JP2003109626A - Cylindrical solid oxide fuel cell - Google Patents

Cylindrical solid oxide fuel cell

Info

Publication number
JP2003109626A
JP2003109626A JP2001298131A JP2001298131A JP2003109626A JP 2003109626 A JP2003109626 A JP 2003109626A JP 2001298131 A JP2001298131 A JP 2001298131A JP 2001298131 A JP2001298131 A JP 2001298131A JP 2003109626 A JP2003109626 A JP 2003109626A
Authority
JP
Japan
Prior art keywords
oxidant
fuel cell
buffer chamber
solid oxide
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001298131A
Other languages
Japanese (ja)
Inventor
Toshiya Abe
俊哉 阿部
Masahiro Kuroishi
正宏 黒石
Hiroaki Takeuchi
弘明 竹内
Satoshi Matsuoka
聡 松岡
Susumu Aikawa
進 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2001298131A priority Critical patent/JP2003109626A/en
Publication of JP2003109626A publication Critical patent/JP2003109626A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell system free from impairing the air-tightness of an oxidant distributor and an oxidant introduction pipe, and damaging a cell even in the operation of high temperature in a cylindrical solid oxide fuel cell. SOLUTION: In this cylindrical solid oxide fuel cell comprising an oxidant supply pipe 24 where an oxidant flows, an oxidant buffer chamber 8 connected to the oxidant supply pipe 24, and the oxidant introduction pipe 6 inserted into a hole formed on a bottom face of the oxidant buffer chamber, and connected to the oxidant buffer chamber by a collar part engaged with the hole, to supply the oxidant to the cells of the fuel cell, a side to be engaged with the hole, of the collar part is a projecting spherical face.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体酸化物形燃料
電池に関し、さらに詳細には筒状固体酸化物形燃料電池
セルを集合した筒状固体酸化物形燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell, and more particularly to a tubular solid oxide fuel cell in which tubular solid oxide fuel cells are assembled.

【0002】[0002]

【従来の技術】従来の筒状固体酸化物形燃料電池セル
(以下筒状セルともいう)の一般的構成を示す縦断面図
を図4に示す。セル1は、上端開放・下端閉(有底筒
状)のセラミックチューブである。セル1の断面は多層
円筒状をしており、空気極4、固体酸化物3、燃料極2
等の各層が積層されている。セル1の各層の肉厚は数μ
m〜2.5mmであり、それぞれ必要な機能(導電性、
通気性、固体酸化物、電気化学触媒性等)を有する酸化
物を主成分とするセラミックス材で形成されている。こ
のセル1の内側に酸化剤ガス(空気や酸素リッチガス
等)を流し、外側にH2、CO、CH4などの燃料ガスを
流すと、このセル1内でO2-イオンが移動して電気化学
的反応が起こり、空気極4と燃料極2との間に電位差が
生じて発電が行われるとともに熱も発生する。
2. Description of the Related Art FIG. 4 is a vertical sectional view showing a general structure of a conventional tubular solid oxide fuel cell (hereinafter also referred to as a tubular cell). The cell 1 is a ceramic tube having an open upper end and a closed lower end (cylindrical shape with a bottom). The cross section of the cell 1 has a multi-layered cylindrical shape, and includes an air electrode 4, a solid oxide 3, and a fuel electrode 2.
Etc., each layer is laminated. The thickness of each layer of cell 1 is several μ
m-2.5 mm, and the required functions (conductivity,
It is formed of a ceramic material containing an oxide having air permeability, solid oxide, electrochemical catalytic property, etc. as a main component. When an oxidant gas (air, oxygen-rich gas, etc.) is flown inside the cell 1 and a fuel gas such as H 2 , CO, CH 4 is flowed outside the cell 1, O 2 − ions move inside the cell 1 to generate electricity. A chemical reaction occurs, a potential difference is generated between the air electrode 4 and the fuel electrode 2, electricity is generated, and heat is also generated.

【0003】セル1の内側には、酸化剤を供給するため
の細長い酸化剤導入管5が内挿されている。酸化剤導入
管5は、その上端部を固体酸化物形燃料電池上部の酸化
剤分配器6から下に出てセル1の内側に入り、その下端
はセル1の底近くにまで達している。この酸化剤導入管
5の下端から、酸化剤がセル1の底に供給される。セル
1の底に供給された酸化剤は、上述の発電反応に寄与し
つつセル1の内側を上方に向かう。セル1の外側には、
固体酸化物型燃料電池下部の燃料供給室(図示しない)
から上方に向けて、燃料ガスが供給される。燃料ガス
は、上述の発電反応に寄与しつつセル1外を上方に向か
い、未反応部分の燃料ガスと、セル部での電気化学的燃
焼反応生成物(CO、HO等)は、上述の排気燃焼
室に入る。排気燃焼室で燃焼した後の顕熱は、燃料電池
に供給される酸化剤及び燃料ガスの余熱に用いられた
り、あるいは、通常の蒸気ボイラー・タービンを用いる
発電システムに送られて発電に利用される。
Inside the cell 1, an elongated oxidant introducing pipe 5 for supplying an oxidant is inserted. The oxidant introduction pipe 5 has its upper end portion which goes out from the oxidant distributor 6 at the upper part of the solid oxide fuel cell and enters the inside of the cell 1, and its lower end reaches near the bottom of the cell 1. From the lower end of the oxidant introduction pipe 5, the oxidant is supplied to the bottom of the cell 1. The oxidant supplied to the bottom of the cell 1 goes upward inside the cell 1 while contributing to the above-described power generation reaction. Outside cell 1,
Fuel supply chamber under solid oxide fuel cell (not shown)
From above, the fuel gas is supplied upward. The fuel gas flows upward outside the cell 1 while contributing to the above-described power generation reaction, and the fuel gas in the unreacted portion and the electrochemical combustion reaction products (CO 2 , H 2 O, etc.) in the cell portion are Enter the exhaust combustion chamber described above. The sensible heat after burning in the exhaust combustion chamber is used for the residual heat of the oxidant and fuel gas supplied to the fuel cell, or sent to a power generation system using a normal steam boiler turbine for power generation. It

【0004】1本のセルの出力は限られているため、実
際の燃料電池システムを構成する場合は、セル1を複数
本集合させて燃料電池モジュール11を構成して使用す
る。この燃料電池モジュール11の一般的な水平断面図
を図5に示す。燃料電池モジュール11は、複数本のセ
ル1を電気的に接続し配列したセル集合体12、セル集
合体12の周囲に配設した断熱材層13およびモジュー
ル容器14から主に構成されている。モジュール容器1
4の周囲に更に断熱材層が配設されることもある。ま
た、複数のセル集合体から構成された燃料電池モジュー
ルもある。図5は、一つのセル集合体から構成された燃
料電池モジュールを示す。
Since the output of one cell is limited, when constructing an actual fuel cell system, a plurality of cells 1 are assembled to form a fuel cell module 11 for use. A general horizontal sectional view of the fuel cell module 11 is shown in FIG. The fuel cell module 11 is mainly composed of a cell assembly 12 in which a plurality of cells 1 are electrically connected and arranged, a heat insulating material layer 13 arranged around the cell assembly 12, and a module container 14. Module container 1
In some cases, a heat insulating material layer may be further provided around the circumference of 4. In addition, there is a fuel cell module including a plurality of cell assemblies. FIG. 5 shows a fuel cell module composed of one cell assembly.

【0005】燃料電池モジュールにおいても、前記のと
おり、各セル毎にそれぞれ酸化剤導入管5が挿入されて
おり、酸化剤導入管5は、固体酸化物形燃料電池上部に
配置された酸化剤分配器から下に出てセル1の内側に入
りセル1の内側には酸化剤が供給される。
Also in the fuel cell module, as described above, the oxidant introducing pipe 5 is inserted in each cell, and the oxidant introducing pipe 5 is disposed in the upper part of the solid oxide fuel cell. The oxidant is supplied to the inside of the cell 1 by exiting from the vessel and entering the inside of the cell 1.

【0006】[0006]

【発明が解決しようとする課題】従来の固体酸化物形燃
料電池では図6に示すように酸化剤分配器バッファ室底
面9と酸化剤導入管5が一体化固定されているか、図7
に示すように酸化剤導入管上端部の鍔20下面および酸
化剤分配器バッファ室底面9ともに平面形状で作製され
ており、自重あるいはバネによる押し付け力により接触
力を与え、酸化剤分配器の気密を保っている。一般に酸
化剤分配器では、内面の酸化剤温度に対して外面の排気
燃焼室温度は300℃〜600℃も高く、酸化剤分配器
バッファ室の内面の熱膨張量が小さく外面の熱膨張が大
きくなってしまうため、平面部分が曲面に変形してしま
う。図8には、酸化剤分配器バッファ室底面9が下側に
凸の曲面に変形した状態を示す。このような状態では、
酸化剤導入管5はセルに対して平行を保てず斜めに傾
き、下端の位置がセルの芯から一方に偏ってしまう。そ
の結果、セル内側での酸化剤の圧力分布の偏りからセル
全体の利用効率を悪化させ、また酸化剤導入管の下端が
セル内面に接触した場合、図9に示すようにその反力に
より上端部の鍔部を浮き上がらせ酸化剤分配器の気密を
損ない、最悪の場合、セル内面への酸化剤導入管下端の
接触により酸化剤導入管の破損またはセルの破損が生
じ、燃料電池システム全体の効率および信頼性を大きく
低下させることになる。
In the conventional solid oxide fuel cell, whether the oxidizer distributor buffer chamber bottom surface 9 and the oxidizer introduction pipe 5 are integrally fixed as shown in FIG.
As shown in Fig. 2, both the lower surface of the collar 20 at the upper end of the oxidant introduction pipe and the bottom surface of the oxidizer distributor buffer chamber 9 are made in a flat shape, and a contact force is given by the dead weight or a pressing force of a spring to seal the oxidizer distributor Is kept. Generally, in the oxidizer distributor, the temperature of the exhaust combustion chamber on the outer surface is as high as 300 ° C. to 600 ° C. with respect to the temperature of the oxidant on the inner surface, and the thermal expansion amount of the inner surface of the oxidizer distributor buffer chamber is small and the thermal expansion of the outer surface is large. Therefore, the plane portion is transformed into a curved surface. FIG. 8 shows a state where the bottom surface 9 of the buffer chamber of the oxidizer distributor is deformed into a curved surface which is convex downward. In this situation,
The oxidant introduction pipe 5 is not parallel to the cell and is inclined obliquely, and the position of the lower end is deviated from the cell core to one side. As a result, the utilization efficiency of the entire cell is deteriorated due to the uneven pressure distribution of the oxidant inside the cell, and when the lower end of the oxidant introduction pipe comes into contact with the inner surface of the cell, the reaction force causes the upper end to rise as shown in FIG. Part of the fuel cell system is damaged by the fact that the flange part of the fuel cell floats up and the airtightness of the oxidizer distributor is impaired. This will greatly reduce efficiency and reliability.

【0007】本発明は、上記のような酸化剤分配器の内
外の温度差により分配器バッファ室底面の変形で底面の
水平が維持できなくてもセルに対して酸化剤導入管の平
行を保つ酸化剤分配器を提供し、燃料電池システム全体
の効率低下を防ぐことを目的とする。
According to the present invention, even if the bottom of the distributor buffer chamber cannot be kept horizontal due to the deformation of the bottom of the distributor buffer chamber due to the temperature difference between the inside and the outside of the oxidizer distributor, the oxidizer introducing pipe is kept parallel to the cell. The purpose of the present invention is to provide an oxidizer distributor and prevent a decrease in efficiency of the entire fuel cell system.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、第一の発明では、酸化剤が流入する酸化剤供給配管
と、該酸化剤供給配管に接続された酸化剤バッファ室
と、該酸化剤バッファ室の底面の孔に挿通され該孔と係
合する鍔部により酸化剤バッファ室に接続されて酸化剤
を燃料電池セルへ供給する酸化剤導入管と、を有する筒
状固体酸化物形燃料電池において、前記鍔部の前記孔に
係合する側を凸向き球面とする筒状固体酸化物型燃料電
池を提供する。本発明によれば、酸化剤分配器の内外の
温度差により分配器バッファ室底面の変形で底面の水平
が維持できなくても、酸化剤導入管と酸化剤分配器との
気密を保ちながらセルに対して酸化剤導入管の平行を保
つことができ、燃料電池システム全体の効率低下を防ぐ
ことができる。
In order to achieve the above object, in the first invention, an oxidant supply pipe into which an oxidant flows, an oxidant buffer chamber connected to the oxidant supply pipe, A tubular solid oxide having an oxidant introduction pipe that is inserted into a hole on the bottom surface of the oxidant buffer chamber and is connected to the oxidant buffer chamber by a flange portion that engages with the hole and supplies the oxidant to the fuel cell unit. A cylindrical solid oxide fuel cell in which the side of the flange portion that engages with the hole has a convex spherical surface. According to the present invention, even if the bottom of the distributor buffer chamber cannot be kept horizontal due to the deformation of the bottom of the distributor buffer chamber due to the temperature difference between the inside and the outside of the oxidizer distributor, the cell can be maintained while maintaining the airtightness between the oxidizer introducing pipe and the oxidizer distributor. On the other hand, the oxidant introduction pipe can be kept parallel, and the efficiency of the entire fuel cell system can be prevented from lowering.

【0009】第二の発明では、 酸化剤が流入する酸化
剤供給配管と、該酸化剤供給配管に接続された酸化剤バ
ッファ室と、該酸化剤バッファ室の底面の孔に挿通され
該孔と係合する鍔部により酸化剤バッファ室に接続され
て酸化剤を燃料電池セルへ供給する酸化剤導入管と、を
有する筒状固体酸化物形燃料電池において、前記孔の前
記鍔部と係合する側の孔回りを凹向き球面とする状固体
酸化物型燃料電池を提供する本発明によれば、第一の発
明同様、酸化剤分配器の内外の温度差により分配器バッ
ファ室底面の変形で底面の水平が維持できなくても、酸
化剤導入管と酸化剤分配器との気密を保ちながらセルに
対して酸化剤導入管の平行を保つことができ、燃料電池
システム全体の効率低下を防ぐことができる。
In the second invention, the oxidant supply pipe into which the oxidant flows, the oxidant buffer chamber connected to the oxidant supply pipe, and the hole inserted through the bottom surface of the oxidant buffer chamber In a tubular solid oxide fuel cell having an oxidant introducing pipe connected to the oxidant buffer chamber by an engaging collar and supplying the oxidant to the fuel cell, the tubular solid oxide fuel cell is engaged with the collar of the hole. According to the present invention, which provides a solid oxide fuel cell having a concave spherical surface around the hole on the side of the distributor, the distributor buffer chamber bottom surface is deformed by the temperature difference between the inside and outside of the oxidizer distributor, as in the first invention. Even if the bottom of the oxidizer cannot be kept horizontal, the oxidizer inlet pipe can be kept parallel to the cell while maintaining the airtightness of the oxidizer inlet pipe and the oxidizer distributor, reducing the efficiency of the entire fuel cell system. Can be prevented.

【0010】第三の発明では、酸化剤が流入する酸化剤
供給配管と、該酸化剤供給配管に接続された酸化剤バッ
ファ室と、該酸化剤バッファ室の底面の孔に挿通され該
孔と係合する鍔部により酸化剤バッファ室に接続されて
酸化剤を燃料電池セルへ供給する酸化剤導入管と、を有
する筒状固体酸化物形燃料電池において、前記鍔部の前
記孔に係合する側を凸向き球面と、前記孔の前記鍔部と
係合する側の孔回りを凹向き球面の曲率半径を略同一と
する筒状固体酸化物型燃料電池を提供する。本発明によ
れば、第一の発明、第二の発明同様、酸化剤分配器の内
外の温度差により分配器バッファ室底面の変形で底面の
水平が維持できなくても、酸化剤導入管と酸化剤分配器
との気密を保ちながらセルに対して酸化剤導入管の平行
を保つことができ、燃料電池システム全体の効率低下を
防ぐことができる。
In the third invention, the oxidant supply pipe into which the oxidant flows, the oxidant buffer chamber connected to the oxidant supply pipe, and the hole formed at the bottom of the oxidant buffer chamber are inserted into the oxidant buffer chamber. In a cylindrical solid oxide fuel cell having an oxidant introducing pipe connected to an oxidant buffer chamber by an engaging collar and supplying an oxidant to a fuel cell, the tubular solid oxide fuel cell is engaged with the hole of the collar. There is provided a cylindrical solid oxide fuel cell in which the radius of curvature of the convex spherical surface is the same as that of the convex spherical surface, and the radius of curvature of the concave spherical surface is substantially the same around the hole on the side that engages with the flange portion. According to the present invention, like the first and second inventions, even if the bottom of the distributor buffer chamber cannot be kept horizontal due to the deformation of the bottom of the distributor buffer chamber due to the temperature difference between the inside and the outside of the oxidizer distributor, It is possible to keep the oxidant introduction pipe parallel to the cell while maintaining airtightness with the oxidant distributor, and prevent a decrease in the efficiency of the entire fuel cell system.

【0011】[0011]

【発明の実施の形態】まず本発明を利用した実施例の構
成を、図を使用して説明する。図1は本発明における燃
料電池の全体を表したものである。図1において、筒状
固体酸化物燃料電池セル1は上端開放・下端閉のセラミ
ックチューブであり内側には空気に代表される酸化剤ガ
ス、外側にH2、CO、CH4などの燃料ガスを流すこ
とで電気化学反応により発電を行う部分である。筒状固
体酸化物燃料電池セル1は複数束ねられ、セル間にニッ
ケルフェルトに代表されるような耐熱特性が高く弾力性
のある電導体によって電気的および物理的に接続され、
集合体を形成している。断熱材層13はセル集合体の周
囲に配設され、内部の熱を外に逃さない断熱材の役割と
セル集合体および上部の酸化剤分配器6を支持する構造
体の役割を併せ持つ。燃料分配室22はセル集合体の下
方において仕切られた部屋であり、その燃料分配室仕切
り板23には多数の燃料分配用の孔またはスリットが開
けられており、燃料分配室22に送られてきた燃料を各
セルに略均等に配分する役割を持つ。排気燃焼室7はセ
ルの上端に配設された多孔性の材料を用いた排気燃焼室
仕切り板21と上部の酸化剤分配器6で仕切られた部屋
であり、発電に寄与しなかった燃料のある一定量に対し
て排気燃焼室仕切り板21を通過させ、排気燃焼室7に
おいて燃焼させ、セルの発電運転温度の維持および排気
ガスの熱としての利用価値を高める役割を持つ。酸化剤
分配器6は酸化剤供給配管24、酸化剤バッファ室8、
酸化剤導入管5で構成されており、外部から酸化剤供給
配管24によって送られてきた酸化剤を酸化剤バッファ
室8に溜め込み、各酸化剤導入管5を通して筒状固体酸
化物燃料電池セル1の内側の下部へ均等に酸化剤を供給
する役割を持つ。酸化剤導入管5は酸化剤分配器6の底
面9に空けられた孔を通り、酸化剤導入管5の上端に固
定された鍔20によって酸化剤分配器底面9から吊り下
げられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the configuration of an embodiment utilizing the present invention will be described with reference to the drawings. FIG. 1 shows the entire fuel cell of the present invention. In FIG. 1, a tubular solid oxide fuel cell unit 1 is a ceramic tube with an open upper end and a closed lower end, and an oxidant gas represented by air is flown inside and a fuel gas such as H2, CO, CH4 is flown outside. It is the part that generates electricity by electrochemical reaction. A plurality of cylindrical solid oxide fuel cell units 1 are bundled and electrically and physically connected between the cells by an electric conductor having high heat resistance and elasticity as represented by nickel felt.
Forming an aggregate. The heat insulating material layer 13 is disposed around the cell assembly, and has a role of a heat insulating material that does not allow the internal heat to escape to the outside and a function of a structure that supports the cell assembly and the oxidizer distributor 6 in the upper portion. The fuel distribution chamber 22 is a room partitioned below the cell assembly, and the fuel distribution chamber partition plate 23 is provided with a number of holes or slits for fuel distribution and is sent to the fuel distribution chamber 22. It has the role of distributing the fuel to each cell almost evenly. The exhaust combustion chamber 7 is a chamber partitioned by an exhaust combustion chamber partition plate 21 made of a porous material disposed at the upper end of the cell and the oxidizer distributor 6 at the upper part, and is used for the fuel that does not contribute to power generation. It has a role of passing a certain fixed amount through the exhaust combustion chamber partition plate 21 and burning it in the exhaust combustion chamber 7 to maintain the power generation operating temperature of the cell and enhance the utility value of the exhaust gas as heat. The oxidant distributor 6 includes an oxidant supply pipe 24, an oxidant buffer chamber 8,
The oxidizer is composed of the oxidant introduction pipe 5, and the oxidant sent from the outside by the oxidant supply pipe 24 is stored in the oxidant buffer chamber 8 and passed through each oxidant introduction pipe 5 to form a cylindrical solid oxide fuel cell 1 Has the role of supplying the oxidant evenly to the lower part inside. The oxidant introducing pipe 5 passes through a hole formed in the bottom surface 9 of the oxidant distributor 6, and is suspended from the oxidizer distributor bottom face 9 by a collar 20 fixed to the upper end of the oxidant distributor pipe 5.

【0012】次に運転状態について説明する。前述のよ
うに内側には空気に代表される酸化剤ガス、外側にH
2、CO、CH4などの燃料ガスを流し、セルを700
℃から1100℃に保つことで電気化学反応により発電
が行われる。酸化剤ガスは、発電運転時においてセルか
ら発する放射熱あるいは排気ガスとの熱交換により40
0℃から700℃に熱せられ酸化剤分配器6に送られる
が、一方酸化剤分配器下方の排気燃焼室7ではセルによ
る700℃から1000℃に熱せられた酸化剤と排気燃
焼室仕切り板21を通過した燃料がさらに燃焼すること
により常に1000℃以上の雰囲気となっている。よっ
て酸化剤分配室6の内外において300℃から600℃
の温度差が生じる。これにより酸化剤分配器底面9は内
面近傍と外面近傍の熱膨張量の違いにより下向き凸に変
形する。
Next, the operating state will be described. As described above, the inside is an oxidant gas represented by air, and the outside is H.
Fuel gas such as 2, CO, CH4, etc. is made to flow and the cell is set to 700
By maintaining the temperature from 1 ° C to 1100 ° C, power is generated by an electrochemical reaction. The oxidant gas is 40% by radiant heat generated from the cell during heat generation or heat exchange with exhaust gas.
While being heated from 0 ° C. to 700 ° C. and sent to the oxidizer distributor 6, in the exhaust combustion chamber 7 below the oxidizer distributor, the oxidizer heated from 700 ° C. to 1000 ° C. by the cell and the exhaust combustion chamber partition plate 21. As the fuel that has passed through is further burned, the atmosphere is always 1000 ° C. or higher. Therefore, inside and outside the oxidant distribution chamber 6, 300 to 600 ℃
Temperature difference occurs. As a result, the bottom surface 9 of the oxidizer distributor is deformed to be convex downward due to the difference in thermal expansion amount between the inner surface and the outer surface.

【0013】図2は、運転状態における本発明の実施例
を説明する拡大図であり、酸化剤分配器底面9が傾いた
状態を示している。鍔20の底面は凸向きの球面となっ
ているため、酸化剤導入管5の自重により鉛直下向きに
自動調整することができ、酸化剤導入管鍔20と酸化剤
分配器底面9との接触部の気密を保つことができる。従
って、燃料電池が持つ本来の能力を損なわずシステム全
体の効率低下を防ぐことができる。
FIG. 2 is an enlarged view for explaining the embodiment of the present invention in the operating state, and shows a state in which the bottom surface 9 of the oxidizer distributor is tilted. Since the bottom surface of the collar 20 is a convex spherical surface, it can be automatically adjusted vertically downward by the weight of the oxidant introduction tube 5, and the contact portion between the oxidant introduction tube collar 20 and the oxidizer distributor bottom surface 9 Can be kept airtight. Therefore, it is possible to prevent a decrease in the efficiency of the entire system without impairing the original capability of the fuel cell.

【0014】図3は、運転状態における本発明の他の実
施例を説明する拡大図であり、酸化剤分配器底面9が傾
いた状態を示している。酸化剤バッファ室底面9の酸化
剤導入管5を通す孔回り上面を凹向き球面としている。
図2の場合と同様にして酸化剤導入管鍔20と酸化剤分
配器底面9との接触部の気密を保つことができる。また
図示しないが、鍔20の底面は凸向きの球面とし、かつ
酸化剤バッファ室底面9の酸化剤導入管5を通す孔回り
上面を凹向き球面とし、双方の球面の曲率半径を略同一
とすれば、シール面が面接触となるため気密性がさらに
向上する。
FIG. 3 is an enlarged view for explaining another embodiment of the present invention in the operating state, and shows a state in which the bottom surface 9 of the oxidizer distributor is inclined. The upper surface of the bottom surface 9 of the oxidant buffer chamber around the hole through which the oxidant introduction pipe 5 is inserted is a concave spherical surface.
As in the case of FIG. 2, the airtightness of the contact portion between the oxidant introduction pipe collar 20 and the oxidant distributor bottom surface 9 can be maintained. Although not shown, the bottom surface of the collar 20 is a convex spherical surface, and the upper surface around the hole through which the oxidant introducing pipe 5 of the oxidant buffer chamber bottom surface 9 is made a concave spherical surface, and the radii of curvature of both spherical surfaces are substantially the same. If so, the sealing surface is brought into surface contact, so that the airtightness is further improved.

【0015】[0015]

【発明の効果】本発明は上記構成により次の効果を発揮
する。請求項1および請求項2における第一の発明およ
び第二の発明により、酸化剤分配器の内外の温度差によ
り分配器バッファ室底面の変形で底面の水平が維持でき
なくても、酸化剤導入管と酸化剤分配器との気密を保ち
ながらセルに対して酸化剤導入管の平行を保つことがで
き、燃料電池システム全体の効率低下を防ぐことができ
る。また請求項3における第三の発明により、さらに気
密性を向上させ、燃料電池システム全体の効率低下を防
ぐことができる。
The present invention has the following effects due to the above configuration. According to the first and second aspects of the present invention, even if the bottom of the distributor buffer chamber cannot be kept horizontal due to the deformation of the bottom of the distributor buffer chamber due to the temperature difference between the inside and the outside of the oxidizer distributor, the introduction of the oxidizer can be achieved. It is possible to keep the oxidizer introduction pipe parallel to the cell while maintaining the airtightness of the pipe and the oxidizer distributor, and prevent the efficiency of the entire fuel cell system from decreasing. Further, according to the third aspect of the present invention, it is possible to further improve the airtightness and prevent a decrease in the efficiency of the entire fuel cell system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の酸化剤分配器および燃料電池全体を示
す縦断面図である。
FIG. 1 is a vertical sectional view showing an oxidizer distributor and a fuel cell of the present invention as a whole.

【図2】本発明の酸化剤分配器の一実施例を示す縦断面
詳細図である。
FIG. 2 is a detailed vertical sectional view showing an embodiment of the oxidizer distributor of the present invention.

【図3】本発明の酸化剤分配器の他の実施例を示す縦断
面詳細図である。
FIG. 3 is a detailed vertical cross-sectional view showing another embodiment of the oxidizer distributor of the present invention.

【図4】従来の筒状固体酸化物形燃料電池セルの一般的
構成を示す縦断面図である。
FIG. 4 is a vertical cross-sectional view showing a general configuration of a conventional tubular solid oxide fuel cell unit.

【図5】従来の燃料電池モジュールの一般的構成を示す
水平断面図である。
FIG. 5 is a horizontal sectional view showing a general configuration of a conventional fuel cell module.

【図6】従来の酸化剤分配器の詳細を示す縦断面詳細図
である。
FIG. 6 is a detailed vertical cross-sectional view showing details of a conventional oxidizer distributor.

【図7】従来の酸化剤分配器の詳細を示す縦断面詳細図
である。
FIG. 7 is a detailed vertical cross-sectional view showing details of a conventional oxidizer distributor.

【図8】酸化剤バッファ室が変形した状態での酸化剤分
配器および燃料電池全体を示す縦断面図である。
FIG. 8 is a vertical cross-sectional view showing the oxidant distributor and the entire fuel cell in a state where the oxidant buffer chamber is deformed.

【図9】酸化剤バッファ室が変形した状態での従来の酸
化剤分配器の詳細を示す縦断面詳細図である。
FIG. 9 is a detailed vertical cross-sectional view showing details of a conventional oxidizer distributor in a state where the oxidizer buffer chamber is deformed.

【符号の説明】[Explanation of symbols]

1:筒状固体酸化物型燃料電池セル 2:燃料極 3:固体酸化物 4:空気極 5:酸化剤導入管 6:酸化剤分配器 7:排気燃焼室 8:酸化剤バッファ室 9:酸化剤分配器底面 10:酸化剤導入管鍔部 11:燃料電池モジュール 12:セル集合体 13:断熱材層 14:モジュール容器 20:酸化剤導入管鍔部 21:燃焼室仕切り板 22:燃料分配室 23:燃料分配室仕切り板 24:酸化剤供給配管 1: Cylindrical solid oxide fuel cell 2: Fuel electrode 3: Solid oxide 4: Air electrode 5: Oxidizing agent introduction pipe 6: Oxidizer distributor 7: Exhaust combustion chamber 8: Oxidizer buffer chamber 9: Bottom of oxidizer distributor 10: Oxidizing agent introduction pipe collar part 11: Fuel cell module 12: Cell aggregate 13: Insulation layer 14: Module container 20: Oxidizing agent introduction pipe collar 21: Combustion chamber partition plate 22: Fuel distribution chamber 23: Fuel distribution chamber partition plate 24: Oxidant supply pipe

フロントページの続き (72)発明者 竹内 弘明 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 松岡 聡 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 相川 進 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 Fターム(参考) 5H026 AA06 BB06 CV02 CX06 HH03Continued front page    (72) Inventor Hiroaki Takeuchi             2-1-1 Nakajima, Kokurakita-ku, Kitakyushu City, Fukuoka Prefecture             No. Totoki Equipment Co., Ltd. (72) Inventor Satoshi Matsuoka             2-1-1 Nakajima, Kokurakita-ku, Kitakyushu City, Fukuoka Prefecture             No. Totoki Equipment Co., Ltd. (72) Inventor Susumu Aikawa             2-1-1 Nakajima, Kokurakita-ku, Kitakyushu City, Fukuoka Prefecture             No. Totoki Equipment Co., Ltd. F-term (reference) 5H026 AA06 BB06 CV02 CX06 HH03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化剤が流入する酸化剤供給配管と、該
酸化剤供給配管に接続された酸化剤バッファ室と、該酸
化剤バッファ室の底面の孔に挿通され該孔と係合する鍔
部により前記酸化剤バッファ室に接続されて酸化剤を燃
料電池セルへ供給する酸化剤導入管と、を有する筒状固
体酸化物形燃料電池において、 前記鍔部の前記孔に係合する側を凸向き球面とすること
を特徴とする筒状固体酸化物型燃料電池。
1. A oxidant supply pipe into which an oxidant flows, an oxidant buffer chamber connected to the oxidant supply pipe, and a collar that is inserted into and engages with a hole on a bottom surface of the oxidant buffer chamber. A tubular solid oxide fuel cell having an oxidant introducing pipe connected to the oxidant buffer chamber by a portion to supply an oxidant to a fuel cell, and a side of the collar portion engaging with the hole. A cylindrical solid oxide fuel cell having a convex spherical surface.
【請求項2】 酸化剤が流入する酸化剤供給配管と、該
酸化剤供給配管に接続された酸化剤バッファ室と、該酸
化剤バッファ室の底面の孔に挿通され該孔と係合する鍔
部により前記酸化剤バッファ室に接続されて酸化剤を燃
料電池セルへ供給する酸化剤導入管と、を有する筒状固
体酸化物形燃料電池において、前記孔の前記鍔部と係合
する側の孔回りを凹向き球面とすることを特徴とする筒
状固体酸化物型燃料電池。
2. An oxidant supply pipe into which an oxidant flows, an oxidant buffer chamber connected to the oxidant supply pipe, and a collar that is inserted into and engages with a hole on the bottom surface of the oxidant buffer chamber. A tubular solid oxide fuel cell having an oxidant introducing pipe connected to the oxidant buffer chamber by a portion to supply the oxidant to the fuel cell, and a side of the hole engaging with the flange portion. A cylindrical solid oxide fuel cell having a concave spherical surface around the hole.
【請求項3】 酸化剤が流入する酸化剤供給配管と、該
酸化剤供給配管に接続された酸化剤バッファ室と、該酸
化剤バッファ室の底面の孔に挿通され該孔と係合する鍔
部により前記酸化剤バッファ室に接続されて酸化剤を燃
料電池セルへ供給する酸化剤導入管と、を有する筒状固
体酸化物形燃料電池において、前記鍔部の前記孔に係合
する側を凸向き球面と、前記孔の前記鍔部と係合する側
の孔回りを凹向き球面の曲率半径を略同一とすることを
特徴とする筒状固体酸化物型燃料電池。
3. An oxidant supply pipe into which an oxidant flows, an oxidant buffer chamber connected to the oxidant supply pipe, and a collar that is inserted into and engages with a hole on the bottom surface of the oxidant buffer chamber. A tubular solid oxide fuel cell having an oxidant introducing pipe connected to the oxidant buffer chamber by a portion to supply the oxidant to the fuel cell, and a side of the collar portion engaging with the hole. A cylindrical solid oxide fuel cell, wherein the radius of curvature of the convex spherical surface and the radius of curvature of the concave spherical surface around the hole of the hole that engages with the flange portion are substantially the same.
JP2001298131A 2001-09-27 2001-09-27 Cylindrical solid oxide fuel cell Pending JP2003109626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001298131A JP2003109626A (en) 2001-09-27 2001-09-27 Cylindrical solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001298131A JP2003109626A (en) 2001-09-27 2001-09-27 Cylindrical solid oxide fuel cell

Publications (1)

Publication Number Publication Date
JP2003109626A true JP2003109626A (en) 2003-04-11

Family

ID=19119077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001298131A Pending JP2003109626A (en) 2001-09-27 2001-09-27 Cylindrical solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2003109626A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008293736A (en) * 2007-05-23 2008-12-04 Toyota Motor Corp Fuel cell and fastening device for the fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008293736A (en) * 2007-05-23 2008-12-04 Toyota Motor Corp Fuel cell and fastening device for the fuel cell

Similar Documents

Publication Publication Date Title
JP4943037B2 (en) Fuel cell module
US5185219A (en) Solid oxide fuel cells
CA2494434C (en) Gas-tight fuel cell assembly
US8062803B2 (en) Fuel cell system and a method of generating electricity
JP5109253B2 (en) Fuel cell
JP5109252B2 (en) Fuel cell
US8247129B2 (en) Solid oxide fuel cell for a power generation
US9774055B2 (en) Tubular solid oxide fuel cell assembly and fuel cell device incorporating same
US5292599A (en) Cell units for solid oxide fuel cells and power generators using such cell units
JP3868253B2 (en) Fuel cell heat exchange structure
JP4956946B2 (en) Fuel cell
JP2006066387A (en) Fuel cell battery
JP2005100687A (en) Fuel cell
JP2007214135A (en) Separator for molten carbonate type fuel cell provided with fuel reforming chamber and its manufacturing method
JP3912997B2 (en) Air preheating structure
JP2008147026A (en) Solid oxide fuel cell
JP2004139960A (en) Fuel cell
JP4475861B2 (en) Solid oxide fuel cell unit
JP6932515B2 (en) Fuel cell and combined cycle system and how to operate them
JP4043360B2 (en) Air supply pipe support system for solid oxygenate fuel cell power plant
JP2004119300A (en) Cylindrical solid oxide fuel cell (sofc) generator
JP2005216579A (en) Solid oxide type fuel cell
JP3706959B2 (en) Structure of a cylindrical solid oxide fuel cell having a conductive tube inserted therein, a structure of a bundle in which a plurality of such cells are bundled, and a structure of a power generation module using the bundle
JP2003109626A (en) Cylindrical solid oxide fuel cell
JP2009245627A (en) Solid oxide fuel cell