JP2003109530A - Charged particle beam device - Google Patents
Charged particle beam deviceInfo
- Publication number
- JP2003109530A JP2003109530A JP2001298979A JP2001298979A JP2003109530A JP 2003109530 A JP2003109530 A JP 2003109530A JP 2001298979 A JP2001298979 A JP 2001298979A JP 2001298979 A JP2001298979 A JP 2001298979A JP 2003109530 A JP2003109530 A JP 2003109530A
- Authority
- JP
- Japan
- Prior art keywords
- charged particle
- diaphragm
- particle beam
- sample
- objective lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims description 26
- 230000003287 optical effect Effects 0.000 claims abstract description 10
- 238000001514 detection method Methods 0.000 claims description 4
- 238000002441 X-ray diffraction Methods 0.000 abstract description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052790 beryllium Inorganic materials 0.000 abstract description 3
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 3
- 239000000523 sample Substances 0.000 description 33
- 238000010894 electron beam technology Methods 0.000 description 20
- 238000004458 analytical method Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000005672 electromagnetic field Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 102100036738 Guanine nucleotide-binding protein subunit alpha-11 Human genes 0.000 description 1
- 101100283445 Homo sapiens GNA11 gene Proteins 0.000 description 1
- 101001094026 Synechocystis sp. (strain PCC 6803 / Kazusa) Phasin PhaP Proteins 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は荷電粒子線装置に係
り、特に、薄片化した試料のX線分析を高精度に行うの
に好適な荷電粒子線装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged particle beam apparatus, and more particularly to a charged particle beam apparatus suitable for highly accurate X-ray analysis of a thin sample.
【0002】[0002]
【従来の技術】走査電子顕微鏡に代表される荷電粒子線
装置では、細く収束された荷電粒子線を試料上で走査し
て試料から所望の情報(例えば試料像)を得る。このよ
うな荷電粒子線装置は、試料に照射した電子線により励
起されたX線を分析して、試料の元素を同定する目的に
も用いられる。走査電子顕微鏡による通常のX線分析
は、バルク状の試料に電子線を照射し、励起したX線を
検出するものであるが、照射電子がバルク試料の内部で
散乱するために、X線発生領域が拡大して分析の空間分
解能が悪くなる。これを避けるために、薄片化した試料
に電子線を照射してX線発生領域の拡散を防止する方法
が知られている。この場合、照射した電子線が薄片化試
料を透過して、試料内部ではほとんど散乱しないめに、
分析領域の空間分解能が改善するが、バルク試料に比較
するとX線の発生量が大幅に低減する。2. Description of the Related Art In a charged particle beam apparatus typified by a scanning electron microscope, desired information (for example, a sample image) is obtained from a sample by scanning a finely focused charged particle beam on the sample. Such a charged particle beam device is also used for the purpose of identifying the element of the sample by analyzing the X-ray excited by the electron beam with which the sample is irradiated. Normal X-ray analysis using a scanning electron microscope is to irradiate a bulk sample with an electron beam and detect the excited X-ray. However, since the irradiated electrons are scattered inside the bulk sample, X-ray generation occurs. The area expands and the spatial resolution of the analysis deteriorates. In order to avoid this, a method is known in which a thin sample is irradiated with an electron beam to prevent diffusion of the X-ray generation region. In this case, the irradiated electron beam passes through the sliced sample and is hardly scattered inside the sample,
Although the spatial resolution of the analysis region is improved, the amount of X-ray generation is significantly reduced as compared with the bulk sample.
【0003】電子線の強度は、一般に、図2に示すよう
に、中央のピーク(メインビーム81)に対して、その
周辺に、強度は低いが広いテール(ビームテール82)
を有している。このビームテールの主原因のひとつが絞
りの開口から入り込む散乱電子である。これを図3によ
り説明する。走査電子顕微鏡の絞り装置は、通常、閉じ
込められた絞り室空間200に配置される。対物レンズ
絞り8に照射された電子線(絞り照射ビーム400)
は、その一部が開口を透過してメインビーム401にな
るが、残りの大部分は開口の外側に照射される。このと
き、開口の外側に照射された電子は後方散乱して、封じ
込められた空間内を飛び交うことになる。こうして、封
じ込められた空間内部で多重散乱を繰り返した電子(散
乱電子102)は、再び、絞りの開口を透過して試料に
照射される。絞りの開口を透過した散乱電子は、収束性
が悪いために、メインビームの周辺に大きなビームテー
ルを形成する。As shown in FIG. 2, the intensity of the electron beam generally has a wide tail (beam tail 82) with a low intensity around the central peak (main beam 81).
have. One of the main causes of this beam tail is scattered electrons entering through the aperture of the diaphragm. This will be described with reference to FIG. A diaphragm device of a scanning electron microscope is usually arranged in a confined diaphragm space 200. Electron beam irradiated on the objective lens diaphragm 8 (diaphragm irradiation beam 400)
Part of the light passes through the opening to become the main beam 401, but most of the rest is irradiated to the outside of the opening. At this time, the electrons emitted to the outside of the opening are backscattered and fly in the enclosed space. In this way, the electrons (scattered electrons 102) that have repeatedly undergone multiple scattering in the enclosed space are transmitted through the aperture of the diaphragm again and irradiated onto the sample. The scattered electrons that have transmitted through the aperture of the diaphragm have a poor convergence and thus form a large beam tail around the main beam.
【0004】図4のように、薄片化試料のX線分析にお
いて、分析点近傍にバルク領域が存在すると、この領域
にビームテールが照射されることになる。ビームテール
の強度は主ビームの強度に比較して、数10分の1から
数100分の1程度と低いが、バルク部からのX線10
3発生量が薄片化領域のX線(分析点のX線104)発
生量よりもはるかに大きいため、ビームテールで発生し
たX線強度が、分析点から発生するX線強度に対して無
視できなくなる。この結果、分析点以外から発生する特
性X線が検出され、元素分析の信頼性を損なう問題があ
る。従来は、バルク部に接近していない薄片化部分のX
線分析を行うことで、ビームテールの影響を避けてい
た。As shown in FIG. 4, in X-ray analysis of a thin sample, if a bulk region exists near the analysis point, this region is irradiated with the beam tail. The intensity of the beam tail is as low as several tenths to several hundredths of the intensity of the main beam, but the X-ray 10
3 Since the amount of X-rays generated is much larger than the amount of X-rays (X-rays 104 at the analysis point) in the thinned region, the X-ray intensity generated at the beam tail can be ignored with respect to the X-ray intensity generated from the analysis points. Disappear. As a result, characteristic X-rays generated from other than the analysis point are detected, and there is a problem that the reliability of elemental analysis is impaired. Conventionally, X of the thinned part that is not close to the bulk part
By performing line analysis, the effect of the beam tail was avoided.
【0005】一方、X線分析における定量性を維持する
には、プローブ電流の管理が必要となる。通常、この目
的のために、対物レンズ絞りの下部に電流検出手段(フ
ァラディカップ)を配置し、電流を測定するときには、
ファラディカップを光軸上に移動して電流を測定してい
た。On the other hand, it is necessary to control the probe current in order to maintain the quantitativeness in X-ray analysis. Usually, for this purpose, a current detection means (Faraday cup) is arranged under the objective lens diaphragm, and when measuring the current,
The Faraday cup was moved on the optical axis to measure the current.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、通常の
X線分析では、薄片化領域の分析点が常にバルク部分か
ら十分離れているかどうかを判断できないため、得られ
た結果に分析点以外の情報が混在する可能性を完全に否
定することができない問題があった。However, in the usual X-ray analysis, it is not possible to always judge whether the analysis point in the thinned region is sufficiently distant from the bulk portion, and therefore the obtained result contains information other than the analysis point. There was a problem in which the possibility of being mixed cannot be completely denied.
【0007】また、プローブ電流を測定するためのファ
ラディカップを光軸上に移動する場合、ファラディカッ
プを光軸上に正確に移動させるには、絞りより電子源側
のユニットを取り外して、ファラディカップの位置を目
視で確認する作業や、あるいは、プローブ電流をモニタ
しながらファラディカップのセンタリングを行う必要が
あった。また、一度ファラディカップの位置を調整して
も、万一、光軸のシフトが起こると、ファラディカップ
の位置ずれにより正確な電流検出ができなくなる問題が
あった。When moving the Faraday cup for measuring the probe current along the optical axis, in order to move the Faraday cup accurately along the optical axis, the unit closer to the electron source than the diaphragm is removed and the Faraday cup is removed. It was necessary to visually confirm the position of the Faraday cup, or to perform centering of the Faraday cup while monitoring the probe current. Further, even if the position of the Faraday cup is adjusted once, if the optical axis shifts by any chance, there is a problem that accurate current detection cannot be performed due to the position shift of the Faraday cup.
【0008】本発明の目的は、ビームテールを低減し
て、薄片化試料のX線分析における信頼性を向上させる
のとともに、X線分析によく使用されるファラディカッ
プに対して、ファラディカップの位置合わせを容易にす
るのに好適な荷電粒子線装置の提供にある。An object of the present invention is to reduce the beam tail to improve the reliability of X-ray analysis of a thin sample, and to position the Faraday cup with respect to the Faraday cup often used for X-ray analysis. Another object is to provide a charged particle beam device suitable for facilitating alignment.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するた
め、対物レンズ絞りの下部に、新たな絞りを設けた。ま
た、対物レンズ絞りと新たに設けた絞りとの間に、炭素
やベリリウムで代表されるような軽元素材料で構成され
る筒状の部材を配置した。この軽元素部材により、対物
レンズ絞りの開口を通過した散乱電子が、新たに設けた
絞りに衝突して多重散乱を起こすのを防止される。ま
た、新たに設けた絞りとファラディカップを一体構造と
し、光軸に対して位置を制御する手段を設けた。これに
より、絞りの軸合わせがファラディカップの位置合わせ
を兼ねることになる。絞りの軸合わせは、ビーム通過の
有無で判断できるので、対物レンズ絞りにおける通常の
軸合わせと同様、容易に行うことができる。In order to achieve the above object, a new diaphragm is provided under the objective lens diaphragm. In addition, a cylindrical member made of a light element material such as carbon or beryllium is arranged between the objective lens diaphragm and the newly provided diaphragm. This light element member prevents scattered electrons that have passed through the aperture of the objective lens aperture from colliding with the newly provided aperture and causing multiple scattering. In addition, the newly provided diaphragm and Faraday cup are integrated into a unit, and means for controlling the position with respect to the optical axis is provided. As a result, the axial alignment of the diaphragm also serves as the alignment of the Faraday cup. Since the axis alignment of the diaphragm can be determined by whether or not the beam has passed, it can be easily performed like the normal axis alignment in the objective lens diaphragm.
【0010】[0010]
【発明の実施の形態】以下、図面を用いて本発明の実施
の形態を説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.
【0011】図1は、本発明の一例である走査電子顕微
鏡の概略構成図である。陰極1と第一陽極2の間には、
コンピュータ40で制御される高圧制御電源20により
電圧が印加され、所定のエミッション電流で一次電子線
4が陰極1から引き出される。陰極1と第二陽極3の間
には、コンピュータ40で制御される高圧制御電源20
により加速電圧が印加され、陰極1から放出された一次
電子線4が加速されて後段のレンズ系に進行する。一次
電子線4は、レンズ制御電源21で制御された収束レン
ズ5で収束され、対物レンズ絞り8で一次電子線の不要
な領域が除去された後に、レンズ制御電源22で制御さ
れた収束レンズ6、および対物レンズ制御電源23で制
御された対物レンズ7により試料10に微小スポットと
して収束される。対物レンズ7は、インレンズ方式,ア
ウトレンズ方式、およびシュノーケル方式(セミインレ
ンズ方式)など、種々の形態をとることができる。ま
た、試料に負の電圧を印加して一次電子線を減速させる
リターディング方式も可能である。さらに、各々のレン
ズは、複数の電極で構成される静電型レンズで構成して
もよい。FIG. 1 is a schematic configuration diagram of a scanning electron microscope which is an example of the present invention. Between the cathode 1 and the first anode 2,
A voltage is applied by the high voltage control power source 20 controlled by the computer 40, and the primary electron beam 4 is extracted from the cathode 1 with a predetermined emission current. A high voltage control power source 20 controlled by a computer 40 is provided between the cathode 1 and the second anode 3.
Is applied with an acceleration voltage, the primary electron beam 4 emitted from the cathode 1 is accelerated, and advances to the lens system in the subsequent stage. The primary electron beam 4 is converged by the converging lens 5 controlled by the lens control power supply 21, and after the unnecessary area of the primary electron beam is removed by the objective lens diaphragm 8, the converging lens 6 controlled by the lens control power supply 22. , And the objective lens 7 controlled by the objective lens control power supply 23 to focus the light on the sample 10 as a minute spot. The objective lens 7 can take various forms such as an in-lens system, an out-lens system, and a snorkel system (semi-in-lens system). Further, a retarding method in which a negative voltage is applied to the sample to decelerate the primary electron beam is also possible. Further, each lens may be an electrostatic lens including a plurality of electrodes.
【0012】一次電子線4は、走査コイル9で試料10
上を二次元的に走査される。一次電子線の照射で試料1
0から発生した二次電子等の二次信号12は、対物レン
ズ7の上部に進行した後、二次信号分離用の直交電磁界
発生装置11により、一次電子と分離されて二次信号検
出器13に検出される。二次信号検出器13で検出され
た信号は、信号増幅器14で増幅された後、画像メモリ
25に転送されて像表示装置26に試料像として表示さ
れる。The primary electron beam 4 is supplied to the sample 10 by the scanning coil 9.
The top is scanned two-dimensionally. Sample 1 by irradiation of primary electron beam
A secondary signal 12 such as a secondary electron generated from 0 travels to the upper part of the objective lens 7, and is then separated from the primary electron by a quadrature electromagnetic field generating device 11 for separating a secondary signal to be a secondary signal detector. 13 is detected. The signal detected by the secondary signal detector 13 is amplified by the signal amplifier 14, then transferred to the image memory 25 and displayed on the image display device 26 as a sample image.
【0013】走査コイル9と同じ位置に2段の偏向コイ
ル51が配置されており、試料10上における一次電子
線4の位置(観察視野)を二次元的に制御できる。The deflection coils 51 of two stages are arranged at the same position as the scanning coil 9, and the position (observation visual field) of the primary electron beam 4 on the sample 10 can be two-dimensionally controlled.
【0014】ステージ15は、試料を少なくとも一次電
子線4と垂直な面内の2方向(X方向,Y方向)に試料
10を移動することができる。The stage 15 can move the sample 10 in at least two directions (X direction, Y direction) in a plane perpendicular to the primary electron beam 4.
【0015】入力装置42からは、加速電圧の指定やス
テージコントロール情報などの観察に必要な制御条件
や、得られた画像の出力や保存などの情報を指定するこ
とができる。From the input device 42, it is possible to specify control conditions necessary for observation such as designation of accelerating voltage and stage control information, and information such as output and storage of the obtained image.
【0016】なお、図1の説明は制御プロセッサ部が走
査電子顕微鏡と一体、或いはそれに準ずるものとして説
明したが、無論それに限られることはなく、走査電子顕
微鏡鏡体とは別に設けられた制御プロセッサで処理を行
っても良い。In the description of FIG. 1, the control processor unit is described as being integrated with the scanning electron microscope or equivalent thereto, but of course, the present invention is not limited to this, and the control processor provided separately from the scanning electron microscope body. You may process with.
【0017】このような構成の荷電粒子線装置におい
て、対物レンズ絞り8と偏向コイル51との間に、第2
絞り61を配置する。In the charged particle beam apparatus having such a structure, the second portion is provided between the objective lens diaphragm 8 and the deflection coil 51.
The diaphragm 61 is arranged.
【0018】第2絞り61の構成を図5,図6,図7,
図8により説明する。The configuration of the second diaphragm 61 is shown in FIGS.
This will be described with reference to FIG.
【0019】図5は、本発明の一例である絞り位置での
第2絞りの概略構成図である。また、図6は、図5の上
視図である。第2絞り板62には、一次電子線4が通過
する第2絞り穴63が設けられ、絞り駆動機構66に取
付けられる。第2絞り穴63の開口径は、メインビーム
401をさえぎらず、かつ散乱電子102をさえぎる必
要があるので、対物レンズ絞り8の開口径の5倍以下が
適当である。第2絞り穴63の上部には炭素やベリリウ
ムのような軽元素材料で構成される散乱防止筒64を設
ける。散乱防止筒64は、できるだけ対物レンズ絞り8
に近接して配置するのが望ましい。また第2絞り板62
には、第2絞り穴63と距離Lを空けてファラディカッ
プ65を設ける。ファラディカップ65は電流測定端子
67に接続する。絞り駆動装置66は、第2絞り板62
をX方向,Y方向に移動する機構と距離Lの定量移動機
構を具備し、一次電子線4が第2絞り穴63の中心を通
過するように調整する光軸調整や、一次電子線4がファ
ラディカップ65に照射されるように切替ることができ
る。図7はファラディカップ位置での第2絞り概略構成
図、図8は図7の上視図である。一次電子線4は、ファ
ラディカップ65に衝突するので、電流測定端子から、
ビーム電流の測定ができる。FIG. 5 is a schematic configuration diagram of the second diaphragm at the diaphragm position, which is an example of the present invention. Further, FIG. 6 is a top view of FIG. The second aperture plate 62 is provided with a second aperture hole 63 through which the primary electron beam 4 passes, and is attached to the aperture drive mechanism 66. The opening diameter of the second diaphragm hole 63 is required to be 5 times or less than the opening diameter of the objective lens diaphragm 8 because it is necessary to block the main beam 401 and the scattered electrons 102. An anti-scattering cylinder 64 made of a light element material such as carbon or beryllium is provided above the second throttle hole 63. The anti-scattering cylinder 64 is provided with the objective lens diaphragm 8 as much as possible.
It is desirable to place it close to. In addition, the second diaphragm plate 62
A Faraday cup 65 is provided at a distance L from the second aperture 63. The Faraday cup 65 is connected to the current measuring terminal 67. The diaphragm driving device 66 includes the second diaphragm plate 62.
Is provided with a mechanism for moving in the X and Y directions and a quantitative movement mechanism for the distance L, and the optical axis adjustment for adjusting the primary electron beam 4 so as to pass through the center of the second aperture hole 63, and the primary electron beam 4 It can be switched so that the Faraday cup 65 is irradiated. 7 is a schematic configuration diagram of the second diaphragm at the Faraday cup position, and FIG. 8 is a top view of FIG. 7. Since the primary electron beam 4 collides with the Faraday cup 65, from the current measuring terminal,
Beam current can be measured.
【0020】なお、第2絞り穴63とファラディカップ
65の位置は入替わってもよい。また、絞り駆動装置6
6は、直線往復運動によって第2絞り穴63とファラデ
ィカップ65を切替えられるようにしているが、距離L
の定量移動が可能な機構を用意すれば、この限りではな
い。The positions of the second aperture 63 and the Faraday cup 65 may be interchanged. Further, the diaphragm driving device 6
No. 6 is configured such that the second throttle hole 63 and the Faraday cup 65 can be switched by a linear reciprocating motion, but the distance L
This is not limited if a mechanism capable of quantitative movement is prepared.
【0021】図9は、絞り室で起こる多重散乱の模式図
である。絞り室200内で発生した散乱電子102は、
第2絞り61により概ねさえぎられる。また、第2絞り
61に衝突して乱反射する散乱電子102は、散乱防止
筒64にさえぎられ、多重散乱が抑制される。FIG. 9 is a schematic diagram of multiple scattering that occurs in the throttle chamber. The scattered electrons 102 generated in the diaphragm chamber 200 are
It is almost blocked by the second diaphragm 61. Further, the scattered electrons 102 that collide with the second diaphragm 61 and are diffusely reflected are blocked by the scattering prevention cylinder 64, and multiple scattering is suppressed.
【0022】以上により、試料10の分析点には、ビー
ムテールが低減されたメインビーム401が照射される
ことになり、分析点以外から発生するX線が低減できる
ので、従来問題となっていたX線分析の信頼性を高める
ことができる。As described above, the analysis point of the sample 10 is irradiated with the main beam 401 having a reduced beam tail, and X-rays generated from other than the analysis point can be reduced, which has been a problem in the past. The reliability of X-ray analysis can be improved.
【0023】また、第2絞り61は、第2絞り穴63で
光軸調整を行うので、距離Lの定量移動を行うだけでフ
ァラディカップに切替えられ、ファラディカップに対す
る中心位置調整は不要になる。Further, since the second diaphragm 61 adjusts the optical axis through the second diaphragm hole 63, it can be switched to the Faraday cup simply by moving the distance L quantitatively, and the central position adjustment for the Faraday cup is not necessary.
【0024】[0024]
【発明の効果】本発明によれば、試料に照射する荷電粒
子ビームのビームテールを低減できるため、特に薄片化
試料のX線分析の信頼性を高める効果がある。また、X
線分析で必要とされるビーム電流測定手段(ファラディ
カップ)の位置合わせが容易になる効果がある。According to the present invention, since the beam tail of the charged particle beam with which the sample is irradiated can be reduced, there is an effect that the reliability of the X-ray analysis of the thin sample is particularly improved. Also, X
This has the effect of facilitating alignment of the beam current measuring means (Faraday cup) required for line analysis.
【図1】本発明の一例である走査電子顕微鏡の概略構成
図。FIG. 1 is a schematic configuration diagram of a scanning electron microscope which is an example of the present invention.
【図2】試料に照射されるビーム強度分布の模式図。FIG. 2 is a schematic diagram of a beam intensity distribution with which a sample is irradiated.
【図3】絞り室で起こる多重散乱の模式図。FIG. 3 is a schematic diagram of multiple scattering that occurs in a throttle chamber.
【図4】薄片化試料のX線分析における散乱電子の影響
の説明図。FIG. 4 is an explanatory view of the influence of scattered electrons in X-ray analysis of a thin sample.
【図5】本発明の一例である絞り位置の第2絞りの概略
構成図。FIG. 5 is a schematic configuration diagram of a second diaphragm at a diaphragm position that is an example of the present invention.
【図6】図5の上視図。6 is a top view of FIG.
【図7】ファラディカップ位置の第2絞りの概略構成
図。FIG. 7 is a schematic configuration diagram of a second diaphragm at the Faraday cup position.
【図8】図7の上視図。8 is a top view of FIG. 7.
【図9】絞り室で起こる多重散乱の模式図。FIG. 9 is a schematic diagram of multiple scattering that occurs in a throttle chamber.
1…陰極、2…第一陽極、3…第二陽極、4…一次電子
線、5…第一収束レンズ、6…第二収束レンズ、7…対
物レンズ、8…対物レンズ絞り、9…走査コイル、10
…試料、11…二次信号分離用直交電磁界(EXB)発
生器、12…二次信号、13…二次信号用検出器、14
…信号増幅器、15…ステージ、20…高圧制御電源、
21…第一収束レンズ制御電源、22…第二収束レンズ
制御電源、23…対物レンズ制御電源、24…走査コイ
ル制御電源、25…画像メモリ、26…像表示装置、2
7…画像処理装置、31…電気的視野制御電源、40…
コンピュータ、41…記憶装置、42…入力装置、51
…電気的視野移動コイル、61…第2絞り、62…第2
絞り板、63…第2絞り穴、64…散乱防止筒、65…
ファラディカップ、66…絞り駆動装置、67…電流測
定端子、81…主ビーム、82…ビームテール、10
1,102…散乱電子、103…バルクからのX線、1
04…分析点のX線、105…試料の薄片部、106…
試料のバルク部、107…透過電子、200…絞り室空
間、400…絞り照射ビーム、401…メインビーム。DESCRIPTION OF SYMBOLS 1 ... Cathode, 2 ... 1st anode, 3 ... 2nd anode, 4 ... Primary electron beam, 5 ... 1st converging lens, 6 ... 2nd converging lens, 7 ... Objective lens, 8 ... Objective lens diaphragm, 9 ... Scanning Coil, 10
... sample, 11 ... orthogonal electromagnetic field (EXB) generator for secondary signal separation, 12 ... secondary signal, 13 ... secondary signal detector, 14
... signal amplifier, 15 ... stage, 20 ... high-voltage control power supply,
21 ... 1st converging lens control power supply, 22 ... 2nd converging lens control power supply, 23 ... Objective lens control power supply, 24 ... Scan coil control power supply, 25 ... Image memory, 26 ... Image display device, 2
7 ... Image processing device, 31 ... Electrical visual field control power supply, 40 ...
Computer, 41 ... Storage device, 42 ... Input device, 51
... Electric field moving coil, 61 ... Second diaphragm, 62 ... Second
Diaphragm plate, 63 ... Second diaphragm hole, 64 ... Scatter prevention cylinder, 65 ...
Faraday cup, 66 ... Aperture drive device, 67 ... Current measurement terminal, 81 ... Main beam, 82 ... Beam tail, 10
1, 102 ... Scattered electrons, 103 ... X-rays from bulk, 1
04 ... X-ray of analysis point, 105 ... Thin section of sample, 106 ...
Bulk part of sample, 107 ... Transmission electrons, 200 ... Space of diaphragm chamber, 400 ... Irradiation beam of diaphragm, 401 ... Main beam.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01J 37/252 H01J 37/252 A Fターム(参考) 2G001 AA03 BA05 BA07 CA03 EA04 GA01 GA06 GA11 GA13 HA13 JA02 JA04 MA05 SA01 SA04 5C033 BB01 NN07 PP01 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01J 37/252 H01J 37/252 AF terms (reference) 2G001 AA03 BA05 BA07 CA03 EA04 GA01 GA06 GA11 GA13 HA13 JA02 JA04 MA05 SA01 SA04 5C033 BB01 NN07 PP01
Claims (3)
れる荷電粒子線を収束して試料上で走査する荷電粒子光
学系と、試料に照射する荷電粒子線の収束角を制限する
対物レンズ絞りと、当該荷電粒子線の走査によって試料
から発生する二次信号粒子を検出する検出手段とを備
え、前記二次信号粒子検出手段の信号により試料像を取
得する荷電粒子線装置において、 前記対物レンズ絞りと荷電粒子線の偏向手段との間に前
記対物レンズ絞りの開口直径に対して、5倍以下の開口
直径を有する第2の絞りを配置することを特徴とする荷
電粒子線装置。1. A charged particle source, a charged particle optical system that converges a charged particle beam emitted from the charged particle source and scans the sample, and an objective that limits a convergence angle of the charged particle beam with which the sample is irradiated. A charged particle beam device comprising a lens diaphragm and detection means for detecting secondary signal particles generated from a sample by scanning the charged particle beam, and acquiring a sample image by a signal of the secondary signal particle detection means, A charged particle beam device, wherein a second diaphragm having an opening diameter of 5 times or less of the opening diameter of the objective lens diaphragm is arranged between the objective lens diaphragm and the deflecting means of the charged particle beam.
る部分と、荷電粒子線の電流を測定する電流測定手段と
を備え、前記開口部と当該電流測定手段の位置をそれぞ
れ荷電粒子線の光軸上に移動する移動手段を備えたこと
を特徴とする荷電粒子線装置。2. The first diaphragm according to claim 1, comprising a portion having an opening through which a charged particle beam can pass, and a current measuring means for measuring a current of the charged particle beam. A charged particle beam device comprising moving means for moving the position of the current measuring means onto the optical axis of the charged particle beam.
置において、前記第2の絞りの開口部と対物レンズ絞り
との間に軽元素で構成された筒状の部材を配置すること
を特徴とする荷電粒子線装置。3. The charged particle beam device according to claim 1 or 2, wherein a tubular member made of a light element is arranged between the opening of the second diaphragm and the objective lens diaphragm. A charged particle beam device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001298979A JP3767443B2 (en) | 2001-09-28 | 2001-09-28 | Charged particle beam equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001298979A JP3767443B2 (en) | 2001-09-28 | 2001-09-28 | Charged particle beam equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003109530A true JP2003109530A (en) | 2003-04-11 |
JP3767443B2 JP3767443B2 (en) | 2006-04-19 |
Family
ID=19119801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001298979A Expired - Lifetime JP3767443B2 (en) | 2001-09-28 | 2001-09-28 | Charged particle beam equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3767443B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008010177A (en) * | 2006-06-27 | 2008-01-17 | Hitachi High-Technologies Corp | Environmentally controllable electron beam apparatus |
JP2008052935A (en) * | 2006-08-22 | 2008-03-06 | Hitachi High-Technologies Corp | Scanning electron microscope |
-
2001
- 2001-09-28 JP JP2001298979A patent/JP3767443B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008010177A (en) * | 2006-06-27 | 2008-01-17 | Hitachi High-Technologies Corp | Environmentally controllable electron beam apparatus |
JP2008052935A (en) * | 2006-08-22 | 2008-03-06 | Hitachi High-Technologies Corp | Scanning electron microscope |
Also Published As
Publication number | Publication date |
---|---|
JP3767443B2 (en) | 2006-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100382026B1 (en) | Scanning Electron Microscope | |
US6531697B1 (en) | Method and apparatus for scanning transmission electron microscopy | |
US5939720A (en) | Scanning electron microscope | |
US6635873B1 (en) | Scanning electron microscope with voltage applied to the sample | |
US7964845B2 (en) | Charged particle beam device | |
US5008537A (en) | Composite apparatus with secondary ion mass spectrometry instrument and scanning electron microscope | |
US9941095B2 (en) | Charged particle beam apparatus | |
KR100384727B1 (en) | Scanning electron microscope and sample observation method using it | |
JP2001074437A (en) | Device and method for inspecting circuit pattern | |
JP2010055756A (en) | Method of irradiating charged corpuscular particle beam, and charged corpuscular particle beam apparatus | |
JP4340715B2 (en) | Charged particle beam equipment | |
JP6312387B2 (en) | Particle beam device and method of operating particle beam device | |
US20230078510A1 (en) | Method for focusing and operating a particle beam microscope | |
JP2000299078A (en) | Scanning electron microscope | |
JP3376793B2 (en) | Scanning electron microscope | |
JP3767443B2 (en) | Charged particle beam equipment | |
JP2007003539A (en) | Circuit pattern inspection device | |
JP4146103B2 (en) | Electron beam apparatus equipped with a field emission electron gun | |
JP2001319612A (en) | Direct imaging electron microscope | |
US20220384140A1 (en) | Method for operating a particle beam device, computer program product and particle beam device for carrying out the method | |
JPS6237326Y2 (en) | ||
US20020079449A1 (en) | SEM having a detector surface segmented into a number of separate regions | |
JP3814968B2 (en) | Inspection device | |
JP2001143649A (en) | Scanning electron microscope | |
JPH10223169A (en) | Scanned sample image display device, scanned sample image display method, mark detecting method, and electron beam exposing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050104 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051011 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060123 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3767443 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090210 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100210 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100210 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110210 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120210 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120210 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130210 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130210 Year of fee payment: 7 |