JP2003113415A - Method and apparatus for quenching splice plate for friction-bonding high strength bolt - Google Patents
Method and apparatus for quenching splice plate for friction-bonding high strength boltInfo
- Publication number
- JP2003113415A JP2003113415A JP2001311141A JP2001311141A JP2003113415A JP 2003113415 A JP2003113415 A JP 2003113415A JP 2001311141 A JP2001311141 A JP 2001311141A JP 2001311141 A JP2001311141 A JP 2001311141A JP 2003113415 A JP2003113415 A JP 2003113415A
- Authority
- JP
- Japan
- Prior art keywords
- optical element
- laser beam
- splice plate
- quenching
- power density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Articles (AREA)
- Connection Of Plates (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、建築、橋梁などに
おける構造の摩擦接合に利用される高力ボルト摩擦接合
用スプライスプレートの製造に適したスプライスプレー
トの焼き入れ処理方法とその装置に関するものである。
特に、高摩擦係数を持つ高性能なスプライスプレートを
レーザ処理により安価でしかも高速に製造可能とする技
術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for quenching a splice plate suitable for manufacturing a splice plate for high-strength bolt friction joining, which is used for friction joining of structures in buildings and bridges. is there.
In particular, the present invention relates to a technique capable of inexpensively and rapidly manufacturing a high-performance splice plate having a high friction coefficient by laser processing.
【0002】[0002]
【従来の技術】建築用鋼材などを直列に接合する際は、
被接合鋼材を突き合わせて、その両側にスプライスプレ
ートを添えてボルトで締め付けて接合する、いわゆる、
高力ボルト摩擦接合が一般的に採用されている。高力ボ
ルト摩擦接合において、日本建築学会の設計施工指針で
は、接合耐力上重要となる摩擦面は、黒皮除去された良
好な赤錆面で、すべり係数が0.45を上回る処理を施
すこと、また、すべり係数はすべり耐力試験により確認
する必要があるとしている。通常、良好な赤錆状態であ
れば、すべり係数は0.45を上回ることが知られてい
るが、錆生成状態が環境等の原因で異なることによりば
らつきが発生し、未達となる可能性がある。このため、
鋼材表面に赤錆を発生させる方法の他に、特開平11−
247831号公報にあるように接合面に転造等の加工
法で凹凸を付ける方法などが提案されている。このとき
の凹凸部は、その本来の目的である摩擦力を向上させる
ため高周波加熱法などで表面処理がなされていた。2. Description of the Related Art When joining building steel materials in series,
Butt steel to be joined, attach splice plates on both sides and tighten by bolts to join,
High strength bolt friction welding is commonly used. In high strength bolt friction welding, according to the design and construction guidelines of the Japan Institute of Architecture, the friction surface that is important in terms of joining strength is a good red rust surface with black skin removed, and a treatment with a slip coefficient of more than 0.45 is applied. In addition, the slip coefficient must be confirmed by a slip proof test. Normally, it is known that the slip coefficient exceeds 0.45 in a good red rust state, but there is a possibility that variations will occur due to differences in the rust generation state due to the environment etc. is there. For this reason,
In addition to the method of generating red rust on the surface of steel material, JP-A-11-
As disclosed in Japanese Unexamined Patent Publication No. 247831, a method of making unevenness on a joint surface by a processing method such as rolling has been proposed. At this time, the uneven portion was subjected to surface treatment by a high frequency heating method or the like in order to improve its original purpose of frictional force.
【0003】しかし、これらの表面処理方法では凹凸部
全面処理するため、高硬度が必要な凸部以外の凹部も硬
化することはさけられなかった。このため、スプライス
プレート部に引っ張り、曲げ、剪断成分が加わる場合、
凹部より亀裂進展しスプライスプレートが割れる等の問
題があった。また、スプライスプレート全面にわたって
硬化に充分な熱を入れるために、冷却時に変形しスプラ
イスプレートの必要項目である全てのボルト回りでの押
しつけが不充分となり、ひいては隙間の発生等で、充分
な摩擦接合が得られないという問題もあった。However, in these surface treatment methods, since the entire surface of the uneven portion is treated, it is unavoidable to cure the concave portion other than the convex portion which requires high hardness. Therefore, when pulling, bending, or shearing components are applied to the splice plate,
There was a problem that cracks propagated from the recesses and the splice plate cracked. In addition, since sufficient heat for hardening is applied to the entire surface of the splice plate, it deforms during cooling and the pressing around all bolts, which is a necessary item of the splice plate, becomes insufficient, and as a result, a gap is created, resulting in sufficient friction welding. There was also a problem that I could not get.
【0004】[0004]
【発明が解決しようとする課題】本発明は、上記課題を
解決し、パワー密度を制御したレーザによる熱処理を用
い、高摩擦係数を持つ高性能なスプライスプレートを安
価にしかも高速に供給可能とするレーザ熱処理方法及び
装置を提供することを目的とする。SUMMARY OF THE INVENTION The present invention solves the above problems and makes it possible to supply a high-performance splice plate having a high friction coefficient at low cost and at high speed by using heat treatment with a laser whose power density is controlled. An object is to provide a laser heat treatment method and apparatus.
