Maeno
義人 前野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001321504A priority Critical patent/JP3860008B2/en
Publication of JP2003117402A publication Critical patent/JP2003117402A/en
Application granted granted Critical
Publication of JP3860008B2 publication Critical patent/JP3860008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a means that allows a ruthenium polypyridine complex to function as a practical photoreduction catalyst. SOLUTION: The ruthenium polypyridine complex is supported on a strong acidic ion exchange polymer. That is, it is the photoreduction catalyst system comprised of the strong acidic ion exchange polymer having the ruthenium polypyridine complex supported thereon, a cobalt polypryridine complex and a solvent. The cobalt polypyridine complex is dissolved in the solvent and the strong acidic ion exchange polymer having the ruthenium polypyridine complex supported thereon is immersed in the solvent. Then, the resultant system is irradiated with visible light and/or ultraviolet light. The system is suitable for reduction of a gas phase oxide such as carbon dioxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、ルテニウムポリ
ピリジン錯体から成る光還元触媒システムに関し、より
詳細には、ルテニウムポリピリジン錯体を担持させた強
酸性イオン交換高分子を含む光還元触媒系であって二酸
化炭素等の気相酸化物の還元に適した光還元触媒系に関
する。
TECHNICAL FIELD The present invention relates to a photoreduction catalyst system comprising a ruthenium polypyridine complex, and more particularly to a photoreduction catalyst system comprising a strongly acidic ion exchange polymer carrying a ruthenium polypyridine complex. The present invention relates to a photoreduction catalyst system suitable for reducing gas phase oxides such as carbon dioxide.

【0002】[0002]

【従来の技術】可視光領域に強い吸収を持つルテニウム
ポリピリジン錯体が光触媒(光増感剤)として作用し、
均一な有機溶媒中コバルト錯体へ電子を移動させ、二酸
化炭素を一酸化炭素へ還元することが知られている(R.
Ziessel et al., Helv. Chim.Acta, 60, 1065-1084 (1
986))。しかしこの反応においては光増感剤、反応活性
点である錯体、最終的な還元剤である有機アミン化合物
が有機溶媒中に溶解し、かつ反応終了後には有機アミン
化合物の分解生成物も系中に残る。従って、光増感剤を
反応終了後に回収し再利用することが困難であり、実用
的なシステムとなっていない。また、金属錯体や酵素を
高分子に担持することはよく利用されている(J. Zhang
et al., Macromol. Symp., 105, 59-66 (1996); M. Ka
neko et al., Inorganic Chim. Acta, 44, L289-290 (1
980); 村橋俊介ら編著「高分子化学第4版」(共立出版
株式会社)126-131; 荻野一善ら編「高分子化学−基礎
と応用−第2版」(東京化学同人)200−203)が、これ
を二酸化炭素のような酸化物の還元に適用した例はな
い。
2. Description of the Related Art A ruthenium polypyridine complex having strong absorption in the visible light region acts as a photocatalyst (photosensitizer),
It is known to transfer electrons to a cobalt complex in a homogeneous organic solvent to reduce carbon dioxide to carbon monoxide (R.
Ziessel et al., Helv. Chim. Acta, 60, 1065-1084 (1
986)). However, in this reaction, the photosensitizer, the complex that is the reaction active site, and the organic amine compound that is the final reducing agent are dissolved in the organic solvent, and after the reaction is completed, the decomposition products of the organic amine compound are also in the system. Remain in. Therefore, it is difficult to collect and reuse the photosensitizer after the reaction, which is not a practical system. In addition, it is often used to support metal complexes and enzymes on polymers (J. Zhang
et al., Macromol. Symp., 105, 59-66 (1996); M. Ka
neko et al., Inorganic Chim. Acta, 44, L289-290 (1
980); “Polymer Chemistry 4th Edition” edited by Shunsuke Murahashi (Kyoritsu Shuppan Co., Ltd.) 126-131; “Polymer Chemistry-Basics and Applications-Second Edition” edited by Kazuyoshi Ogino et al. ), But there is no example of applying it to the reduction of oxides such as carbon dioxide.

【0003】[0003]

【発明が解決しようとする課題】本発明は、このような
ルテニウムポリピリジン錯体を実用的な光還元触媒とし
て機能させる手段を提供することを目的とする。
An object of the present invention is to provide a means for causing such a ruthenium polypyridine complex to function as a practical photoreduction catalyst.

【0004】[0004]

【課題を解決するための手段及び発明の実施の形態】本
発明は、光増感剤であるルテニウムポリピリジン錯体を
実用的な反応系にすべく、ルテニウムポリピリジン錯体
を強酸性イオン交換高分子に担持した。このことによ
り、高価な光増感剤の取り扱いが容易になった。また、
これを担持した高分子を取り出し、光増感剤を繰り返し
使用することを可能にした。更に、反応の進行と共に、
光分解生成物等によって光増感剤の活性が低下するが、
これを担持した高分子を取り出した上で光増感剤を還元
してその活性を回復させることにより高価な光増感剤の
再利用をも可能にした。本発明の還元系は液相であるた
め、二酸化炭素や二酸化窒素などの気相酸化物の還元に
適している。
BEST MODE FOR CARRYING OUT THE INVENTION In order to make a ruthenium polypyridine complex which is a photosensitizer into a practical reaction system, the present invention uses a ruthenium polypyridine complex as a strongly acidic ion exchange polymer. Supported on. This facilitated the handling of expensive photosensitizers. Also,
It was possible to take out the polymer carrying this and repeatedly use the photosensitizer. Furthermore, as the reaction progresses,
Although the activity of the photosensitizer decreases due to photodecomposition products,
It was also possible to reuse the expensive photosensitizer by taking out the polymer carrying this and then reducing the photosensitizer to restore its activity. Since the reduction system of the present invention is in the liquid phase, it is suitable for the reduction of gas phase oxides such as carbon dioxide and nitrogen dioxide.

【0005】即ち、本発明は、ルテニウムポリピリジン
錯体を担持させた強酸性イオン交換高分子、コバルトポ
リピリジン錯体、及び溶媒から成る光還元触媒系であっ
て、該ルテニウムポリピリジン錯体及び該コバルトポリ
ピリジン錯体がそれぞれピリジン構造の窒素原子が6個
配位したルテニウム及びコバルトから成り、該強酸性イ
オン交換高分子がスルホン酸基を有し、該溶媒が20重
量%以下の水を含んでもよい有機溶媒であり、該ルテニ
ウムポリピリジン錯体を担持させた強酸性イオン交換高
分子が該溶媒に浸され、該コバルトポリピリジン錯体が
該溶媒に溶解していることを特徴とする光還元触媒系で
ある。本発明のルテニウムポリピリジン錯体は、ピリジ
ン構造の窒素原子が6個配位したルテニウムから成る錯
体(以下「Ru錯体」ともいう。)であって、下記構造
を有する。
That is, the present invention is a photoreduction catalyst system comprising a strongly acidic ion exchange polymer carrying a ruthenium polypyridine complex, a cobalt polypyridine complex, and a solvent, wherein the ruthenium polypyridine complex and the cobalt polypyridine complex are provided. An organic compound in which the pyridine complex is composed of ruthenium and cobalt each having six pyridine structure nitrogen atoms coordinated, the strongly acidic ion-exchange polymer has a sulfonic acid group, and the solvent may contain 20% by weight or less of water. A photoreduction catalyst system which is a solvent, wherein the strongly acidic ion exchange polymer carrying the ruthenium polypyridine complex is immersed in the solvent, and the cobalt polypyridine complex is dissolved in the solvent. . The ruthenium polypyridine complex of the present invention is a complex composed of ruthenium having a pyridine structure in which six nitrogen atoms are coordinated (hereinafter, also referred to as “Ru complex”) and has the following structure.

【化1】 [Chemical 1]

【0006】この錯体は、溶液中でRuイオンとビピリ
ジンとを1:3のモル比で混合し、塩化物等の結晶とし
て得ることができる。強酸性イオン交換高分子は、スル
ホン酸基を有する高分子であれば特に制限はなく、高分
子としてはスチレン/ジビニルベンゼン、ポリヒドロキ
シアクリレート、PVA、フッ素樹脂、特にパーフルオ
ロ樹脂などが挙げられる。このような強酸性イオン交換
高分子としては、ナフィオン(登録商標)などのスルホ
ン酸基を有するパーフッ素樹脂や、アンバーライト(登
録商標)などのスチレン系イオン交換樹脂などが好まし
い。強酸性イオン交換高分子中のスルホン酸基量は通常
1μ当量/g〜2m当量/g、好ましくは、0.1〜
1.1m当量/gである。
This complex can be obtained as crystals of chloride or the like by mixing Ru ions and bipyridine in a solution at a molar ratio of 1: 3. The strongly acidic ion exchange polymer is not particularly limited as long as it is a polymer having a sulfonic acid group, and examples of the polymer include styrene / divinylbenzene, polyhydroxyacrylate, PVA, fluororesin, and particularly perfluororesin. As such a strongly acidic ion exchange polymer, a perfluororesin having a sulfonic acid group such as Nafion (registered trademark) and a styrene ion exchange resin such as Amberlite (registered trademark) are preferable. The amount of sulfonic acid group in the strongly acidic ion exchange polymer is usually 1 μeq / g to 2 meq / g, preferably 0.1 μeq / g.
It is 1.1 meq / g.

【0007】Ru錯体を水に溶解させた水溶液に強酸性
イオン交換高分子を浸すことにより、Ru錯体を強酸性
イオン交換高分子に容易に担持させることができる。そ
の後このRu錯体が担持した強酸性イオン交換高分子を
乾燥させてもよい。Ru錯体は強酸性イオン交換高分子
の有するスルホン酸基に1当量:1当量の比で吸着され
る。従って、Ru錯体は強酸性イオン交換高分子の有す
るスルホン酸基の全てに結合するわけではないが、後述
の理由からできるだけ全てのスルホン酸基に吸着されて
いることが好ましい。即ち、スルホン酸基に対するRu
錯体量が0.7〜1.0当量/当量であることが好まし
い。
By dipping the strongly acidic ion exchange polymer in an aqueous solution in which the Ru complex is dissolved in water, the Ru complex can be easily supported on the strongly acidic ion exchange polymer. Thereafter, the strongly acidic ion exchange polymer supported by this Ru complex may be dried. The Ru complex is adsorbed on the sulfonic acid group of the strongly acidic ion exchange polymer in a ratio of 1 equivalent: 1 equivalent. Therefore, the Ru complex does not bond to all the sulfonic acid groups of the strongly acidic ion exchange polymer, but it is preferable that the Ru complex be adsorbed to all sulfonic acid groups as much as possible for the reason described below. That is, Ru for the sulfonic acid group
The amount of complex is preferably 0.7 to 1.0 equivalent / equivalent.

【0008】本発明のコバルトポリピリジン錯体は、ピ
リジン構造の窒素原子が6個配位したコバルトから成る
錯体(以下「Co錯体」ともいう。)であって、下記構
造を有する。
The cobalt polypyridine complex of the present invention is a complex composed of cobalt having a pyridine structure with six nitrogen atoms coordinated (hereinafter also referred to as "Co complex") and has the following structure.

【化2】 [Chemical 2]

【0009】このCo錯体は還元触媒系の溶媒に溶解し
ている。上記のように強酸性イオン交換高分子の有する
スルホン酸基にRu錯体が結合するが、残余のスルホン
酸基にこの溶媒中のCo錯体が吸着されるものと考えら
れる。しかし、このスルホン酸基に結合したCo錯体は
還元作用に寄与しないと考えられる。溶媒中のCo錯体
の量はRu錯体とほぼ同モル数であることが好ましい。
従って、本発明の還元触媒系に投入するCo錯体の量
は、Ru錯体に対して0.9〜1.1モル/モルである
ことが好ましい。
This Co complex is dissolved in the solvent of the reduction catalyst system. As described above, the Ru complex binds to the sulfonic acid group of the strongly acidic ion exchange polymer, but it is considered that the Co complex in this solvent is adsorbed to the remaining sulfonic acid group. However, it is considered that the Co complex bonded to the sulfonic acid group does not contribute to the reducing action. The amount of Co complex in the solvent is preferably about the same as the number of moles of the Ru complex.
Therefore, the amount of the Co complex added to the reduction catalyst system of the present invention is preferably 0.9 to 1.1 mol / mol with respect to the Ru complex.

【0010】本発明で用いる溶媒は、20重量%以下、
好ましくは5重量%以下の水を含んでもよい、より好ま
しくは水を含まない有機溶媒である。水を含むとRu錯
体が高分子から脱離してしまうおそれがあるからであ
る。有機溶媒としては、特に制限はなく、具体的には、
DMF、アセトニトリル、トリエタノールアミン、トリ
エチルアミン、トリブチルアミン、トリプロピルアミ
ン、メチルジエタノールアミン、テトラメチルエチレン
ジアミン、エチレングリコールジメチルエーテル、ジオ
キサン等が挙げられるが、DMF、アセトニトリル、ト
リエタノールアミンが好ましい。本発明の還元触媒系
は、これらRu錯体を担持させた強酸性イオン交換高分
子、Co錯体、及び溶媒から成る。Co錯体が該溶媒に
溶解され、この溶媒にRu錯体を担持させた強酸性イオ
ン交換高分子が浸されることにより、本発明の光還元触
媒系が構成される。
The solvent used in the present invention is 20% by weight or less,
It is preferably an organic solvent which may contain 5% by weight or less of water, and more preferably contains no water. This is because the Ru complex may be desorbed from the polymer when it contains water. The organic solvent is not particularly limited, and specifically,
DMF, acetonitrile, triethanolamine, triethylamine, tributylamine, tripropylamine, methyldiethanolamine, tetramethylethylenediamine, ethylene glycol dimethyl ether, dioxane and the like can be mentioned, but DMF, acetonitrile and triethanolamine are preferable. The reduction catalyst system of the present invention comprises a strongly acidic ion exchange polymer carrying these Ru complexes, a Co complex, and a solvent. The photoreduction catalyst system of the present invention is constituted by dissolving the Co complex in the solvent and immersing the strongly acidic ion-exchange polymer supporting the Ru complex in the solvent.

【0011】このように構成された光還元触媒系に可視
光及び/又は紫外光を照射する。本発明の光還元触媒系
の還元機構は下記のようであると考えられる(R. Ziess
el et al., Helv. Chim. Acta, 60, 1065-1084 (198
6))。
The photoreduction catalyst system thus constructed is irradiated with visible light and / or ultraviolet light. The reduction mechanism of the photoreduction catalyst system of the present invention is considered to be as follows (R. Ziess
el et al., Helv. Chim. Acta, 60, 1065-1084 (198
6)).

【化3】 即ち、Ru錯体が光エネルギーを吸収し、Co錯体にこ
のエネルギーが移動して還元作用を行うものと考えられ
る。この還元機構の光源としては、可視光のみ若しくは
紫外光のみ又はこれら両方を含むものでもよいが、可視
光のみが好ましい。また、太陽光を用いてもよい。
[Chemical 3] That is, it is considered that the Ru complex absorbs light energy, and this energy is transferred to the Co complex to perform a reducing action. The light source of the reduction mechanism may include only visible light, only ultraviolet light, or both, but only visible light is preferable. Alternatively, sunlight may be used.

【0012】本発明の光還元触媒系は、酸化物を還元す
るのに適する。この酸化物としては気相であることが、
その扱いの観点から好ましく、二酸化炭素や二酸化窒素
がより好ましい。このような気体は本発明の光還元触媒
系の溶媒に、好ましくは飽和するまで、溶け込ませるこ
とにより容易に触媒と接触させて還元させることができ
る。
The photoreduction catalyst system of the present invention is suitable for reducing oxides. The oxide is in the gas phase,
From the viewpoint of its handling, carbon dioxide and nitrogen dioxide are more preferable. Such a gas can be easily brought into contact with the catalyst for reduction by dissolving it in the solvent of the photoreduction catalyst system of the present invention, preferably until it is saturated.

【0013】また、本発明の光還元触媒系は触媒(Ru
錯体)を回収して再利用することができる点に特徴があ
る。即ち、本発明の光還元触媒系により酸化物を還元し
た後に、この光還元触媒系からRu錯体を担持させた強
酸性イオン交換高分子を取り出して洗浄し、該光還元触
媒系に戻すことにより、触媒を回収して再利用すること
が可能であり、これにより酸化物を連続的に還元するこ
とができる。この洗浄は通常水で行うが、酸の水溶液を
用いて行ってもよい。但し、あまり強い酸(例えば、酸
の濃度が1規定以上)を用いるとRu錯体が高分子から
脱離してしまうので好ましくない。Ru錯体を洗浄する
際又はその前後に、適当な手段によりRu錯体を還元す
ればなお効果的に触媒を再利用することができるので好
ましい。
Further, the photoreduction catalyst system of the present invention is a catalyst (Ru
The feature is that the complex) can be recovered and reused. That is, after reducing the oxide by the photoreduction catalyst system of the present invention, the strongly acidic ion exchange polymer carrying the Ru complex is taken out from the photoreduction catalyst system, washed, and returned to the photoreduction catalyst system. The catalyst can be recovered and reused, which allows the oxide to be continuously reduced. This washing is usually performed with water, but an aqueous solution of acid may be used. However, it is not preferable to use a too strong acid (for example, the acid concentration is 1 N or more) because the Ru complex is desorbed from the polymer. It is preferable to reduce the Ru complex by an appropriate means during or before and after washing the Ru complex, because the catalyst can be reused more effectively.

【0014】[0014]

【実施例】以下、実施例にて本発明を例証するが、本発
明を限定することを意図するものではない。製造例1 RuCl3水和物(和光純薬製)4.4 mmol及びビピリジン(2,
2’-bipyridine)(関東化学製)13.2 mmolをDMF(和光
純薬製、特級) 50 mlに加え、120 ℃で3時間攪拌す
る。室温まで冷却後、溶液量が10 ml以下になるまで溶
媒を留去し、その溶液にテトラn-ブチルアンモニウムク
ロリド(関東化学製)の飽和アセトン溶液を加え、析出
した橙赤色の沈殿をろ取する。析出した固体をメタノー
ルで再結晶することにより橙赤色固体であるRu錯体の
塩化物(化4)を得た。
EXAMPLES The present invention will be illustrated below with reference to Examples.
It is not intended to limit the light.Production example 1 RuCl3Hydrate (Wako Pure Chemical Industries, Ltd.) 4.4 mmol and bipyridine (2,
2'-bipyridine) (Kanto Kagaku) 13.2 mmol DMF (Wako
(Pure drug, special grade) Add to 50 ml and stir at 120 ℃ for 3 hours.
It After cooling to room temperature, dissolve the solution until the volume becomes 10 ml or less.
The medium is distilled off and the solution is treated with tetra-n-butylammonium chloride.
Saturated acetone solution of Lolid (Kanto Kagaku) was added and precipitated
The orange-red precipitate formed is collected by filtration. The deposited solid is methanol
Of the Ru complex which is an orange-red solid by recrystallizing
Chloride (Chemical Formula 4) was obtained.

【化4】 [Chemical 4]

【0015】製造例2 CoCl2水和物(和光純薬製)1 mmol及びビピリジン(2,
2’-bipyridine)(関東化学製)3 mmolをエタノールに
溶解させ、80℃で2時間攪拌する。エタノールを減圧
留去することにより、淡黄色固体であるCo錯体の塩化
物(化5)を得た。
[0015]Production example 2 CoCl2Hydrate (Wako Pure Chemical Industries, Ltd.) 1 mmol and bipyridine (2,
2'-bipyridine) (Kanto Kagaku) 3 mmol in ethanol
Dissolve and stir at 80 ° C. for 2 hours. Depressurize ethanol
By distilling off, the chlorination of the Co complex, which is a pale yellow solid
The compound (Chemical Formula 5) was obtained.

【化5】 [Chemical 5]

【0016】参考例1 これらRu錯体15 μmolとCo錯体15 μmolとを溶媒
(DMF/TEOA(還元剤)(4/1v/v))30 mlに溶解させた。こ
の溶媒を図1に示す装置のガラスセルに入れ、系内の雰
囲気をCOで置換し、Xeランプにより照射した。後
述の実施例と同様にして生成したCO及びHと測定し
た。その照射時間との関係を表1に示す。
[0016]Reference example 1 These Ru complex (15 μmol) and Co complex (15 μmol) are used as a solvent.
It was dissolved in 30 ml of (DMF / TEOA (reducing agent) (4/1 v / v)). This
Put the solvent in the glass cell of the device shown in Fig. 1 into the atmosphere of the system.
The atmosphere is COTwoAnd was irradiated with a Xe lamp. rear
CO and H produced in the same manner as in the above-mentioned examplesTwoAnd measured
It was Table 1 shows the relationship with the irradiation time.

【表1】 これらの触媒が二酸化炭素を一酸化炭素に還元している
ことが確認された。なお、水素は上述の機構(化3)に
より発生したものと考えられ、その発生は本発明の錯体
が還元機能を有することを示している。
[Table 1] It was confirmed that these catalysts reduced carbon dioxide to carbon monoxide. Hydrogen is considered to be generated by the above mechanism (Chemical Formula 3), and the generation thereof indicates that the complex of the present invention has a reducing function.

【0017】実施例1 (1)スルホン酸基を有する高分子膜(デュポン製 NF
112)(50 mg)をRu錯体(15 μmol)の水溶液に浸し、
錯体を吸着させた後、乾燥させた。この水溶液中にRu
が確認されなかったことから、この高分子膜の有するス
ルホン酸基にほぼ全てに対してRu錯体が1モル吸着し
ているものと考えられる。 (2)溶媒(DMF/TEOA(還元剤)(4/1 v/v))30 mlを、ボ
ンベから先端に注射針を付けたゴム管で30分以上CO2
直接導入して飽和させた。 (3)(1)と(2)で準備した溶媒、膜、及びCo錯
体(15 μmol)を用いて、図1に示す装置を組み、系内の
雰囲気をCOで置換した。 (4)Xeランプにより照射した。
[0017]Example 1 (1) Polymer film having sulfonic acid group (NF made by DuPont
112) (50 mg) was immersed in an aqueous solution of Ru complex (15 μmol),
After adsorbing the complex, it was dried. Ru in this aqueous solution
Since it was not confirmed that the polymer film has
1 mol of Ru complex was adsorbed to almost all of the rufonic acid groups.
It is considered that (2) Add 30 ml of solvent (DMF / TEOA (reducing agent) (4/1 v / v)) to the
Use a rubber tube with an injection needle at the tip from the container for 30 minutes or more CO2To
Directly introduced and saturated. (3) Solvent, film, and Co complex prepared in (1) and (2)
Using the body (15 μmol), the device shown in Fig. 1 was assembled and
CO atmosphereTwoReplaced with. (4) Irradiation with a Xe lamp.

【0018】(5)ガラスセルから反応ガスを所定時間
ごとに少量ずつ回収し分析した。シリンジ部を10回交互
に動かし、気相を均一にする。セプタム部位からガスタ
イトシリンジを挿入し、シリンジ内を反応系内の気体で
置換する。次にそのガスタイトシリンジを用いて、系内
の気相を30μl採取する。採取したガスをそのままガス
クロマトグラフィーに導入し、H、CO、N
、COを分離検出する。予め作成した検量線を用
いて、0.3 ml 中のCO及びHの総量(mol数)を算出
し、その時間における系内の気相の各成分総量を求め
る。ガスクロマトグラフィー分析は下記条件で行った。 ・装置−HITACHI 263-50 Gas Chromatograph ・検出器−TCD(熱伝導度検出器) ・カラム−活性炭[ガラスカラム5 mm(外径)×3 mm(内
径)×3 m(長さ)] ・キャリアーガス−アルゴン ・流速−30 ml / min ・温度−カラム(70℃)、検出器(80℃)、導入部(80
℃)
(5) The reaction gas was collected from the glass cell little by little at predetermined time intervals and analyzed. Alternately move the syringe part 10 times to make the gas phase uniform. A gas tight syringe is inserted from the septum site, and the inside of the syringe is replaced with the gas in the reaction system. Next, 30 μl of the gas phase in the system is sampled using the gas tight syringe. The collected gas is directly introduced into gas chromatography, and H 2 , CO, N 2 ,
Separately detect O 2 and CO 2 . Using a calibration curve prepared in advance, the total amount of CO and H 2 (mol number) in 0.3 ml is calculated, and the total amount of each component of the gas phase in the system at that time is calculated. Gas chromatography analysis was performed under the following conditions.・ Device-HITACHI 263-50 Gas Chromatograph ・ Detector-TCD (thermal conductivity detector) ・ Column-activated carbon [glass column 5 mm (outer diameter) × 3 mm (inner diameter) × 3 m (length)] ・ Carrier Gas-argon-Flow rate-30 ml / min-Temperature-column (70 ° C), detector (80 ° C), inlet (80
℃)

【0019】(6)反応の停止を確認したら、膜のみを
反応系から取出し、その膜を1規定塩酸、水に順に浸し
て洗浄した後、乾燥した。 (7)膜のみを再利用し上記(3)〜(6)を4回繰り
返した。生成したCO及びHと照射時間との関係を表
2及び図2に示す。
(6) After confirming the termination of the reaction, only the membrane was taken out from the reaction system, and the membrane was immersed in 1N hydrochloric acid and water in that order for washing, and then dried. (7) Only the membrane was reused, and the above (3) to (6) were repeated 4 times. The relationship between the generated CO and H 2 and the irradiation time is shown in Table 2 and FIG.

【表2】 [Table 2]

【0020】実施例2 実施例1と同様に(1)〜(5)の工程を行った。その
後、反応系内から溶媒及び膜を取出し、ナス型フラスコ
に移す。減圧下、超音波を用いて脱気を行う。その後膜
に実施例1の(6)の工程を行う。脱気した溶媒を入れ
た容器にCOを約40分間吹き込み、溶液を再度CO
で飽和する。このようにして準備した反応溶液と膜を用
いて実施例1の(3)〜(6)を4回繰り返した。生成
したCO及びHと照射時間との関係を表3及び図3に
示す。
[0020]Example 2 The steps (1) to (5) were performed in the same manner as in Example 1. That
After that, take out the solvent and the membrane from the reaction system and put them in an eggplant type flask.
Move to. Degas using ultrasonic waves under reduced pressure. Then the membrane
Then, the step (6) of Example 1 is performed. Add degassed solvent
CO in the containerTwoBubbling for about 40 minutes and re-dosing the solution with COTwo
Is saturated with. Use the reaction solution and membrane prepared in this way.
Then, (3) to (6) of Example 1 were repeated four times. Generate
CO and HTwoTable 3 and Fig. 3 show the relationship between irradiation time and irradiation time.
Show.

【表3】 [Table 3]

【0021】実施例3 高分子膜を高分子ビーズ(シグマ-アルドリッチ製 Naf
ion NR50)に置き替えて実施例2と同様の操作を行っ
た。生成したCO及びHと照射時間との関係を表4及
び図4に示す。
[0021]Example 3 Polymer beads with polymer beads (Sigma-Aldrich Naf
ion NR50) and perform the same operation as in Example 2.
It was CO and H generatedTwoAnd the relationship between irradiation time and Table 4
And shown in FIG.

【表4】 本実施例にてナフィオンビーズを用いた場合は、実施例
1、2のようにナフィオン膜を用いた場合に比較して、
吸着した錯体への光のあたり方が均一でないために全体
的な反応効率の低下につながったと考えられる。
[Table 4] In the case of using Nafion beads in this example, compared to the case of using a Nafion membrane as in Examples 1 and 2,
It is considered that the overall reaction efficiency was lowered because the light adhering to the adsorbed complex was not uniform.

【0022】実施例4 実施例1と同様に(1)〜(5)の工程を行った。その
後、反応系のすべてのもの(反応溶液及び膜)を洗浄等
せずに、そのままナス型フラスコに移し、減圧下、超音
波を用いて脱気を行った。脱気した反応溶液及び膜を入
れた容器にCOを約40分間吹き込み、溶液を再度CO
で飽和させた。このようにして準備した反応溶液と膜
を用いて実施例1の(3)〜(6)を4回繰り返した。
生成したCO及びHと照射時間との関係を表5及び図
5に示す。
[0022]Example 4 The steps (1) to (5) were performed in the same manner as in Example 1. That
After that, wash everything in the reaction system (reaction solution and membrane), etc.
Without moving, transfer it to an eggplant-shaped flask as it is, and under reduced pressure, supersonic
Degassing was done using waves. Insert the degassed reaction solution and membrane
CO in the containerTwoBubbling for about 40 minutes and re-dosing the solution with CO
TwoSaturated with. Reaction solution and membrane prepared in this way
Was used to repeat (3) to (6) of Example 1 four times.
CO and H generatedTwoAnd the relationship between irradiation time and table 5 and figure
5 shows.

【表5】 [Table 5]

【0023】[0023]

【発明の効果】以上の実施例から、Ru錯体を高分子膜
に固定した本発明の光還元触媒系を用いることにより、
気相酸化物を効果的に還元することができる。更に、こ
のような構成をとることにより、Ru触媒の再利用が可
能になり、触媒としての寿命、すなわち総反応時間が伸
び、還元生成物の総生成量が増えた。
From the above examples, by using the photoreduction catalyst system of the present invention in which the Ru complex is immobilized on the polymer membrane,
The vapor phase oxide can be effectively reduced. Furthermore, by adopting such a configuration, the Ru catalyst can be reused, the life as a catalyst, that is, the total reaction time is extended, and the total amount of reduction products is increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で用いた光還元反応を行うための装置を
示す図である。
FIG. 1 is a diagram showing an apparatus for performing a photoreduction reaction used in Examples.

【図2】実施例1にて生成したCO及びHと照射時間
との関係を示す図である。
FIG. 2 is a diagram showing a relationship between CO and H 2 generated in Example 1 and irradiation time.

【図3】実施例2にて生成したCO及びHと照射時間
との関係を示す図である。
FIG. 3 is a diagram showing a relationship between CO and H 2 generated in Example 2 and irradiation time.

【図4】実施例3にて生成したCO及びHと照射時間
との関係を示す図である。
FIG. 4 is a diagram showing a relationship between CO and H 2 generated in Example 3 and irradiation time.

【図5】実施例4にて生成したCO及びHと照射時間
との関係を示す図である。
FIG. 5 is a diagram showing a relationship between CO and H 2 generated in Example 4 and irradiation time.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G069 AA03 AA06 AA10 BA23A BA24B BA27A BA27B BA48A BC67A BC67B BC70A BC70B BE16A BE38A CC40 EC27 GA09 GA20    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G069 AA03 AA06 AA10 BA23A                       BA24B BA27A BA27B BA48A                       BC67A BC67B BC70A BC70B                       BE16A BE38A CC40 EC27                       GA09 GA20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ルテニウムポリピリジン錯体を担持させ
た強酸性イオン交換高分子、コバルトポリピリジン錯
体、及び溶媒から成る光還元触媒系であって、該ルテニ
ウムポリピリジン錯体及び該コバルトポリピリジン錯体
がそれぞれピリジン構造の窒素原子が6個配位したルテ
ニウム及びコバルトから成り、該強酸性イオン交換高分
子がスルホン酸基を有し、該溶媒が20重量%以下の水
を含んでもよい有機溶媒であり、該ルテニウムポリピリ
ジン錯体を担持させた強酸性イオン交換高分子が該溶媒
に浸され、該コバルトポリピリジン錯体が該溶媒に溶解
していることを特徴とする光還元触媒系。
1. A photoreduction catalyst system comprising a strongly acidic ion-exchange polymer supporting a ruthenium polypyridine complex, a cobalt polypyridine complex, and a solvent, wherein the ruthenium polypyridine complex and the cobalt polypyridine complex are respectively An organic solvent which comprises ruthenium and cobalt in which 6 nitrogen atoms of a pyridine structure are coordinated, the strongly acidic ion exchange polymer has a sulfonic acid group, and the solvent may contain 20% by weight or less of water, A photoreduction catalyst system, wherein the strongly acidic ion exchange polymer carrying the ruthenium polypyridine complex is immersed in the solvent, and the cobalt polypyridine complex is dissolved in the solvent.
【請求項2】 前記強酸性イオン交換高分子中の前記ス
ルホン酸基量が1μ当量/g〜2m当量/gであり、該
スルホン酸基に対する前記ルテニウムポリピリジン錯体
量が0.7〜1.0当量/当量であり、該ルテニウムポ
リピリジン錯体に対するコバルトポリピリジン錯体量が
0.9〜1.1モル/モルである請求項1に記載の光還
元触媒系。
2. The amount of the sulfonic acid group in the strongly acidic ion exchange polymer is 1 μeq / g to 2 meq / g, and the amount of the ruthenium polypyridine complex relative to the sulfonic acid group is 0.7 to 1. The photoreduction catalyst system according to claim 1, wherein the amount is 0 equivalent / equivalent, and the amount of the cobalt polypyridine complex relative to the ruthenium polypyridine complex is 0.9 to 1.1 mol / mol.
【請求項3】 請求項1又は2に記載の光還元触媒系に
可視光及び/又は紫外光を照射して、酸化物を還元する
方法。
3. A method for reducing an oxide by irradiating the photoreduction catalyst system according to claim 1 with visible light and / or ultraviolet light.
【請求項4】 前記酸化物が二酸化炭素であり、前記光
還元触媒系に該二酸化炭素を吹き込むことにより該光還
元触媒系に該二酸化炭素を飽和させた後に該光還元触媒
系に可視光及び/又は紫外光を照射する請求項3に記載
の方法。
4. The oxide is carbon dioxide, and the photoreduction catalyst system is saturated with the carbon dioxide by blowing the carbon dioxide into the photoreduction catalyst system. The method according to claim 3, wherein the ultraviolet light is irradiated.
【請求項5】 請求項3又は4の方法により酸化物を還
元した後に、前記光還元触媒系から前記ルテニウムポリ
ピリジン錯体を担持させた強酸性イオン交換高分子を取
り出して洗浄し、該光還元触媒系に戻すことから成る、
酸化物を連続的に還元する方法。
5. After reducing the oxide by the method according to claim 3 or 4, the strongly acidic ion-exchange polymer carrying the ruthenium polypyridine complex is taken out from the photoreduction catalyst system and washed to obtain the photoreduction. Consisting of returning to the catalyst system,
A method of continuously reducing oxides.
【請求項6】 前記ルテニウムポリピリジン錯体を洗浄
する際又はその前後に該ルテニウムポリピリジン錯体を
還元する請求項5に記載の方法。
6. The method according to claim 5, wherein the ruthenium polypyridine complex is reduced before or after washing the ruthenium polypyridine complex.
JP2001321504A 2001-10-19 2001-10-19 Photoreduction catalyst system composed of ruthenium polypyridine complex Expired - Fee Related JP3860008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001321504A JP3860008B2 (en) 2001-10-19 2001-10-19 Photoreduction catalyst system composed of ruthenium polypyridine complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001321504A JP3860008B2 (en) 2001-10-19 2001-10-19 Photoreduction catalyst system composed of ruthenium polypyridine complex

Publications (2)

Publication Number Publication Date
JP2003117402A true JP2003117402A (en) 2003-04-22
JP3860008B2 JP3860008B2 (en) 2006-12-20

Family

ID=19138712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001321504A Expired - Fee Related JP3860008B2 (en) 2001-10-19 2001-10-19 Photoreduction catalyst system composed of ruthenium polypyridine complex

Country Status (1)

Country Link
JP (1) JP3860008B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346639A (en) * 2005-06-20 2006-12-28 National Institutes Of Natural Sciences Photochemically reproducible catalyst and reducing method of organic compound using the same
WO2012063697A1 (en) * 2010-11-12 2012-05-18 富士フイルム株式会社 Co production method and device for same
CN114392774A (en) * 2022-01-28 2022-04-26 合肥工业大学 Preparation method of polymer supported synergistic catalyst and application of polymer supported synergistic catalyst in carbon dioxide photoreduction catalysis
CN115806677A (en) * 2022-11-15 2023-03-17 广东工业大学 Ruthenium polymer with photo-thermal conversion performance and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346639A (en) * 2005-06-20 2006-12-28 National Institutes Of Natural Sciences Photochemically reproducible catalyst and reducing method of organic compound using the same
WO2012063697A1 (en) * 2010-11-12 2012-05-18 富士フイルム株式会社 Co production method and device for same
JP2012101986A (en) * 2010-11-12 2012-05-31 Fujifilm Corp Co production method and device for same
CN114392774A (en) * 2022-01-28 2022-04-26 合肥工业大学 Preparation method of polymer supported synergistic catalyst and application of polymer supported synergistic catalyst in carbon dioxide photoreduction catalysis
CN114392774B (en) * 2022-01-28 2024-01-23 湖南天氟新材料有限公司 Preparation method of polymer supported synergistic catalyst and application of polymer supported synergistic catalyst in carbon dioxide photo-reduction catalysis
CN115806677A (en) * 2022-11-15 2023-03-17 广东工业大学 Ruthenium polymer with photo-thermal conversion performance and preparation method thereof
CN115806677B (en) * 2022-11-15 2023-09-01 广东工业大学 Ruthenium polymer with photo-thermal conversion performance and preparation method thereof

Also Published As

Publication number Publication date
JP3860008B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
Chen et al. Conversion of CO 2 to value-added products mediated by ionic liquids
Riente et al. Application of metal oxide semiconductors in light-driven organic transformations
Zhu et al. Asymmetric triple-atom sites confined in ternary oxide enabling selective CO2 photothermal reduction to acetate
Zhang et al. Visible-light initiated aerobic oxidations: a critical review
Yoshioka et al. Electrocatalytic reduction of nitrate to nitrous oxide by a copper-modified covalent triazine framework
Sun et al. Flexibility matters: cooperative active sites in covalent organic framework and threaded ionic polymer
Friedmann et al. Heterogeneous photocatalytic organic synthesis: state-of-the-art and future perspectives
Jiang et al. Highly efficient oxidation of amines to imines by singlet oxygen and its application in Ugi-type reactions
Yang et al. Boosting photocatalytic oxidative coupling of amines by a Ru-complex-sensitized metal-organic framework
JPWO2003004730A1 (en) Fuel cell reactor and method for producing compound using the same
JP5504337B2 (en) Polyelectrolyte multilayer thin film catalyst and method for producing the same
Zhang et al. Zeolite-like metal organic framework (ZMOF) with a rho topology for a CO2 cycloaddition to epoxides
JP4907745B2 (en) How to reduce carbon dioxide
US20120021897A1 (en) Ring compound
Zhang et al. Enabling heterogeneous catalysis to achieve carbon neutrality: Directional catalytic conversion of CO2 into carboxylic acids
JP2012017300A (en) Method for reducing and fixing carbon dioxide
Jana et al. Photo‐and Electrochemical Cobalt Catalysed Hydrogen Atom Transfer for the Hydrofunctionalisation of Alkenes
Yoshida et al. Novel method of oxidation by polymeric reagent electrochemically generated and recycled in situ. Facile oxidation of alcohols
Lodh et al. Electrochemical organic reactions: A tutorial review
Zhang et al. Molecular tuning for electrochemical CO2 reduction
JPWO2003004728A1 (en) Organic electrolytic reactor for electrolytic oxidation and method for producing compound using the same
JP2003117402A (en) Photoreduction catalyst comprised of ruthenium polypyridine complex system
CN113070101B (en) Catalyst for decomposing formaldehyde and preparation method and application thereof
Naghshbandi et al. New recyclable Co-based trimetallic zeolite imidazolate framework (Cu-Ni@ ZIF-67) as an efficient catalyst for different reduction reactions
JP2015147205A (en) carbon dioxide reduction catalyst

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees