JP2003104295A - Position measurement method of helicopter and flight stabilizing device thereof - Google Patents

Position measurement method of helicopter and flight stabilizing device thereof

Info

Publication number
JP2003104295A
JP2003104295A JP2001306440A JP2001306440A JP2003104295A JP 2003104295 A JP2003104295 A JP 2003104295A JP 2001306440 A JP2001306440 A JP 2001306440A JP 2001306440 A JP2001306440 A JP 2001306440A JP 2003104295 A JP2003104295 A JP 2003104295A
Authority
JP
Japan
Prior art keywords
helicopter
scanning line
flight
light receiving
origin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001306440A
Other languages
Japanese (ja)
Inventor
Sadanobu Tsuchiyama
定信 土山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001306440A priority Critical patent/JP2003104295A/en
Publication of JP2003104295A publication Critical patent/JP2003104295A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flight stabilizing device 1 for a helicopter capable of stably flying a small helicopter 2 flying by wireless remote control regardless of influence such as the wind in the sky. SOLUTION: When flying the helicopter 2 by remote control, the helicopter is raised to a predetermined altitude, a scanning plane 3 in a horizontal area for surrounding it is set, and a scanning line 5 is formed on the scanning plane 3 by a laser beam projected from a laser beam projector 4 installed on the ground.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、気球、飛行船、飛
行機又は人工衛星等のように無線遠隔操作で飛行するも
のに適用可能な技術であり、特に、無人飛行する小型の
ヘリコプターを、上空の気流等の影響に関わらず、安定
して飛行させるヘリコプターの位置計測方法及びその飛
行安定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a technology applicable to a radio remote-controlled flight such as a balloon, an airship, an airplane or an artificial satellite. The present invention relates to a helicopter position measuring method for stably flying regardless of the influence of air currents and the like, and a flight stabilizer thereof.

【0002】[0002]

【発明が解決しようとする課題】従来、無線遠隔操作で
飛行する無人の小型ヘリコプターに、デジタルカメラ等
の撮影機器を搭載して地上の航空写真を撮影し、これに
より得られた画像データを解析して地形等の測量が行な
われていた。
Conventionally, an unmanned small helicopter flying by radio remote control is equipped with a photographing device such as a digital camera to take an aerial photograph of the ground, and the image data obtained by this is analyzed. Then, the topography etc. were measured.

【0003】上記ヘリコプターは、無線遠隔操縦機のス
ティック(操縦桿)を地上のオペレータが操作すると、
その操作角度の大きさに応じた速度で機体が、上下、左
右、前後方向へ移動又は旋回し、或いは、機体が空中に
あるときにスティックをニュートラルに戻すと機体がホ
バリング(空中停止)するように構成されている。この
技術は、通称ラジコン・ヘリコプター等として知られて
いる。
In the above helicopter, when an operator on the ground operates a stick (control stick) of a wireless remote controller,
The aircraft will move up and down, left and right, forward and backward at the speed corresponding to the size of the operation angle, or turn, or if the stick is returned to neutral when the aircraft is in the air, the aircraft will hover (stop in the air). Is configured. This technology is commonly known as a radio-controlled helicopter or the like.

【0004】しかしながら、上記撮影を行なうには、ヘ
リコプターを20乃至100メートルの高度に上昇させ
る必要があるが、上空の風等によってヘリコプターの機
体が不用意に流されたりすることは、地上のオペレータ
にとっては予測し難く、また、気圧や気温の急激な変化
によってヘリコプターの原動機の出力が不規則に増減す
ると、ヘリコプターの機体がオペレータの指令から外れ
た小刻みな動きをすることがあった。
However, in order to perform the above-mentioned photographing, it is necessary to raise the helicopter to an altitude of 20 to 100 meters. However, it is not possible that the body of the helicopter is inadvertently washed away by wind or the like in the sky. It was difficult to predict, and if the output of the helicopter prime mover increased or decreased irregularly due to sudden changes in atmospheric pressure or temperature, the aircraft of the helicopter could make small movements outside the operator's command.

【0005】このため、オペレータが遥か上空を見上げ
ながらヘリコプターを安定して飛行させるには、熟練と
勘だけに頼らなければならず、高価な撮影機器がヘリコ
プターと共に墜落して破損したり、或いは、このような
事故を回避すべく操縦するオペレータに、多大の精神的
緊張と苦痛が伴うという問題があった。
For this reason, in order for the operator to stably fly the helicopter while looking up far above, he must rely only on his skill and intuition, and expensive photographing equipment may crash and be damaged together with the helicopter, or There has been a problem that the operator who operates to avoid such an accident is accompanied by great mental tension and pain.

【0006】そこで、本発明の目的は、オペレータの熟
練や勘に頼ることなく、ヘリコプターを安定して飛行さ
せるヘリコプターの位置計測方法及びその飛行安定装置
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a helicopter position measuring method and a flight stabilizing device for stably flying the helicopter without depending on the skill and intuition of the operator.

【0007】[0007]

【課題を解決するための手段】本発明のヘリコプターの
位置測定方法は、任意の高度に上昇したヘリコプターを
包囲する水平エリアの走査平面を設定し、該走査平面
に、地上のレーザ投射機から投射されるレーザ光線によ
り走査線を形成し、ヘリコプターに、走査線を感知する
受光センサを設け、走査線がその原点にある時点から受
光センサが走査線を感知するまでの所要時間に基づいて
ヘリコプターの走査線上の位置を特定するものである。
According to the helicopter position measuring method of the present invention, a scanning plane of a horizontal area surrounding a helicopter raised to an arbitrary altitude is set, and a laser projector on the ground projects on the scanning plane. The scanning line is formed by the laser beam that is generated, and the helicopter is provided with the light receiving sensor that detects the scanning line. Based on the time required from the time when the scanning line is at the origin to when the light receiving sensor detects the scanning line, The position on the scanning line is specified.

【0008】本発明のヘリコプターの飛行安定装置は、
任意の高度に上昇したヘリコプターを包囲する水平エリ
アの走査平面を設定し、該走査平面に、地上のレーザ投
射機から投射されるレーザ光線により走査線を形成する
ものであって、レーザ投射機に、走査線の原点位置を検
知して原点信号を無線発信する原点信号発信手段を設
け、ヘリコプターに、走査線を感知する受光センサと、
原点信号を受信する原点信号受信手段と、該原点信号受
信手段が原点信号を受信した時点から受光センサが走査
線を感知するまでの所要時間に基づいてヘリコプターの
走査線上の位置を計測する計測手段と、ヘリコプターの
飛行方向を制御する飛行制御手段とを搭載したものであ
る。
The helicopter flight stabilizer of the present invention comprises:
A scanning plane is set in a horizontal area surrounding a helicopter that has risen to an arbitrary altitude, and a scanning line is formed on the scanning plane by a laser beam projected from a laser projector on the ground. , An origin signal transmitting means for detecting the origin position of the scanning line and wirelessly transmitting an origin signal, and a light receiving sensor for detecting the scanning line on the helicopter,
Origin signal receiving means for receiving the origin signal and measuring means for measuring the position on the scanning line of the helicopter based on the time required from the time the origin signal receiving means receives the origin signal until the light receiving sensor detects the scanning line And a flight control means for controlling the flight direction of the helicopter.

【0009】更に、本発明のヘリコプターの飛行安定装
置は、走査線の一の走査サイクルにおけるヘリコプター
の走査平面上の初期位置に、一の走査サイクルに続く他
の走査サイクルにおけるヘリコプターの走査平面上の位
置を比較することにより、ヘリコプターの初期位置から
の移動距離及びその方向を算出し、該算出値に基づいて
飛行制御手段がヘリコプターを初期位置に復帰させるも
のである。
In addition, the helicopter flight stabilizer of the present invention provides an initial position on a helicopter scan plane in one scan cycle of a scan line, and a helicopter scan plane in another scan cycle following one scan cycle. By comparing the positions, the moving distance from the initial position of the helicopter and its direction are calculated, and the flight control means returns the helicopter to the initial position based on the calculated values.

【0010】更に、本発明のヘリコプターの飛行安定装
置は、受光センサを、ヘリコプターに所定間隔を開けて
2箇所に設けたものである。
Further, the flight stabilizer for a helicopter according to the present invention is provided with the light-receiving sensors at two locations on the helicopter with a predetermined interval.

【0011】更に、本発明のヘリコプターの飛行安定装
置は、飛行制御手段が、ヘリコプターの初期位置からの
移動距離及びその方向の算出値に基づいて、又は/及
び、ヘリコプターを遠隔操作する無線遠隔操縦機から無
線送信されるマニュアル指令信号に基づいて、作動する
ものである。
Further, in the flight stabilizing device for a helicopter according to the present invention, the flight control means is based on the calculated value of the moving distance from the initial position of the helicopter and its direction, and / or the wireless remote control for remotely controlling the helicopter. It operates based on a manual command signal wirelessly transmitted from the machine.

【0012】[0012]

【発明の実施の形態】図1及び図2に示すように、本発
明の一実施の形態に係るヘリコプターの飛行安定装置1
を用いて、遠隔操作でヘリコプター2を飛行させるに
は、ヘリコプター2を任意の高度に上昇させ、これを包
囲する水平エリアの走査平面3を設定し、この走査平面
3に、三脚41に載せて地上に設置したレーザ投射機4
から投射されるレーザ光線により走査線5を形成する。
BEST MODE FOR CARRYING OUT THE INVENTION As shown in FIGS. 1 and 2, a helicopter flight stabilizer 1 according to an embodiment of the present invention.
In order to fly the helicopter 2 by remote control using, the helicopter 2 is elevated to an arbitrary altitude, a scanning plane 3 of a horizontal area surrounding the helicopter 2 is set, and the scanning plane 3 is mounted on a tripod 41. Laser projector 4 installed on the ground
The scanning line 5 is formed by the laser beam projected from the.

【0013】詳しくは、図1がヘリコプターの飛行安定
装置1の使用状況を示す立面図であり、図2が走査平面
3上の走査線5の軌跡とヘリコプター2を俯瞰した平面
図である。この図中のヘリコプター2を利用して例えば
航空写真を撮影する場合であれば、ヘリコプター2を任
意(例えば50メートル)の高度まで上昇させ、そのま
まホバリングさせて撮影準備を行なう。この状態で、ヘ
リコプター2の略真下に位置する地上のレーザ投射機4
から上空へ向けてレーザ光線を以下のようにして投射す
る。
More specifically, FIG. 1 is an elevational view showing a usage state of a flight stabilizer 1 for a helicopter, and FIG. 2 is a plan view of the helicopter 2 and a trajectory of a scanning line 5 on a scanning plane 3. In the case of taking an aerial photograph, for example, using the helicopter 2 in this figure, the helicopter 2 is raised to an arbitrary altitude (for example, 50 meters) and hovering as it is to prepare for photography. In this state, the laser projector 4 on the ground located directly below the helicopter 2
A laser beam is projected from above toward the sky as follows.

【0014】即ち、レーザ投射機4としては、レーザプ
ロジェクタ等と称して市販されるものを適用する。本実
施例では、レーザ光線の照射範囲がレーザ投射機4を頂
点とした四角錐となり、この四角錐の任意の高度(ここ
では50メートルの高さ)における水平断面が走査平面
3となる。走査線5は、その軌跡が走査平面3の略全域
を交差することなく網羅できる形状であればよいが、本
実施例では図2に示す蛇行形とした。尚、走査平面3は
四角形に限らず円形でもよい。
That is, as the laser projector 4, a commercially available one called a laser projector is applied. In the present embodiment, the irradiation range of the laser beam is a quadrangular pyramid having the laser projector 4 as its apex, and the horizontal cross section of the quadrangular pyramid at an arbitrary altitude (here, a height of 50 meters) is the scanning plane 3. The scanning line 5 may have any shape as long as its locus can cover substantially the entire area of the scanning plane 3 without crossing, but in the present embodiment, it has the meandering shape shown in FIG. The scanning plane 3 is not limited to a quadrangle, but may be a circle.

【0015】このような走査線5の形成は、プリズム又
は鏡等を高速スキャニングすることによって行なわれ
る。具体的には、図1に示したレーザ投射機4の内部で
矢印X0方向に高速振動する上面反射鏡(図示せず)
に、レーザ光線を反射させて上空へ投射することによ
り、同図及び図2に示した矢印Xに沿って走る主走査線
51が得られ、更に、この上面反射鏡を所定の時間的等
ピッチで図2の矢印Y方向へ小刻みに傾斜させることに
より、主走査線51が所定の時間毎に矢印Y方向へシフ
トすると共に、主走査線51の端部間に継走査線52が
形成される。この他、上面反射鏡に代えて矢印X0方向
に回転する多面鏡にレーザ光線を反射させて、主走査線
51を得るようにしてもよい。
The formation of the scanning line 5 as described above is performed by high-speed scanning of a prism or a mirror. Specifically, a top reflector (not shown) that vibrates at high speed in the direction of arrow X0 inside the laser projector 4 shown in FIG.
Then, by reflecting the laser beam and projecting it to the sky, a main scanning line 51 running along the arrow X shown in FIG. 2 and FIG. 2 can be obtained. 2, the main scanning line 51 is shifted in the arrow Y direction at predetermined time intervals and a continuous scanning line 52 is formed between the end portions of the main scanning line 51 by inclining in the Y direction in FIG. . In addition, the main scanning line 51 may be obtained by reflecting the laser beam on a polygonal mirror rotating in the direction of arrow X0 instead of the top reflecting mirror.

【0016】走査線5には予め原点Oが定められてい
る。この原点位置は、走査平面3上に任意に設定できる
が、本実施例では図2における走査平面3の左上コーナ
部に定める。原点Oを出発した走査線5は、同図に示し
た軌跡を描いて終点Eとなる走査平面3上の原点Oに対
向するコーナ部に到達したところで、即時、原点Oに復
帰する。終点Eから原点Oに復帰する過程で、レーザ光
線を遮断してもよいが、終点Eと原点Oの間を走査線5
が同一の軌跡を辿って往復するようにしてもよい。この
走査線5の循環が1走査サイクルであり、毎秒1乃至3
0回程度が望ましく、1走査サイクル当りの主走査線5
1の本数は、400乃至1000本程度が望ましい。こ
れらはレーザ投射機4の仕様によって決まる値である。
The scanning line 5 has an origin O defined in advance. This origin position can be arbitrarily set on the scanning plane 3, but in this embodiment, it is set at the upper left corner of the scanning plane 3 in FIG. The scanning line 5 starting from the origin O immediately returns to the origin O when it reaches a corner portion on the scanning plane 3 which is the end point E and draws the locus shown in FIG. Although the laser beam may be blocked in the process of returning from the end point E to the origin O, the scanning line 5 is provided between the end point E and the origin O.
May reciprocate following the same trajectory. The circulation of the scanning line 5 is one scanning cycle, and 1 to 3 per second.
About 0 times is desirable, and main scanning line 5 per scanning cycle
The number of 1 is preferably about 400 to 1000. These are values determined by the specifications of the laser projector 4.

【0017】レーザ投射機4には、図2及び図3に示す
ように、走査線5が原点Oにあることを検知して原点信
号を無線発信する原点信号発信手段6と、レーザ光線の
投射範囲を拡大又は縮小させることによりヘリコプター
2の高度に無関係に走査平面3の面積を増減するズーム
手段7とが設けられている。原点信号は、レーザ投射機
4から直接にヘリコプター2に向けて送信してもよい
が、ヘリコプター2を遠隔操作する無線遠隔操縦機8か
ら送出される電波に便乗させてもよい。
As shown in FIGS. 2 and 3, the laser projector 4 detects the presence of the scanning line 5 at the origin O and sends origin signal wirelessly, and origin of the laser beam. Zoom means 7 is provided for increasing or decreasing the area of the scanning plane 3 regardless of the altitude of the helicopter 2 by enlarging or reducing the range. The origin signal may be transmitted from the laser projector 4 directly to the helicopter 2, or may be piggybacked on the radio wave transmitted from the wireless remote controller 8 that remotely operates the helicopter 2.

【0018】ヘリコプター2は、図4に示すように、走
査線5を感知する第1受光センサ9と、レーザ投射機4
の原点信号発信手段6から送信される原点信号を受信す
る原点信号受信手段10と、この原点信号受信手段10
が原点信号を受信した時点から第1受光センサ9が走査
線5を感知するまでの所要時間に基づいてヘリコプター
2の走査線5上の位置を計測する計測手段11と、この
計測手段11により計測されたヘリコプター2の位置を
記憶する記憶手段12と、ヘリコプター2の飛行方向及
び姿勢を制御する飛行制御手段13とを搭載している。
As shown in FIG. 4, the helicopter 2 includes a first light receiving sensor 9 for detecting a scanning line 5 and a laser projector 4.
Origin signal receiving means 10 for receiving the origin signal transmitted from the origin signal transmitting means 6, and this origin signal receiving means 10
Measuring means 11 for measuring the position of the helicopter 2 on the scanning line 5 based on the time required for the first light receiving sensor 9 to detect the scanning line 5 from the time when the origin signal is received by the measuring means 11. It is equipped with a storage means 12 for storing the position of the helicopter 2 and a flight control means 13 for controlling the flight direction and attitude of the helicopter 2.

【0019】飛行制御手段13については、通称ラジコ
ン・ヘリコプター等に係る自明の技術であり、また、そ
の構成要素も実用ヘリコプターに略共通するめ、制御の
概要のみを以下に説明する。即ち、飛行制御手段13
は、個別に制御可能な少なくとも3チャンネルのサーボ
群14,15,16で構成され、各サーボ14,15,
16は、無線遠隔操縦機8を地上のオペレータが操作す
るとそれに応じて電動機のトルクで回動するスイングア
ーム(作動腕)を各々備えている。
The flight control means 13 is a trivial technology commonly referred to as a radio-controlled helicopter, etc., and since its constituent elements are substantially the same as those of a practical helicopter, only an outline of the control will be described below. That is, the flight control means 13
Is composed of servo groups 14, 15 and 16 of at least 3 channels which can be controlled individually.
Each of the 16 includes a swing arm (actuating arm) that is rotated by a torque of an electric motor when an operator on the ground operates the wireless remote controller 8.

【0020】その内の第1のサーボ14は、メインロー
タ17を軸受けするスワッシュプレート(図示せず)の
姿勢を適宜に変化させて、メインロータ17の揚力を前
後左右への推力として配分させるものである。第2のサ
ーボ15は、ヘリコプター2の原動機がレシプロエンジ
ンであればそのスロットルを開閉してメインロータ17
又はテールロータ18の回転出力を増減し、主にヘリコ
プター2を上昇、下降、ホバリングさせ、或いは、ヘリ
コプター2の前後左右方向への推力を増減するものであ
る。第3のサーボ16は、テールロータ18のプロペラ
ピッチを変える等して、メインロータ17の回転反力に
抗してヘリコプター2の機体を静止又はメインロータ1
7の回転方向へ旋回させ、或いは、メインロータ17の
回転反力を助勢して、ヘリコプター2の機体をメインロ
ータ17の回転と逆方向へ旋回させるものである。
The first servo 14 among them appropriately changes the posture of a swash plate (not shown) for bearing the main rotor 17 and distributes the lift force of the main rotor 17 as thrust force to the front, rear, left and right. Is. If the prime mover of the helicopter 2 is a reciprocating engine, the second servo 15 opens and closes its throttle to open the main rotor 17
Alternatively, the rotational output of the tail rotor 18 is increased / decreased to mainly raise / lower and hover the helicopter 2, or the thrust of the helicopter 2 in the front / rear / left / right directions is increased / decreased. The third servo 16 changes the propeller pitch of the tail rotor 18 or the like to keep the airframe of the helicopter 2 stationary or the main rotor 1 against the reaction force of the main rotor 17.
7 or the rotation reaction force of the main rotor 17 is assisted to rotate the body of the helicopter 2 in the direction opposite to the rotation of the main rotor 17.

【0021】以上のように構成したヘリコプターの飛行
安定装置1を用いたヘリコプター2の自動操縦を以下に
説明する。即ち、走査線5の一の走査サイクルにおける
ヘリコプター2の走査平面3上の初期位置(例えば図2
に示した状態)を、計測手段11により計測し、走査平
面3における矢印X,Y方向の2次元座標として記憶手
段12に記憶させる。この計測手段11による計測は、
走査線5上における原点位置から出発したレーザ光線が
第1受光センサ9に入射して感知されるまでの所要時間
と、その所要時間が経過した時点における走査線5上の
第1受光センサ9の位置は必ず一致するため、この所要
時間さえ判れば、走査平面3上のヘリコプター2の位置
を特定できることに基づいている。
The automatic control of the helicopter 2 using the flight stabilizer 1 for a helicopter constructed as described above will be described below. That is, the initial position on the scan plane 3 of the helicopter 2 in one scan cycle of the scan line 5 (see, for example, FIG.
The state shown in (1) is measured by the measuring means 11 and stored in the storage means 12 as two-dimensional coordinates in the X and Y directions of the scanning plane 3. The measurement by this measuring means 11 is
The time required for the laser beam starting from the origin position on the scanning line 5 to enter and be detected by the first light receiving sensor 9 and the first light receiving sensor 9 on the scanning line 5 at the time when the required time elapses. Since the positions always match, it is based on the fact that the position of the helicopter 2 on the scanning plane 3 can be specified only by knowing the required time.

【0022】続いて、一の走査サイクルに対して例えば
0.5秒と定めた所定の時間を隔てて後続する他の走査
サイクルにおけるヘリコプター2の走査平面3上の位置
を、計測手段11により再度計測し、これによって得ら
れたヘリコプター2の位置を、記憶手段12に記憶させ
ておいた初期位置の座標に比較する。
Subsequently, the position of the helicopter 2 on the scanning plane 3 in another scanning cycle following a predetermined time, for example, 0.5 seconds with respect to one scanning cycle, is again measured by the measuring means 11. The position of the helicopter 2 obtained by measurement is compared with the coordinates of the initial position stored in the storage unit 12.

【0023】この結果として、初期位置とその(0.5
秒)後の位置に差異が殆ど認められ無い場合は、ヘリコ
プター2は初期位置に静止していると判断し、以上の過
程をループとして反復する。初期位置とその後の位置に
差異が認められる場合には、ヘリコプター2は初期位置
から風等の影響によって流されたと判断し、初期位置か
らその後の位置の座標値を減じて得られる座標値に基づ
き、計測手段11が、ヘリコプター2の初期位置からそ
の後の位置までの移動距離と方向を算出することができ
る。
As a result, the initial position and its (0.5
If there is almost no difference in the position after (seconds), it is determined that the helicopter 2 is stationary at the initial position, and the above process is repeated as a loop. If there is a difference between the initial position and the subsequent position, the helicopter 2 determines that the helicopter 2 was swept away from the initial position by the influence of wind, etc., and based on the coordinate value obtained by subtracting the coordinate value of the subsequent position from the initial position The measuring means 11 can calculate the moving distance and the direction from the initial position of the helicopter 2 to the subsequent position.

【0024】この算出した移動距離と方向が計測手段1
1から座標値信号として飛行制御手段13へ転送される
と、飛行制御手段13が第1、2又は3のサーボ14,
15,16を総合的に制御することにより、ヘリコプタ
ー2を初期位置へ向かって飛行させ、初期位置に復帰さ
せる。
The calculated moving distance and direction are measured by the measuring means 1.
When it is transferred from 1 to the flight control means 13 as a coordinate value signal, the flight control means 13 causes the first, second or third servo 14,
By comprehensively controlling 15 and 16, the helicopter 2 is caused to fly toward the initial position and then returned to the initial position.

【0025】以上に述べた自動操縦は、レーザ投射機4
をその光軸が鉛直を向くように設置することを前提にし
たが、ヘリコプター2がホバリングしている状態で、レ
ーザ投射機4を傾け又はその光軸廻りに回動させると、
このヘリコプター2に対して走査線5が上記の傾斜角度
に比例して水平方向へスライド移動し、又は、光軸廻り
に回動させた角度に応じて旋回する。このため、ホバリ
ングしているヘリコプター2を所望の位置へ移動させた
い場合は、無線遠隔操縦機8の操作を行なわなくても、
レーザ投射機4の姿勢を適宜変化させるだけで行なえ
る。
The automatic operation described above is performed by the laser projector 4
Is assumed to be installed so that its optical axis is directed vertically, but when the laser projector 4 is tilted or rotated around its optical axis while the helicopter 2 is hovering,
The scanning line 5 slides horizontally with respect to the helicopter 2 in proportion to the inclination angle, or turns according to the angle rotated around the optical axis. Therefore, when the helicopter 2 that is hovering is desired to be moved to a desired position, even if the wireless remote controller 8 is not operated,
This can be done simply by changing the attitude of the laser projector 4.

【0026】更に、第1受光センサ9に加えて第2受光
センサ91をヘリコプター2に取付けた場合、これら第
1受光センサ9と第2受光センサ91とを所定間隔を開
けて配置することにより、上記矢印X,Y方向の位置に
加え、ヘリコプター2の上下方向の位置も計測できる。
Further, when the second light receiving sensor 91 is attached to the helicopter 2 in addition to the first light receiving sensor 9, by arranging the first light receiving sensor 9 and the second light receiving sensor 91 at a predetermined interval, In addition to the positions in the X and Y directions, the position of the helicopter 2 in the vertical direction can be measured.

【0027】詳しくは、レーザ投射機4によるレーザ光
線の投射範囲は上記の通り四角錐であるため、走査線5
の総延長は、ヘリコプター2の高度が高くなれば長く
(走査平面3は広く)なり高度が低くなれば短く(走査
平面3は狭く)なる。一方、走査サイクルは、ヘリコプ
ター2の高度に無関係に一定であるため、走査線5が走
る速さは、ヘリコプター2の高度が高くなれば速くなり
高度が低くなれば遅くなる。つまり、第1受光センサ9
又は第2受光センサ91の一方が走査線5を感知してか
ら他方が走査線5を感知るまでの時間差は、ヘリコプタ
ー2の高度が高くなれば短くなり高度が低くなれば長く
なる。
More specifically, since the projection range of the laser beam by the laser projector 4 is a quadrangular pyramid as described above, the scanning line 5
The total length of is longer when the altitude of the helicopter 2 is higher (the scanning plane 3 is wider) and is shorter when the altitude is lower (the scanning plane 3 is narrower). On the other hand, since the scanning cycle is constant irrespective of the altitude of the helicopter 2, the speed at which the scanning line 5 runs is faster when the altitude of the helicopter 2 is higher and slower when the altitude of the helicopter 2 is lower. That is, the first light receiving sensor 9
Alternatively, the time difference between one of the second light receiving sensors 91 detecting the scanning line 5 and the other detecting the scanning line 5 becomes shorter as the altitude of the helicopter 2 becomes higher, and becomes longer as the altitude of the helicopter 2 becomes lower.

【0028】従って、走査線5の一の走査サイクルにお
ける第1受光センサ9と第2受光センサ91とが各々走
査線5を感知する時間差を、初期時間差として記憶手段
12に記憶させ、これに、一の走査サイクルに後続する
他の走査サイクルにおける上記時間差を比較することに
より、ヘリコプター2が原点位置から降下又は上昇した
距離を算出し、ヘリコプター2を上記のような飛行制御
手段13に基づく制御により初期位置に復帰させること
ができる。尚、上記時間差をピックアップする感度を自
在に増減できるように、第1受光センサ9と第2受光セ
ンサ91との間隔は調整可能であることが望ましい。
Therefore, the time difference between the first light receiving sensor 9 and the second light receiving sensor 91 in one scanning cycle of the scanning line 5 for sensing the scanning line 5 is stored in the storage means 12 as the initial time difference, and this is stored in the storage means 12. By comparing the time differences in the other scan cycles following one scan cycle, the distance that the helicopter 2 descends or rises from the origin position is calculated, and the helicopter 2 is controlled by the flight control means 13 as described above. It can be returned to the initial position. It is desirable that the interval between the first light receiving sensor 9 and the second light receiving sensor 91 be adjustable so that the sensitivity for picking up the time difference can be freely increased or decreased.

【0029】また、図5に示すように、レーザ投射機4
のズーム手段7を操作して走査平面3の面積を増減させ
ると、ヘリコプター2の高度が一定であっても、第1受
光センサ9と第2受光センサ91とが各々走査線5を感
知する時間差が変動するので、この変動分に相当する距
離においてヘリコプター2が原点位置から降下又は上昇
したと計測手段11が判断することになる。このため、
ホバリングしているヘリコプター2を所望の高度へ上昇
又は降下させたい場合は、無線遠隔操縦機8の操作を行
なわなくても、レーザ投射機4のズーム手段7を適宜操
作するだけで行なえる。
As shown in FIG. 5, the laser projector 4
When the area of the scanning plane 3 is increased / decreased by operating the zooming means 7 of the above, even if the altitude of the helicopter 2 is constant, the time difference between the first light receiving sensor 9 and the second light receiving sensor 91 sensing the scanning line 5 respectively. Fluctuates, the measuring means 11 judges that the helicopter 2 has descended or climbed from the origin position at a distance corresponding to this fluctuation. For this reason,
When it is desired to raise or lower the hovering helicopter 2 to a desired altitude, it is possible to appropriately operate the zoom means 7 of the laser projector 4 without operating the wireless remote controller 8.

【0030】以上の説明では、飛行制御手段13が、ヘ
リコプター2の初期位置からの移動距離及びその方向の
算出値に基づいて作動する構成を述べたが、ヘリコプタ
ー2に無線遠隔操縦機8によって切替え可能な切替え手
段19を付加し、これを地上からの操作で適宜切り替え
ることによって、計測手段11から送出される座標値信
号と、ヘリコプター2を遠隔操作する無線遠隔操縦機8
から無線送信されるマニュアル指令信号との少なくとも
一方に基づいて、飛行制御手段13が作動するようにし
てもよい。更に、走査線5を第1・第2受光センサ9,
91が感知し難いこと等に起因して、飛行制御手段13
が作動不良に陥った場合の異常を知らせる警報ブザー2
0をヘリコプター2に設けてもよい。
In the above description, the flight control means 13 operates based on the calculated value of the moving distance from the initial position of the helicopter 2 and its direction, but the helicopter 2 is switched by the wireless remote controller 8. By adding a possible switching means 19 and appropriately switching the operation means from the ground, the coordinate value signal sent from the measuring means 11 and the wireless remote controller 8 for remotely controlling the helicopter 2 are provided.
The flight control means 13 may be activated based on at least one of a manual command signal wirelessly transmitted from the flight control means 13. Further, the scanning line 5 is connected to the first and second light receiving sensors 9,
Due to the difficulty of detecting 91, the flight control means 13
Alarm buzzer 2 to inform you of abnormalities in case of malfunction
0 may be provided in the helicopter 2.

【0031】尚、本発明に係る方法及び装置は、上記の
単ロータのヘリコプターの飛行のみに適用される技術と
解してはならないのであり、前後ローター又は並列ロー
タのヘリコプターにも適用できるのは勿論のこと、広く
は、気球、飛行船、飛行機、人工衛星又は水面や地上を
航行する船舶や車両の位置の計測等にも容易に転用でき
ることは言うまもない。
The method and apparatus according to the present invention should not be understood as a technique applied only to the flight of the above single rotor helicopter, and can also be applied to a front and rear rotor or parallel rotor helicopter. Of course, it goes without saying that it can easily be diverted to the measurement of the positions of balloons, airships, airplanes, artificial satellites, or ships or vehicles that navigate the water surface or the ground.

【0032】[0032]

【発明の効果】本発明のヘリコプターの位置測定方法に
よれば、地上のオペレータ等の目測のみに頼ることな
く、ヘリコプターの上空における位置を正確に把握でき
る。従って、上空の風等によってヘリコプターの機体が
不用意に流されたり、ヘリコプターがオペレータ等の指
令から外れた動きをしても、オペレータ等はヘリコプタ
ーを所望の位置へ迅速且つに容易に復帰させることがで
きる。
According to the helicopter position measuring method of the present invention, the position of the helicopter in the sky can be accurately grasped without relying only on the visual observation of the operator on the ground. Therefore, even if the helicopter body is carelessly swept by the wind in the sky or the helicopter moves out of the command of the operator etc., the operator etc. can quickly and easily return the helicopter to the desired position. You can

【0033】本発明のヘリコプターの飛行安定装置によ
れば、上空の風等によってヘリコプターの機体が不用意
に流されたり、ヘリコプターがオペレータ等の指令から
外れた動きをすることがあっても、自動的にヘリコプタ
ーを元の位置に復帰させることができる。従って、例え
ば測量のために航空写真を撮影する場合等に、高価な撮
影機器を搭載したヘリコプターを、オペレータ等の熟練
と勘だけに頼るという不安定な飛行を行なわなくても良
い。また、操縦するオペレータ等を、困難な操縦に伴う
精神的緊張や苦痛から解放することができる。
According to the flight stabilizer for a helicopter of the present invention, even if the body of the helicopter is inadvertently washed away by the wind or the like, or the helicopter moves out of command from an operator, The helicopter can be returned to its original position. Therefore, for example, when taking an aerial photograph for surveying, it is not necessary to perform an unstable flight in which a helicopter equipped with an expensive photographing device is relied solely on the skill and intuition of an operator or the like. Further, it is possible to relieve the operator or the like who steers from the mental strain and pain associated with difficult steering.

【0034】更に、本発明のヘリコプターの飛行安定装
置によれば、上記のように自動的にヘリコプターを所定
の位置に復帰させることが可能であるが、地上の無線遠
隔操縦機から無線送信されるマニュアル指令信号に基づ
いてヘリコプターを操縦することもできる。これは、ヘ
リコプターを低空飛行させる場合、或いは、レーザ投射
機が地上に設置できない場合に、ヘリコプターをマニュ
アル操縦できるように考慮した機能である。
Further, according to the flight stabilizing device for a helicopter of the present invention, the helicopter can be automatically returned to a predetermined position as described above, but it is wirelessly transmitted from a wireless remote controller on the ground. It is also possible to control a helicopter based on a manual command signal. This is a function that allows the helicopter to be manually operated when the helicopter is flying at low altitude or when the laser projector cannot be installed on the ground.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態に係るヘリコプターの飛
行安定装置の使用状況の概略を示す立面図。
FIG. 1 is an elevational view showing an outline of a usage state of a flight stabilizer for a helicopter according to an embodiment of the present invention.

【図2】本発明の一実施の形態に係るヘリコプターの飛
行安定装置の使用状況の概略を示す平面図。
FIG. 2 is a plan view showing an outline of a usage state of a flight stabilizer for a helicopter according to an embodiment of the present invention.

【図3】本発明の一実施の形態に係るヘリコプターの飛
行安定装置に適用したレーザ投射機の構成を示す概略
図。
FIG. 3 is a schematic diagram showing a configuration of a laser projector applied to a flight stabilizer for a helicopter according to an embodiment of the present invention.

【図4】本発明の一実施の形態に係るヘリコプターの飛
行安定装置に適用したヘリコプターの構成を示す概略
図。
FIG. 4 is a schematic diagram showing a configuration of a helicopter applied to a flight stabilizer for a helicopter according to an embodiment of the present invention.

【図5】本発明の一実施の形態に係るヘリコプターの飛
行安定装置に適用したレーザ投射機の使用状況の概略を
示す立面図。
FIG. 5 is an elevational view showing an outline of a usage state of a laser projector applied to a helicopter flight stabilizer according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:ヘリコプターの飛行安定装置 2:ヘリコプター 3:走査平面 4:レーザ投射機 5:走査線 6:原点信号発信手段 7:ズーム手段 8:無線遠隔操縦機 9:第1受光センサ 10:原点信号受信手段 11:計測手段 12:記憶手段 13:飛行制御手段 14:原点信号発信手段 17:切替え手段 91:第2受光センサ 1: Helicopter flight stabilizer 2: Helicopter 3: scanning plane 4: Laser projector 5: Scan line 6: Origin signal transmission means 7: Zoom means 8: Wireless remote control 9: First light receiving sensor 10: Origin signal receiving means 11: Measuring means 12: storage means 13: Flight control means 14: Origin signal transmission means 17: Switching means 91: Second light receiving sensor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 任意の高度に上昇したヘリコプターを包
囲する水平エリアの走査平面を設定し、該走査平面に、
地上のレーザ投射機から投射されるレーザ光線により走
査線を形成し、前記ヘリコプターに、前記走査線を感知
する受光センサを設け、前記走査線がその原点にある時
点から前記受光センサが前記走査線を感知するまでの所
要時間に基づいて前記ヘリコプターの前記走査線上の位
置を特定することを特徴とするヘリコプターの位置計測
方法。
1. A scanning plane of a horizontal area surrounding a helicopter elevated to an arbitrary altitude is set, and in the scanning plane,
A scanning line is formed by a laser beam projected from a laser projector on the ground, the helicopter is provided with a light receiving sensor for detecting the scanning line, and the light receiving sensor detects the scanning line from the time when the scanning line is at its origin. A method for measuring the position of a helicopter, characterized in that the position of the helicopter on the scanning line is specified based on the time required to detect the.
【請求項2】 任意の高度に上昇したヘリコプターを包
囲する水平エリアの走査平面を設定し、該走査平面に、
地上のレーザ投射機から投射されるレーザ光線により走
査線を形成するヘリコプターの飛行安定装置であって、
前記レーザ投射機に、前記走査線の原点位置を検知して
原点信号を無線発信する原点信号発信手段を設け、前記
ヘリコプターに、前記走査線を感知する受光センサと、
前記原点信号を受信する原点信号受信手段と、該原点信
号受信手段が前記原点信号を受信した時点から前記受光
センサが前記走査線を感知するまでの所要時間に基づい
て前記ヘリコプターの前記走査線上の位置を計測する計
測手段と、前記ヘリコプターの飛行方向を制御する飛行
制御手段とを搭載したことを特徴とするヘリコプターの
飛行安定装置。
2. A scan plane of a horizontal area surrounding a helicopter elevated to an arbitrary altitude is set, and in the scan plane,
A flight stabilizer for a helicopter that forms a scanning line by a laser beam projected from a laser projector on the ground,
The laser projector is provided with origin signal transmitting means for wirelessly transmitting an origin signal by detecting the origin position of the scanning line, and the helicopter, a light receiving sensor for sensing the scanning line,
Origin signal receiving means for receiving the origin signal, and on the scanning line of the helicopter based on the time required from the time the origin signal receiving means receives the origin signal until the light receiving sensor senses the scanning line A flight stabilization device for a helicopter, comprising: a measurement unit for measuring a position and a flight control unit for controlling a flight direction of the helicopter.
【請求項3】 前記走査線の一の走査サイクルにおける
前記ヘリコプターの前記走査平面上の初期位置に、前記
一の走査サイクルに続く他の走査サイクルにおける前記
ヘリコプターの前記走査平面上の位置を比較することに
より、前記ヘリコプターの前記初期位置からの移動距離
及びその方向を算出し、該算出値に基づいて前記飛行制
御手段が前記ヘリコプターを前記初期位置に復帰させる
請求項2記載のヘリコプターの飛行安定装置。
3. An initial position on the scan plane of the helicopter in one scan cycle of the scan line is compared to a position on the scan plane of the helicopter in another scan cycle following the one scan cycle. The flight stabilizer for a helicopter according to claim 2, wherein the flight distance of the helicopter from the initial position and the direction thereof are calculated, and the flight control means returns the helicopter to the initial position based on the calculated value. .
【請求項4】 前記受光センサを、前記ヘリコプターに
所定間隔を開けて2箇所に設けた請求項2又は3記載の
ヘリコプターの飛行安定装置。
4. The flight stabilization device for a helicopter according to claim 2, wherein the light receiving sensor is provided at two locations on the helicopter with a predetermined space provided therebetween.
【請求項5】 前記飛行制御手段が、前記ヘリコプター
の前記初期位置からの移動距離及びその方向の算出値に
基づいて、又は/及び、前記ヘリコプターを遠隔操作す
る無線遠隔操縦機から無線送信されるマニュアル指令信
号に基づいて、作動する請求項2,3又は4記載のヘリ
コプターの飛行安定装置。
5. The flight control means is wirelessly transmitted based on a calculated value of a moving distance of the helicopter from the initial position and a direction thereof and / or from a wireless remote controller remotely controlling the helicopter. The helicopter flight stabilizer according to claim 2, 3 or 4, which operates based on a manual command signal.
JP2001306440A 2001-10-02 2001-10-02 Position measurement method of helicopter and flight stabilizing device thereof Withdrawn JP2003104295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001306440A JP2003104295A (en) 2001-10-02 2001-10-02 Position measurement method of helicopter and flight stabilizing device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001306440A JP2003104295A (en) 2001-10-02 2001-10-02 Position measurement method of helicopter and flight stabilizing device thereof

Publications (1)

Publication Number Publication Date
JP2003104295A true JP2003104295A (en) 2003-04-09

Family

ID=19126079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001306440A Withdrawn JP2003104295A (en) 2001-10-02 2001-10-02 Position measurement method of helicopter and flight stabilizing device thereof

Country Status (1)

Country Link
JP (1) JP2003104295A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2388646A1 (en) * 2010-05-18 2011-11-23 Astrium SAS Method for capturing an image
EP2511781A1 (en) * 2011-04-14 2012-10-17 Hexagon Technology Center GmbH Method and system for controlling an unmanned aircraft
KR101617383B1 (en) * 2015-07-22 2016-05-02 박시몽 Method for controlling take-off of a drone and drone employing the same
US9758239B2 (en) 2011-04-14 2017-09-12 Hexagon Technology Center Gmbh System and method for controlling an unmanned air vehicle
JP2017162435A (en) * 2016-03-08 2017-09-14 富士ゼロックス株式会社 Autonomous mobile body guidance system, method for guiding autonomous mobile body, and program
US11137777B2 (en) * 2018-10-15 2021-10-05 Hapsmobile Inc. Control apparatus, program, system and control method
US11180263B2 (en) 2020-04-06 2021-11-23 Workhorse Group Inc. Flying vehicle systems and methods
US11214386B2 (en) * 2018-08-02 2022-01-04 Hapsmobile Inc. System, control device and light aircraft

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2960313A1 (en) * 2010-05-18 2011-11-25 Astrium Sas IMAGE TAKING METHOD
EP2388646A1 (en) * 2010-05-18 2011-11-23 Astrium SAS Method for capturing an image
EP2511781A1 (en) * 2011-04-14 2012-10-17 Hexagon Technology Center GmbH Method and system for controlling an unmanned aircraft
WO2012140191A1 (en) * 2011-04-14 2012-10-18 Hexagon Technology Center Gmbh System and method for controlling an unmanned air vehicle
CN103492967A (en) * 2011-04-14 2014-01-01 赫克斯冈技术中心 System and method for controlling an unmanned air vehicle
US9758239B2 (en) 2011-04-14 2017-09-12 Hexagon Technology Center Gmbh System and method for controlling an unmanned air vehicle
KR101617383B1 (en) * 2015-07-22 2016-05-02 박시몽 Method for controlling take-off of a drone and drone employing the same
JP2017162435A (en) * 2016-03-08 2017-09-14 富士ゼロックス株式会社 Autonomous mobile body guidance system, method for guiding autonomous mobile body, and program
US9904283B2 (en) * 2016-03-08 2018-02-27 Fuji Xerox Co., Ltd. Systems and methods employing coded light to dock aerial drones, self-driving cars and surface robots
US11214386B2 (en) * 2018-08-02 2022-01-04 Hapsmobile Inc. System, control device and light aircraft
US11137777B2 (en) * 2018-10-15 2021-10-05 Hapsmobile Inc. Control apparatus, program, system and control method
US11254446B2 (en) 2020-04-06 2022-02-22 Workhorse Group Inc. Flying vehicle systems and methods
US11485518B2 (en) * 2020-04-06 2022-11-01 Workhorse Group Inc. Flying vehicle systems and methods
US11332264B2 (en) 2020-04-06 2022-05-17 Workhorse Group Inc. Flying vehicle systems and methods
US11370561B2 (en) 2020-04-06 2022-06-28 Workhouse Group Inc. Flying vehicle systems and methods
US11383859B1 (en) 2020-04-06 2022-07-12 Workhorse Group Inc. Flying vehicle systems and methods
US11407527B2 (en) 2020-04-06 2022-08-09 Workhorse Group Inc. Flying vehicle systems and methods
US11472572B2 (en) 2020-04-06 2022-10-18 Workhorse Group Inc. Flying vehicle systems and methods
US11180263B2 (en) 2020-04-06 2021-11-23 Workhorse Group Inc. Flying vehicle systems and methods
US11498701B2 (en) 2020-04-06 2022-11-15 Workhorse Group Inc. Flying vehicle systems and methods
US11603219B2 (en) 2020-04-06 2023-03-14 Workhorse Group Inc Flying vehicle systems and methods
US11787564B2 (en) 2020-04-06 2023-10-17 Workhorse Group Inc. Carriage lock mechanism for an unmanned aerial vehicle
US11787563B2 (en) 2020-04-06 2023-10-17 Workhorse Group Inc. Unmanned aerial vehicle including equipment mounted in recessed seat of apex support structure
US11820533B2 (en) 2020-04-06 2023-11-21 Workhorse Group Inc. Flying vehicle systems and methods
US12030668B2 (en) 2020-04-06 2024-07-09 Workhorse Group Inc. Flying vehicle systems and methods
US12037137B2 (en) 2020-04-06 2024-07-16 Workhorse Group Inc. Flying vehicle systems and methods

Similar Documents

Publication Publication Date Title
US20240096225A1 (en) Deep stall aircraft landing
US11801938B2 (en) Aircraft control apparatus, control system and control method
JP6123032B2 (en) Assisted takeoff
US20200182613A1 (en) Inverted-Landing Aircraft
ES2902469T3 (en) Methods and systems for the control of the movement of flying devices
US10717525B2 (en) Aircraft control apparatus, control system and control method
JP6234610B2 (en) Drone, control system and method thereof, and drone landing control method
JP4377332B2 (en) Steering support system having horizontal velocity perpendicular to aircraft altitude and vertical line, and aircraft equipped with the same
CN109661349B (en) Lidar scanning and positioning mechanisms for UAVs and other objects, and related systems and methods
JP5713231B2 (en) Flying object
JP6213968B2 (en) Shooting unit
JP2020118641A (en) Multi-copter
JP2024020490A (en) Information processing unit and information processing method
JP2003104295A (en) Position measurement method of helicopter and flight stabilizing device thereof
JP7246662B1 (en) drone tilt landing gear
JP6772211B2 (en) Flight equipment and flight equipment guidance system
JP2021113005A (en) Unmanned aircraft system and flight control method
WO2022075165A1 (en) Autonomous mobile device, flying system, control method, and program
JP3185081B2 (en) Unmanned helicopter attitude control system
JP6667329B2 (en) Landing aids and methods
JP3240362U (en) drone tilt landing gear
JP2020117185A (en) Multicopter

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207