【0005】[0005]
【課題を解決するための手段】本発明は、上記課題を解
決するためにパワー密度を制御したレーザビームを構成
し、照射を行うことで、高性能スプライスプレートを得
るものであって、その要旨とするところは、以下の通り
である。
(1)ボルト孔と同心円状に連続した山形の凹凸を持つ
高力ボルト摩擦接合用スプライスプレートの焼き入れ処
理方法において、レーザビームを前記山形の凹凸部の直
径よりも長く線状に集光し、前記山形の凹凸部を走査し
て熱処理するにあたり、前記線状に集光したレーザビー
ムの線幅とパワー密度の空間分布および走査速度を調整
することにより、山形の凸部の硬さを母材の硬さよりも
硬くすることを特徴とするの高力ボルト摩擦接合用スプ
ライスプレートの焼き入れ処理方法。
(2)上記線状に集光したレーザビームの長手方向中央
部のパワー密度が、長手方向の端部のパワー密度に対し
て相対的に低いレーザビームであることを特徴とする上
記(1)記載の高力ボルト摩擦接合用スプライスプレー
トの焼き入れ処理方法。
(3)ボルト孔と同心円状に連続した山形の凹凸を持つ
高力ボルト摩擦接合用スプライスプレートの焼き入れ処
理装置において、レーザビームを一軸方向に集光する第
1光学素子と、第1光学素子と被加工物との距離を調整
する第1光学素子位置調整機構と、第1光学素子で一軸
方向に集光されたレーザビームを集光方向と直角方向に
左右入れ替えて重畳させる第2光学素子と、第2光学素
子と被加工物との距離を調整する第2光学素子位置調整
機構と、第2光学素子出側のレーザビームを集光方向と
直角方向に広げる第3光学素子と、第3光学素子と被加
工物との距離を調整する第3光学素子位置調整機構と、
前記第3光学素子出側に得られた線状レーザビームを被
加工物平面上で線上方向と直角方向に走査する走査機構
とで構成され、第1〜3光学素子の各被加工物との距離
および走査機構の走査速度を調整することにより山形の
凸部の硬さを母材の硬さよりも硬くすることを可能にし
た高力ボルト摩擦接合用スプライスプレートの焼き入れ
処理装置。In order to solve the above-mentioned problems, the present invention provides a high-performance splice plate by constructing and irradiating a laser beam whose power density is controlled. The places to be are as follows. (1) In a quenching method of a high-strength bolt friction welding splice plate having concavities and concavities that are concentric with a bolt hole, a laser beam is condensed into a linear shape longer than the diameter of the concavities and convexities. When scanning and heat-treating the chevron-shaped concavo-convex portion, the hardness of the chevron-shaped convex portion is adjusted by adjusting the spatial distribution of the line width and power density of the linearly focused laser beam and the scanning speed. A method for quenching a splice plate for high-strength bolt friction joining, which is characterized by making it harder than the hardness of the material. (2) The power density of the linearly focused laser beam in the central portion in the longitudinal direction is relatively low as compared with the power density in the end portion in the longitudinal direction. A method for quenching a splice plate for high-strength bolt friction joining described in the above. (3) In a quenching treatment device for a high-strength bolt friction bonding splice plate having concavities and convexities contiguous to a bolt hole, a first optical element for concentrating a laser beam in a uniaxial direction, and a first optical element Optical element position adjusting mechanism for adjusting the distance between the workpiece and the workpiece, and a second optical element for superposing the laser beam focused by the first optical element in the uniaxial direction by left-right switching in the direction orthogonal to the focusing direction. A second optical element position adjusting mechanism for adjusting the distance between the second optical element and the workpiece, a third optical element for spreading the laser beam on the exit side of the second optical element in a direction perpendicular to the focusing direction, A third optical element position adjusting mechanism for adjusting the distance between the three optical elements and the workpiece,
And a scanning mechanism configured to scan the linear laser beam obtained on the output side of the third optical element in a direction perpendicular to the linear direction on the plane of the workpiece, and each of the workpieces of the first to third optical elements. A quenching device for a high-strength bolt friction welding splice plate that makes it possible to make the hardness of the chevron-shaped protrusions harder than the hardness of the base material by adjusting the distance and the scanning speed of the scanning mechanism.
【0006】[0006]
【発明の実施の形態】以下、本発明について詳細に説明
する。まず、本発明に関わるスプライスプレートは切
削、または転造により製作された凹凸が図1に示すよう
に、ボルト孔1の回りにボルト径の略3倍の領域に連続
した同心円状に付与されている。このため凸部頂点2は
母材から突き出しており、ボルトの締め付けにより被接
合鋼材に食い込み、滑り係数を増加させる構造になって
いる。そのスプライスプレートの凸部の頂点先端から凸
部高さの1/2が処理前母材の表面硬さよりも2倍程度
硬くなっていることで、食い込み効果がより顕著なもの
になっている。これに対し、凹部底部3近傍、および凹
凸部以外の部分の硬度は焼き入れ前の硬度と略同一とな
っている。このため、スプライスプレート自体の引張強
度、疲労強度等の機械特性は熱処理により変化せず設計
値通りの特性を安定に得ることができるものである。こ
のため、このスプライスプレートの製造法は母材全体を
加熱し選択的な熱処理を行うことのできない高周波加熱
等の熱処理では不可能で、レーザビームを長楕円形また
は線状に集光し、高パワー密度のビームを表面走査させ
ることにより熱処理を行うことで可能となるものであ
る。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. First, in the splice plate according to the present invention, as shown in FIG. 1, the concavities and convexities produced by cutting or rolling are continuously concentrically formed around the bolt hole 1 in a region approximately three times the bolt diameter. There is. For this reason, the apex 2 of the convex portion projects from the base material, and it is configured to bite into the steel material to be welded by tightening the bolt and increase the slip coefficient. The half of the height of the convex portion from the apex tip of the convex portion of the splice plate is about twice as hard as the surface hardness of the pre-treatment base material, so that the biting effect becomes more remarkable. On the other hand, the hardness in the vicinity of the bottom 3 of the concave portion and the portion other than the concave-convex portion is substantially the same as the hardness before quenching. Therefore, mechanical properties such as tensile strength and fatigue strength of the splice plate itself are not changed by the heat treatment, and the characteristics as designed can be stably obtained. For this reason, this method of manufacturing a splice plate cannot be performed by heat treatment such as high-frequency heating that cannot heat the entire base material to perform selective heat treatment. This can be achieved by performing heat treatment by scanning the surface with a beam having a power density.
【0007】この焼き入れのメカニズムについては、図
2に示すレーザ焼き入れ時の昇温シミュレーション結果
を基に説明する。このシミュレーションで用いた条件
は、レーザパワーが10kW、被加工材上でのビーム形状
は70mm×2mmの矩形形状で、短辺と平行な方向に2m/
min の速度で走査したものである。被加工材は、炭素量
が0.35%の機械構造用炭素鋼であり、凸部より凹部
までの高さが2mmであり、頂角60°である突起を持つ
スプライスプレートである。シミュレーション結果は、
その部分の達する最高温度が等高線上に表示されてい
る。被加工材の凸部は左右の斜面よりのレーザ入熱が加
算されるにことにより、容易に加熱され硬化に必要な変
態点となる。この例では、変態点は850℃である。こ
れに対して、凹部はレーザビーム4による入熱が伝熱に
より拡散され易く、温度上昇が変態点以下に抑えられる
ため硬化しない。The mechanism of this quenching will be described based on the temperature rise simulation result at the time of laser quenching shown in FIG. The conditions used in this simulation are a laser power of 10 kW, a beam shape on the workpiece of 70 mm x 2 mm rectangular shape, and 2 m / m in the direction parallel to the short side.
It was scanned at a speed of min. The material to be processed is a carbon steel for machine structural use having a carbon content of 0.35%, a height from a convex portion to a concave portion of 2 mm, and a splice plate having a protrusion having an apex angle of 60 °. The simulation result is
The maximum temperature reached by the part is displayed on the contour line. Since the laser heat input from the left and right slopes is added to the convex portion of the workpiece, the convex portion is easily heated and becomes a transformation point necessary for hardening. In this example, the transformation point is 850 ° C. On the contrary, the heat input by the laser beam 4 is easily diffused by heat transfer in the concave portion, and the temperature rise is suppressed below the transformation point, so that the concave portion is not cured.
【0008】しかし、上記線状のレーザビームを均一な
パワー密度で照射した場合、同心円状に配置されたは凸
部頂点においてはビーム長手方向と凸部が直角に近い場
合に比べ、ビーム長手方向と凸部が平行に近い場合は、
頂点が昇温され易く、溶融し易いため充分な深さを持つ
焼き入れを1回のスキャンによって実現することができ
ない。このためビーム長手方向と凸部が平行に近い部分
を処理する場合、凸部が直角に近い部分等の箇所の処理
条件に対しレーザパワー密度を下げるか、スキャン速度
を上げるかして別の処理にて溶融無しの処理をする必要
がある。これらの方法でも実現可能であるが、装置及び
処理手順が複雑化するのは避けられない。また、照射が
重複する操作を行うと焼き鈍し条件が発生し硬度低下す
る等の問題がある。However, when the linear laser beam is irradiated with a uniform power density, the beam longitudinal direction is closer to the beam longitudinal direction at the apex of the concentric convex portions than the beam longitudinal direction. And the convex part is close to parallel,
Quenching with a sufficient depth cannot be realized by one scan because the temperature at the apex is likely to be raised and melted easily. For this reason, when processing a portion where the beam longitudinal direction and the convex portion are nearly parallel to each other, the laser power density should be reduced or the scanning speed should be increased in response to processing conditions such as the portion where the convex portion is nearly a right angle. Therefore, it is necessary to perform processing without melting. Although these methods can be realized, it is inevitable that the apparatus and the processing procedure become complicated. In addition, when the operations in which the irradiations are overlapped are performed, there is a problem that annealing conditions occur and the hardness decreases.
【0009】このため本発明に於いては、処理方法を更
に改善すべく、その問題点に対し均一のパワー密度を持
ったビームではなく、線状ビームの長手方向に制御され
たパワー密度の空間分布を持ったレーザビームを照射す
ることにより、上記同心円状に配置された凸部の頂点を
一回のスキャンにより溶融なしに処理することを可能と
した。具体的にはビーム長手方向と凸部が平行である部
分に対しては、照射レーザビームのパワー密度を低下さ
せたレーザビームで処理を行うものである。長手方向と
凸部が平行である部分の処理レーザビームパワー密度の
必要低減量は、凹凸形状により変更が必要であるが、概
ね15%〜20%の低減が望ましい。それ以下の低減で
あれば凸部に溶融が発生し所望の摩擦係数が得られなく
なり、それ以上の低減は凸部焼き入れ部分の深さが浅く
なり所望の機械強度がでない問題が発生する。Therefore, in the present invention, in order to further improve the processing method, a space having a controlled power density in the longitudinal direction of the linear beam is used instead of a beam having a uniform power density in view of the problem. By irradiating with a laser beam having a distribution, it becomes possible to process the vertices of the convex portions arranged in the concentric circles without melting by one scan. Specifically, a portion where the beam longitudinal direction and the convex portion are parallel to each other is treated with a laser beam having a reduced power density of the irradiation laser beam. The required reduction amount of the processing laser beam power density in the portion where the longitudinal direction and the convex portion are parallel to each other needs to be changed depending on the concavo-convex shape, but a reduction of approximately 15% to 20% is desirable. If it is less than that, melting occurs in the convex portion and the desired friction coefficient cannot be obtained, and if it is more than that, the depth of the hardened portion of the convex portion becomes shallow and the desired mechanical strength does not occur.
【0010】図2、図3に本発明によるレーザビーム用
いた際の、焼き入れ時の昇温シミュレーション結果を示
す。図2はレーザビ−ム4が凸部に該垂直にあたるレー
ザビーム長辺の端部(図4中のA点)の昇温結果で、図
3はレーザビ−ム4が凸部に該平行にあたるレーザビー
ム長辺の中央部(図4中のB点)の昇温結果である。こ
のシミュレーションで用いた条件は、レーザパワーが1
0kW、被加工材上でのビーム形状は70mm×2mmの矩形
形状で、計測したレーザのパワー密度は図5に示される
もので、中央部が端部に比べ約20%低下させてある。
スキャン速度はビーム短辺と平行な方向に2m/min の速
度である。被加工材は、炭素量が0.35%の機械構造
用炭素鋼であり、凸部より凹部までの高さが2mmであ
り、頂角60°である突起を持つスプライスプレートで
ある。シミュレーション結果は、その部分の達する最高
温度が等高線上に表示されている。被加工材の凸部は、
凹部比べ容易に加熱され硬化に必要な変態点となる。こ
の例では、変態点は850℃である。本発明によるレー
ザビームを用いれば、レーザビ−ムが凸部に略垂直にあ
たるレーザビーム長辺の端部の結果も、レーザビ−ムが
凸部に略平行にあたるレーザビーム長辺の中央部の結果
も、頂点が約1400℃で、同じ深さまで焼き入れが可
能であることがわかる。ちなみに、変態点からの変態終
了点であるMs点(約450℃)までの冷却速度は、約
0.3秒で焼き入れに必要な速度は充分であった。この
ため、上記の切削、転造等で作られた凹凸を持つスプラ
イスプレートにおいて凸部のみ高硬度化することが可能
となった。FIGS. 2 and 3 show the results of temperature rise simulation during quenching when the laser beam according to the present invention is used. FIG. 2 shows the temperature rise result at the end of the long side of the laser beam (point A in FIG. 4) where the laser beam 4 is perpendicular to the convex portion, and FIG. 3 is the laser where the laser beam 4 is parallel to the convex portion. It is the temperature rise result of the central portion (point B in FIG. 4) of the long side of the beam. The condition used in this simulation is that the laser power is 1
The beam shape on the work material was 0 kW, the rectangular shape was 70 mm × 2 mm, and the measured laser power density was as shown in FIG. 5, in which the central portion was reduced by about 20% from the end portion.
The scanning speed is 2 m / min in the direction parallel to the short side of the beam. The material to be processed is a carbon steel for machine structural use having a carbon content of 0.35%, a height from a convex portion to a concave portion of 2 mm, and a splice plate having a protrusion having an apex angle of 60 °. In the simulation result, the maximum temperature reached by the part is displayed on the contour line. The convex part of the work material is
It is heated more easily than the recesses and becomes the transformation point necessary for hardening. In this example, the transformation point is 850 ° C. When the laser beam according to the present invention is used, both the result of the end portion of the long side of the laser beam where the laser beam is substantially perpendicular to the convex portion and the result of the central portion of the long side of the laser beam where the laser beam is substantially parallel to the convex portion are obtained. It can be seen that quenching is possible up to the same depth at the peak of about 1400 ° C. Incidentally, the cooling rate from the transformation point to the Ms point (about 450 ° C.), which is the transformation end point, was about 0.3 seconds, and the rate required for quenching was sufficient. For this reason, it becomes possible to increase the hardness of only the convex portion in the splice plate having irregularities formed by the above cutting, rolling, or the like.
【0011】このレーザビームを形成する際に用いた光
学系の一例を図6に示す。第1光学素子20は短辺方向
にレーザを集光するためのシリンドリカルレンズであ
り、このレンズと被加工物14の距離を変えることによ
り照射ビームの短辺の長さ13が変更可能である。第2
光学素子21は凸部を持つプリズムで、第1光学素子2
0で一軸圧縮されたレーザビームを左右入れ替えて重畳
させることが可能である。プリズムと被加工物14の距
離を変えることにより左右の入れ替えの度合い(図中の
重畳量)を変更でき、後記するようにパワー密度分布を
調整可能である。第3光学素子22は長辺方向にレーザ
を広げるためのシリンドリカルレンズであり、この光学
素子と被加工物の距離を変えることにより、照射ビーム
の長辺の長さ12を変更可能である。FIG. 6 shows an example of an optical system used for forming this laser beam. The first optical element 20 is a cylindrical lens for focusing the laser in the short side direction, and the length 13 of the short side of the irradiation beam can be changed by changing the distance between this lens and the workpiece 14. Second
The optical element 21 is a prism having a convex portion, and the first optical element 2
It is possible to superimpose the laser beams uniaxially compressed at 0 by swapping the left and right. By changing the distance between the prism and the workpiece 14, the degree of left and right replacement (the amount of superposition in the figure) can be changed, and the power density distribution can be adjusted as described later. The third optical element 22 is a cylindrical lens for expanding the laser in the long side direction, and the length 12 of the long side of the irradiation beam can be changed by changing the distance between this optical element and the workpiece.
【0012】この処理に用いるレーザビームは、低次の
マルチモードを持ったレーザビームである。この例とし
て図7に示される富士山型のレーザビームの強度分布を
示す。図6中の重畳パラメータ11を0としたときのレ
ーザビームの幅15をDと定義する。このビームのパワ
ー密度は、図8(a)にあるとおり長辺の中央部が端部
より高くなる。しかし、ずらし量である重畳パラメ−タ
の図6の11を図8(b)の様にD/10とすると、長
手方向に均一なレーザビームとなる。図8(c)の様に
重畳パラメータをD/10以上とすると、本発明で必要
な中央部が低減されたレーザビームとなる。この中央部
の端部に対する量は重畳パラメータにより図9で表され
る。このように、3つの光学素子の位置を調整すること
でビーム形状、パワー密度を変化させることができる光
学系である。この光学系は、レンズ以外にミラー系を用
いて構成することも可能である。この際はプリズムの代
わりに、ルーフトップミラーと呼ばれるミラーでビーム
重畳を行う必要がある。また、レーザビームは鉛直方向
から照射するよりも、短径方向水平から見て傾けて照射
した方が、レーザ装置、及び光学系をレーザ光の反射よ
り保護するのに効果的である。The laser beam used for this processing is a laser beam having a low-order multimode. As an example of this, the intensity distribution of the Mt. Fuji type laser beam shown in FIG. 7 is shown. The width 15 of the laser beam when the superposition parameter 11 in FIG. 6 is set to 0 is defined as D. As shown in FIG. 8A, the power density of this beam is higher at the center of the long side than at the end. However, if the overlapping parameter 11 in FIG. 6 which is the shift amount is set to D / 10 as shown in FIG. 8B, the laser beam becomes uniform in the longitudinal direction. When the superposition parameter is set to D / 10 or more as shown in FIG. 8C, the laser beam has a reduced central portion required in the present invention. The amount for the end of the central portion is represented in FIG. 9 by the superposition parameter. In this way, the beam shape and the power density can be changed by adjusting the positions of the three optical elements. This optical system can also be configured by using a mirror system other than the lens. In this case, it is necessary to perform beam superimposition with a mirror called a rooftop mirror instead of the prism. Further, it is more effective to protect the laser device and the optical system from the reflection of the laser light by irradiating the laser beam while inclining as viewed from the horizontal in the minor axis direction, rather than irradiating from the vertical direction.
【0013】[0013]
【実施例】図10に示す通り、全長500mm、全幅20
0mm、板厚15mmである鋼板上に、60mm径の転造加工
された同心円上突起が8ヶ所で、凸部より凹部までの高
さが2mmであり、頂角60°である転造突起を持つスプ
ライスプレートに対し、レーザ出力が10kWである炭酸
ガスレーザを用い、光学系としては第1光学素子として
焦点距離300mmのシリンドリカルレンズを被加工材表
面より290mm位置に設置し、第2光学素子として頂角
179度のプリズムを被加工材表面より250mmに設置
し、第3光学素子として焦点距離−100mmのシリンド
リカルレンズを被加工材表面より120mm位置に設置し
た。照射位置に於けるレーザビームは長辺70mm、短辺
2mmの矩形状に集光されており、中央部のパワー密度の
低減は端部に比べ20%であった。このビームを用いて
スプライスプレート表面に鉛直方向から10度傾けて照
射し、短辺と平行方向に走査して焼き入れ処理を、4ヶ
ずつ2列に分けて行った。被加工材は、表面にレーザ吸
収率を向上させるめにカーボン系の吸収剤を塗布した、
カーボン量が0.35%の機械構造用炭素鋼を用いた。
スキャン速度を、2m/min としたときの凸部の硬化分布
は任意の凹凸部に於いて図11となり、凸部の頂点先端
から凸部高さの約50%が処理前母材の表面硬さである
Hv200に対して2倍以上のHv500となってい
る。また、冷却後のスプライスプレートは溶融、反り等
の変形は皆無であった。また、このスプライスプレート
を曲げ試験を行った結果は、熱処理前の疲労特性と同等
で、凹部よりの亀裂伸展等は皆無であった。[Example] As shown in FIG. 10, a total length of 500 mm and a total width of 20
On a steel plate with a thickness of 0 mm and a thickness of 15 mm, there are 8 rolled concentric circular protrusions with a diameter of 60 mm, the height from the convex portion to the concave portion is 2 mm, and the apex angle is 60 °. A carbon dioxide gas laser with a laser output of 10 kW is used for the splice plate, and as the optical system, a cylindrical lens with a focal length of 300 mm is installed as the first optical element at a position 290 mm from the surface of the workpiece, and the second optical element is used as the second optical element. A prism having an angle of 179 degrees was set at 250 mm from the surface of the material to be processed, and a cylindrical lens having a focal length of -100 mm as the third optical element was set at a position 120 mm from the surface of the material to be processed. The laser beam at the irradiation position was focused into a rectangular shape having a long side of 70 mm and a short side of 2 mm, and the reduction of the power density at the central portion was 20% compared to that at the end portion. This beam was used to irradiate the surface of the splice plate at an angle of 10 degrees from the vertical direction, and scanning was performed in the direction parallel to the short side to perform quenching treatment in four rows in two rows. The work material was coated with a carbon-based absorbent to improve the laser absorption rate on the surface.
Carbon steel for machine structure having a carbon content of 0.35% was used.
When the scanning speed is 2 m / min, the hardening distribution of the convex portion is as shown in Fig. 11 at any irregular portion, and about 50% of the height of the convex portion from the tip of the apex of the convex portion is the surface hardness of the base metal before treatment. The Hv500 is more than twice the Hv200. Further, the splice plate after cooling was free from any deformation such as melting or warping. The bending test of this splice plate showed that it was equivalent to the fatigue property before heat treatment, and there was no crack extension from the recess.
【0014】ここで用いた、レーザの照射位置に於ける
ビーム形状は矩形であったが、長楕円等の長手方向に均
一なパワー密度を持つ形状のビームでも処理は可能であ
る。また、突起形状、サイズが変化した場合にも、用い
るレーザのパワーと、集光ビーム形状、走査速度を変化
させることにより、同様のメカニズムで突起部のみを硬
化させることは可能である。The beam shape used here at the laser irradiation position was rectangular, but a beam having a uniform power density in the longitudinal direction such as an ellipse can also be processed. Further, even when the shape and size of the protrusion are changed, it is possible to cure only the protrusion by the same mechanism by changing the power of the laser used, the shape of the focused beam, and the scanning speed.
【0015】[0015]
【発明の効果】本発明によれば、ボルト孔と同心円状に
連続した山形の凹凸を持つ高力ボルト摩擦接合用スプラ
イスプレートにおいて、前記山形の凸部が溶融すること
なく焼き入れされ、且つ凹部はほとんど焼き入れされな
いので高い滑り係数を安定に得ることが可能となった。According to the present invention, in a high-strength bolt friction welding splice plate having concavities and concavities that are concentric with the bolt holes, the concavities are hardened without melting and the concavities are recessed. Since it was hardly quenched, it became possible to stably obtain a high slip coefficient.
【図1】本発明によるスプライスプレートのボルト孔付
近の形状説明図である。FIG. 1 is an explanatory view of a shape near a bolt hole of a splice plate according to the present invention.
【図2】本発明によるスプライスプレートの処理時に於
ける昇温シミュレーションの結果。FIG. 2 is a result of temperature rise simulation in processing a splice plate according to the present invention.
【図3】本発明によるスプライスプレートの処理時に於
ける昇温シミュレーションの結果。FIG. 3 is a result of temperature rise simulation in processing a splice plate according to the present invention.
【図4】本発明によりレーザ熱処理したスプライスプレ
ートとレーザビームの位置の略図。FIG. 4 is a schematic representation of the location of the laser beam heat treated splice plate and laser beam according to the present invention.
【図5】本発明による熱処理用レーザビームのパワー密
度の例。FIG. 5 shows an example of the power density of a laser beam for heat treatment according to the present invention.
【図6】本発明で用いた熱処理用光学系の一例。FIG. 6 shows an example of an optical system for heat treatment used in the present invention.
【図7】本発明で用いたレーザビームの空間モードの一
例。FIG. 7 shows an example of a spatial mode of a laser beam used in the present invention.
【図8】本発明で合成された熱処理用レーザビームのパ
ワー密度分布。FIG. 8 is a power density distribution of a laser beam for heat treatment synthesized according to the present invention.
【図9】重畳パラメータの変化に対する長径方向中央部
と端部のパワー密度の比。FIG. 9 is a ratio of power densities of a central portion and an end portion in the major axis direction with respect to a change of a superposition parameter.
【図10】本発明によりレーザ熱処理したスプライスプ
レートの全体略図。FIG. 10 is an overall schematic view of a laser heat treated splice plate according to the present invention.
【図11】本発明の熱処理で得られたスプライスプレー
トの硬度測定結果。FIG. 11 is a result of measuring the hardness of the splice plate obtained by the heat treatment of the present invention.
1 ボルト孔 2 凸部頂点
3 凹部底 4 レーザ光
10 焼き入れ部 11 重畳パラメ
ータ
12 ビーム長辺 13 ビーム短辺
14 被加工物 15 ビーム幅
20 第1光学素子 21 第2光学素
子
22 第3光学素子DESCRIPTION OF SYMBOLS 1 bolt hole 2 convex part vertex 3 concave part bottom 4 laser beam 10 quenching part 11 superposition parameter 12 beam long side 13 beam short side 14 work piece 15 beam width 20 first optical element 21 second optical element 22 third optical element
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F16B 5/02 F16B 5/02 H Fターム(参考) 3J001 FA05 GA02 HA02 JA10 KA02 KA11 KA21 KA26 KB04 4E068 AH00 CD05 DA00 4K042 AA23 BA03 BA13 DA01 DB04 EA01 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F16B 5/02 F16B 5/02 HF term (reference) 3J001 FA05 GA02 HA02 JA10 KA02 KA11 KA21 KA26 KB04 4E068 AH00 CD05 DA00 4K042 AA23 BA03 BA13 DA01 DB04 EA01
Claims (3)
凸を持つ高力ボルト摩擦接合用スプライスプレートの焼
き入れ処理方法において、レーザビームを前記山形の凹
凸部の直径よりも長く線状に集光し、前記山形の凹凸部
を走査して熱処理するにあたり、前記線状に集光したレ
ーザビームの線幅とパワー密度の空間分布および走査速
度を調整することにより、山形の凸部の硬さを母材の硬
さよりも硬くすることを特徴とするの高力ボルト摩擦接
合用スプライスプレートの焼き入れ処理方法。1. A method for quenching a high-strength bolt friction welding splice plate having concavities and concavities that are concentric with a bolt hole, the laser beam being linearly collected longer than the diameter of the concavities and convexities. In the heat treatment by scanning the uneven portion of the chevron, the hardness of the convex portion of the chevron is adjusted by adjusting the spatial distribution of the line width and power density of the linearly focused laser beam and the scanning speed. A method for quenching a splice plate for high-strength bolt friction welding, characterized in that the hardness is made higher than the hardness of the base material.
方向中央部のパワー密度が、長手方向の端部のパワー密
度に対して相対的に低いレーザビームであることを特徴
とする請求項1記載の高力ボルト摩擦接合用スプライス
プレートの焼き入れ処理方法。2. A laser beam in which the power density at the central portion in the longitudinal direction of the linearly focused laser beam is relatively lower than the power density at the end portions in the longitudinal direction. The method of quenching a splice plate for high-strength bolt friction joining according to 1.
凸を持つ高力ボルト摩擦接合用スプライスプレートの焼
き入れ処理装置において、レーザビームを一軸方向に集
光する第1光学素子と、第1光学素子と被加工物との距
離を調整する第1光学素子位置調整機構と、第1光学素
子で一軸方向に集光されたレーザビームを集光方向と直
角方向に左右入れ替えて重畳させる第2光学素子と、第
2光学素子と被加工物との距離を調整する第2光学素子
位置調整機構と、第2光学素子出側のレーザビームを集
光方向と直角方向に広げる第3光学素子と、第3光学素
子と被加工物との距離を調整する第3光学素子位置調整
機構と、前記第3光学素子出側に得られた線状レーザビ
ームを被加工物平面上で線上方向と直角方向に走査する
走査機構とで構成され、第1〜3光学素子の各被加工物
との距離および走査機構の走査速度を調整することによ
り山形の凸部の硬さを母材の硬さよりも硬くすることを
可能にした高力ボルト摩擦接合用スプライスプレートの
焼き入れ処理装置。3. A quenching treatment apparatus for a splice plate for high-strength bolt friction welding, which has concavities and convexities contiguous with a bolt hole, and a first optical element for concentrating a laser beam in a uniaxial direction, and a first optical element. A first optical element position adjusting mechanism for adjusting the distance between the optical element and the workpiece, and a second optical element for adjusting the distance between the laser beam focused in the uniaxial direction by the first optical element in the direction perpendicular to the focusing direction and superposing the laser beams. An optical element, a second optical element position adjusting mechanism that adjusts the distance between the second optical element and the workpiece, and a third optical element that spreads the laser beam on the exit side of the second optical element in a direction perpendicular to the focusing direction. A third optical element position adjusting mechanism for adjusting the distance between the third optical element and the workpiece, and the linear laser beam obtained on the output side of the third optical element at right angles to the linear direction on the workpiece plane. It consists of a scanning mechanism that scans in any direction. By adjusting the distance between each of the first to third optical elements and each workpiece and the scanning speed of the scanning mechanism, it is possible to make the hardness of the convex portion of the chevron higher than that of the base material. Equipment for quenching splice plates for friction welding of bolts.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001311141A JP3621907B2 (en) | 2001-10-09 | 2001-10-09 | Quenching processing method and apparatus for splicing plate for high strength bolt friction joining |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001311141A JP3621907B2 (en) | 2001-10-09 | 2001-10-09 | Quenching processing method and apparatus for splicing plate for high strength bolt friction joining |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003113415A true JP2003113415A (en) | 2003-04-18 |
JP3621907B2 JP3621907B2 (en) | 2005-02-23 |
Family
ID=19130015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001311141A Expired - Fee Related JP3621907B2 (en) | 2001-10-09 | 2001-10-09 | Quenching processing method and apparatus for splicing plate for high strength bolt friction joining |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3621907B2 (en) |
-
2001
- 2001-10-09 JP JP2001311141A patent/JP3621907B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3621907B2 (en) | 2005-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11493070B2 (en) | Laser nanostructured surface preparation for joining materials | |
US4250374A (en) | Process and apparatus for the surface heat treatment of steel products by a laser beam | |
Locke et al. | Metal processing with a high-power CO 2 laser | |
CN103421933B (en) | Method for eliminating residual stress of welding joint of X80 pipeline steel | |
CN101954534A (en) | Disk spring and manufacture method thereof | |
JP2004035953A (en) | Hardening method and apparatus using laser beam | |
JP2011504568A (en) | Method of hardening the side surface of a ring-shaped groove of a steel piston with a laser beam | |
JP3934679B2 (en) | Cutting die and method for manufacturing the same | |
JPH01192423A (en) | Method of bending metallic body | |
JPS6350426B2 (en) | ||
JP2003113415A (en) | Method and apparatus for quenching splice plate for friction-bonding high strength bolt | |
JP4616523B2 (en) | Manufacturing method of splicing plate for high strength bolt friction joining | |
JPS62133016A (en) | Hardening method for sliding surface | |
JP2901138B2 (en) | Mold quenching method and apparatus for quenching bending dies | |
CN103785958B (en) | LASER HEAT TREATMENT improves the method for X80 Pipeline Welded Joints performance | |
JP2004277856A (en) | Quenching apparatus for splice plate for friction grip joint with high-strength bolt | |
CN103255267B (en) | Method and equipment for laser quenching | |
Lawrence | A comparative investigation of the efficacy of CO2 and high-power diode lasers for the forming of EN3 mild steel sheets | |
JP2006035285A (en) | Method for lap-joining different kinds of material by high energy beam and lap-joined member | |
Keskitalo et al. | The geometrical fine adjustment of circular honeycomb structure using laser welding | |
Nikolov et al. | Hardening in laser forming under the temperature gradient mechanism | |
JPH0543940A (en) | Method for heat-treating tracking surface of guide rail for linear guide | |
Miralles | Laser hardning of cutting tools | |
RU2151674C1 (en) | Method for making honeycomb structures with superthin-wall filler by diffusion welding | |
JPH04210417A (en) | Laser beam hardening method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041027 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041119 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3621907 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071126 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081126 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081126 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091126 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101126 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101126 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111126 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111126 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121126 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121126 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 9 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |