JP2003115332A - Voltage detecting device of assembling-type battery - Google Patents

Voltage detecting device of assembling-type battery

Info

Publication number
JP2003115332A
JP2003115332A JP2002195917A JP2002195917A JP2003115332A JP 2003115332 A JP2003115332 A JP 2003115332A JP 2002195917 A JP2002195917 A JP 2002195917A JP 2002195917 A JP2002195917 A JP 2002195917A JP 2003115332 A JP2003115332 A JP 2003115332A
Authority
JP
Japan
Prior art keywords
current
conversion circuit
voltage
circuit
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002195917A
Other languages
Japanese (ja)
Inventor
Tetsuya Kobayashi
徹也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002195917A priority Critical patent/JP2003115332A/en
Publication of JP2003115332A publication Critical patent/JP2003115332A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a voltage detecting device of an assembling-type battery in which a simultaneous detection of module voltage and current is possible while augmentations of a circuit scale and a wiring scale are inhibited. SOLUTION: A control circuit 1 simultaneously makes a read of an analog signal carried out at respective A/D conversion circuits 5, 9, and makes a read of a digital signal carried out from the respective A/D conversion circuits 5, 9 in the time sequence. That the respective A/D conversion circuits 5, 9 have a temporary retaining function of the signals is utilized, so that the analog signals of the module voltage and the current are simultaneously read, and the analog signals to be read in the respective A/D conversion circuits 5, 9 are converted and retained into digital signals, and read from the respective A/D conversion circuits 5, 9 to the control circuit 1 in the time sequence. Therefore, a signal path from the respective A/D conversion circuits 5, 9 to the control circuit 1 is integrated so that the wiring construction is simplified, and a composition of the control circuit 1 can be simplified also.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、組み電池の電圧検
出装置に関する。 【0002】 【従来の技術】特開平5−64377号公報は、縦続接
続形式の多数の単電池からなる組み電池を構成する複数
のモジュ−ルのモジュ−ル電圧を個別に検出し、また、
組み電池の電流を検出し、組み電池の充電制御を各モジ
ュ−ル(連続して縦続接続された複数の単電池で構成さ
れる)ごとに行うことを提案している。 【0003】また、電気自動車などに搭載される組み電
池の残存容量検出では、その電圧と電流とに基づいてそ
れを行うことが高精度検出の点で一般的であるが、電気
自動車の組み電池では損失低減の点から数百の単電池を
縦続接続して組み電池を構成しており、総電圧が極めて
高いのでその正確な検出が容易ではなかった。たとえば
電圧検出精度が0.1%とし、総電圧が300Vであれ
ば0.3Vの誤差が生じることになるが、単電池の端子
電圧が1.2V程度であるので、総電圧により単電池の
不良などをチェックしたり、充電状況をチェックするこ
とは困難であった。 【0004】このため、上記説明したように、組み電池
を複数のモジュ−ルに分割し、各モジュ−ル電圧および
電流を個別に検出し、充電状況や放電状況をモニタする
ことが考えられる。 【0005】 【発明が解決しようとする課題】しかしながら、各モジ
ュ−ルの充電状態をモジュ−ル電圧と電流とで推定する
場合において各モジュ−ル電圧と電流とを同時に検出し
なければ大きな誤差が生じてしまう。 【0006】各モジュ−ル電圧及び電流を同時に抽出す
るには、各回路を並列に設けることにより理論的には可
能ではあるが、実際には回路規模、配線規模の著しい増
加により採用が困難である。本発明では上記問題点に鑑
みなされたものであり、回路規模、配線規模の増大を抑
止しつつ、各モジュ−ル電圧及び電流の同時検出が可能
な組み電池の電圧検出装置を提供することをその解決す
べき課題としている。 【0007】 【課題を解決するための手段】請求項1に記載した本発
明の組み電池の電圧検出装置によれば、各モジュールの
充電状態を検出するために,それぞれのモジュールの電
圧値、電流値を同時に測定することができ、バッテリ電
圧の変動により総電圧の誤差を低減できる。しかも、モ
ジュ−ル電圧検出用のA/D変換回路と、電流検出用の
A/D変換回路から制御回路への信号経路が集約される
ために、配線を少なくして簡素な構成にすることができ
る。さらに、各A/D変換回路は、CPUを備えること
なく、制御信号にデジタル信号を送ることができ、制御
回路の構成も簡素化することがでできる。 【0008】 【発明の実施の形態】以下、本発明の好適な態様を以下
の実施例により詳細に説明する。ただし、本発明は下記
の実施例の構成に限定されるものではなく、置換可能な
公知回路を用いて構成できることは当然である。 【0009】 【実施例1】本発明の組み電池の電圧検出装置の一実施
例を図1を参照して説明する。1は電池の充放電を制御
するCPU、2はデマルチプレクサからなるクロック信
号分配用のセレクタ回路(以下、クロック信号セレクタ
回路ともいう)、3はデマルチプレクサからなる制御信
号分配用のセレクタ回路(以下、制御信号セレクタ回路
ともいう)、4はマルチプレクサからなるデジタル信号
選択用のセレクタ回路(以下、デ−タセレクタ回路とも
いう)、5〜9はA/D変換回路、特にそのうち5〜7
がモジュ−ル電圧検出用のA/D変換回路、8が総電圧
のA/D変換回路、9が電流のA/D変換回路、10〜
13は差動増幅回路、14はアナログ増幅回路、15は
電流センサ、16〜18は組み電池19の各モジュ−ル
であり、モジュ−ル16〜18はそれぞれ数十個の単電
池を縦続接続してなる。20は各セレクタ回路2〜4と
各A/D変換回路5〜9を接続するシリアル信号線群で
あり、この実施例では、各信号線は電圧遮断によるCP
U1の保護のためにフォトカプラ(図示せず)を有して
いる。 【0010】図1からわかるように、モジュ−ル16の
モジュ−ル電圧(電圧アナログ信号)は差動増幅回路1
0で所定の共通接地電位に対する信号電圧に変換されか
らA/D変換回路5でA/D変換される。同様に、モジ
ュ−ル17のモジュ−ル電圧(電圧アナログ信号)は差
動増幅回路11で所定の共通接地電位に対する信号電圧
に変換されからA/D変換回路6でA/D変換され、モ
ジュ−ル18のモジュ−ル電圧(電圧アナログ信号)は
差動増幅回路12で所定の共通接地電位に対する信号電
圧に変換されからA/D変換回路7でA/D変換され
る。 また、組み電池19の総電圧(総電圧アナログ
信号)は差動増幅回路13で所定の共通接地電位に対す
る信号電圧に変換されからA/D変換回路8でA/D変
換され、組み電池19の電流(電流アナログ信号)は増
幅回路14で信号電圧に変換されからA/D変換回路9
でA/D変換される。 【0011】各A/D変換回路5〜9の出力は、デ−タ
セレクタ回路4にて時間順次に選択され、信号SINと
してCPU1に読み込まれる。A/D変換回路5〜9は
同期動作シリアル出力型のA/D変換回路であって、変
換デ−タすなわちシリアルデジタル信号はデジタル信号
確定後に入力するクロックパルスに同期して出力され
る。 【0012】更に説明すると、A/D変換回路5は、図
2に示すようにアナログ信号が入力されるアナログ入力
端子、シリアル信号であるデジタル信号を出力するデ−
タ出力端子、シリアル信号である制御命令が入力される
制御命令入力端子、及び、同期用のクロックパルスが入
力されるクロックパルス入力端子を有し、読み込み指令
が制御命令入力端子へ入力されると、クロックパルス入
力端子へ入力されるクロックパルスのエッジに同期して
アナログ信号の読み込みが行われ、その後、次のクロッ
クパルスの入力により8ビットのシリアルデジタル信号
が出力される。その他のA/D変換回路6〜8も同じ構
造を有している。 【0013】この組み電池の電圧検出装置の更に詳細な
動作を以下に説明する。CPU1は、クロック信号セレ
クタ回路2へクロックパルスSCLK及びA/D変換回
路選択信号SELを出力し、制御信号セレクタ回路3へ
読み込み指令などの制御命令信号SOUT及びA/D変
換回路選択信号SELを出力し、デ−タセレクタ回路4
へA/D変換回路選択信号SELを出力し、デ−タセレ
クタ回路4からシリアルデジタル信号を受け取る。 【0014】(同時読み込み)CPU1は、A/D変換
回路選択信号SELによりA/D変換回路5〜9の全て
を選択することをクロック信号セレクタ回路2及び制御
信号セレクタ回路3に通知し、これにより制御信号セレ
クタ回路3は読み込み命令をA/D変換回路5〜9全て
に送信し、クロック信号セレクタ回路2はクロックパル
スSCLKをA/D変換回路5〜9全てに送信し、各A
/D変換回路5〜9は読み込み命令入力直後に入力する
クロックパルスのエッジに同期してアナログ信号の読み
込みを行い、それを8ビットのデジタル信号に変換して
保持する。なお、この時、A/D変換回路5〜9の全て
を選択するA/D変換回路選択信号SELはデ−タセレ
クタ回路4に対してはデ−タセレクタ回路4の内部にお
いて無効とされる。 【0015】(順次出力)次に、CPU1は、A/D変
換回路選択信号SELによりモジュ−ル電圧検出用のA
/D変換回路5を選択することをセレクタ回路2〜4に
通知し、これによりクロック信号セレクタ回路2はクロ
ックパルスSCLKをA/D変換回路5にだけ送信し、
これによりA/D変換回路5はクロックパルスSCLK
のエッジに同期してシリアルデジタル信号をデ−タセレ
クタ回路4に出力し、デ−タセレクタ回路4はA/D変
換回路選択信号SELによりA/D変換回路5を選択し
ているので、このA/D変換回路5からのシリアルデジ
タル信号はCPU1に送信される。 【0016】次に、CPU1は、A/D変換回路選択信
号SELによりモジュ−ル電圧検出用のA/D変換回路
6を選択することをセレクタ回路2〜4に通知し、その
後は上記と同じ動作を行ってA/D変換回路6のシリア
ルデジタル信号をCPU1へ送信し、以下同様に、各A
/D変換回路7〜9(7はモジュ−ル電圧検出用、8は
総電圧検出用、9は電流検出用のそれぞれA/D変換回
路)のシリアルデジタル信号がCPU1へ送信される。
上述したように、この実施例の組み電池の電圧検出装置
では、前記モジュ−ル電圧検出用のA/D変換回路と前
記電流検出用のA/D変換回路の一方を選択してそのA
/D変換回路に保持された前記デジタル信号を制御回路
に送信させ、前記制御回路は、前記モジュ−ル電圧検出
用のA/D変換回路と前記電流検出用のA/D変換回路
の他方のA/D変換回路を選択してそのA/D変換回路
に保持された前記デジタル信号を制御回路に送信させる
ことで、各前記モジュ−ル電圧及び前記電流のデジタル
信号の読み出しを時間順次に行わせている。すなわち、
A/D変換回路5〜9のデジタルデ−タ一時保持機能を
利用して、並列読み込み、順次読み出しを行うのでラッ
チ回路やサンプルホ−ルド回路といった余分な回路を用
いることなく、それを実現することができ、簡素な構成
で各モジュ−ル電圧、総電圧及び電流の同時読み込みが
実現する。 【0017】これにより、各モジュ−ル電圧及び電流の
同時読み込みにより、電池内部抵抗を加味した電池容量
の正確な推定が可能となり、各モジュ−ル電圧及び総電
圧の同時読み込みにより、各モジュ−ル電圧の合計と総
電圧との差に基づいて、バッテリ不良などの判別を容易
に実現することができる。 【0018】 【実施例2】他の実施例を図3を参照して説明する。こ
の実施例は、図1に示すA/D変換回路5〜7を1個の
マルチチャンネル式A/D変換回路21に置換し、図1
に示すA/D変換回路8をマルチチャンネル式A/D変
換回路21に置換し、図1に示すA/D変換回路8、9
を同様にマルチチャンネル式A/D変換回路22、23
に変換したものである。 【0019】この実施例の回路動作は、基本的に同じで
あるが、3つのマルチチャンネル式A/D変換回路21
〜23は、制制御信号セレクタ回路4からのシリアル信
号線を通じての指令により、時間順次かつ互いに同期し
てチャンネル選択されて作動する。したがって、最初、
モジュ−ル16のモジュ−ル電圧と総電圧と電流とが同
時に読み込まれ、それが時間順次にCPU1へ送信され
た後、モジュ−ル17のモジュ−ル電圧と総電圧と電流
とが同時に読み込まれ、それが時間順次にCPU1へ送
信され、以下順番に、モジュ−ル電圧18のモジュ−ル
電圧までこの動作が繰り返される。 【0020】(変形態様)なお、上記各実施例で採用し
たシリアル信号線群は、パラレル信号線に置換すること
も可能である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an assembled battery voltage detecting device. 2. Description of the Related Art Japanese Patent Laying-Open No. 5-64377 discloses a method of individually detecting module voltages of a plurality of modules constituting an assembled battery composed of a number of cascaded unit cells.
It has been proposed to detect the current of the assembled battery and control the charging of the assembled battery for each module (consisting of a plurality of cells connected in cascade in succession). [0003] In detecting the remaining capacity of an assembled battery mounted on an electric vehicle or the like, it is general to perform the detection based on the voltage and current in terms of high accuracy detection. In order to reduce the loss, several hundred cells are connected in cascade to form an assembled battery. Since the total voltage is extremely high, accurate detection is not easy. For example, if the voltage detection accuracy is 0.1% and the total voltage is 300V, an error of 0.3V will occur. However, since the terminal voltage of the unit cell is about 1.2V, the unit voltage of the unit cell depends on the total voltage. It was difficult to check for defects and check the charging status. For this reason, as described above, it is conceivable to divide the assembled battery into a plurality of modules, individually detect the voltage and current of each module, and monitor the state of charge and the state of discharge. However, when estimating the state of charge of each module using the module voltage and the current, a large error occurs unless the module voltage and the current are detected simultaneously. Will occur. Although it is theoretically possible to extract each module voltage and current at the same time by providing each circuit in parallel, in practice, it is difficult to employ it due to a remarkable increase in circuit scale and wiring scale. is there. The present invention has been made in view of the above problems, and an object of the present invention is to provide an assembled battery voltage detection device capable of simultaneously detecting each module voltage and current while suppressing an increase in circuit scale and wiring scale. It is an issue to be solved. According to the voltage detecting device for an assembled battery of the present invention, in order to detect the charging state of each module, the voltage and current of each module are detected. The values can be measured at the same time, and errors in the total voltage can be reduced due to fluctuations in the battery voltage. In addition, since the A / D conversion circuit for detecting the module voltage and the signal path from the A / D conversion circuit for detecting the current to the control circuit are integrated, the wiring is reduced and the configuration is simplified. Can be. Furthermore, each A / D conversion circuit can send a digital signal to a control signal without including a CPU, and the configuration of the control circuit can be simplified. [0008] Preferred embodiments of the present invention will be described in detail below with reference to the following examples. However, the present invention is not limited to the configuration of the following embodiment, and it is obvious that the present invention can be configured using a replaceable known circuit. [Embodiment 1] An embodiment of a voltage detecting device for an assembled battery according to the present invention will be described with reference to FIG. Reference numeral 1 denotes a CPU for controlling charging / discharging of a battery, 2 denotes a selector circuit for clock signal distribution comprising a demultiplexer (hereinafter also referred to as a clock signal selector circuit), and 3 denotes a selector circuit for control signal distribution comprising a demultiplexer (hereinafter referred to as a clock signal selector circuit) , A control signal selector circuit), 4 is a selector circuit for selecting digital signals comprising a multiplexer (hereinafter also referred to as a data selector circuit), 5 to 9 are A / D conversion circuits, and especially 5 to 7 of them.
Is an A / D converter for detecting module voltage, 8 is an A / D converter for total voltage, 9 is an A / D converter for current, 10 to 10
Reference numeral 13 denotes a differential amplifier circuit, 14 denotes an analog amplifier circuit, 15 denotes a current sensor, 16 to 18 denote modules of an assembled battery 19, and modules 16 to 18 cascade-connect dozens of cells, respectively. Do it. Reference numeral 20 denotes a serial signal line group for connecting each of the selector circuits 2 to 4 and each of the A / D conversion circuits 5 to 9;
A photocoupler (not shown) is provided to protect U1. As can be seen from FIG. 1, the module voltage (voltage analog signal) of the module 16 is applied to the differential amplifier circuit 1.
At 0, the signal is converted to a signal voltage corresponding to a predetermined common ground potential, and then A / D converted by the A / D conversion circuit 5. Similarly, the module voltage (voltage analog signal) of the module 17 is converted by the differential amplifier circuit 11 into a signal voltage corresponding to a predetermined common ground potential, and then A / D converted by the A / D conversion circuit 6 to be converted. The module voltage (voltage analog signal) of the module 18 is converted into a signal voltage with respect to a predetermined common ground potential by the differential amplifier circuit 12, and then A / D converted by the A / D conversion circuit 7. Further, the total voltage (total voltage analog signal) of the assembled battery 19 is converted into a signal voltage with respect to a predetermined common ground potential by the differential amplifier circuit 13, and then A / D converted by the A / D conversion circuit 8. The current (current analog signal) is converted into a signal voltage by the amplifier circuit 14 and then converted to an A / D converter circuit 9.
Is A / D converted. The outputs of the A / D conversion circuits 5 to 9 are selected in time sequence by the data selector circuit 4 and read into the CPU 1 as a signal SIN. The A / D conversion circuits 5 to 9 are synchronous operation serial output type A / D conversion circuits, and conversion data, that is, a serial digital signal is output in synchronization with a clock pulse input after the digital signal is determined. More specifically, as shown in FIG. 2, the A / D conversion circuit 5 has an analog input terminal to which an analog signal is input, and a data output terminal which outputs a digital signal which is a serial signal.
A control command input terminal to which a control command which is a serial signal is inputted, and a clock pulse input terminal to which a clock pulse for synchronization is inputted, and when a read command is inputted to the control command input terminal. The analog signal is read in synchronization with the edge of the clock pulse input to the clock pulse input terminal, and then, the input of the next clock pulse outputs an 8-bit serial digital signal. The other A / D conversion circuits 6 to 8 have the same structure. A more detailed operation of the battery pack voltage detecting device will be described below. The CPU 1 outputs a clock pulse SCLK and an A / D conversion circuit selection signal SEL to the clock signal selector circuit 2, and outputs a control command signal SOUT such as a read command and an A / D conversion circuit selection signal SEL to the control signal selector circuit 3. Data selector circuit 4
And outputs an A / D conversion circuit selection signal SEL to the data selector circuit 4 to receive a serial digital signal. (Simultaneous reading) The CPU 1 notifies the clock signal selector circuit 2 and the control signal selector circuit 3 that all of the A / D conversion circuits 5 to 9 are selected by the A / D conversion circuit selection signal SEL. , The control signal selector 3 transmits a read command to all the A / D converters 5 to 9, the clock signal selector 2 transmits a clock pulse SCLK to all the A / D converters 5 to 9,
The / D conversion circuits 5 to 9 read the analog signal in synchronization with the edge of the clock pulse input immediately after the input of the read command, convert the analog signal into an 8-bit digital signal, and hold it. At this time, the A / D conversion circuit selection signal SEL for selecting all of the A / D conversion circuits 5 to 9 is invalidated for the data selector circuit 4 inside the data selector circuit 4. (Sequential output) Next, the CPU 1 responds to the A / D conversion circuit selection signal SEL by using the A / D converter module detection signal SEL.
The selector circuit 2 notifies the selector circuits 2 to 4 of the selection of the / D conversion circuit 5, whereby the clock signal selector circuit 2 transmits the clock pulse SCLK only to the A / D conversion circuit 5,
As a result, the A / D conversion circuit 5 outputs the clock pulse SCLK
A serial digital signal is output to the data selector circuit 4 in synchronization with the edge of the A / D converter circuit 4. The data selector circuit 4 selects the A / D converter circuit 5 by the A / D converter circuit selection signal SEL. The serial digital signal from the D conversion circuit 5 is transmitted to the CPU 1. Next, the CPU 1 notifies the selector circuits 2 to 4 that the A / D conversion circuit 6 for detecting the module voltage is selected by the A / D conversion circuit selection signal SEL. An operation is performed to transmit a serial digital signal of the A / D conversion circuit 6 to the CPU 1, and similarly, each A
The serial digital signals of the / D conversion circuits 7 to 9 (7 are for detecting the module voltage, 8 is for detecting the total voltage, and 9 is for the A / D conversion circuit for detecting the current) are transmitted to the CPU 1.
As described above, in the assembled battery voltage detecting device of this embodiment, one of the A / D conversion circuit for detecting the module voltage and the A / D conversion circuit for detecting the current is selected and the A / D conversion circuit is selected.
The digital signal held by the / D conversion circuit is transmitted to a control circuit, and the control circuit transmits the other of the A / D conversion circuit for detecting the module voltage and the A / D conversion circuit for detecting the current. By selecting the A / D conversion circuit and transmitting the digital signal held by the A / D conversion circuit to the control circuit, the reading of the digital signal of each of the module voltage and the current is performed in time sequence. I have. That is,
Using the digital data temporary holding function of the A / D conversion circuits 5 to 9, parallel reading and sequential reading are performed, so that it is realized without using extra circuits such as a latch circuit and a sample hold circuit. It is possible to simultaneously read each module voltage, total voltage and current with a simple configuration. Thus, the simultaneous reading of each module voltage and current enables accurate estimation of the battery capacity in consideration of the internal resistance of the battery, and the simultaneous reading of each module voltage and the total voltage allows each module to be read simultaneously. Based on the difference between the total voltage and the total voltage, it is possible to easily determine whether the battery is defective or the like. Embodiment 2 Another embodiment will be described with reference to FIG. In this embodiment, the A / D conversion circuits 5 to 7 shown in FIG. 1 are replaced with one multi-channel A / D conversion circuit 21.
1 is replaced by a multi-channel A / D conversion circuit 21 and A / D conversion circuits 8 and 9 shown in FIG.
Are similarly converted to multi-channel A / D conversion circuits 22 and 23
Is converted to Although the circuit operation of this embodiment is basically the same, three multi-channel A / D conversion circuits 21
23 are selected and operated in a time-sequential manner and in synchronization with each other in accordance with a command from the control signal selector circuit 4 through a serial signal line. So, first,
The module voltage, total voltage, and current of the module 16 are read simultaneously, and are transmitted to the CPU 1 in time sequence. Then, the module voltage, total voltage, and current of the module 17 are read simultaneously. This is transmitted to the CPU 1 in time sequence, and thereafter, this operation is repeated up to the module voltage of the module voltage 18. (Modification) The serial signal line group employed in each of the above embodiments can be replaced with a parallel signal line.

【図面の簡単な説明】 【図1】実施例1の組み電池の電圧検出装置のブロック
回路図である。 【図2】図1のA/D変換回路5のブロック図である。 【図3】実施例1の組み電池の電圧検出装置のブロック
回路図である。 【符号の説明】 1はCPU(制御回路)、2〜4はセレクタ回路(制御
回路)、5〜9はA/D変換回路、16〜18はモジュ
−ル、19は組み電池。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block circuit diagram of a battery pack voltage detecting device according to a first embodiment. FIG. 2 is a block diagram of an A / D conversion circuit 5 of FIG. FIG. 3 is a block circuit diagram of a voltage detector for a battery pack according to the first embodiment. DESCRIPTION OF REFERENCE NUMERALS 1 is a CPU (control circuit), 2 to 4 are selector circuits (control circuits), 5 to 9 are A / D conversion circuits, 16 to 18 are modules, and 19 is an assembled battery.

Claims (1)

【特許請求の範囲】 【請求項1】 縦続接続形式の多数の単電池からなる組
み電池を構成する多数のモジュ−ルのモジュ−ル電圧を
個別にA/D変換する モジュ−ル電圧検出用のA/D
変換回路と、前記組み電池の電流をA/D変換する電流
検出用のA/D変換回路と、各前記A/D変換回路を駆
動制御して各前記モジュ−ル電圧及び前記電流のデジタ
ル値を取り込む制御回路とを備える組み電池の電圧検出
装置において、 前記制御回路は、前記モジュ−ル電圧検出用のA/D変
換回路に前記モジュール電圧の電圧アナログ信号の読み
込みと、前記電流検出用のA/D変換回路に前記電流の
電流アナログ信号の読み込みを同時に行わせる信号を送
信し、 前記モジュ−ル電圧検出用のA/D変換回路は,前記電
圧アナログ信号を読み込みそれをデジタル信号に変換し
て保持し、 前記電流検出用のA/D変換回路は、電流アナログ信号
を読み込みそれをデジタル信号に変換して保持し、 前記制御回路は、前記モジュ−ル電圧検出用のA/D変
換回路と前記電流検出用のA/D変換回路の内の一方を
選択してそのA/D変換回路に保持された前記デジタル
信号を制御回路に送信させ、 次に、前記制御回路は、前記モジュ−ル電圧検出用のA
/D変換回路と前記電流検出用のA/D変換回路の内の
他方のA/D変換回路を選択してそのA/D変換回路に
保持された前記デジタル信号を制御回路に送信させるこ
とで、各前記モジュ−ル電圧及び前記電流のデジタル信
号の読み出しを行わせることを特徴とする組み電池の電
圧検出装置。
Claims: 1. A module voltage detecting device for individually A / D converting module voltages of a large number of modules constituting a battery pack composed of a large number of unit cells of a cascade connection type. A / D
A conversion circuit, an A / D conversion circuit for current detection for A / D conversion of the current of the assembled battery, and a digital value of each of the module voltage and the current by driving and controlling each of the A / D conversion circuits. And a control circuit for reading the voltage analog signal of the module voltage into the A / D conversion circuit for detecting the module voltage, and controlling the current for detecting the current. A signal for causing the A / D conversion circuit to simultaneously read the current analog signal of the current is transmitted. The A / D conversion circuit for detecting the module voltage reads the voltage analog signal and converts it to a digital signal. The current detection A / D conversion circuit reads the current analog signal, converts it into a digital signal and holds it, and the control circuit detects the module voltage detection And selecting one of the A / D conversion circuit for current detection and the A / D conversion circuit for current detection, and transmitting the digital signal held by the A / D conversion circuit to a control circuit. The control circuit includes an A for detecting the module voltage.
By selecting the other one of the A / D conversion circuit and the current detection A / D conversion circuit, and transmitting the digital signal held by the A / D conversion circuit to the control circuit. And a digital signal of each of the module voltage and the current is read.
JP2002195917A 2002-07-04 2002-07-04 Voltage detecting device of assembling-type battery Pending JP2003115332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002195917A JP2003115332A (en) 2002-07-04 2002-07-04 Voltage detecting device of assembling-type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002195917A JP2003115332A (en) 2002-07-04 2002-07-04 Voltage detecting device of assembling-type battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9319792A Division JPH11150880A (en) 1997-11-20 1997-11-20 Voltage-detecting device of assembled battery

Publications (1)

Publication Number Publication Date
JP2003115332A true JP2003115332A (en) 2003-04-18

Family

ID=19195601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002195917A Pending JP2003115332A (en) 2002-07-04 2002-07-04 Voltage detecting device of assembling-type battery

Country Status (1)

Country Link
JP (1) JP2003115332A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231061A (en) * 2008-03-24 2009-10-08 Nec Tokin Corp Communication control system of secondary battery pack
WO2022186375A1 (en) * 2021-03-05 2022-09-09 ヌヴォトンテクノロジージャパン株式会社 Voltage measurement system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231061A (en) * 2008-03-24 2009-10-08 Nec Tokin Corp Communication control system of secondary battery pack
WO2022186375A1 (en) * 2021-03-05 2022-09-09 ヌヴォトンテクノロジージャパン株式会社 Voltage measurement system

Similar Documents

Publication Publication Date Title
US7663341B2 (en) System for controlling voltage balancing in a plurality of lithium-ion cell battery packs and method thereof
US8587262B2 (en) Assembled battery monitoring apparatus, method for detecting wiring disconnection of assembled battery, and assembled battery system
CN102216793B (en) System and method for measuring battery internal resistance
EP1806592B1 (en) Method and system for monitoring battery stacks
US7638973B2 (en) System for controlling voltage balancing in a plurality of lithium-ion cell battery packs and method thereof
CN208109933U (en) A kind of insulating resistor detecting circuit
JP2008099371A (en) Voltage conversion circuit and battery device
US8305084B2 (en) Voltage measuring apparatus for assembled battery
JP2002156392A (en) Device for detecting voltage of battery assembly
CN101297209A (en) Analog IC having test arrangement and test method for such an IC
JP4628019B2 (en) Data collection device
CN203063709U (en) Electromobile power battery voltage monitoring circuit
JP3226161B2 (en) Battery cell voltage detector
US9793582B2 (en) Method for data transmission on battery systems having a plurality of cells
JPH11150880A (en) Voltage-detecting device of assembled battery
JP4571888B2 (en) Voltage measuring device and degradation determination method thereof
US20120112941A1 (en) Systems and Methods for Analog to Digital Converter Charge Storage Device Measurement
JP2003115332A (en) Voltage detecting device of assembling-type battery
CN114128079A (en) Battery management system and battery pack
JP2003282158A (en) Battery voltage measuring circuit
KR20040000945A (en) Battery voltage measurement apparatus of battery management system
JP2011038997A (en) Battery voltage monitoring device and method
JP4770723B2 (en) Rechargeable cell status detection method
CN220983462U (en) Series connection cell voltage sampling circuit and battery management system
CN217787298U (en) Test tool for battery master control board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403