JP2003117330A - Apparatus for separating gas - Google Patents

Apparatus for separating gas

Info

Publication number
JP2003117330A
JP2003117330A JP2001311940A JP2001311940A JP2003117330A JP 2003117330 A JP2003117330 A JP 2003117330A JP 2001311940 A JP2001311940 A JP 2001311940A JP 2001311940 A JP2001311940 A JP 2001311940A JP 2003117330 A JP2003117330 A JP 2003117330A
Authority
JP
Japan
Prior art keywords
pressure
adsorption
adsorption tank
compressor
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001311940A
Other languages
Japanese (ja)
Other versions
JP3867229B2 (en
Inventor
Toru Okuda
亨 奥田
Tomoichirou Nakamura
知一郎 中村
Manabu Matsuchi
学 真土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP2001311940A priority Critical patent/JP3867229B2/en
Publication of JP2003117330A publication Critical patent/JP2003117330A/en
Application granted granted Critical
Publication of JP3867229B2 publication Critical patent/JP3867229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problem that the nitrogen gas producing efficiency of conventional nitrogen gas generating apparatus and the concentration of the produced nitrogen gas are obliged to be lowered because that the amount of compressed air to be supplied to an adsorption tank must be reduced when the moisture in a drier of a compressor is discharged in the condition that the compressor and the adsorption tank are communicated with each other and the compressed air is supplied to the adsorption tank. SOLUTION: The nitrogen gas producing efficiency is prevented from being lowered by discharging the moisture accumulated in the drier 4 by opening a drain discharging valve 4a of the drier 4 during the step to equalize the pressure of the compressor 3 to those of the adsorption tanks 1, 2 in the condition that the compressor 3 is blocked from the tanks 1, 2 by closing air supplying valves 8, 9 so that the pressure of each of the tanks 1, 2 is prevented from being lowered during the adsorption and withdrawal steps to produce nitrogen gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本発明は気体分離装置に係
り、特にPSA式(Pressure Swing Absorption)の気
体分離装置に関し、例えば窒素発生装置または酸素発生
装置として用いて好適な気体分離装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas separation device, and more particularly to a PSA (Pressure Swing Absorption) gas separation device, for example, a gas separation device suitable for use as a nitrogen generator or an oxygen generator.

【0002】[0002]

【従来の技術】 一般に、PSA式気体分離装置は、分
子ふるいカーボンやゼオライトなどからなる吸着剤を用
いて空気を窒素ガスと酸素ガスに分離し、いずれか一方
を製品ガスとして取り出し、使用するものである。
2. Description of the Related Art Generally, a PSA gas separation apparatus is one in which air is separated into nitrogen gas and oxygen gas using an adsorbent composed of molecular sieving carbon or zeolite, and one of them is taken out as a product gas for use. Is.

【0003】例えば窒素ガスを製品ガスとして生成する
一対の吸着槽を有するPSA式窒素発生装置にあって
は、(a)吸着工程:吸着剤が充填された吸着槽に圧縮
機により圧縮された圧縮空気を導入すると共に、製品タ
ンク内に残存する窒素ガスを吸着槽に還流して吸着槽内
を昇圧させ圧力を利用して吸着剤に酸素分子を吸着させ
る工程、(b)取出工程:吸着工程から引続き、圧縮機
から圧縮空気を吸着槽に導入し続けると同時に、吸着剤
により分離生成された窒素ガスを吸着槽より取り出す工
程、(c)均圧工程:取出工程終了後の吸着槽に残存す
る窒素濃度の高い残留ガスを吸着工程前の他の吸着槽に
供給して各吸着槽間の圧力を均圧化を図り、次回の吸着
工程の吸着効率を高めて、より高純度の窒素ガスを生成
するための工程、(d)再生工程:均圧工程終了後の吸
着槽内を大気解放または真空ポンプで減圧して吸着剤に
吸着された酸素分子を脱着することにより吸着剤を再生
する工程、が順次行われる。
For example, in a PSA type nitrogen generator having a pair of adsorption tanks for producing nitrogen gas as a product gas, (a) Adsorption step: compression in a adsorption tank filled with an adsorbent by a compressor A step of introducing nitrogen and refluxing the nitrogen gas remaining in the product tank to the adsorption tank to pressurize the inside of the adsorption tank to adsorb oxygen molecules to the adsorbent using pressure, (b) Extraction step: Adsorption step From the compressor, continue to introduce compressed air from the compressor to the adsorption tank, and at the same time, take out the nitrogen gas separated and produced by the adsorbent from the adsorption tank, (c) pressure equalizing step: remain in the adsorption tank after completion of the taking step The residual gas with a high nitrogen concentration is supplied to the other adsorption tanks before the adsorption step to equalize the pressure between the adsorption tanks and improve the adsorption efficiency in the next adsorption step to obtain a higher purity nitrogen gas. The process for generating ) Regeneration step: step of regenerating the adsorbent by adsorption vessel after completion as equalization repressurization step to desorb the oxygen molecules adsorbed on the adsorbent under reduced pressure in the open air or vacuum pumps, but are sequentially performed.

【0004】これらの各工程(a)〜(d)は、各吸着
槽毎に繰返し行われ、各吸着槽における工程が連携して
実行されるように各機器が制御される。即ち、一対の吸
着槽を有する気体分離装置においては、一方の吸着槽で
吸着工程及び取出工程が完了し、他方の吸着槽で再生工
程が完了した後、均圧工程を行う。
Each of these steps (a) to (d) is repeated for each adsorption tank, and each device is controlled so that the steps in each adsorption tank are executed in cooperation with each other. That is, in a gas separation device having a pair of adsorption tanks, the pressure equalization step is performed after the adsorption step and the extraction step are completed in one adsorption tank and the regeneration step is completed in the other adsorption tank.

【0005】[0005]

【発明が解決しようとする課題】 ところが、上記気体
分離装置では、上記各工程(a)〜(d)を繰り返して
窒素ガスを分離生成しているが、吸着槽に圧縮空気を供
給する空気供給ユニット(圧縮機,空気タンク,ドライ
ヤ)の駆動及びドライヤの水分排出の制御と、気体分離
ユニット(吸着槽,製品タンクなど)の各工程の制御と
が互いに独立して行われている。
However, in the gas separation device, nitrogen gas is separated and produced by repeating the steps (a) to (d), but an air supply for supplying compressed air to the adsorption tank is used. Drive of units (compressor, air tank, dryer) and control of water discharge of the dryer, and control of each process of the gas separation unit (adsorption tank, product tank, etc.) are performed independently of each other.

【0006】すなわち、圧縮機により生成された圧縮空
気は空気タンクに蓄圧され、吸着工程時に空気タンク内
から、圧縮空気の水分を取除くためのドライヤを介して
圧縮空気が気体分離ユニットに供給される。
That is, the compressed air generated by the compressor is accumulated in the air tank, and the compressed air is supplied to the gas separation unit from the inside of the air tank through the dryer for removing the moisture of the compressed air during the adsorption process. It

【0007】この際、圧縮機は、空気タンクの圧力が所
定圧力未満であるときにロード運転(通常運転)が行わ
れ、空気タンクの圧力が所定圧力に達するとアンロード
運転(無負荷運転時)に切り換わる。アンロード運転時
は圧縮機の駆動用モータは駆動されたままであるが、給
気弁が開いた状態に保持されて圧縮空気の生成は行われ
ない。
At this time, the compressor performs a load operation (normal operation) when the pressure in the air tank is less than a predetermined pressure, and an unload operation (in no-load operation when the pressure in the air tank reaches a predetermined pressure). ). During the unloading operation, the drive motor of the compressor is still driven, but the air supply valve is held open and compressed air is not generated.

【0008】また、圧縮空気から分離された水分を排出
するために、ドライヤは制御タイマーなどによって、一
定の時間が経過した際に、また空気タンクは一定の水分
量が溜まった際に気体分離ユニットとは独立した制御で
水分の排気が行われていた。
Further, in order to discharge the water separated from the compressed air, the dryer uses a control timer or the like, and a gas separation unit is used when a certain amount of water has accumulated in the air tank and when a certain amount of water is accumulated in the air tank. The water was exhausted under the control independent from.

【0009】このため、吸着工程、取出工程のように空
気供給ユニットから気体分離ユニットに圧縮空気を供給
する場合のように、ドライヤと気体分離ユニットが連通
している状態において、ドライヤの水分を排出した場合
は、吸着槽に供給する窒素ガスの生成に必要な圧縮空気
が減少することにより、吸着槽内の吸着圧力が低下し、
生成される窒素ガスの濃度が低下してしまうという問題
点があった。
Therefore, as in the case of supplying compressed air from the air supply unit to the gas separation unit in the adsorption process and the extraction process, the moisture in the dryer is discharged while the dryer and the gas separation unit are in communication with each other. In this case, the compressed air required to generate the nitrogen gas supplied to the adsorption tank is reduced, and the adsorption pressure in the adsorption tank is reduced.
There is a problem that the concentration of the generated nitrogen gas decreases.

【0010】また、均圧工程のように圧縮機と吸着槽の
配管を電磁弁で遮断した場合、空気タンク内の圧力が上
昇し、所定圧力を越えてしまうと圧縮機がアンロード運
転に切替ってしまう。この場合、圧縮機は所定圧力未満
になるまでロード運転がされず、気体分離装置に圧縮空
気を供給する能力が低下し、窒素ガスの生成効率が低下
してしまうという問題があった。
Further, when the compressor and the pipe of the adsorption tank are shut off by a solenoid valve as in the pressure equalizing step, the pressure in the air tank rises, and when the pressure exceeds a predetermined pressure, the compressor switches to unloading operation. Will end up. In this case, there is a problem that the compressor is not loaded until the pressure becomes lower than a predetermined pressure, the ability to supply compressed air to the gas separation device decreases, and the nitrogen gas generation efficiency decreases.

【0011】そこで、本発明は上記課題を解決した気体
分離装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a gas separation device that solves the above problems.

【0012】[0012]

【課題を解決するための手段】 上記課題を解決するた
め、本発明は以下のような特徴を有する。上記請求項1
の発明は、圧縮機により圧縮され、除湿手段で水分を取
除かれた圧縮空気を、吸着手段が充填された吸着槽に供
給し、吸着槽内を昇圧させて製品ガスを生成する吸着工
程と、該吸着槽に生成された製品ガスを該吸着槽から取
り出す取出工程と、該吸着槽内の圧力を他の吸着槽内の
圧力と均圧化する均圧工程とを順次行うよう構成された
気体分離装置において、圧縮機と吸着槽との間に設けら
れた遮断手段を遮断したとき、前記除湿手段に設けられ
たドレン排出弁を開弁し、圧縮空気を除湿手段で除湿し
た際に発生した、除湿手段内に蓄積された水分を排出す
ることを特徴とするものである。
Means for Solving the Problems In order to solve the above problems, the present invention has the following features. Claim 1
In the invention, an adsorption step of supplying compressed air, which is compressed by a compressor and dewatered by a dehumidifying means, to an adsorption tank filled with an adsorbing means and pressurizes the inside of the adsorption tank to generate a product gas, , A step of taking out the product gas generated in the adsorption tank from the adsorption tank and a pressure equalizing step of equalizing the pressure in the adsorption tank with the pressure in another adsorption tank are sequentially performed. In the gas separation device, when the shut-off means provided between the compressor and the adsorption tank is shut off, the drain discharge valve provided in the dehumidifying means is opened and the compressed air is dehumidified by the dehumidifying means. The water accumulated in the dehumidifying means is discharged.

【0013】また、請求項2の発明は、前記請求項1の
気体分離装置において、均圧工程のときに、除湿手段に
設けられたドレン排出弁を開弁し、圧縮機によって圧縮
された圧縮空気を除湿手段で除湿した際に発生した該除
湿手段内に蓄積された水分の排出をすることを特徴とす
るものである。
Further, in the second aspect of the invention, in the gas separation apparatus of the first aspect, during the pressure equalizing step, the drain discharge valve provided in the dehumidifying means is opened and compressed by the compressor. It is characterized in that the water accumulated in the dehumidifying means generated when the air is dehumidified by the dehumidifying means is discharged.

【0014】また、請求項3の発明は、アンロード運転
機能を有する圧縮機により圧縮され、除湿手段で水分を
取除かれた圧縮空気を、吸着手段が充填された吸着槽に
供給し、吸着槽内を昇圧させて製品ガスを生成する吸着
工程と、該吸着槽に生成された製品ガスを該吸着槽から
取り出す取出工程と、該吸着槽内の圧力を他の吸着槽内
の圧力と均圧化する均圧工程とを順次行うよう構成され
た気体分離装置において、圧縮機と吸着槽の間に圧力計
を設け、該圧力計によって計測された圧力が設定された
所定の圧力に達したときに、除湿手段に設けられたドレ
ン排出弁を開弁し、圧縮機によって圧縮された圧縮空気
を除湿手段で除湿した際に発生した該除湿手段内に蓄積
された水分の排出することを特徴とするものである。
Further, in the invention of claim 3, the compressed air compressed by the compressor having the unloading operation function and dewatered by the dehumidifying means is supplied to the adsorbing tank filled with the adsorbing means to adsorb the compressed air. An adsorption step of raising the pressure in the tank to generate a product gas, an extraction step of taking out the product gas generated in the adsorption tank from the adsorption tank, and a pressure in the adsorption tank equal to that in another adsorption tank. In a gas separation device configured to sequentially perform a pressure equalizing step of pressure-izing, a pressure gauge is provided between the compressor and the adsorption tank, and the pressure measured by the pressure gauge reaches a set predetermined pressure. At this time, the drain discharge valve provided in the dehumidifying means is opened to discharge the water accumulated in the dehumidifying means generated when the compressed air compressed by the compressor is dehumidified by the dehumidifying means. It is what

【0015】また、請求項4の発明は、前記請求項3の
気体分離装置において、気体分離装置において、圧縮機
の空気タンク内の圧力が、該圧縮機のアンロード運転に
切替るアンロード運転所定圧力より低い所定の圧力に設
定し、該空気タンク内の圧力が水分排出の設定圧力に達
したときに、除湿手段に設けられたドレン排出弁を開弁
し、圧縮機によって圧縮された圧縮空気を除湿手段で除
湿した際に発生した該除湿手段内に蓄積された水分の排
出をすることを特徴とするものである。
Further, the invention of claim 4 is the gas separating apparatus according to claim 3, wherein in the gas separating apparatus, the pressure in the air tank of the compressor is switched to the unloading operation of the compressor. When the pressure set in the air tank reaches a preset pressure lower than the preset pressure, the drain discharge valve provided in the dehumidifying means is opened when the pressure in the air tank reaches the set pressure for moisture discharge, and the compression compressed by the compressor is performed. It is characterized in that the water accumulated in the dehumidifying means generated when the air is dehumidified by the dehumidifying means is discharged.

【0016】[0016]

【発明の実施の形態】 図1は本発明の第1の実施形態
であるPSA式窒素発生装置の全体構成を示す図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing an overall configuration of a PSA type nitrogen generator which is a first embodiment of the present invention.

【0017】図1中、1,2は第1,第2の吸着槽で、
各吸着槽1,2内にはそれぞれ吸着手段としての分子ふ
るいカーボン1A,2Aが充填されている。
In FIG. 1, reference numerals 1 and 2 denote first and second adsorption tanks, respectively.
The adsorption tanks 1 and 2 are filled with molecular sieving carbons 1A and 2A as adsorption means, respectively.

【0018】3は、圧縮空気供給源となる圧縮機で、圧
縮機3は圧縮空気を生成し、該圧縮空気はタンク3aに
貯留され、除湿手段である冷凍式ドライヤ4,配管6,
7を介して吸着槽1,2にそれぞれ交互に供給されるよ
うになっており、このため、該配管6,7の途中にはそ
れぞれ電磁弁からなる遮断手段としての空気供給用弁
8,9が設けられている。
Reference numeral 3 denotes a compressor serving as a compressed air supply source. The compressor 3 produces compressed air, and the compressed air is stored in a tank 3a, and a refrigerating dryer 4, a pipe 6, which is a dehumidifying means.
The air is supplied alternately to the adsorption tanks 1 and 2 via the air supply valves 7. Therefore, in the middle of the pipes 6 and 7, the air supply valves 8 and 9 as shut-off means composed of electromagnetic valves, respectively. Is provided.

【0019】また、冷凍式ドライヤ4には、冷凍式ドラ
イヤ4内に溜まった水分を排出するためのドレン排出弁
4aが設けられている。
Further, the refrigeration dryer 4 is provided with a drain discharge valve 4a for discharging the water accumulated in the refrigeration dryer 4.

【0020】10,11は吸着剤から酸素分子を脱着さ
せる時に吸着槽1,2からの気体を排出する配管で、排
気音を下げるサイレンサ12に接続されている。そし
て、前記配管10,11の途中にはそれぞれ吸着槽1,
2内の脱着排ガスを半サイクル(一方の吸着槽が吸着工
程から均圧工程まで)毎に交互に排出する電磁弁からな
る排ガス排気弁13,14が設けられている。
Reference numerals 10 and 11 denote pipes for discharging gas from the adsorption tanks 1 and 2 when desorbing oxygen molecules from the adsorbent, and are connected to a silencer 12 for reducing exhaust noise. In the middle of the pipes 10 and 11, the adsorption tank 1,
Exhaust gas exhaust valves 13 and 14 that are electromagnetic valves that alternately discharge the desorbed exhaust gas in 2 every half cycle (from one adsorption tank to the pressure equalization step to the pressure equalization step) are provided.

【0021】15,16は吸着槽1,2から製品ガスと
しての窒素ガスをそれぞれ取り出す取出配管、17は取
出配管15,16と連結した取出配管で、取出配管1
5,16の途中には半サイクルの間だけ後述の制御回路
100の制御の下に交互に開弁する電磁弁からなる取出
用弁18,19がそれぞれ設けられている。また、前記
取出配管17は製品タンク20と接続されている。
Numerals 15 and 16 are extraction pipes for extracting nitrogen gas as a product gas from the adsorption tanks 1 and 2, and 17 is an extraction pipe connected to the extraction pipes 15 and 16, and the extraction pipe 1
In the middle of 5 and 16, extraction valves 18 and 19 which are electromagnetic valves that are alternately opened under the control of a control circuit 100 described later for half cycles are provided. The take-out pipe 17 is connected to the product tank 20.

【0022】21は吸着槽1,2間を連通する配管、2
2は配管21の途中に設けられた電磁弁からなる均圧用
弁で、均圧用弁22は吸着槽1,2による半サイクルの
終了間際に所定の数秒だけ開弁し、吸着槽1,2間を均
圧にする(均圧工程)。
Reference numeral 21 is a pipe for connecting the adsorption tanks 1 and 2 with each other.
Reference numeral 2 is a pressure equalizing valve made up of a solenoid valve provided in the middle of the pipe 21, and the pressure equalizing valve 22 is opened for a predetermined few seconds just before the end of the half cycle by the adsorption tanks 1 and 2, and the adsorption tanks 1 and 2 are To equalize pressure (equalizing process).

【0023】23は製品タンク20に接続された製品ガ
ス取出配管で、その途中には電磁弁からなる製品ガス取
出用弁24が設けられている。
Reference numeral 23 is a product gas extraction pipe connected to the product tank 20, and a product gas extraction valve 24 composed of an electromagnetic valve is provided in the middle thereof.

【0024】25は濃度計で、製品ガス取出配管23よ
り分岐する分岐配管26に接続されている。この濃度計
25は製品ガス取出配管23を介して製品タンク20よ
り取出された気体の窒素ガス濃度を測定する。
Reference numeral 25 is a densitometer, which is connected to a branch pipe 26 which branches from the product gas extraction pipe 23. The densitometer 25 measures the nitrogen gas concentration of the gas taken out from the product tank 20 through the product gas taking-out pipe 23.

【0025】50は製品ガス排出用の分岐配管で、この
分岐配管50には、後述の制御手段100より開弁信号
に基づいて該装置自体の起動時のみ所定時間開弁した
後、閉弁する電磁弁よりなる製品ガス排出弁51、及
び、この製品ガス排出弁51を開弁することにより分岐
配管50より外部に排出される製品タンク20内の窒素
ガスの排出量を一定に保つ可変の絞り52が設けられて
いる。
Reference numeral 50 denotes a branch pipe for discharging a product gas. The branch pipe 50 is opened for a predetermined time only when the apparatus itself is started based on a valve opening signal from a control means 100 described later, and then closed. A product gas discharge valve 51 formed of a solenoid valve, and a variable throttle that keeps the discharge amount of nitrogen gas in the product tank 20 discharged from the branch pipe 50 outside by opening the product gas discharge valve 51 constant. 52 is provided.

【0026】次に、制御回路100について説明する。
制御回路100は、前述の各電磁弁を開閉制御して窒素
ガスを生成するための弁制御回路101と、前述の濃度
計25により出力される酸素ガス濃度測定信号が入力さ
れ、この酸素ガス濃度測定信号の値から製品タンク20
内の窒素ガス濃度を検出して濃度異常検出回路102及
び異常検出手段としての性能劣化判定回路103に上記
窒素ガス濃度を出力する窒素ガス濃度検出回路104
と、から構成されている。
Next, the control circuit 100 will be described.
The control circuit 100 is supplied with a valve control circuit 101 for controlling the opening and closing of each solenoid valve to generate nitrogen gas, and an oxygen gas concentration measurement signal output from the concentration meter 25 described above. The product tank 20 from the value of the measurement signal
A nitrogen gas concentration detection circuit 104 that detects the nitrogen gas concentration in the inside and outputs the nitrogen gas concentration to the concentration abnormality detection circuit 102 and the performance deterioration determination circuit 103 as abnormality detection means.
It consists of and.

【0027】次に、上記のように構成された窒素発生装
置の弁制御回路101による動作につき説明する。ま
ず、窒素発生装置としての基本動作について図2,図3
を用いて説明する。尚、図3中、(B)は吸着槽1の状
態を、(C)は吸着槽2の状態を示している。ここで、
窒素発生装置を起動すると、制御回路100の弁制御回
路101の制御の下に各電磁弁が作動し、窒素ガス(製
品ガス)の発生が行われる。
Next, the operation of the valve control circuit 101 of the nitrogen generator constructed as described above will be explained. First, the basic operation of the nitrogen generator is shown in FIGS.
Will be explained. In FIG. 3, (B) shows the state of the adsorption tank 1, and (C) shows the state of the adsorption tank 2. here,
When the nitrogen generator is activated, each solenoid valve operates under the control of the valve control circuit 101 of the control circuit 100, and nitrogen gas (product gas) is generated.

【0028】まず、図2,図3に示すように、最初に、
第2の吸着槽2では、吸着工程,取出工程,均圧
工程の動作が、また第1の吸着槽1では〜の間に再
生工程が実行され、のときに第2の吸着槽2との均圧
工程が実行される。
First, as shown in FIGS. 2 and 3, first,
In the second adsorption tank 2, the operations of the adsorption step, the extraction step, and the pressure equalizing step are performed, and in the first adsorption tank 1, the regeneration step is performed between and, and at that time, A pressure equalization process is performed.

【0029】図2中の第2の吸着槽2の吸着工程で
は、第2の吸着槽2側の空気供給用弁9,取出用弁19
を開弁する。これにより、第2の吸着槽2に原料気体と
しての圧縮空気が圧縮機3より供給される。また、製品
タンク20内の窒素ガスは取出配管16,17を逆流し
て上部(下流側)より吸着槽2内に還流する。これによ
り、第2の吸着槽2は圧縮機3からの圧縮空気と製品タ
ンク20内の窒素ガスとの上・下方向から流入したガス
により昇圧状態にあり、分子ふるいカーボン2Aに酸素
が吸着される。
In the adsorption process of the second adsorption tank 2 in FIG. 2, the air supply valve 9 and the extraction valve 19 on the second adsorption tank 2 side.
Open. As a result, the compressed air as the raw material gas is supplied from the compressor 3 to the second adsorption tank 2. Further, the nitrogen gas in the product tank 20 flows backward through the extraction pipes 16 and 17, and is returned from the upper portion (downstream side) into the adsorption tank 2. As a result, the second adsorption tank 2 is in a pressurized state due to the compressed air from the compressor 3 and the nitrogen gas in the product tank 20 flowing in from above and below, and oxygen is adsorbed by the molecular sieve carbon 2A. It

【0030】一方、第1の吸着槽1では、排ガス排出弁
13の開弁により減圧状態にあり、吸着していた酸素が
脱着して排出されている再生工程の状態を示している。
On the other hand, in the first adsorption tank 1, the exhaust gas discharge valve 13 is opened to reduce the pressure, and the adsorbed oxygen is desorbed and discharged.

【0031】次に、図2中の第2の吸着槽2の取出工
程は、第2の吸着槽2側の空気供給用弁9及び取出用弁
19を吸着工程に引続き開弁したままで、圧縮空気を第
2の吸着槽2に供給し続けるため、第2の吸着槽2内の
圧力が製品タンク20内の圧力より高くなり、第2の吸
着槽2内の窒素ガスが取り出される状態となる。このと
き、第1の吸着槽1は排ガス排出弁13が開弁した減圧
状態の再生工程のままであり、均圧用弁22を閉弁する
ことで終了する。
Next, in the process of taking out the second adsorption tank 2 in FIG. 2, the air supply valve 9 and the take-out valve 19 on the side of the second adsorption tank 2 are kept open after the adsorption process. Since the compressed air is continuously supplied to the second adsorption tank 2, the pressure in the second adsorption tank 2 becomes higher than the pressure in the product tank 20, and the nitrogen gas in the second adsorption tank 2 is taken out. Become. At this time, the first adsorption tank 1 is still in the decompression state of the regeneration process in which the exhaust gas discharge valve 13 is opened, and is ended by closing the pressure equalizing valve 22.

【0032】次に、図2中の均圧工程は、均圧用弁2
2を開弁すると共に空気供給用弁9、取出用弁19、排
ガス排出弁13を閉弁し、吸着槽1,2と圧縮機3との
間、及び吸着槽1,2と製品タンク20との間を遮断
し、吸着槽1,2の間を連通する。これにより、第2の
吸着槽2内に残存する窒素ガスは第1の吸着槽1に回収
され、各吸着槽1,2の圧力は均圧となる。なお、上記
均圧工程は通常1〜5秒である。
Next, the pressure equalizing step in FIG.
2 is opened and the air supply valve 9, the extraction valve 19, and the exhaust gas discharge valve 13 are closed, and the space between the adsorption tanks 1 and 2 and the compressor 3 and between the adsorption tanks 1 and 2 and the product tank 20 are changed. The space between them is cut off, and the adsorption tanks 1 and 2 are communicated with each other. As a result, the nitrogen gas remaining in the second adsorption tank 2 is recovered in the first adsorption tank 1, and the pressure in each of the adsorption tanks 1 and 2 becomes equal. The pressure equalizing step is usually 1 to 5 seconds.

【0033】これにより、図3中の(A)に示す1サイ
クルのうちの前半のサイクルが終了したことになり、空
気供給用弁8,取出用弁18,排ガス排出弁14を開弁
することによって、図3の(B),(C)に示すように
図2中の〜に示す後半のサイクルに切替り、これら
の工程を繰り返す。
As a result, the first half of the one cycle shown in FIG. 3A is completed, and the air supply valve 8, the extraction valve 18, and the exhaust gas discharge valve 14 are opened. By the above, as shown in FIGS. 3 (B) and 3 (C), the cycle is switched to the latter half cycle shown by to in FIG. 2 and these steps are repeated.

【0034】なお、この後半のサイクルにおいて、第1
の吸着槽1では吸着工程,取出工程,均圧工程を
行い、第2の吸着槽2では〜の間に再生工程を行
い、では吸着槽1,2の均圧工程を行う。
In the latter half of the cycle, the first
In the adsorption tank 1, the adsorption step, the extraction step, and the pressure equalization step are performed, in the second adsorption tank 2, the regeneration step is performed between and, and in the adsorption tank 1, the pressure equalization step of the adsorption tanks 1 and 2.

【0035】以上のように、弁制御回路101は上記サ
イクルを繰り返すことにより、圧縮機3より供給される
原料気体を吸着槽1,2内で窒素ガスとそれ以外のガス
(酸素ガス)とに分離し、吸着槽1,2で分離された窒
素ガスを製品タンク20内に貯留させる。また、これと
共に、製品タンク20内の窒素ガスが吸着槽1,2に還
流されることにより、この窒素ガスに含まれている窒素
ガス以外のガスが吸着槽1,2で取り除かれて再度製品
タンク20内に供給されることにより、製品タンク20
内の窒素ガス濃度自体もより高濃度とすることができ
る。
As described above, the valve control circuit 101 repeats the above cycle to convert the raw material gas supplied from the compressor 3 into nitrogen gas and other gas (oxygen gas) in the adsorption tanks 1 and 2. The nitrogen gas separated and separated in the adsorption tanks 1 and 2 is stored in the product tank 20. Along with this, the nitrogen gas in the product tank 20 is returned to the adsorption tanks 1 and 2, so that the gases other than the nitrogen gas contained in the nitrogen gas are removed in the adsorption tanks 1 and 2 and the product is again produced. By being supplied into the tank 20, the product tank 20
The nitrogen gas concentration itself can also be made higher.

【0036】なお、弁制御回路101は、上記各電磁弁
の制御の他に製品ガス取出用弁24及び製品ガス排出弁
51の開閉制御も行っている。即ち、窒素発生装置の起
動時には弁制御回路101は、前述の基本動作をさせる
ための上記各電磁弁の制御と並行して、製品ガス取出用
弁24には開弁信号を出力せずに製品ガス取出用弁24
を閉弁させたまま製品ガス排出弁51に開弁信号を出力
するとともに、濃度計25により製品ガスの窒素濃度を
測定する。そして、製品ガス排出弁51を開弁させて製
品タンク20内の窒素濃度の低い窒素ガスを分岐配管5
0より排出する状態を本装置が起動されてから製品ガス
の窒素濃度が所定の濃度に達するまで持続させる起動運
転状態時の起動運転制御を行っている。
The valve control circuit 101 also controls the opening and closing of the product gas extraction valve 24 and the product gas discharge valve 51, in addition to the control of the above-mentioned electromagnetic valves. That is, at the time of starting the nitrogen generator, the valve control circuit 101 does not output the valve opening signal to the product gas extraction valve 24 in parallel with the control of the above-mentioned electromagnetic valves for performing the above-mentioned basic operation. Gas extraction valve 24
While the valve is closed, a valve opening signal is output to the product gas discharge valve 51, and the concentration meter 25 measures the nitrogen concentration of the product gas. Then, the product gas discharge valve 51 is opened to supply the nitrogen gas having a low nitrogen concentration in the product tank 20 to the branch pipe 5
The starting operation control in the starting operation state in which the state of discharging from 0 is continued until the nitrogen concentration of the product gas reaches a predetermined concentration after the present apparatus is started is performed.

【0037】また、上記起動運転制御終了後(前記所定
時間の経過後)、前記弁制御回路101による基本動作
は持続させたまま、製品ガス排出弁51を閉弁するとと
もに、製品ガス取出用弁24に開弁信号を出力して製品
ガス取出用弁24を開弁して製品タンク20内の窒素ガ
スを被供給機器(図示せず)に製品ガス取出配管23を
介して供給する通常運転状態時の通常運転制御を行って
いる。
After the start-up operation control is completed (after the lapse of the predetermined time), the product gas discharge valve 51 is closed and the product gas extraction valve is maintained while the basic operation of the valve control circuit 101 is maintained. A normal operation state in which a valve opening signal is output to 24 to open the product gas extraction valve 24 to supply the nitrogen gas in the product tank 20 to the supply target device (not shown) through the product gas extraction pipe 23. The normal operation control is performed.

【0038】なお、本実施例における起動運転制御後の
通常運転制御は、例えば、窒素発生装置自体への電気の
供給が遮断されるか、または、前記装置自体に設けられ
た運転スイッチ(図示せず)がOFF操作されるまで行
われる。
In the normal operation control after the start-up operation control in this embodiment, for example, the supply of electricity to the nitrogen generating device itself is cut off, or an operation switch (not shown) provided in the device itself. It is performed until OFF is operated.

【0039】次に、本発明のポイントである冷凍式ドラ
イヤ4の水分の排出制御について説明する。
Next, the water discharge control of the refrigerating dryer 4 which is the point of the present invention will be described.

【0040】前述の均圧工程の際に、制御回路100
は、弁制御回路101に均圧弁22の開弁と、取出用弁
18及び空気供給用弁8、又は取出用弁19及び空気供
給用弁9に閉弁の信号を送ると共に、冷凍式ドライヤ4
のドレン排出弁4aに水分の排出のための開弁信号を送
る。ドレン排出弁4aは圧縮機から供給された圧縮空気
から出た冷凍式ドライヤ4内に溜まった水分の排出を均
圧工程中に行い、均圧工程が終了すると同時に冷凍式ド
ライヤ4の水分の排出も終了させる。
During the pressure equalizing step described above, the control circuit 100
Sends a signal to the valve control circuit 101 to open the pressure equalizing valve 22 and to close the extraction valve 18 and the air supply valve 8 or the extraction valve 19 and the air supply valve 9, and at the same time, the refrigeration dryer 4
A valve opening signal for discharging water is sent to the drain discharge valve 4a. The drain discharge valve 4a discharges the water accumulated in the refrigeration dryer 4 discharged from the compressed air supplied from the compressor during the pressure equalizing step, and at the same time when the pressure equalizing step is completed, the water of the refrigeration dryer 4 is discharged. Also ends.

【0041】均圧工程中には冷凍式ドライヤと吸着槽
1,2の間が空気供給用弁8,9によって共に遮断され
るので、冷凍式ドライヤ4内の水分の排出を行っても吸
着槽1,2内の圧力が低下することなく、気体分離装置
内全体の圧力も下げることもないので、均圧工程終了後
も窒素ガスの供給を効率良く行うことができ、窒素ガス
生成効率を低下させることがない。
During the pressure equalizing step, the air between the refrigerating dryer and the adsorption tanks 1 and 2 is shut off by the air supply valves 8 and 9, so that even if the moisture in the refrigerating dryer 4 is discharged, the adsorption tank is removed. Since the pressure in 1 and 2 does not decrease and the pressure in the entire gas separation device does not decrease, the nitrogen gas can be efficiently supplied even after the pressure equalization process is completed, and the nitrogen gas generation efficiency is decreased. There is nothing to do.

【0042】さらに、均圧工程中は圧縮機3と吸着槽
1,2の間が遮断されるため、図4に示すように、従来
は均圧工程中に圧縮機3が駆動し続けると空気タンク3
a内の圧力が上昇し、タンク3aの所定圧力を越え、ア
ンロード運転に切換ってしまうが、約1〜5秒程の毎均
圧工程中に水分の排出を行うことにより、圧縮機3から
冷凍式ドライヤ4までの間の圧力は少ししか上昇しない
ためアンロード運転に切換ることがなく、アンロード運
転による気体分離装置に圧縮空気を供給する能力の低下
と、ロード運転への切換りに時間を取られることもな
く、製品ガスの生成効率の低下を防止することができ
る。
Further, since the compressor 3 and the adsorption tanks 1 and 2 are shut off during the pressure equalizing step, conventionally, as shown in FIG. Tank 3
Although the pressure in a rises and exceeds the predetermined pressure in the tank 3a, it switches to unloading operation, but by discharging water during each pressure equalizing step for about 1 to 5 seconds, the compressor 3 Since there is only a slight increase in the pressure from the chiller to the refrigeration dryer 4, there is no need to switch to unload operation, and the decrease in the ability to supply compressed air to the gas separation device due to unload operation and switching to load operation. It is possible to prevent a decrease in product gas generation efficiency without taking time.

【0043】次に、図5を用いて、第2の実施形態につ
いて説明する。第2の実施形態は、上記第1の実施形態
の圧縮機3と空気供給用弁8または9との間に圧力計6
0が設けられた構成となる。この圧力計60によって計
測された圧力が、所定の圧力より高くなったときに、冷
凍式ドライヤ4内に溜まった水分の排出を行い、該所定
の圧力と同じ圧力か、それより低い圧力になったとき
に、水分の排出を停止する。これにより、アンロード運
転に切換る前に、圧縮機3から冷凍式ドライヤ4までの
間の圧力の上昇を抑え、アンロード運転による気体分離
装置内の圧縮空気を供給する能力の低下と、ロード運転
への切換りに時間を取られることもない。
Next, a second embodiment will be described with reference to FIG. In the second embodiment, a pressure gauge 6 is provided between the compressor 3 and the air supply valve 8 or 9 of the first embodiment.
0 is provided. When the pressure measured by the pressure gauge 60 becomes higher than a predetermined pressure, the water accumulated in the refrigerating dryer 4 is discharged, and the pressure becomes equal to or lower than the predetermined pressure. Stop draining water. As a result, before switching to the unload operation, an increase in the pressure between the compressor 3 and the refrigeration dryer 4 is suppressed, and the ability to supply compressed air in the gas separation device due to the unload operation decreases and It does not take time to switch to operation.

【0044】ここで、上記所定の圧力がアンロード運転
に切換る圧力よりも高く設定されていると、吸着槽1,
2に圧縮空気を供給する圧縮機3は、空気タンク3aの
圧力が上記所定の圧力を超える以前に、アンロード運転
に切換ってしまう。そこで、冷凍式ドライヤ4内に溜ま
った水分の排出を行うタイミングを決定する上記所定圧
力(水分排出圧力)は、このアンロード運転に切換る圧
力よりも低く設定し、空気タンク3a内の圧力が、この
設定された所定の圧力に達したときに水分の排出を行う
ようにしている。これにより、アンロード運転に切換る
前に、圧縮機3から冷凍式ドライヤ4までの間の圧力の
上昇を抑え、アンロード運転による気体分離装置内の圧
力の低下と、ロード運転への切換りに時間を取られるこ
ともない。
Here, if the predetermined pressure is set higher than the pressure for switching to the unloading operation, the adsorption tank 1,
The compressor 3 which supplies compressed air to 2 switches to the unloading operation before the pressure in the air tank 3a exceeds the predetermined pressure. Therefore, the predetermined pressure (moisture discharge pressure) that determines the timing of discharging the water accumulated in the refrigeration dryer 4 is set lower than the pressure for switching to this unloading operation, and the pressure in the air tank 3a is The water is discharged when the set predetermined pressure is reached. This suppresses an increase in pressure between the compressor 3 and the refrigeration dryer 4 before switching to the unload operation, reduces the pressure in the gas separation device due to the unload operation, and switches to the load operation. It doesn't take much time.

【0045】なお、本実施形態では、ドレン排出弁4a
を開弁することによるドライヤ4の水分の排出をするタ
イミングを、遮断手段である空気供給弁8,9が遮断さ
れる均圧工程で行う説明をしたが、これに限ることでな
く、図3の(D)及び(E)の点線に示すように取出工
程の終了前において、空気供給弁8,9を開弁するよう
にした場合には、これら両空気供給用弁8,9が共に遮
断されている間であれば、取出工程の間にドレン排出弁
4aを開弁してドライヤ4の水分を排出しても良い。
In this embodiment, the drain discharge valve 4a
Although the timing for discharging the moisture from the dryer 4 by opening the valve is described in the pressure equalizing step in which the air supply valves 8 and 9 as the shutoff means are shut off, the present invention is not limited to this. When the air supply valves 8 and 9 are opened before the completion of the take-out step as shown by the dotted lines (D) and (E) in FIG. During this time, the drain discharge valve 4a may be opened during the extraction process to discharge the moisture in the dryer 4.

【0046】また、本実施形態では、冷凍式エアドライ
ヤ4のみの水分の排出について述べたが、同タイミング
でタンク3aに溜まった水分を排出するようにしても良
い。
In the present embodiment, the drainage of water only from the refrigeration air dryer 4 has been described, but the moisture stored in the tank 3a may be drained at the same timing.

【0047】また、本実施形態では、ドライヤに冷凍式
ドライヤを用いて説明したが、これに限ることはなく、
圧縮空気の水分を除湿することができれば乾燥剤などを
利用したドライヤでも良い。
Further, in the present embodiment, the description has been made by using the refrigerating dryer as the dryer, but the present invention is not limited to this.
A dryer using a desiccant or the like may be used as long as it can dehumidify the water content of the compressed air.

【0048】また、第1および第2の実施形態では、一
対の吸着槽を有するPSA式窒素発生装置を用いて説明
したが、これに限ることはなく、圧縮機と吸着槽の間を
遮断する遮断手段を有していれば単一および2つ以上の
吸着槽を有していても良い。
In the first and second embodiments, the PSA type nitrogen generator having a pair of adsorption tanks has been described, but the invention is not limited to this, and the compressor and the adsorption tank are shut off from each other. It may have a single adsorption tank or two or more adsorption tanks as long as it has a blocking means.

【0049】また、本実施形態では、起動運転制御は濃
度計25によって製品ガス濃度を測定し、その濃度によ
って製品ガス排出弁51を制御するように説明したが、
これに限ることはなく、気体分離装置が起動されてから
の時間を計測し、所定の時間が経過することで製品ガス
排出弁51の制御をしても良い。
Further, in the present embodiment, the starting operation control is explained by measuring the product gas concentration by the densitometer 25 and controlling the product gas discharge valve 51 according to the concentration.
The present invention is not limited to this, and the product gas discharge valve 51 may be controlled by measuring the time after the gas separation device is activated and elapse of a predetermined time.

【0050】[0050]

【発明の効果】 以上のように、本発明の請求項1は、
圧縮機と吸着槽の間が遮断される吸着槽への圧縮空気の
供給を必要としないときに除湿手段に溜まった水分の排
出を行うので、吸着槽内の圧力上昇の度合を低下させる
ことなく、吸着槽内で生成される製品ガスの生成効率低
下を防止することができる。
As described above, the first aspect of the present invention is
Since the air between the compressor and the adsorption tank is cut off, the water accumulated in the dehumidifying means is discharged when it is not necessary to supply compressed air to the adsorption tank, so the degree of pressure rise in the adsorption tank is not reduced. It is possible to prevent the production efficiency of the product gas generated in the adsorption tank from decreasing.

【0051】また、本発明の請求項2は、圧縮機と吸着
槽の間が遮断される吸着槽への圧縮空気の供給を必要と
しない均圧工程中に除湿手段に溜まった水分の除湿を行
うので、吸着槽内の圧力上昇の度合を低下させることな
く、吸着槽内で生成される製品ガスの生成効率低下を防
止することができる。
According to a second aspect of the present invention, dehumidification of water accumulated in the dehumidifying means during the pressure equalizing step which does not require the supply of compressed air to the adsorption tank in which the compressor and the adsorption tank are shut off from each other. Since this is performed, it is possible to prevent the production efficiency of the product gas generated in the adsorption tank from decreasing without reducing the degree of pressure increase in the adsorption tank.

【0052】また、本発明の請求項3,4は、空気タン
ク内の圧力が所定の圧力に達したときに除湿手段に溜ま
った水分の除湿を行うので、タンク内の圧力が急上昇す
ることを抑え、圧縮機がアンロード運転に切換るのを防
ぎ、製品ガスの生成効率の低下を防止することができ
る。
Further, according to claims 3 and 4 of the present invention, since the water accumulated in the dehumidifying means is dehumidified when the pressure in the air tank reaches a predetermined pressure, the pressure in the tank is prevented from rising rapidly. Therefore, it is possible to prevent the compressor from being switched to the unloading operation, and prevent the product gas generation efficiency from decreasing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1および第3の実施形態の気体分離
装置の全体構成を示す図である。
FIG. 1 is a diagram showing an overall configuration of a gas separation device according to first and third embodiments of the present invention.

【図2】気体分離装置の吸着槽1,2の各工程(基本動
作)における給排気の状況を示す図である。
FIG. 2 is a diagram showing a situation of supply and exhaust in each step (basic operation) of the adsorption tanks 1 and 2 of the gas separation device.

【図3】気体分離装置の吸着槽1,2の各工程(基本動
作)のタイムチャートを示す図である。
FIG. 3 is a diagram showing a time chart of each step (basic operation) of the adsorption tanks 1 and 2 of the gas separation device.

【図4】本発明と従来技術の気体分離装置の空気タンク
の圧力変化を示す図である。
FIG. 4 is a diagram showing a pressure change in an air tank of the gas separator according to the present invention and the related art.

【図5】本発明の第2の実施形態の気体分離装置の全体
構成を示す図である。
FIG. 5 is a diagram showing an overall configuration of a gas separation device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,2 吸着槽 3 圧縮機 3a タンク 4 冷凍式ドライヤ 4a ドレン排出弁 8,9 空気供給用弁 18,19 取出用弁 20 製品タンク 22 均圧弁 100 制御回路 101 弁制御回路 1, 2 adsorption tank 3 compressor 3a tank 4 freezing dryer 4a drain discharge valve 8,9 Air supply valve 18, 19 Extraction valve 20 product tanks 22 Pressure equalizing valve 100 control circuit 101 valve control circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 真土 学 神奈川県綾瀬市小園1116番地 トキコ株式 会社相模工場内 Fターム(参考) 4D012 CA05 CA06 CB16 CD07 CG01 CH10 CJ01 CJ10 4D052 AA01 BA04 FA09 GA01 GB08 4G042 BA15 BB02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Manabu Manabu             1116 Kozono, Ayase-shi, Kanagawa Tokiko stock             Company Sagami Factory F term (reference) 4D012 CA05 CA06 CB16 CD07 CG01                       CH10 CJ01 CJ10                 4D052 AA01 BA04 FA09 GA01 GB08                 4G042 BA15 BB02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機により圧縮され、除湿手段で水分
を取除かれた圧縮空気を、吸着手段が充填された吸着槽
に供給し、吸着槽内を昇圧させて製品ガスを生成する吸
着工程と、該吸着槽に生成された製品ガスを該吸着槽か
ら取り出す取出工程と、該吸着槽内の圧力を他の吸着槽
内の圧力と均圧化する均圧工程とを順次行うよう構成さ
れた気体分離装置において、圧縮機と吸着槽との間に設
けられた遮断手段を遮断したとき、前記除湿手段に設け
られたドレン排出弁を開弁し、圧縮空気を除湿手段で除
湿した際に発生した除湿手段内に蓄積された水分を排出
することを特徴とする気体分離装置。
1. An adsorption step of supplying compressed air, which has been compressed by a compressor and whose moisture has been removed by a dehumidifying means, to an adsorption tank filled with an adsorbing means to raise the pressure in the adsorption tank to generate a product gas. And a step of taking out the product gas generated in the adsorption tank from the adsorption tank and a pressure equalizing step of equalizing the pressure in the adsorption tank with the pressure in another adsorption tank. In the gas separation device, when the shut-off means provided between the compressor and the adsorption tank is shut off, the drain discharge valve provided in the dehumidifying means is opened to dehumidify the compressed air by the dehumidifying means. A gas separation device, characterized in that the generated water accumulated in the dehumidifying means is discharged.
【請求項2】 前記請求項1の気体分離装置において、
前記遮断手段が遮断している均圧工程のときに、除湿手
段に設けられたドレン排出弁を開弁し、圧縮機によって
圧縮された圧縮空気を除湿手段で除湿した際に発生した
該除湿手段内に蓄積された水分の排出をすることを特徴
とする気体分離装置。
2. The gas separation device according to claim 1,
The dehumidifying means generated when the drain discharge valve provided in the dehumidifying means is opened and the compressed air compressed by the compressor is dehumidified by the dehumidifying means during the pressure equalizing step in which the shutoff means shuts off. A gas separation device, which discharges the water accumulated inside.
【請求項3】 アンロード運転機能を有する圧縮機によ
り圧縮され、除湿手段で水分を取除かれた圧縮空気を、
吸着手段が充填された吸着槽に供給し、吸着槽内を昇圧
させて製品ガスを生成する吸着工程と、該吸着槽に生成
された製品ガスを該吸着槽から取り出す取出工程と、該
吸着槽内の圧力を他の吸着槽内の圧力と均圧化する均圧
工程とを順次行うよう構成された気体分離装置におい
て、圧縮機と吸着槽の間に圧力計を設け、該圧力計によ
って計測された圧力が設定された所定の圧力に達したと
きに、除湿手段に設けられたドレン排出弁を開弁し、圧
縮機によって圧縮された圧縮空気を除湿手段で除湿した
際に発生した該除湿手段内に蓄積された水分の排出する
ことを特徴とする気体分離装置。
3. Compressed air compressed by a compressor having an unloading operation function and having moisture removed by dehumidifying means,
An adsorption step of supplying the adsorption gas to the adsorption tank filled with the adsorption means and increasing the pressure in the adsorption tank to generate a product gas; a step of taking out the product gas generated in the adsorption tank from the adsorption tank; In a gas separation device configured to sequentially perform a pressure equalizing step for equalizing the internal pressure with the pressure in another adsorption tank, a pressure gauge is provided between the compressor and the adsorption tank, and the pressure is measured by the pressure gauge. When the set pressure reaches a set predetermined pressure, the drain discharge valve provided in the dehumidifying means is opened, and the dehumidification generated when the compressed air compressed by the compressor is dehumidified by the dehumidifying means. A gas separation device, characterized in that water accumulated in the means is discharged.
【請求項4】 前記請求項3の気体分離装置において、
ドレン排出弁を開弁する水分排出圧力を、該圧縮機のア
ンロード運転に切替るアンロード運転所定圧力より低い
圧力に設定し、前記圧力計の圧力が水分排出圧力に達し
たときに、前記除湿手段に設けられたドレン排出弁を開
弁し、圧縮機によって圧縮された圧縮空気を除湿手段で
除湿した際に発生した該除湿手段内に蓄積された水分の
排出をすることを特徴とする気体分離装置。
4. The gas separation device according to claim 3,
The moisture discharge pressure for opening the drain discharge valve is set to a pressure lower than a predetermined pressure for unloading operation for switching to the unloading operation of the compressor, and when the pressure of the pressure gauge reaches the moisture discharge pressure, The drain discharge valve provided in the dehumidifying means is opened to discharge the water accumulated in the dehumidifying means generated when the compressed air compressed by the compressor is dehumidified by the dehumidifying means. Gas separation device.
JP2001311940A 2001-10-09 2001-10-09 Gas separation device Expired - Fee Related JP3867229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001311940A JP3867229B2 (en) 2001-10-09 2001-10-09 Gas separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001311940A JP3867229B2 (en) 2001-10-09 2001-10-09 Gas separation device

Publications (2)

Publication Number Publication Date
JP2003117330A true JP2003117330A (en) 2003-04-22
JP3867229B2 JP3867229B2 (en) 2007-01-10

Family

ID=19130674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001311940A Expired - Fee Related JP3867229B2 (en) 2001-10-09 2001-10-09 Gas separation device

Country Status (1)

Country Link
JP (1) JP3867229B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153629A (en) * 2005-11-30 2007-06-21 Hitachi Ltd Nitrogen gas generating apparatus
JP2008214151A (en) * 2007-03-06 2008-09-18 Teijin Pharma Ltd Oxygen concentrator
JP2008248847A (en) * 2007-03-30 2008-10-16 Hitachi Ltd Gas booster/compressor
US8337599B2 (en) 2007-05-07 2012-12-25 Teijin Pharma Limited Oxygen concentrator
JP2020015021A (en) * 2018-07-27 2020-01-30 コフロック株式会社 Control method of pressure swing adsorption apparatus and pressure swing adsorption apparatus
JP2020142180A (en) * 2019-03-06 2020-09-10 エア・ウォーター株式会社 High oxygen gas supply device and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153629A (en) * 2005-11-30 2007-06-21 Hitachi Ltd Nitrogen gas generating apparatus
JP4594223B2 (en) * 2005-11-30 2010-12-08 株式会社日立製作所 Nitrogen gas generator
JP2008214151A (en) * 2007-03-06 2008-09-18 Teijin Pharma Ltd Oxygen concentrator
JP2008248847A (en) * 2007-03-30 2008-10-16 Hitachi Ltd Gas booster/compressor
US8337599B2 (en) 2007-05-07 2012-12-25 Teijin Pharma Limited Oxygen concentrator
JP2020015021A (en) * 2018-07-27 2020-01-30 コフロック株式会社 Control method of pressure swing adsorption apparatus and pressure swing adsorption apparatus
JP7236069B2 (en) 2018-07-27 2023-03-09 コフロック株式会社 Control method for pressure swing adsorption device and pressure swing adsorption device
JP2020142180A (en) * 2019-03-06 2020-09-10 エア・ウォーター株式会社 High oxygen gas supply device and method
JP7262250B2 (en) 2019-03-06 2023-04-21 エア・ウォーター株式会社 High oxygen gas supply device and method

Also Published As

Publication number Publication date
JP3867229B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
KR100491684B1 (en) Gas concentrating Method and apparatus for use of Pressure Swing Adsorption
KR100346487B1 (en) Pressure swing adsorption gas flow control method and system
KR100288568B1 (en) Single Bed Pressure Cyclic Adsorption Method for Recovery of Oxygen from Air
KR100353673B1 (en) Oxygen generation process and system using single adsorber and single blower
CA2255526C (en) Psa process and system using simultaneous top and bottom evacuation of adsorbent bed
JP5789449B2 (en) Gas separation device
JP2003117330A (en) Apparatus for separating gas
JP5814145B2 (en) Gas separation device
CN211837111U (en) PSA nitrogen production system
JP5010772B2 (en) Gas separation device
JP5022785B2 (en) Gas separation device
JP2872678B2 (en) Reduction operation control method in pressure swing adsorption system
JP5864994B2 (en) Gas separation apparatus and method
JP2006015221A (en) Gas separator
JP5325937B2 (en) Gas separation device
JP4594223B2 (en) Nitrogen gas generator
JP3138067B2 (en) Gas separation device
JPH01184016A (en) Apparatus for gas separation
JPH10118439A (en) Gas separating device based on psa process
JP2653698B2 (en) Gas separation device
JPH0938443A (en) Gas separator
JPH0731825A (en) Gas separator
JP6823979B2 (en) Gas separator
JPH04371210A (en) Gas separation equipment
JP3073061B2 (en) Gas separation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees