JP2003109581A - Electrode for secondary battery and secondary battery using the same - Google Patents

Electrode for secondary battery and secondary battery using the same

Info

Publication number
JP2003109581A
JP2003109581A JP2001303055A JP2001303055A JP2003109581A JP 2003109581 A JP2003109581 A JP 2003109581A JP 2001303055 A JP2001303055 A JP 2001303055A JP 2001303055 A JP2001303055 A JP 2001303055A JP 2003109581 A JP2003109581 A JP 2003109581A
Authority
JP
Japan
Prior art keywords
active material
polymer binder
material layer
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001303055A
Other languages
Japanese (ja)
Inventor
Yusuke Watarai
祐介 渡會
Akio Mizuguchi
暁夫 水口
Akihiro Higami
晃裕 樋上
Shuhin Cho
守斌 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001303055A priority Critical patent/JP2003109581A/en
Publication of JP2003109581A publication Critical patent/JP2003109581A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery having excellent closely sticking property and conductivity between a current collector and an activator layer, with improved cycle capacity keeping property. SOLUTION: Activator layers 13, 17 are formed by painting and drying a slurry for activator painting use containing active material and polymer binder on current collectors 12, 16. The polymer binder further contains grain-shaped polymer binder. The grain diameter of the grain-shaped polymer binder ranges between 0.2-400 μm, and the average grain diameter ranges between 1-100 μm. The main component of the grain-shaped polymer binder is a fluorine resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオンポ
リマー二次電池に用いられる電極と、この電極を用いた
リチウムイオンポリマー二次電池に関するものである。
TECHNICAL FIELD The present invention relates to an electrode used in a lithium ion polymer secondary battery and a lithium ion polymer secondary battery using this electrode.

【0002】[0002]

【従来の技術】近年のビデオカメラやノート型パソコン
等のポータブル機器の普及により薄型の電池に対する需
要が高まっている。この薄型の電池として正極と負極を
積層して形成されたリチウムイオンポリマー二次電池が
知られている。この正極は、シート状の正極集電体の表
面に活物質層を形成することにより作られ、負極は、シ
ート状の負極集電体の表面に活物質層を形成することに
より作られる。正極の活物質層と負極の活物質層の間に
は電解質層が介装される。この電池では、それぞれの活
物質層における電位差を電流として取出すための正極端
子及び負極端子が正極集電体及び負極集電体に設けら
れ、このように積層されたものをパッケージで密閉する
ことによりリチウムイオンポリマー二次電池が形成され
ている。このリチウムイオンポリマー二次電池では、パ
ッケージから引出された正極端子及び負極端子を電池の
端子として使用することにより所望の電力が得られるよ
うになっている。
2. Description of the Related Art With the recent widespread use of portable devices such as video cameras and notebook computers, the demand for thin batteries is increasing. A lithium ion polymer secondary battery formed by stacking a positive electrode and a negative electrode is known as this thin battery. This positive electrode is formed by forming an active material layer on the surface of a sheet-shaped positive electrode current collector, and the negative electrode is formed by forming an active material layer on the surface of a sheet-shaped negative electrode current collector. An electrolyte layer is interposed between the positive electrode active material layer and the negative electrode active material layer. In this battery, a positive electrode terminal and a negative electrode terminal for taking out the potential difference in each active material layer as a current are provided in the positive electrode current collector and the negative electrode current collector, and by stacking such a laminated product in a package, A lithium ion polymer secondary battery is formed. In this lithium ion polymer secondary battery, desired power can be obtained by using the positive electrode terminal and the negative electrode terminal drawn out from the package as the terminals of the battery.

【0003】このように構成されたリチウムイオンポリ
マー二次電池は電池電圧が高く、エネルギー密度も大き
いため、非常に注目されている。このリチウムイオンポ
リマー二次電池の放電容量を更に増大させるためには、
シート状の正極又は負極の面積を拡大させる必要があ
る。この正極又は負極の面積を単純に拡大するだけでは
大型化するため、その取扱いが困難になる不具合があ
る。
The lithium-ion polymer secondary battery thus constructed has received a great deal of attention because it has a high battery voltage and a large energy density. In order to further increase the discharge capacity of this lithium ion polymer secondary battery,
It is necessary to increase the area of the sheet-shaped positive electrode or negative electrode. If the area of the positive electrode or the negative electrode is simply enlarged, the size of the positive electrode or the negative electrode becomes large, which makes it difficult to handle.

【0004】この点を解消するために、拡大したシート
状の正極又は負極を所望の大きさに折畳んだり、或いは
捲回することも考えられる。しかし、シート状の正極又
は負極を積層した状態で折畳みや捲回を行うと、折目部
分における正極又は負極に撓みが生じ、その部分におけ
るシートが電解質層から剥離して、電極と電解質界面と
の有効表面積が減少し放電容量が減少するとともに、電
池内部に抵抗が生じて放電容量のサイクル特性が悪化す
る不具合があった。また、上記折目部分に撓みが生じる
ことにより、正極又は負極をそれぞれ形成している活物
質層が集電体より剥離する問題点もあった。即ち、この
電池の充電及び放電過程において、活物質中へのリチウ
ムイオンの吸蔵又は放出により、活物質層が膨張又は収
縮して活物質層に応力が発生するため、活物質層が集電
体から剥離する問題点があった。
In order to solve this problem, it is conceivable to fold or wind the expanded sheet-shaped positive electrode or negative electrode into a desired size. However, when the sheet-shaped positive electrode or negative electrode is folded or wound in a laminated state, the positive electrode or the negative electrode in the folded portion is bent, and the sheet in that portion is separated from the electrolyte layer, so that the electrode and the electrolyte interface are separated. There was a problem that the effective surface area of the battery was decreased and the discharge capacity was decreased, and that resistance was generated inside the battery to deteriorate the cycle characteristics of the discharge capacity. Further, there is a problem that the active material layers forming the positive electrode and the negative electrode are separated from the current collector due to the bending of the folds. That is, in the process of charging and discharging this battery, the active material layer expands or contracts due to the absorption or release of lithium ions into the active material, and stress is generated in the active material layer. There was a problem of peeling from.

【0005】これらの点を解消するために、集電体と活
物質層との間に、ドット状、ストライプ状又は格子状の
いずれかの塗工パターンを有する接着層が設けられた電
池用電極が開示されている(特開平11−73947
号)。この電池用電極では、上記接着剤層を形成するた
めの塗料がスプレーにより或いは印刷により形成され
る。また集電体の活物質層保持面の面積に対する接着層
の塗工面積の割合が30〜80%である。このように構
成された電池用電極では、集電体と活物質層との間に所
定の塗工パターンを有する接着層が形成されているた
め、集電体と活物質層との間の電子の授受を妨げること
なく、両者の密着性を改善でき、サイクル特性を向上で
きる。具体的には、所定の塗工パターンを有する接着層
により集電体と活物質層との密着性が確保され、未塗工
部において集電体と活物質層との間の電子の授受が円滑
に行われ、電気抵抗を低く抑えることができる。
In order to solve these problems, a battery electrode in which an adhesive layer having a dot-shaped, stripe-shaped, or grid-shaped coating pattern is provided between the current collector and the active material layer. Is disclosed (Japanese Patent Laid-Open No. 11-73947).
issue). In this battery electrode, the paint for forming the adhesive layer is formed by spraying or printing. The ratio of the coating area of the adhesive layer to the area of the active material layer holding surface of the current collector is 30 to 80%. In the battery electrode thus configured, since the adhesive layer having a predetermined coating pattern is formed between the current collector and the active material layer, the electron between the current collector and the active material layer is formed. It is possible to improve the adhesion between the two and to improve the cycle characteristics without hindering the transfer of. Specifically, the adhesion between the current collector and the active material layer is ensured by the adhesive layer having a predetermined coating pattern, and the transfer of electrons between the current collector and the active material layer in the uncoated part is performed. It is carried out smoothly, and the electric resistance can be kept low.

【0006】また、電池電極を構成する結着剤が、電極
材中に均一に分散された電極が開示されている(特開平
7−6752号)。この電極は、結着剤が分散した電極
材を集電体上に形成し、この電極材を乾燥して加圧成形
した後に熱処理することにより製造される。このように
構成された電極を用いることにより、放電容量特性、特
にサイクル特性に優れた高性能二次電池を作製できる。
Further, an electrode in which a binder constituting a battery electrode is uniformly dispersed in an electrode material is disclosed (JP-A-7-6752). This electrode is manufactured by forming an electrode material in which a binder is dispersed on a current collector, drying the electrode material, press-molding it, and then heat-treating it. By using the electrode configured as described above, a high performance secondary battery having excellent discharge capacity characteristics, particularly cycle characteristics, can be manufactured.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記従来の特
開平11−73947号に記載された電池用電極では、
接着層をドット状、ストライプ状又は格子状のいずれか
の塗工パターンに形成する必要があり、その接着層の形
成が非常に困難である問題点がある。また、集電体と活
物質層との間の電子の授受が行われる未塗工部における
面積が比較的大きい場合にはその部分における密着性が
十分に確保されずに剥離するという未だ解決すべき課題
が残存していた。また、上記従来の特開平7−6752
号に記載された電極では、結着剤としてのポリマー或い
は結着効果をもたらすポリマー電解質をカーボンや活物
質などと均一に混合して電極材を調製し、この電極材を
集電体上に形成して電極を作製し、更にこの電極を乾燥
・加圧成形した後に結着剤の融点以上の温度で熱処理し
ているため、結着剤が活物質層中に流動してしまい、活
物質層と集電体との密着強度が十分でなく、電池の充放
電サイクル特性が低下するという未だ解決すべき課題が
残存していた。その原因は、電極材に添加したカーボン
などの粉末材料が集電体と活物質層の界面に大量に存在
したためであると考えられる。本発明の目的は、集電体
と活物質層との密着性及び導電性に優れ、かつサイクル
容量維持特性を向上し得る、二次電池用電極及びこれを
用いた二次電池を提供することにある。
However, in the battery electrode described in the above-mentioned conventional JP-A No. 11-73947,
It is necessary to form the adhesive layer in a dot-shaped, stripe-shaped, or lattice-shaped coating pattern, and there is a problem that it is very difficult to form the adhesive layer. Further, when the area in the uncoated portion where electrons are transferred between the current collector and the active material layer is relatively large, the adhesion in that portion is not sufficiently secured and peeling is still a problem. There were remaining issues to be solved. Further, the above-mentioned conventional Japanese Patent Laid-Open No. 7-6752
In the electrode described in No. 1, a polymer as a binder or a polymer electrolyte that provides a binding effect is uniformly mixed with carbon or an active material to prepare an electrode material, and the electrode material is formed on a current collector. After that, the electrode is manufactured, and the electrode is dried and pressure-molded, and then heat-treated at a temperature equal to or higher than the melting point of the binder, so that the binder flows into the active material layer and the active material layer The adhesion strength between the current collector and the current collector was not sufficient, and the charge and discharge cycle characteristics of the battery deteriorated. It is considered that the cause is that a large amount of powder material such as carbon added to the electrode material was present at the interface between the current collector and the active material layer. An object of the present invention is to provide an electrode for a secondary battery, which has excellent adhesion and conductivity between a current collector and an active material layer, and which can improve cycle capacity retention characteristics, and a secondary battery using the same. It is in.

【0008】[0008]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、活物質及びポリマー結着剤を含む活
物質層塗工用スラリーを集電体12,16上に塗布し乾
燥して形成される活物質層13,17であって、ポリマ
ー結着剤が粒子状ポリマー結着剤を更に含み、粒子状ポ
リマー結着剤はその粒径が0.2〜400μmであって
その平均粒径が1〜100μmであることを特徴とす
る。この請求項1に記載された二次電池用電極では、活
物質層13,17に存在する粒子状ポリマー結着剤が、
粒子状態で存在する導電性物質とともに集電体12,1
6と活物質層13,17との界面に存在してその密着性
を向上させる。粒子状ポリマー結着剤が存在しない集電
体12,16と活物質層13,17との界面には導電性
物質が存在し、その導電性物質の存在によりその界面に
おける電子の授受が円滑に行われ、電気抵抗が低く維持
される。
The invention according to claim 1 is
As shown in FIG. 1, active material layers 13 and 17 formed by applying a slurry for coating an active material layer containing an active material and a polymer binder onto current collectors 12 and 16 and drying the slurry. The polymer binder further comprises a particulate polymer binder, wherein the particulate polymer binder has a particle size of 0.2 to 400 μm and an average particle size of 1 to 100 μm. In the secondary battery electrode according to claim 1, the particulate polymer binder present in the active material layers 13 and 17 is
Current collectors 12 and 1 together with a conductive substance existing in a particle state
6 exists at the interface between the active material layers 13 and 17 and improves the adhesion thereof. A conductive substance exists at the interface between the current collectors 12, 16 and the active material layers 13, 17 in which the particulate polymer binder does not exist, and the presence of the conductive substance facilitates the transfer of electrons at the interface. Done and the electrical resistance is kept low.

【0009】請求項2に係る発明は、請求項1に係る発
明であって、更に粒子状ポリマー結着剤の主成分がフッ
素系樹脂であることを特徴とする。この請求項2に記載
された二次電池用電極では、ポリマー結着剤の主成分を
フッ素系樹脂とすることにより電解液への耐久性が高い
二次電池用電極11,14を得ることができる。
The invention according to claim 2 is the invention according to claim 1, characterized in that the main component of the particulate polymer binder is a fluororesin. In the secondary battery electrode according to the second aspect, the secondary battery electrodes 11 and 14 having high durability to the electrolytic solution can be obtained by using the fluorine-based resin as the main component of the polymer binder. it can.

【0010】請求項3に係る発明は、請求項1に係る発
明であって、更に粒子状ポリマー結着剤がポリフッ化ビ
ニリデンにアクリル酸又はメタクリル酸をモノマーとし
てグラフト重合した化合物であることを特徴とする。こ
の請求項3に記載された二次電池用電極では、変性物質
としてアクリル酸又はメタクリル酸を用いることにより
集電体と良好な密着性を有する二次電池用電極11,1
4を得ることができる。
The invention according to claim 3 is the invention according to claim 1, wherein the particulate polymer binder is a compound obtained by graft-polymerizing polyvinylidene fluoride with acrylic acid or methacrylic acid as a monomer. And In the secondary battery electrode according to claim 3, by using acrylic acid or methacrylic acid as the modifying substance, the secondary battery electrodes 11 and 1 having good adhesion to the current collector.
4 can be obtained.

【0011】請求項4に係る発明は、請求項1ないし3
いずれかに係る発明であって、更に図1に示すように、
活物質層13,17中のこの活物質層13,17の表面
に平行な断面における粒子状ポリマー結着剤の面積密度
が1〜100個/cm2であることを特徴とする。この
請求項4に記載された二次電池用電極では、粒子状ポリ
マー結着剤の面積密度を1〜100個/cm2とするこ
とにより、集電体12,16と活物質層13,17との
界面における粒子状ポリマー結着剤の分布の調和を図
り、その界面における密着性と導電性の双方を確保す
る。
The invention according to claim 4 relates to claims 1 to 3.
The invention according to any one of the above, further as shown in FIG.
The area density of the particulate polymer binder in the cross section of the active material layers 13, 17 parallel to the surface of the active material layers 13, 17 is 1 to 100 / cm 2 . In the secondary battery electrode according to claim 4, the area density of the particulate polymer binder is set to 1 to 100 pieces / cm 2 , whereby the current collectors 12, 16 and the active material layers 13, 17 are formed. The distribution of the particulate polymer binder at the interface with and is sought to be harmonized, and both adhesion and conductivity at that interface are secured.

【0012】請求項5に係る発明は、請求項1ないし4
いずれかに記載の二次電池用電極11,14を用いた二
次電池である。この請求項5に記載された二次電池で
は、サイクル容量維持特性が向上した二次電池を得るこ
とができる。
The invention according to claim 5 relates to claims 1 to 4.
A secondary battery using any one of the secondary battery electrodes 11 and 14 described above. With the secondary battery described in claim 5, it is possible to obtain a secondary battery having improved cycle capacity maintenance characteristics.

【0013】[0013]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。図1に示すように、リチウムイオン
ポリマー二次電池は、正極11と負極14を積層して形
成された電極体10を有する。この正極11は、シート
状の正極集電体12の表面に正極活物質層13を形成す
ることにより作られ、負極14は、シート状の負極集電
体16の表面に負極活物質層17を形成することにより
作られる。正極活物質層13と負極活物質層17の間に
電解質層18が介装された状態で正極11と負極14が
積層されて電極体10が形成される。ここで、正極活物
質層13にはLiCoO2等の正極活物質とポリマー結
着剤が含まれ、負極活物質層17にはグラファイト系の
負極活物質とポリマー結着剤が含まれる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the lithium-ion polymer secondary battery has an electrode body 10 formed by stacking a positive electrode 11 and a negative electrode 14. The positive electrode 11 is made by forming the positive electrode active material layer 13 on the surface of the sheet-shaped positive electrode current collector 12, and the negative electrode 14 has the negative electrode active material layer 17 on the surface of the sheet-shaped negative electrode current collector 16. Made by forming. The electrode body 10 is formed by stacking the positive electrode 11 and the negative electrode 14 with the electrolyte layer 18 interposed between the positive electrode active material layer 13 and the negative electrode active material layer 17. Here, the positive electrode active material layer 13 contains a positive electrode active material such as LiCoO 2 and a polymer binder, and the negative electrode active material layer 17 contains a graphite-based negative electrode active material and a polymer binder.

【0014】この実施の形態におけるポリマー結着剤
は、ポリフッ化ビニリデン(Poly-Vinylidene Fluorid
e、以下、PVdFという)を変性物質により変性させ
た高分子化合物である。なお、「変性」とは、性質が変
わることを意味し、本明細書では、高分子化合物を変性
物質により変性することにより、従来高分子化合物が持
つ性質だけでなく、変性物質が持つ性質も併せ持った
り、両者にない性質を新たに持たせることを意味する。
本発明の二次電池用電極は、このポリマー結着剤の一部
が粒子状態で正極活物質層13及び負極活物質層17に
存在する粒子状ポリマー結着剤であり、その粒子状ポリ
マー結着剤の粒径は0.2〜400μm、好ましくは1
〜150μmであって、その平均粒径は1〜100μ
m、好ましくは10〜90μmである。また正極活物質
層13中のこの正極活物質層13の表面に平行な断面に
おける粒子状ポリマー結着剤の面積密度、及び負極活物
質層17中のこの負極活物質層17の表面に平行な断面
における粒子状ポリマー結着剤の面積密度はそれぞれ1
〜100個/cm2、好ましくは1〜80個/cm2であ
る。
In this embodiment, the polymer binder is Poly-Vinylidene Fluorid.
e, hereinafter referred to as PVdF) is a polymer compound modified with a modifying substance. The term "modified" means that the properties are changed, and in the present specification, by modifying a polymer compound with a modifying substance, not only the property of a conventional polymer compound but also the property of a modifying substance is possessed. It means having both, or having a new property that both do not have.
The secondary battery electrode of the present invention is a particulate polymer binder in which a part of the polymer binder is present in the positive electrode active material layer 13 and the negative electrode active material layer 17 in a particulate state. The particle size of the binder is 0.2 to 400 μm, preferably 1
˜150 μm, with an average particle size of 1 to 100 μm
m, preferably 10 to 90 μm. Further, the areal density of the particulate polymer binder in a cross section parallel to the surface of the positive electrode active material layer 13 in the positive electrode active material layer 13 and the surface density of the negative electrode active material layer 17 in the negative electrode active material layer 17 are parallel. The area density of the particulate polymer binder in the cross section is 1 each
-100 / cm 2 , preferably 1-80 / cm 2 .

【0015】ここで、粒子の「粒径」とは、粒子の投影
面積に等しい円の直径、即ち等影円相当径のことであ
る。この粒径の測定方法は、光学顕微鏡、電子顕微鏡、
接写などにより、平面上に並んだ粒子を真上から観察
し、その粒子の投影図を測定することにより行われる。
また粒子の「平均粒径」とは平均体積粒径のことであ
り、次のようにして測定される。上記測定方法により得
られた粒径をd、その粒子の個数をn、平均粒径をDと
して、重み付けにより次の式(1)により求めた。 D=[Σnd3/Σn]1/3 …(1)
Here, the "particle diameter" of a particle is the diameter of a circle equal to the projected area of the particle, that is, the equivalent circle diameter. This particle size can be measured by an optical microscope, an electron microscope,
It is performed by observing the particles arranged on a plane from directly above by a close-up shot and measuring the projected view of the particles.
The "average particle size" of the particles is the average volume particle size, and is measured as follows. The particle diameter obtained by the above measuring method was d, the number of the particles was n, and the average particle diameter was D, and the weighting was calculated by the following formula (1). D = [Σnd 3 / Σn] 1/3 (1)

【0016】粒子状ポリマー結着剤の粒径を0.2〜4
00μmの範囲に限定したのは、0.2μm未満では粒
子状ポリマー結着剤による正極活物質層13の正極集電
体12に対する結着力と、粒子状ポリマー結着剤による
負極活物質層17の負極集電体16に対する結着力とが
それぞれ弱く、正極活物質層13及び負極活物質層17
の機械的強度もそれぞれ弱くなる不具合があり、400
μmを越えると正極活物質層13及び負極活物質層17
の電気抵抗と、正極活物質層13及び正極集電体12間
の界面の電気抵抗と、負極活物質層17及び負極集電体
16間の界面の電気抵抗とがそれぞれ大きくなる不具合
があるからである。また粒子状ポリマー結着剤の平均粒
径を1〜100μmの範囲に限定したのは、1μm未満
では正極活物質層13の正極集電体12に対する結着力
と、負極活物質層17の負極集電体16に対する結着力
とがそれぞれ不足し、100μmを越えると正極活物質
層13内部の電気伝導と、正極活物質層13及び正極集
電体12間の界面の電気伝導と、負極活物質層17内部
の電気伝導と、負極活物質層17及び負極集電体16間
の界面の電気伝導とがそれぞれ円滑に行われない不具合
があるからである。更に粒子状ポリマー結着剤の面積密
度を1〜100個/cm2の範囲に限定したのは、1個
/cm2未満であると正極活物質層13と正極集電体1
2との界面、及び負極活物質層17と負極集電体16と
の界面における密着性が低下し、100個/cm2を越
えると上述した界面における導電性が低下するからであ
る。
The particle size of the particulate polymer binder is 0.2 to 4
The range limited to 00 μm is that when the thickness is less than 0.2 μm, the binding force of the positive electrode active material layer 13 by the particulate polymer binder to the positive electrode current collector 12 and the negative electrode active material layer 17 by the particulate polymer binder are increased. The binding force to the negative electrode current collector 16 is weak, and the positive electrode active material layer 13 and the negative electrode active material layer 17
There is a problem that the mechanical strength of
When the thickness exceeds μm, the positive electrode active material layer 13 and the negative electrode active material layer 17
Of the positive electrode active material layer 13 and the positive electrode current collector 12 and the negative electrode active material layer 17 and the negative electrode current collector 16 have a large electrical resistance. Is. Further, the average particle size of the particulate polymer binder is limited to a range of 1 to 100 μm because the binding force of the positive electrode active material layer 13 to the positive electrode current collector 12 and the negative electrode active material layer 17 of the negative electrode current collector are less than 1 μm. When the binding force to the current collector 16 is insufficient and exceeds 100 μm, the electrical conduction inside the positive electrode active material layer 13 and the electrical conduction at the interface between the positive electrode active material layer 13 and the positive electrode current collector 12 and the negative electrode active material layer are achieved. This is because the electric conduction inside 17 and the electric conduction at the interface between the negative electrode active material layer 17 and the negative electrode current collector 16 are not performed smoothly. Further, the area density of the particulate polymer binder is limited to the range of 1 to 100 pieces / cm 2 when the number is less than 1 piece / cm 2 , the positive electrode active material layer 13 and the positive electrode current collector 1
This is because the adhesiveness at the interface with No. 2 and at the interface between the negative electrode active material layer 17 and the negative electrode current collector 16 decreases, and when the number exceeds 100 / cm 2 , the conductivity at the above-mentioned interface decreases.

【0017】このように構成された二次電池用電極(正
極11及び負極14)では、正極活物質層13及び負極
活物質層17に存在する粒子状ポリマー結着剤が、粒子
状態で存在する導電性物質(導電助剤や負極活物質な
ど)とともに正極集電体12と正極活物質層13との界
面、及び負極集電体16と負極活物質層17との界面に
存在してその密着性を向上させる。粒子状ポリマー結着
剤が存在しない正極集電体12と正極活物質層13との
界面、及び負極集電体16と負極活物質層17との界面
には導電性物質が存在し、その導電性物質の存在により
その界面における電子の授受が円滑に行われ、電気抵抗
を低く維持できる。またポリマー結着剤の一部が粒子状
態で正極活物質層12及び負極活物質層17に存在する
ことにより、正極活物質層12及び負極活物質層17自
体の機械的強度を向上させることができる。更に本発明
では、ドット状、ストライプ状又は格子状等の塗工パタ
ーンからなる接着層を形成する必要がなく、正極11及
び負極14の製造工数を低減できる。
In the secondary battery electrodes (the positive electrode 11 and the negative electrode 14) thus configured, the particulate polymer binder present in the positive electrode active material layer 13 and the negative electrode active material layer 17 exists in a particulate state. Adheres to the interface between the positive electrode current collector 12 and the positive electrode active material layer 13 and the interface between the negative electrode current collector 16 and the negative electrode active material layer 17 together with the conductive material (such as the conductive auxiliary agent and the negative electrode active material), and their adhesion. Improve sex. A conductive substance exists at the interface between the positive electrode current collector 12 and the positive electrode active material layer 13 in which the particulate polymer binder does not exist, and the interface between the negative electrode current collector 16 and the negative electrode active material layer 17, and the conductivity Due to the presence of the volatile substance, electrons are smoothly transferred and received at the interface, and the electric resistance can be kept low. In addition, since a part of the polymer binder is present in the positive electrode active material layer 12 and the negative electrode active material layer 17 in a particle state, the mechanical strength of the positive electrode active material layer 12 and the negative electrode active material layer 17 itself can be improved. it can. Furthermore, in the present invention, it is not necessary to form an adhesive layer having a coating pattern such as a dot shape, a stripe shape, or a lattice shape, and the number of manufacturing steps of the positive electrode 11 and the negative electrode 14 can be reduced.

【0018】次に、本発明の二次電池用電極(正極11
及び負極14)の製造手順を説明する。先ず、正極活物
質層13及び負極活物質層17にそれぞれ含有する結着
剤を変性物質により変性させ、この変性高分子化合物を
正極活物質層13及び負極活物質層17のポリマー結着
剤とする。このポリマー結着剤の主成分はフッ素系樹脂
であることが好ましい。即ち、上記変性高分子化合物の
基体となる高分子化合物は、分子内にフッ素を含む高分
子化合物であることが好ましい。このフッ素含有高分子
化合物としては、ポリテトラフルオロエチレン、ポリク
ロロトリフルオロエチレン、PVdF、フッ化ビニリデ
ン−ヘキサフルオロプロピレン共重合体、ポリフッ化ビ
ニル等が挙げられる。
Next, the secondary battery electrode of the present invention (the positive electrode 11
The procedure for manufacturing the negative electrode 14) will be described. First, the binder contained in each of the positive electrode active material layer 13 and the negative electrode active material layer 17 is modified with a modifying substance, and the modified polymer compound is used as a polymer binder for the positive electrode active material layer 13 and the negative electrode active material layer 17. To do. The main component of this polymer binder is preferably a fluororesin. That is, it is preferable that the polymer compound serving as a base of the modified polymer compound is a polymer compound containing fluorine in the molecule. Examples of the fluorine-containing polymer compound include polytetrafluoroethylene, polychlorotrifluoroethylene, PVdF, vinylidene fluoride-hexafluoropropylene copolymer, polyvinyl fluoride and the like.

【0019】このフッ素含有高分子化合物を変性させる
手法としては、グラフト重合、架橋等が挙げられる。グ
ラフト重合に用いられる変性物質(モノマー)として
は、エチレン、スチレン、ブタジエン、塩化ビニル、酢
酸ビニル、アクリル酸、アクリル酸メチル、メチルビニ
ルケトン、アクリルアミド、アクリロニトリル、塩化ビ
ニリデン、メタクリル酸、メタクリル酸メチル等の化合
物が挙げられる。特にアクリル酸、アクリル酸メチル、
メタクリル酸、メタクリル酸メチルを用いた場合に集電
体と良好な密着性を得ることができる。なお、PVdF
にアクリル酸又はメタクリル酸をモノマーとしてグラフ
ト重合する場合、合成したポリマー100重量%に対し
てグラフトされたアクリル酸基又はメタクリル酸基が1
0〜30重量%であることが好ましい。架橋に用いられ
る変性物質としては、不飽和結合を2つ以上有する化合
物、例えばブタジエン、イソプレン等が挙げられる。ま
た、架橋は加硫することよって行ってもよい。
Examples of the method for modifying the fluorine-containing polymer compound include graft polymerization and crosslinking. Examples of the modifying substance (monomer) used in the graft polymerization are ethylene, styrene, butadiene, vinyl chloride, vinyl acetate, acrylic acid, methyl acrylate, methyl vinyl ketone, acrylamide, acrylonitrile, vinylidene chloride, methacrylic acid and methyl methacrylate. Compounds of Especially acrylic acid, methyl acrylate,
When methacrylic acid or methyl methacrylate is used, good adhesion with the current collector can be obtained. PVdF
When acrylic acid or methacrylic acid is used as a monomer in the graft polymerization, 100% by weight of the synthesized polymer has 1 or more grafted acrylic or methacrylic acid groups.
It is preferably 0 to 30% by weight. Examples of the modifying substance used for crosslinking include compounds having two or more unsaturated bonds, such as butadiene and isoprene. Further, the crosslinking may be carried out by vulcanization.

【0020】このようにして得られた変性高分子化合物
を正極活物質層13及び負極活物質層17のポリマー結
着剤とし、このポリマー結着剤を溶媒に溶解してポリマ
ー溶液を調製する。ここで、溶媒にはジメチルアセトア
ミド(DiMethylAcetamide、以下、DMAという。)、
アセトン(Aceton)、N−メチル−ピロリドン(N-Meth
yl-2-Pyrrolidone)が用いられる。また上記ポリマー溶
液の調製において、ポリマー結着剤と溶媒を混合してポ
リマー結着剤の一部が粒子状態で存在し、その粒子状ポ
リマー結着剤の粒径が0.2〜400μmであってその
平均粒径が1〜100μmであるところでその混合を停
止する。
The modified polymer compound thus obtained is used as a polymer binder for the positive electrode active material layer 13 and the negative electrode active material layer 17, and the polymer binder is dissolved in a solvent to prepare a polymer solution. Here, the solvent is dimethylacetamide (DiMethylAcetamide, hereinafter referred to as DMA),
Aceton, N-methyl-pyrrolidone (N-Meth
yl-2-Pyrrolidone) is used. In the preparation of the above polymer solution, the polymer binder and the solvent are mixed so that a part of the polymer binder exists in a particle state, and the particle diameter of the particulate polymer binder is 0.2 to 400 μm. The mixing is stopped when the average particle size is 1 to 100 μm.

【0021】次にこのポリマー溶液中に、LiCoO2
等の正極活物質と、黒鉛粉末等の導電助剤と、PVdF
やフッ化ビニリデン−ヘキサフルオロプロピレン共重合
体等の固体電解質と、N−メチル−ピロリドンやアセト
ン等の溶媒を分散させて、正極活物質層塗工用スラリー
を調製する。一方、上記ポリマー溶液中に、黒鉛粉末等
のグラファイト系の負極活物質と、PVdFやフッ化ビ
ニリデン−ヘキサフルオロプロピレン共重合体等の固体
電解質と、N−メチル−ピロリドンやアセトン等の溶媒
を分散させて、負極活物質層塗工用スラリーを調製す
る。更に上記正極活物質層塗工用スラリーを正極集電体
12上にドクターブレード法により塗布して乾燥した後
に圧延し、上記負極活物質層塗工用スラリーを負極集電
体16上にドクターブレード法により塗布して乾燥した
後に圧延する。ここで、正極活物質層13及び負極活物
質層17は乾燥後の厚さが、20〜250μmとなるよ
うに形成する。このようにして本発明の正極11及び負
極14を作製する。
Next, in this polymer solution, LiCoO 2
Active material such as graphite powder, conductive aid such as graphite powder, PVdF
A solid electrolyte such as or vinylidene fluoride-hexafluoropropylene copolymer and a solvent such as N-methyl-pyrrolidone or acetone are dispersed to prepare a slurry for coating the positive electrode active material layer. On the other hand, a graphite-based negative electrode active material such as graphite powder, a solid electrolyte such as PVdF or vinylidene fluoride-hexafluoropropylene copolymer, and a solvent such as N-methyl-pyrrolidone or acetone are dispersed in the polymer solution. Then, the slurry for coating the negative electrode active material layer is prepared. Further, the positive electrode active material layer coating slurry is applied onto the positive electrode current collector 12 by a doctor blade method, dried and rolled, and the negative electrode active material layer coating slurry is applied onto the negative electrode current collector 16 by a doctor blade. It is applied by the method, dried, and then rolled. Here, the positive electrode active material layer 13 and the negative electrode active material layer 17 are formed so that the thickness after drying is 20 to 250 μm. Thus, the positive electrode 11 and the negative electrode 14 of the present invention are manufactured.

【0022】なお、シート状の正極集電体12としては
Al箔が挙げられ、負極集電体16としてはCu箔が挙
げられる。ここでドクターブレード法とは、セラミック
スをシート状に成型する方法の1つであり、キャリアフ
ィルムやエンドレスベルト等のキャリア上に載せて運ば
れるスリップの厚さをドクターブレードと呼ばれるナイ
フエッジとキャリアとの間隔を調整することによってシ
ートの厚さを精密に制御する方法である。
The sheet-shaped positive electrode current collector 12 may be Al foil, and the negative electrode current collector 16 may be Cu foil. Here, the doctor blade method is one of the methods for molding ceramics into a sheet, and the thickness of the slip carried on a carrier such as a carrier film or an endless belt is taken as a knife edge called a doctor blade and a carrier. This is a method of precisely controlling the thickness of the sheet by adjusting the interval of.

【0023】次に本発明の二次電池について説明する。
本発明の二次電池は、上述した正極11及び負極14を
用いて製造される。具体的な製造手順は、先ず上述した
正極11及び負極14を準備する。次いで電解質層18
に必要な成分を混合して電解質層塗工用スラリーを調製
する。得られた電解質層塗工用スラリーを剥離紙上に電
解質層18の乾燥厚さが10〜150μmとなるように
ドクターブレード法により塗工及び乾燥し、剥離紙より
剥がして形成する。なお、電解質層塗工用スラリーを正
極11表面や負極14の表面に塗工及び乾燥して電解質
層18を形成してもよい。そして正極11と電解質層1
8と負極14を順に積層し、この積層物を熱圧着するこ
とにより、図1に示すシート状の電極体10を形成す
る。
Next, the secondary battery of the present invention will be described.
The secondary battery of the present invention is manufactured using the positive electrode 11 and the negative electrode 14 described above. As a specific manufacturing procedure, first, the positive electrode 11 and the negative electrode 14 described above are prepared. Next, electrolyte layer 18
To prepare a slurry for coating the electrolyte layer. The obtained slurry for coating an electrolyte layer is applied onto a release paper by a doctor blade method so that the dry thickness of the electrolyte layer 18 is 10 to 150 μm and dried, and peeled off from the release paper. The electrolyte layer coating slurry may be applied to the surface of the positive electrode 11 or the surface of the negative electrode 14 and dried to form the electrolyte layer 18. Then, the positive electrode 11 and the electrolyte layer 1
8 and the negative electrode 14 are sequentially laminated, and the laminate is thermocompression bonded to form the sheet-like electrode body 10 shown in FIG.

【0024】図示しないが、その後この電極体10にN
iからなる正極リード及び負極リードをそれぞれ正極集
電体12及び負極集電体16に溶接し、開口部を有する
袋状に加工したラミネートパッケージ材に収納し、減圧
条件下で熱圧着により開口部を封止することにより、本
発明のリチウムイオンポリマー二次電池が製造される。
Although not shown, the electrode body 10 is then N
The positive electrode lead and the negative electrode lead made of i are respectively welded to the positive electrode current collector 12 and the negative electrode current collector 16 and housed in a bag-shaped laminated package material having an opening, and the opening is formed by thermocompression bonding under reduced pressure conditions. The lithium ion polymer secondary battery of the present invention is manufactured by sealing.

【0025】[0025]

【実施例】次に本発明の実施例を比較例とともに詳しく
説明する。 <実施例1>結着剤として平均粒径200μmの粒状の
アクリル酸グラフト化ポリフッ化ビニリデン((Acryli
c Acid grafting PolyVinylidene Fluoride、以下、A
A−g−PVdFという)2gを用意し、溶媒としてジ
メチルアセトアミド(DiMethylAcetamide、以下、DM
Aという)28gを用意し、両者を混合した。この混合
溶液を85℃まで加熱するとともにホモジナイザにより
撹拌し続けた。撹拌中の溶液を時々採取し、透明ガラス
基板に液膜厚さが200μm前後となるように塗布し、
光学顕微鏡によりポリマー結着剤粒子(未溶解粒子)の
平均粒径と、粒径0.2〜400μmのポリマー結着剤
粒子(未溶解粒子)の個数とを測定した。ポリマー結着
剤粒子の平均粒径が60±10μmになり、粒径0.2
〜400μmのポリマー結着剤粒子の数が30±10個
/cm2になったときに、撹拌を中止した。この混合溶
液をポリマー溶液という。次いで表1に示される各成分
(上記ポリマー溶液を含む。)をボールミルで2時間混
合することにより、正極活物質層塗工用スラリー、負極
活物質層塗工用スラリー及び電解質層塗工用スラリーを
それぞれ調製した。
EXAMPLES Next, examples of the present invention will be described in detail together with comparative examples. <Example 1> Acrylic acid grafted polyvinylidene fluoride ((Acryli
c Acid grafting PolyVinylidene Fluoride, hereinafter A
2 g of Ag-PVdF) is prepared and dimethylacetamide (DiMethylAcetamide, hereinafter, DM) is used as a solvent.
28 g was prepared, and both were mixed. The mixed solution was heated to 85 ° C. and continuously stirred by the homogenizer. The solution under stirring is collected from time to time and applied on a transparent glass substrate so that the liquid film thickness is around 200 μm,
The average particle size of the polymer binder particles (undissolved particles) and the number of the polymer binder particles (undissolved particles) having a particle size of 0.2 to 400 μm were measured by an optical microscope. The average particle size of the polymer binder particles is 60 ± 10 μm, and the particle size is 0.2
The stirring was stopped when the number of polymer binder particles of ˜400 μm reached 30 ± 10 / cm 2 . This mixed solution is called a polymer solution. Then, the components shown in Table 1 (including the above polymer solution) are mixed in a ball mill for 2 hours to give a slurry for coating a positive electrode active material layer, a slurry for coating a negative electrode active material layer, and a slurry for coating an electrolyte layer. Were prepared respectively.

【0026】[0026]

【表1】 [Table 1]

【0027】次に正極集電体として厚さ20μm、幅2
50μmのアルミ箔を用意した。このアルミ箔に上記正
極活物質塗工用スラリーをドクタブレード法により塗工
し、乾燥及び圧延工程を経て、アルミ箔の上面に厚さ約
80μmの正極活物質層を形成することにより正極を作
製した。また負極集電体として厚さ14μm、幅250
μmの銅箔を用意した。この銅箔に上記負極活物質塗工
用スラリーをドクタブレード法により塗工し、乾燥及び
圧延工程を経て、銅箔の上面に厚さ約80μmの負極活
物質層を形成することにより負極を作製した。
Next, as a positive electrode current collector, the thickness is 20 μm and the width is 2
An aluminum foil of 50 μm was prepared. The above positive electrode active material coating slurry is applied to this aluminum foil by a doctor blade method, and after a drying and rolling process, a positive electrode active material layer having a thickness of about 80 μm is formed on the upper surface of the aluminum foil to form a positive electrode. did. The negative electrode current collector has a thickness of 14 μm and a width of 250.
A copper foil of μm was prepared. The negative electrode was prepared by applying the above-mentioned slurry for coating the negative electrode active material to this copper foil by a doctor blade method, and performing a drying and rolling process to form a negative electrode active material layer having a thickness of about 80 μm on the upper surface of the copper foil. did.

【0028】得られた正極及び負極の表面を光学顕微鏡
により観察したところ、ポリマー結着剤粒子の平均粒径
が30±10μmであり、粒径0.2〜400μmのポ
リマー結着剤粒子の数が20±10個/cm2であっ
た。上記正極の正極活物質層上に、電解質層塗工用スラ
リーをドクタブレード法により塗工して乾燥することに
より電解質層を形成し、上記負極の負極活物質層上に、
電解質層塗工用スラリーをドクタブレード法により塗工
し乾燥することにより電解質層を形成した。上記正極上
の電解質層と負極上の電解質層とが互いに対向するよう
に正極及び負極を積層して熱圧着することにより、シー
ト状の電極体を作製した。更にこの電極体の正極集電体
及び負極集電体に、Niからなる正極リード及び負極リ
ードをそれぞれ溶接により接続し、開口部を有する袋状
に加工されたラミネートパッケージ材に上記リードを有
する電極体を挿入し、減圧条件下で熱圧着することによ
り上記開口部を封止した。これによりシート状の電池を
得た。
Observation of the surfaces of the obtained positive electrode and negative electrode with an optical microscope revealed that the average particle diameter of the polymer binder particles was 30 ± 10 μm, and the number of the polymer binder particles having a particle diameter of 0.2 to 400 μm. Was 20 ± 10 / cm 2 . On the positive electrode active material layer of the positive electrode, an electrolyte layer is formed by applying an electrolyte layer coating slurry by a doctor blade method and drying, and on the negative electrode active material layer of the negative electrode,
An electrolyte layer was formed by applying a slurry for coating an electrolyte layer by a doctor blade method and drying. A positive electrode and a negative electrode were laminated so that the electrolyte layer on the positive electrode and the electrolyte layer on the negative electrode faced each other, and thermocompression bonding was performed to produce a sheet-shaped electrode body. Further, a positive electrode lead and a negative electrode lead made of Ni are connected to the positive electrode current collector and the negative electrode current collector of the electrode body by welding, respectively, and an electrode having the lead in a bag-shaped laminated package material having an opening. The opening was sealed by inserting the body and thermocompression bonding under reduced pressure. As a result, a sheet-shaped battery was obtained.

【0029】<実施例2>結着剤として平均粒径200
μmの粒状のAA−g−PVdF1.5gを用意し、溶
媒としてDMA98g用意し、両者を混合した。この混
合溶液を85℃まで加熱するとともにホモジナイザによ
り撹拌し続けた。AA−g−PVdFがDMAに完全に
溶解したときに上記撹拌を停止し、上記混合溶液に平均
粒径100μmのAA−g−PVdF0.5gを更に添
加して、ホモジナイザにより5分間撹拌した。この混合
溶液をポリマー溶液とした。得られたポリマー溶液を採
取し、実施例1と同様にポリマー結着剤粒子の平均粒径
と、粒径0.2〜400μmのポリマー結着剤粒子の個
数とを測定したところ、ポリマー結着剤粒子の平均粒径
は70±10μmであり、粒径0.2〜400μmのポ
リマー結着剤粒子の数が90±10個/cm2であっ
た。更に上記ポリマー溶液を用いて、実施例1と同様に
正極、負極及びシート状電池を作製した。なお、正極及
び負極の表面を光学顕微鏡により観察したところ、ポリ
マー結着剤粒子の平均粒径が50±10μmであり、粒
径0.2〜400μmのポリマー結着剤粒子の数が80
±10個/cm2であった。
<Example 2> An average particle size of 200 as a binder
1.5 μm of granular AA-g-PVdF having a particle size of μm was prepared, 98 g of DMA was prepared as a solvent, and both were mixed. The mixed solution was heated to 85 ° C. and continuously stirred by the homogenizer. When AA-g-PVdF was completely dissolved in DMA, the stirring was stopped, 0.5 g of AA-g-PVdF having an average particle diameter of 100 μm was further added to the mixed solution, and the mixture was stirred for 5 minutes by a homogenizer. This mixed solution was used as a polymer solution. The obtained polymer solution was sampled, and the average particle diameter of the polymer binder particles and the number of the polymer binder particles having a particle diameter of 0.2 to 400 μm were measured in the same manner as in Example 1. The average particle size of the agent particles was 70 ± 10 μm, and the number of polymer binder particles having a particle size of 0.2 to 400 μm was 90 ± 10 particles / cm 2 . Further, using the above polymer solution, a positive electrode, a negative electrode, and a sheet-shaped battery were produced in the same manner as in Example 1. When the surfaces of the positive electrode and the negative electrode were observed with an optical microscope, the average particle diameter of the polymer binder particles was 50 ± 10 μm, and the number of polymer binder particles having a particle diameter of 0.2 to 400 μm was 80.
It was ± 10 / cm 2 .

【0030】<実施例3>ポリマー溶液調製用の混合溶
液の撹拌を中止したときのポリマー結着剤粒子の平均粒
径を10±5μmとし、粒径0.2〜400μmのポリ
マー結着剤粒子の数を20±10個/cm2としたこと
を除いて、実施例1と同様にしてポリマー溶液を作製し
た。このポリマー溶液を用いて、実施例1と同様に正
極、負極及びシート状電池を作製した。なお、正極及び
負極の表面を光学顕微鏡により観察したところ、ポリマ
ー結着剤粒子の平均粒径が5±2μmであり、粒径0.
2〜400μmのポリマー結着剤粒子の数が10±5個
/cm2であった。
<Example 3> Polymer binder particles having an average particle size of 10 ± 5 μm and a particle size of 0.2 to 400 μm when stirring of a mixed solution for preparing a polymer solution is stopped A polymer solution was prepared in the same manner as in Example 1 except that the number was 20 ± 10 / cm 2 . Using this polymer solution, a positive electrode, a negative electrode and a sheet-shaped battery were produced in the same manner as in Example 1. When the surfaces of the positive electrode and the negative electrode were observed with an optical microscope, the average particle diameter of the polymer binder particles was 5 ± 2 μm, and the particle diameter was 0.
The number of polymer binder particles of 2 to 400 μm was 10 ± 5 / cm 2 .

【0031】<実施例4>結着剤として粒状のメタクリ
ル酸グラフト化ポリビニリデン(Methacrylic Acid gra
fting Poly-Vinylidene Fluoride、以下、MA−g−P
VdFという)を用いたことを除いて、実施例1と同様
にしてポリマー溶液を作製した。このポリマー溶液を用
いて、実施例1と同様に正極、負極及びシート状電池を
作製した。なお、正極及び負極の表面を光学顕微鏡によ
り観察したところ、ポリマー結着剤粒子の平均粒径が3
0±10μmであり、粒径0.2〜400μmのポリマ
ー結着剤粒子の数が20±10個/cm2であった。
Example 4 As a binder, granular methacrylic acid grafted polyvinylidene (Methacrylic Acid gra
fting Poly-Vinylidene Fluoride, hereinafter MA-g-P
A polymer solution was prepared in the same manner as in Example 1 except that (VdF) was used. Using this polymer solution, a positive electrode, a negative electrode and a sheet-shaped battery were produced in the same manner as in Example 1. When the surfaces of the positive electrode and the negative electrode were observed with an optical microscope, the average particle diameter of the polymer binder particles was 3
It was 0 ± 10 μm, and the number of polymer binder particles having a particle diameter of 0.2 to 400 μm was 20 ± 10 particles / cm 2 .

【0032】<実施例5>結着剤として平均粒径200
μmの粒状のPVdF2gを用意し、溶媒としてDMA
28g用意し、両者を混合した。この混合溶液を85℃
まで加熱するとともにホモジナイザにより撹拌し続け
た。上記PVdFがDMAに完全に溶解して、混合溶液
が均一な透明液になったときに撹拌を中止した。得られ
たポリマー溶液を採取し、実施例1と同様に粒径0.2
〜400μmのポリマー結着剤粒子の個数を測定したと
ころ、ポリマー結着剤粒子の平均粒径が70±10μm
であった。このポリマー溶液を用いて、実施例1と同様
に正極、負極及びシート状電池を作製した。なお、正極
及び負極の表面を光学顕微鏡により観察したところ、ポ
リマー結着剤粒子の平均粒径が50±10μmであり、
粒径0.2〜400μmのポリマー結着剤粒子の数が8
0±10個/cm2であった。
Example 5 An average particle size of 200 as a binder
Prepare 2 g of PVdF in the form of particles of μm and use DMA as a solvent.
28g was prepared and both were mixed. This mixed solution is 85 ℃
It was heated up to and continued to stir with a homogenizer. When the PVdF was completely dissolved in DMA and the mixed solution became a uniform transparent liquid, the stirring was stopped. The obtained polymer solution was sampled, and the particle size was 0.2 in the same manner as in Example 1.
When the number of polymer binder particles having a particle size of up to 400 μm was measured, the average particle diameter of the polymer binder particles was 70 ± 10 μm.
Met. Using this polymer solution, a positive electrode, a negative electrode and a sheet-shaped battery were produced in the same manner as in Example 1. When the surfaces of the positive electrode and the negative electrode were observed with an optical microscope, the average particle diameter of the polymer binder particles was 50 ± 10 μm,
The number of polymer binder particles having a particle size of 0.2 to 400 μm is 8
It was 0 ± 10 pieces / cm 2 .

【0033】<比較例1>結着剤として平均粒径200
μmの粒状のAA−g−PVdF1.5gを用意し、溶
媒としてDMA28g用意し、両者を混合した。この混
合溶液を85℃まで加熱するとともにホモジナイザによ
り撹拌し続けた。AA−g−PVdFがDMAに完全に
溶解したときに上記撹拌を停止し、上記混合溶液に平均
粒径200μmのAA−g−PVdF0.5gを更に添
加して、スタラーにより1分間撹拌した。この混合溶液
をポリマー溶液とした。得られたポリマー溶液を採取
し、実施例1と同様にポリマー結着剤粒子の平均粒径
と、粒径0.2〜400μmのポリマー結着剤粒子の個
数とを測定したところ、ポリマー結着剤粒子の平均粒径
は140±10μmであり、粒径0.2〜400μmの
ポリマー結着剤粒子の数が110±10個/cm2であ
った。このポリマー溶液を用いて、実施例1と同様に正
極、負極及びシート状電池を作製した。なお、正極及び
負極の表面を光学顕微鏡により観察したところ、ポリマ
ー結着剤粒子の平均粒径が120±10μmであり、粒
径0.2〜400μmのポリマー結着剤粒子の数が10
0±10個/cm2であった。
<Comparative Example 1> An average particle size of 200 as a binder.
1.5 μm of granular AA-g-PVdF having a particle size of 28 μm was prepared, and 28 g of DMA was prepared as a solvent, and both were mixed. The mixed solution was heated to 85 ° C. and continuously stirred by the homogenizer. When AA-g-PVdF was completely dissolved in DMA, the stirring was stopped, 0.5 g of AA-g-PVdF having an average particle diameter of 200 μm was further added to the mixed solution, and the mixture was stirred with a stirrer for 1 minute. This mixed solution was used as a polymer solution. The obtained polymer solution was sampled, and the average particle diameter of the polymer binder particles and the number of the polymer binder particles having a particle diameter of 0.2 to 400 μm were measured in the same manner as in Example 1. The average particle size of the agent particles was 140 ± 10 μm, and the number of polymer binder particles having a particle size of 0.2 to 400 μm was 110 ± 10 particles / cm 2 . Using this polymer solution, a positive electrode, a negative electrode and a sheet-shaped battery were produced in the same manner as in Example 1. When the surfaces of the positive electrode and the negative electrode were observed with an optical microscope, the average particle size of the polymer binder particles was 120 ± 10 μm, and the number of the polymer binder particles having a particle size of 0.2 to 400 μm was 10.
It was 0 ± 10 pieces / cm 2 .

【0034】<比較例2>結着剤として平均粒径200
μmの粒状のAA−g−PVdF1gを用意し、溶媒と
してDMA28g用意し、両者を混合した。この混合溶
液を85℃まで加熱するとともにホモジナイザにより撹
拌し続けた。AA−g−PVdFがDMAに完全に溶解
したときに上記撹拌を停止し、上記混合溶液に平均粒径
100μmのAA−g−PVdF1gを更に添加して、
スタラーにより1分間撹拌した。この混合溶液をポリマ
ー溶液とした。得られたポリマー溶液を採取し、実施例
1と同様にポリマー結着剤粒子の平均粒径と、粒径0.
2〜400μmのポリマー結着剤粒子の個数とを測定し
たところ、ポリマー結着剤粒子の平均粒径は95±5μ
mであり、粒径0.2〜400μmのポリマー結着剤粒
子の数が200±10個/cm2であった。このポリマ
ー溶液を用いて、実施例1と同様に正極、負極及びシー
ト状電池を作製した。なお、正極及び負極の表面を光学
顕微鏡により観察したところ、ポリマー結着剤粒子の平
均粒径が60±10μmであり、粒径0.2〜400μ
mのポリマー結着剤粒子の数が200±10個/cm2
であった。
Comparative Example 2 An average particle size of 200 as a binder
1 g of granular AA-g-PVdF having a particle size of μm was prepared, and 28 g of DMA was prepared as a solvent, and both were mixed. The mixed solution was heated to 85 ° C. and continuously stirred by the homogenizer. When AA-g-PVdF was completely dissolved in DMA, the stirring was stopped, and 1 g of AA-g-PVdF having an average particle size of 100 μm was further added to the mixed solution,
Stir with a stirrer for 1 minute. This mixed solution was used as a polymer solution. The obtained polymer solution was sampled, and the average particle size of the polymer binder particles and the particle size of 0.
When the number of polymer binder particles of 2 to 400 μm was measured, the average particle diameter of the polymer binder particles was 95 ± 5 μm.
and the number of polymer binder particles having a particle diameter of 0.2 to 400 μm was 200 ± 10 particles / cm 2 . Using this polymer solution, a positive electrode, a negative electrode and a sheet-shaped battery were produced in the same manner as in Example 1. When the surfaces of the positive electrode and the negative electrode were observed with an optical microscope, the average particle diameter of the polymer binder particles was 60 ± 10 μm, and the particle diameter was 0.2 to 400 μm.
The number of polymer binder particles of m is 200 ± 10 / cm 2
Met.

【0035】<比較例3>結着剤として粒状のMA−g
−PVdFを用いたことを除いて、実施例1と同様にし
てポリマー溶液を作製した。このポリマー溶液を用い
て、実施例1と同様に正極、負極及びシート状電池を作
製した。なお、正極及び負極の表面を光学顕微鏡により
観察したところ、ポリマー結着剤粒子の平均粒径が60
±10μmであり、粒径0.2〜400μmのポリマー
結着剤粒子の数が200±10個/cm2であった。
Comparative Example 3 Granular MA-g as a binder
A polymer solution was prepared in the same manner as in Example 1 except that PVdF was used. Using this polymer solution, a positive electrode, a negative electrode and a sheet-shaped battery were produced in the same manner as in Example 1. When the surfaces of the positive electrode and the negative electrode were observed with an optical microscope, the average particle diameter of the polymer binder particles was 60.
The number of polymer binder particles having a particle size of 0.2 to 400 μm was 200 ± 10 particles / cm 2 .

【0036】<比較例4>結着剤として粒状のPVdF
を用いたことを除いて、実施例1と同様にしてポリマー
溶液を作製した。このポリマー溶液を用いて、実施例1
と同様に正極、負極及びシート状電池を作製した。な
お、正極及び負極の表面を光学顕微鏡により観察したと
ころ、粒径0.2〜400μmのポリマー結着剤粒子は
存在しなかった。
Comparative Example 4 Granular PVdF as a binder
A polymer solution was prepared in the same manner as in Example 1 except that was used. Example 1 using this polymer solution
A positive electrode, a negative electrode, and a sheet battery were prepared in the same manner as in. When the surfaces of the positive electrode and the negative electrode were observed with an optical microscope, polymer binder particles having a particle size of 0.2 to 400 μm were not present.

【0037】<比較例5>結着剤として粒状のAA−g
−PVdFを用いたことを除いて、実施例5と同様にし
てポリマー溶液を作製した。このポリマー溶液を用いて
実施例5と同様に正極、負極及びシート状電池を作製し
た。なお、正極及び負極の表面を光学顕微鏡により観察
したところ、粒径0.2〜400μmのポリマー結着剤
粒子は存在しなかった。
Comparative Example 5 Granular AA-g as a binder
A polymer solution was prepared in the same manner as in Example 5, except that PVdF was used. Using this polymer solution, a positive electrode, a negative electrode and a sheet battery were produced in the same manner as in Example 5. When the surfaces of the positive electrode and the negative electrode were observed with an optical microscope, polymer binder particles having a particle size of 0.2 to 400 μm were not present.

【0038】<比較試験1及び評価> (1)サイクル容量維持特性試験 上記実施例1〜5及び比較例1〜5のシート状電池につ
いて充放電サイクル試験を行った。即ち、最大充電電圧
4V、充電電流0.5Aの条件で2.5時間の充電と、
0.5Aの定電流放電で放電電圧が2.75V(最低放
電電圧)となるまで放電とを繰返した。上記充放サイク
ル試験において、各サイクル毎に充放電容量を測定し、
放電容量が初期放電容量の80%まで低下したときのサ
イクル数を測定した。その結果を表2に示す。
<Comparative Test 1 and Evaluation> (1) Cycle Capacity Maintenance Characteristic Test A charge / discharge cycle test was conducted on the sheet-like batteries of Examples 1 to 5 and Comparative Examples 1 to 5 above. That is, charging for 2.5 hours under conditions of maximum charging voltage 4V and charging current 0.5A,
The constant current discharge of 0.5 A was repeated until the discharge voltage reached 2.75 V (minimum discharge voltage). In the charge and discharge cycle test, measure the charge and discharge capacity for each cycle,
The number of cycles when the discharge capacity dropped to 80% of the initial discharge capacity was measured. The results are shown in Table 2.

【0039】(2)充放電サイクル試験後における活物
質層の集電体への密着性試験 先ず実施例1〜5及び比較例1〜5のシート状電池につ
いて高温充放電サイクル試験を行った。具体的には、各
シート状電池を70℃環境温度で、上記サイクル容量維
持特性試験と同様の充放電サイクル試験を100回(サ
イクル数)繰返した。次にこれらのシート状電池のパッ
ケージから電極体を取出した後に、正極と負極とを分離
した。更に正極の活物質層及び負極の活物質層をピンセ
ットでそれぞれ引っ掻いて、正極活物質層が正極集電体
から剥離するか否か、及び負極活物質層が負極集電体か
ら剥離するか否かを調べた。その結果を表2に示す。
(2) Adhesion Test of Active Material Layer to Current Collector After Charge / Discharge Cycle Test First, a high temperature charge / discharge cycle test was performed on the sheet-like batteries of Examples 1-5 and Comparative Examples 1-5. Specifically, each sheet-shaped battery was subjected to the same charge / discharge cycle test 100 times (the number of cycles) at the ambient temperature of 70 ° C. as in the cycle capacity maintenance characteristic test. Next, after taking out the electrode body from the package of these sheet-like batteries, the positive electrode and the negative electrode were separated. Further, whether the positive electrode active material layer and the negative electrode active material layer are scratched with tweezers respectively, and whether the positive electrode active material layer is separated from the positive electrode current collector, and whether the negative electrode active material layer is separated from the negative electrode current collector. I checked. The results are shown in Table 2.

【0040】[0040]

【表2】 [Table 2]

【0041】表2から明らかなように、比較例1〜3の
ように活物質層中のポリマー結着剤粒子の平均粒径が1
00μm以上である場合、又は粒径0.2〜400μm
のポリマー結着剤粒子の数が100個/cm2以上であ
る場合のいずれか一方又は双方の場合には、80%放電
容量サイクル数が205〜264回と低かったのに対
し、実施例1〜5のように活物質層中のポリマー結着剤
粒子の平均粒径が100μm以下であって、粒径0.2
〜400μmのポリマー結着剤粒子の数が100個/c
2以下である場合には、80%放電容量サイクル数が
285〜380回と比較例より多かった。これは、実施
例1〜5では、集電体と活物質層との界面における粒子
状ポリマー結着剤の分布の調和が図られ、その界面にお
ける密着性と導電性の双方を確保できたためであると考
えられる。
As is apparent from Table 2, the average particle size of the polymer binder particles in the active material layer is 1 as in Comparative Examples 1 to 3.
When the particle size is 00 μm or more, or the particle size is 0.2 to 400 μm
In the case where the number of the polymer binder particles of No. 1 was 100 particles / cm 2 or more, or both of them, the 80% discharge capacity cycle number was as low as 205 to 264 times, while Example 1 was used. The average particle diameter of the polymer binder particles in the active material layer is 100 μm or less and the particle diameter is 0.2
The number of polymer binder particles of ˜400 μm is 100 / c
When it was m 2 or less, the number of cycles of 80% discharge capacity was 285 to 380, which was higher than that of the comparative example. This is because in Examples 1 to 5, the distribution of the particulate polymer binder at the interface between the current collector and the active material layer was harmonized, and both adhesion and conductivity at the interface could be ensured. It is believed that there is.

【0042】また実施例1〜3と実施例4とを比較する
と、結着剤として粒状のAA−g−PVdF及びMA−
g−PVdFを用いた方が、結着剤として粒状のPVd
Fを用いた場合より80%放電容量サイクル数が多くな
った。このことから粒状のAA−g−PVdF及びMA
−g−PVdFの方が粒状のPVdFより、サイクル容
量維持特性の向上に寄与することが判った。更に比較例
1〜5では、高温充放電サイクル試験を行った後におけ
る、活物質層の集電体への密着性が悪かったのに対し、
実施例1〜5では、高温充放電サイクル試験を行った後
における、活物質層の集電体への密着性が良好であっ
た。これは、粒子状結着剤の存在により活物質層の集電
体への密着性が改善されたためであると考えられる。
Comparing Examples 1 to 3 with Example 4, granular AA-g-PVdF and MA-as binders were used.
When using g-PVdF, granular PVd is used as a binder.
The number of cycles of 80% discharge capacity was larger than that when F was used. Therefore, granular AA-g-PVdF and MA
It was found that -g-PVdF contributed to the improvement of the cycle capacity retention characteristics, as compared with granular PVdF. Further, in Comparative Examples 1 to 5, while the adhesion of the active material layer to the current collector was poor after the high temperature charge / discharge cycle test was performed,
In Examples 1 to 5, the adhesion of the active material layer to the current collector was good after the high temperature charge / discharge cycle test. It is considered that this is because the presence of the particulate binder improved the adhesion of the active material layer to the current collector.

【0043】[0043]

【発明の効果】以上述べたように、本発明によれば、活
物質及びポリマー結着剤を含む活物質層塗工用スラリー
を集電体上に塗布し乾燥することにより活物質層を形成
し、上記ポリマー結着剤が粒子状ポリマー結着剤を更に
含み、この粒子状ポリマー結着剤の粒径が0.2〜40
0μmであってその平均粒径が1〜100μmであるの
で、活物質層に存在する粒子状ポリマー結着剤が、粒子
状態で存在する導電性物質とともに集電体と活物質層と
の界面に存在してその密着性を向上させることができ
る。一方、粒子状ポリマー結着剤が存在しない集電体と
活物質層との界面には導電性物質が存在し、その導電性
物質の存在によりその界面における電子の授受が円滑に
行われ、電気抵抗を低く維持することができる。
As described above, according to the present invention, the active material layer coating slurry containing the active material and the polymer binder is applied on the current collector and dried to form the active material layer. However, the polymer binder further contains a particulate polymer binder, and the particle size of the particulate polymer binder is 0.2 to 40.
Since the average particle size is 0 μm and the average particle size is 1 to 100 μm, the particulate polymer binder present in the active material layer is present at the interface between the current collector and the active material layer together with the conductive substance present in the particulate state. Existence can improve its adhesion. On the other hand, a conductive substance exists at the interface between the current collector and the active material layer in which the particulate polymer binder does not exist, and the presence of the conductive substance facilitates the transfer of electrons at the interface. The resistance can be kept low.

【0044】この場合、ポリマー結着剤の主成分をフッ
素系樹脂とすれば、電解液への耐久性が高い二次電池用
電極を得ることができ、ポリマー結着剤がPVdFにア
クリル酸又はメタクリル酸をモノマーとしてグラフト重
合した化合物であれば、集電体と良好な密着性を有する
二次電池用電極を得ることができる。また活物質層中の
活物質層の表面に平行な断面における粒子状ポリマー結
着剤の面積密度が1〜100個/cm2であれば、集電
体と活物質層との界面における粒子状ポリマー結着剤の
分布の調和を図り、その界面における密着性と導電性の
双方を確保することができる。更に上記二次電池用電極
を用いた二次電池は、サイクル容量維持特性が向上した
ものになる。
In this case, when the main component of the polymer binder is a fluororesin, an electrode for a secondary battery having high durability to an electrolytic solution can be obtained, and the polymer binder is PVdF or acrylic acid or If the compound is graft-polymerized with methacrylic acid as a monomer, a secondary battery electrode having good adhesion to the current collector can be obtained. Further, when the area density of the particulate polymer binder in the cross section parallel to the surface of the active material layer in the active material layer is 1 to 100 / cm 2 , the particle shape at the interface between the current collector and the active material layer is The distribution of the polymer binder can be harmonized, and both the adhesiveness and the conductivity at the interface can be secured. Further, the secondary battery using the secondary battery electrode has improved cycle capacity maintaining characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施形態のリチウムイオンポリマー二次
電池の電極体を示す部分断面構成図。
FIG. 1 is a partial cross-sectional configuration diagram showing an electrode body of a lithium ion polymer secondary battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 正極(電極) 12 正極集電体 13 正極活物質層 14 負極(電極) 16 負極集電体 17 負極活物質層 18 ポリマー電解質層 11 Positive electrode (electrode) 12 Positive electrode current collector 13 Positive electrode active material layer 14 Negative electrode (electrode) 16 Negative electrode current collector 17 Negative electrode active material layer 18 Polymer Electrolyte Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水口 暁夫 茨城県那珂郡那珂町向山1002番地14 三菱 マテリアル株式会社総合研究所那珂研究セ ンター内 (72)発明者 樋上 晃裕 茨城県那珂郡那珂町向山1002番地14 三菱 マテリアル株式会社総合研究所那珂研究セ ンター内 (72)発明者 張 守斌 茨城県那珂郡那珂町向山1002番地14 三菱 マテリアル株式会社総合研究所那珂研究セ ンター内 Fターム(参考) 5H029 AJ05 AK03 AL07 AM03 AM05 AM07 AM16 BJ12 CJ02 CJ08 CJ22 DJ07 DJ08 DJ16 EJ12 EJ14 HJ05 HJ08 HJ12 5H050 AA07 BA17 BA18 CA08 CB08 DA04 DA11 EA22 EA24 EA28 FA02 FA17 GA02 GA10 GA22 HA05 HA08 HA12    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akio Mizuguchi             1002 Mukayama, Naka-machi, Naka-machi, Naka-gun, Ibaraki Prefecture 14 Mitsubishi             Materials Research Laboratories Naka Research Center             In the center (72) Inventor Akihiro Higami             1002 Mukayama, Naka-machi, Naka-machi, Naka-gun, Ibaraki Prefecture 14 Mitsubishi             Materials Research Laboratories Naka Research Center             In the center (72) Inventor Zhang Morin             1002 Mukayama, Naka-machi, Naka-machi, Naka-gun, Ibaraki Prefecture 14 Mitsubishi             Materials Research Laboratories Naka Research Center             In the center F-term (reference) 5H029 AJ05 AK03 AL07 AM03 AM05                       AM07 AM16 BJ12 CJ02 CJ08                       CJ22 DJ07 DJ08 DJ16 EJ12                       EJ14 HJ05 HJ08 HJ12                 5H050 AA07 BA17 BA18 CA08 CB08                       DA04 DA11 EA22 EA24 EA28                       FA02 FA17 GA02 GA10 GA22                       HA05 HA08 HA12

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 活物質及びポリマー結着剤を含む活物質
層塗工用スラリーを集電体(12,16)上に塗布し乾燥して
形成される活物質層(13,17)であって、 前記ポリマー結着剤が粒子状ポリマー結着剤を更に含
み、 前記粒子状ポリマー結着剤はその粒径が0.2〜400
μmであってその平均粒径が1〜100μmであること
を特徴とする二次電池用電極。
1. An active material layer (13, 17) formed by applying a slurry for coating an active material layer containing an active material and a polymer binder onto a current collector (12, 16) and drying the slurry. The polymer binder further includes a particulate polymer binder, and the particle size of the particulate polymer binder is 0.2 to 400.
An electrode for a secondary battery, which has a mean particle size of 1 to 100 μm.
【請求項2】 粒子状ポリマー結着剤の主成分がフッ素
系樹脂である請求項1記載の二次電池用電極。
2. The electrode for a secondary battery according to claim 1, wherein the main component of the particulate polymer binder is a fluororesin.
【請求項3】 粒子状ポリマー結着剤がポリフッ化ビニ
リデンにアクリル酸又はメタクリル酸をモノマーとして
グラフト重合した化合物である請求項1記載の二次電池
用電極。
3. The secondary battery electrode according to claim 1, wherein the particulate polymer binder is a compound obtained by graft-polymerizing polyvinylidene fluoride with acrylic acid or methacrylic acid as a monomer.
【請求項4】 活物質層(13,17)中の前記活物質層(13,1
7)の表面に平行な断面における粒子状ポリマー結着剤の
面積密度が1〜100個/cm2である請求項1ないし
3いずれか記載の二次電池用電極。
4. The active material layer (13,1) in the active material layer (13,17).
The electrode for a secondary battery according to any one of claims 1 to 3, wherein the area density of the particulate polymer binder in the cross section parallel to the surface of 7) is 1 to 100 / cm 2 .
【請求項5】 請求項1ないし4いずれかに記載の二次
電池用電極(11,14)を用いた二次電池。
5. A secondary battery using the secondary battery electrode (11, 14) according to claim 1.
JP2001303055A 2001-09-28 2001-09-28 Electrode for secondary battery and secondary battery using the same Withdrawn JP2003109581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001303055A JP2003109581A (en) 2001-09-28 2001-09-28 Electrode for secondary battery and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001303055A JP2003109581A (en) 2001-09-28 2001-09-28 Electrode for secondary battery and secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2003109581A true JP2003109581A (en) 2003-04-11

Family

ID=19123199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001303055A Withdrawn JP2003109581A (en) 2001-09-28 2001-09-28 Electrode for secondary battery and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2003109581A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143234A1 (en) * 2007-05-21 2008-11-27 Showa Denko K. K. Method and apparatus for manufacturing solid electrolytic capacitor
JP2009538495A (en) * 2005-09-02 2009-11-05 エイ 123 システムズ,インク. Nanocomposite electrodes and related equipment
CN114335413A (en) * 2020-09-28 2022-04-12 Sk新技术株式会社 Electrode for secondary battery having improved rapid charging performance, method of manufacturing the same, and secondary battery including the same
WO2022196201A1 (en) * 2021-03-17 2022-09-22 パナソニックIpマネジメント株式会社 Method for manufacturing positive electrode mixture for flat lithium primary battery and flat lithium primary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538495A (en) * 2005-09-02 2009-11-05 エイ 123 システムズ,インク. Nanocomposite electrodes and related equipment
US8323831B2 (en) 2005-09-02 2012-12-04 A123 Systems, Inc. Nanocomposite electrodes and related devices
WO2008143234A1 (en) * 2007-05-21 2008-11-27 Showa Denko K. K. Method and apparatus for manufacturing solid electrolytic capacitor
US8696767B2 (en) 2007-05-21 2014-04-15 Showa Denko K.K. Dipping method of forming cathode of solid electrolytic capacitor
CN114335413A (en) * 2020-09-28 2022-04-12 Sk新技术株式会社 Electrode for secondary battery having improved rapid charging performance, method of manufacturing the same, and secondary battery including the same
CN114335413B (en) * 2020-09-28 2024-03-22 Sk新能源株式会社 Electrode for secondary battery having improved rapid charge performance, method of manufacturing the same, and secondary battery including the same
WO2022196201A1 (en) * 2021-03-17 2022-09-22 パナソニックIpマネジメント株式会社 Method for manufacturing positive electrode mixture for flat lithium primary battery and flat lithium primary battery

Similar Documents

Publication Publication Date Title
US7351498B2 (en) Lithium ion polymer secondary battery its electrode and method for synthesizing polymer compound in binder used in adhesion layer thereof
CN107210482B (en) All-solid-state secondary battery
JP6149730B2 (en) Positive electrode for secondary battery, method for producing the same, slurry composition, and secondary battery
CN109923697B (en) Anode paste for lithium ion battery
JP3982221B2 (en) Lithium ion polymer secondary battery and method for synthesizing binder used for adhesion layer of battery
JP6384476B2 (en) Lithium ion secondary battery binder composition, lithium ion secondary battery slurry composition, lithium ion secondary battery electrode, lithium ion secondary battery, and method for producing lithium ion secondary battery binder composition
US20150303463A1 (en) Slurry composition for lithium ion secondary battery negative electrode, negative electrode for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery
JP6737182B2 (en) Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer and non-aqueous secondary battery
JP6191471B2 (en) Binder composition for lithium ion secondary battery, production method thereof, slurry composition for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6459691B2 (en) All solid state secondary battery
JPWO2016051674A1 (en) Adhesive composition for electrochemical device, adhesive layer for electrochemical device, and electrochemical device
WO2020105673A1 (en) Porous film, separator for secondary cell, and secondary cell
JP2020145034A (en) Manufacturing method of positive electrode slurry, manufacturing method of positive electrode, manufacturing method of all-solid battery, positive electrode, and all-solid battery
CN106257713A (en) Secondary battery cathode and the lithium secondary battery being produced from
WO2019198453A1 (en) Battery manufacturing method
JP2003257433A (en) Nonaqueous electrolyte secondary battery and binding agent
JP2016181472A (en) All-solid secondary battery
JP2003109581A (en) Electrode for secondary battery and secondary battery using the same
WO2019198495A1 (en) Battery production method
JP3726899B2 (en) Lithium ion polymer secondary battery
WO2018180811A1 (en) Slurry composition for nonaqueous secondary battery adhesive layers, production method and use
JP2003173781A (en) Paint for adhesive layer as well as electrode for secondary battery and secondary battery using them
JPH11121011A (en) Electrode for lithium secondary battery and lithium secondary battery
JP2002260665A (en) Nonaqueous electrolyte secondary battery
JPWO2020137435A5 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202