JP2003102828A - Shape memory thin film composed of strongly hydrogen absorbing alloy, shape memory composite material composed of strongly hydrogen absorbing alloy, and soft catheter for medical use - Google Patents

Shape memory thin film composed of strongly hydrogen absorbing alloy, shape memory composite material composed of strongly hydrogen absorbing alloy, and soft catheter for medical use

Info

Publication number
JP2003102828A
JP2003102828A JP2001304340A JP2001304340A JP2003102828A JP 2003102828 A JP2003102828 A JP 2003102828A JP 2001304340 A JP2001304340 A JP 2001304340A JP 2001304340 A JP2001304340 A JP 2001304340A JP 2003102828 A JP2003102828 A JP 2003102828A
Authority
JP
Japan
Prior art keywords
alloy
composite material
shape memory
hydrogen
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001304340A
Other languages
Japanese (ja)
Inventor
Yoshitake Nishi
義武 西
Haruhisa Uchida
晴久 内田
Hiromasa Yabe
洋正 矢部
Byonsuku Kim
キム・ビョンスク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Original Assignee
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University filed Critical Tokai University
Priority to JP2001304340A priority Critical patent/JP2003102828A/en
Publication of JP2003102828A publication Critical patent/JP2003102828A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shape memory thin film that is composed of a strongly hydrogen absorbing alloy, can be deformed by overcoming the resistance from the surrounding bio-tissue of a bodily temperature area of a human being by revealing a strong shape memory effect, has good bio-compatibility and a human body-friendly soft property, and can reveal a shape memory effect even when the thin film is not heated, and to provide a shape memory composite material composed of the strongly hydrogen absorbing alloy and a soft catheter for medical use. SOLUTION: The shape memory thin film composed of the strongly hydrogen absorbing alloy is composited by diffusing fine LaNix-based alloy particles in a polymer material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、室温よりも少し高
い温度領域、特に人の体温の温度領域で形状記憶効果を
発現し、医療分野に利用することができる強力水素吸蔵
合金形状記憶薄膜、強力水素吸蔵合金形状記憶複合材料
及び医療用ソフトカテーテルに関する。
TECHNICAL FIELD The present invention relates to a strong hydrogen storage alloy shape memory thin film that exhibits a shape memory effect in a temperature range slightly higher than room temperature, particularly in a temperature range of human body temperature, and can be used in the medical field. The present invention relates to a strong hydrogen storage alloy shape memory composite material and a medical soft catheter.

【0002】[0002]

【従来の技術】近時、臨床医療現場ではカテーテルを生
体内に挿入し、その先端部分を遠隔操作することにより
種々の治療および検査が行われている。このような医療
用カテーテルでは、先端部分を自由に動かすことができ
る小型の動力源が医療関係者から要望されている。
2. Description of the Related Art Recently, in clinical clinical practice, various treatments and tests are performed by inserting a catheter into a living body and remotely controlling the distal end portion thereof. In such a medical catheter, medical personnel request a small power source that can freely move the tip portion.

【0003】これまでに医療用カテーテルの動力源とし
て種々の構造のものが提案されているが、そのなかでも
小型で軽量かつ簡易な構造であることから形状記憶合金
が注目されている。
Various types of power sources for medical catheters have been proposed so far, but among them, shape memory alloys are drawing attention because of their small size, light weight and simple structure.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の形状記
憶合金材料は、その形状記憶効果を発現するときに生じ
る力が小さいので、生体の周囲組織の拘束力に抗して変
形することができないか、又はその変形量が不十分にな
る。例えば、カテーテル先端部を90度以上曲げるよう
な大きな変形が要求される治療に利用することはできな
い。
However, since the conventional shape memory alloy material exerts a small force when the shape memory effect is exhibited, it cannot be deformed against the restraining force of the tissues surrounding the living body. Or, the amount of deformation becomes insufficient. For example, it cannot be used for treatment that requires a large deformation such as bending the tip of the catheter by 90 degrees or more.

【0005】医療用カテーテルとして人の体温の温度領
域で形状記憶効果を発現し、生体適合性が良好であり、
人体にやさしいソフトな性質を有し、さらに熱を加えず
に形状記憶効果を発現する性質をすべて兼ね備えた形状
記憶合金材料はこれまでに提案されていない。
As a medical catheter, it exhibits a shape memory effect in the temperature range of human body temperature and has good biocompatibility,
No shape memory alloy material has been proposed so far, which has soft properties that are gentle to the human body and also has all of the properties that exert a shape memory effect without applying heat.

【0006】本発明は上記の課題を解決するためになさ
れたものであって、人の体温の温度領域において強力な
形状記憶効果を発現して周囲の生体組織の抵抗に打ち克
って変形することができ、生体適合性が良好であり、人
体にやさしいソフトな性質を有し、さらに熱を加えずに
形状記憶効果を発現することができる強力水素吸蔵合金
形状記憶薄膜、強力水素吸蔵合金形状記憶複合材料及び
医療用ソフトカテーテルを提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and exhibits a strong shape memory effect in the temperature region of human body temperature to overcome the resistance of surrounding living tissues and deform. A strong hydrogen storage alloy shape memory thin film, a strong hydrogen storage alloy shape, which has a good biocompatibility, has a soft property that is kind to the human body, and can exert a shape memory effect without applying heat. It is an object to provide a memory composite material and a medical soft catheter.

【0007】[0007]

【課題を解決するための手段】本発明に係る強力水素吸
蔵合金形状記憶薄膜は、物理気相法、化学気相法又は物
理化学的な気相法のいずれかを用いて基板上に積層して
得られたLaNix系合金からなることを特徴とする。
A strong hydrogen storage alloy shape memory thin film according to the present invention is laminated on a substrate by using either a physical vapor phase method, a chemical vapor phase method or a physicochemical vapor phase method. It is characterized in that it is made of the LaNix-based alloy obtained as described above.

【0008】本発明に係る強力水素吸蔵合金形状記憶複
合材料は、LaNix系合金の微粒子を高分子材料中に
分散させて複合化したことを特徴とする。
The strong hydrogen storage alloy shape memory composite material according to the present invention is characterized in that fine particles of LaNix alloy are dispersed in a polymer material to form a composite.

【0009】上記の合金薄膜又は複合材料中の分散合金
は、化学量論的な係数xを4〜7の範囲とすることが好
ましく、LaNi5合金又はLaNi6.5合金のいずれか
からなることが更に好ましい。
The above alloy thin film or the dispersion alloy in the composite material preferably has a stoichiometric coefficient x in the range of 4 to 7, and is further composed of either LaNi 5 alloy or LaNi 6.5 alloy. preferable.

【0010】さらに、合金薄膜又は複合材料中の分散合
金は、第3の元素としてCoを添加したLaNixCo
y合金からなることが好ましい。この場合に、化学量論
的な係数xを3〜4の範囲とし、かつ化学量論的な係数
yを1.5〜2.5の範囲とすることが好ましい。な
お、LaNiCo系合金のなかではLaNi3.3Co2.1
の組成からなる合金薄膜が最も良い。
Furthermore, the dispersion alloy in the alloy thin film or composite material is LaNixCo with Co added as the third element.
It is preferably composed of y alloy. In this case, it is preferable that the stoichiometric coefficient x be in the range of 3 to 4 and the stoichiometric coefficient y be in the range of 1.5 to 2.5. Among the LaNiCo alloys, LaNi 3.3 Co 2.1
The alloy thin film having the above composition is the best.

【0011】LaNi系合金又はLaNiCo系合金薄
膜の場合は、その膜厚を1μm以下とすることが好まし
い。膜厚が1μmを超えると、水素吸蔵と放出を繰り返
すうちに薄膜が崩壊して形状を維持できなくなるおそれ
があるからである。
In the case of a LaNi-based alloy or LaNiCo-based alloy thin film, its thickness is preferably 1 μm or less. This is because if the film thickness exceeds 1 μm, the thin film may collapse during repeated storage and release of hydrogen and the shape may not be maintained.

【0012】LaNi合金に代表される水素吸蔵合金
は、水素吸収・放出時に最大24%の体積膨張を示し、
さらにその膨張力により自らを破壊し、微粉化するほど
の力を示す。
Hydrogen storage alloys represented by LaNi alloys show a maximum volume expansion of 24% when absorbing and releasing hydrogen,
Furthermore, the expansive force destroys itself and shows a force enough to make it fine.

【0013】そこで、生体を傷つけない高分子材料の一
つであるシリコーンゴム中にLaNi5合金に代表され
る水素吸蔵合金粉末を分散させた複合材料を作製し、さ
らに無添加のシリコーンゴムと接着してバイポリマーを
作製し、医療用水素吸蔵合金分散形状記憶材料とした。
Therefore, a composite material in which a hydrogen storage alloy powder typified by LaNi 5 alloy is dispersed in silicone rubber, which is one of polymer materials that does not damage the living body, is further bonded with silicone rubber without any additive. Then, a bipolymer was produced and used as a medical hydrogen storage alloy dispersed shape memory material.

【0014】合金の微粒子は、合金塊又は合金薄膜に水
素を過剰に吸蔵させることにより崩壊させて得られる平
均粒径が25〜40μmの範囲の微粒子からなることが
好ましい。なお、合金の微粒子はガスアトマイズ法又は
ボールミルなどの機械的粉砕法を用いて製造してもよ
い。
The alloy fine particles are preferably fine particles having an average particle size in the range of 25 to 40 μm obtained by causing the alloy lump or the alloy thin film to occlude by excessively absorbing hydrogen. The alloy fine particles may be manufactured by a gas atomizing method or a mechanical grinding method such as a ball mill.

【0015】一般的に、合金微粒子の粒径が小さくなる
ほど比表面積が増大するので、水素を吸収する吸蔵能力
は高まり、大きな変形力を得る上で有利になる。しか
し、平均粒径が1μmを下回るような水素吸蔵合金の超
微粒子を製造することは一般に困難である(水素化物形
成による微粉化は1μm以上の粒径であれば比較的起こ
りやすいが、1μm未満の粒径では水素化物形成による
微粉化が起こりにくい)とともに、たとえ製造可能であ
るとしても製造コストが大幅に上昇するので、合金微粒
子の平均粒径の下限値は1μmとすることが望ましい。
In general, the smaller the particle size of the alloy fine particles, the larger the specific surface area, so the hydrogen absorbing capacity is increased, which is advantageous in obtaining a large deformation force. However, it is generally difficult to produce ultrafine particles of a hydrogen storage alloy having an average particle size of less than 1 μm (micronization due to hydride formation is relatively easy if the particle size is 1 μm or more, but less than 1 μm With this particle size, pulverization due to hydride formation is less likely to occur), and even if it can be manufactured, the manufacturing cost increases significantly, so the lower limit of the average particle size of the alloy fine particles is preferably 1 μm.

【0016】一方、平均粒径が40μmを上回ると、比
表面積が減少して水素吸蔵量が低下し、変形力が小さく
なるとともに、ポリマーとの均一な混練が難しくなるの
で、合金微粒子の平均粒径の上限値は40μmとするこ
とが望ましい。なお、後述する実施例ではLaNi5
金とLaNiCo系水素吸蔵合金とを比較するために合
金微粒子の粒径を便宜的に25〜40μmに揃えてい
る。粒径25μmあたりまでは水素化物形成による微粉
化が極めて容易であるからである。
On the other hand, when the average particle size exceeds 40 μm, the specific surface area decreases, the hydrogen storage amount decreases, the deformation force decreases, and uniform kneading with the polymer becomes difficult. The upper limit of the diameter is preferably 40 μm. In the examples described later, the particle size of the alloy fine particles is conveniently set to 25 to 40 μm in order to compare the LaNi 5 alloy and the LaNiCo hydrogen storage alloy. This is because pulverization due to hydride formation is extremely easy up to a particle diameter of about 25 μm.

【0017】高分子材料はシリコーンゴムからなること
が好ましい。シリコーンゴムは人体に対して実質的に無
害であり、生体適合性が良好だからである。なお、シリ
コーンゴムの他に水素を透過し、人体を傷付けず、害に
なる物質を溶出しない高分子材料を用いることも可能で
ある。
The polymeric material preferably comprises silicone rubber. This is because silicone rubber is substantially harmless to the human body and has good biocompatibility. In addition to silicone rubber, it is also possible to use a polymer material that transmits hydrogen, does not damage the human body, and does not elute harmful substances.

【0018】合金の微粒子は、化学量論的な係数xを4
〜7の範囲とすることが好ましく、LaNi5合金又は
LaNi6.5合金のいずれかからなることが更に好まし
い。
The alloy fine particles have a stoichiometric coefficient x of 4
It is preferably in the range of 7 to 7, and more preferably made of either a LaNi 5 alloy or a LaNi 6.5 alloy.

【0019】合金の微粒子は、さらにCoを含むLaN
ixCoy合金からなることが好ましい。この場合に、
化学量論的な係数xを3〜4の範囲とし、かつ化学量論
的な係数yを1.5〜2.5の範囲とすることが好まし
く、LaNi3.3Co2.1合金からなる微粒子であること
が更に好ましい。
The fine particles of the alloy are LaN further containing Co.
It is preferably made of an ixCoy alloy. In this case,
It is preferable that the stoichiometric coefficient x is in the range of 3 to 4 and the stoichiometric coefficient y is in the range of 1.5 to 2.5, and the particles are LaNi 3.3 Co 2.1 alloy particles. Is more preferable.

【0020】本発明に係る医療用ソフトカテーテルは、
水素ガス又は水素含有ガスが通流する中空部を有し、上
記の強力水素吸蔵合金分散形状記憶複合材料からなる第
1のエレメントと、前記第1のエレメントの中空部を通
流した水素ガス又は水素含有ガスが通流する中空部を有
し、前記第1のエレメントに接着された高分子材料から
なる第2のエレメントと、を具備することを特徴とす
る。
The medical soft catheter according to the present invention comprises:
A first element having a hollow portion through which hydrogen gas or a hydrogen-containing gas flows, and made of the above-mentioned strong hydrogen storage alloy dispersed shape memory composite material; and hydrogen gas flowing through the hollow portion of the first element, or A second element having a hollow part through which a hydrogen-containing gas flows and made of a polymer material adhered to the first element.

【0021】なお、ガスの通流順序としては、先ず第1
のエレメントの中空部にガスを通流させた後に第2のエ
レメントの中空部に通流させる(戻す)ことが好ましい
が、この逆の順序でガスを通流させるようにすることも
できる。
The order of gas flow is as follows:
It is preferable that the gas is allowed to flow through the hollow part of the element, and then the gas is allowed to flow (return) to the hollow part of the second element, but the gas may be allowed to flow in the reverse order.

【0022】さらに、第1及び第2のエレメントは半円
筒状に形成され、該半円筒状の第1及び第2のエレメン
トの腹側平面を接着して円筒状のエレメントアッセンブ
リとし、該エレメントアッセンブリを複数本束ねてなる
ことが好ましい。このように複数本のエレメントを束ね
ると、変形力がさらに増強される。
Further, the first and second elements are formed in a semi-cylindrical shape, and the ventral planes of the semi-cylindrical first and second elements are bonded to form a cylindrical element assembly. It is preferable to bundle a plurality of the above. By bundling a plurality of elements in this way, the deformation force is further enhanced.

【0023】[0023]

【発明の実施の形態】以下、添付の図面を参照して本発
明の種々の好ましい実施の形態について説明する。
Various preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

【0024】(第1の実施形態) (水素吸蔵合金形状記憶薄膜)水素吸蔵合金形状記憶薄
膜試料の作製には図1に示すフラッシュ蒸着装置を用い
た。フラッシュ蒸着装置1は排気路3を介して真空排気
される真空容器2によって取り囲まれている。真空容器
2の下部にはフラッシュ加熱ユニット4が設けられ、容
器2の上部には試料保持部20が設けられている。フラ
ッシュ加熱ユニット4はヒータ5およびホッパー10を
備えている。ヒータ5は、絶縁部材8,9を介して複数
のポスト7に支持され、図示しない電源から給電される
ようになっている。ホッパー10に原料粉6が収容さ
れ、適量の原料粉6がホッパー10からヒータ5上に投
下されるようになっている。
(First Embodiment) (Hydrogen Storage Alloy Shape Memory Thin Film) The flash vapor deposition apparatus shown in FIG. 1 was used to prepare a hydrogen storage alloy shape memory thin film sample. The flash vapor deposition apparatus 1 is surrounded by a vacuum container 2 that is evacuated via an exhaust path 3. A flash heating unit 4 is provided below the vacuum container 2, and a sample holder 20 is provided above the container 2. The flash heating unit 4 includes a heater 5 and a hopper 10. The heater 5 is supported by a plurality of posts 7 via insulating members 8 and 9, and is supplied with power from a power source (not shown). The raw material powder 6 is stored in the hopper 10, and an appropriate amount of the raw material powder 6 is dropped from the hopper 10 onto the heater 5.

【0025】試料保持部20はモータ21、ホルダ2
3、カバー24を備えている。この試料保持部20は、
ガイドポスト17、昇降部材18、支持板19を有する
昇降機構により昇降自在に支持されている。試料保持部
20のホルダ23には複数の基板29が保持されてい
る。この場合は、3枚又は6枚の基板29がホルダ23
に保持されている。モータ21の駆動軸22がホルダ2
3に連結され、ホルダ23が回転移動されるようになっ
ている。
The sample holder 20 includes a motor 21 and a holder 2.
3, a cover 24 is provided. This sample holder 20 is
It is movably supported by an elevating mechanism having a guide post 17, an elevating member 18, and a support plate 19. A plurality of substrates 29 are held by the holder 23 of the sample holding unit 20. In this case, the three or six substrates 29 are attached to the holder 23.
Held in. The drive shaft 22 of the motor 21 is the holder 2
3, the holder 23 is rotated and moved.

【0026】フラッシュ蒸着装置1において、ヒータ5
を高温状態とし、この上にホッパー10から所定成分と
所定量の原料粉6を投下すると、原料粉6は一瞬にして
金属蒸気となり、ホルダ23に保持された基板29の表
面に蒸着され、所望の薄膜が得られる。
In the flash vapor deposition apparatus 1, the heater 5
When a predetermined component and a predetermined amount of the raw material powder 6 are dropped from the hopper 10 to a high temperature state, the raw material powder 6 instantly becomes a metal vapor and is vapor-deposited on the surface of the substrate 29 held by the holder 23, so that A thin film of

【0027】(実施例1)上記のフラッシュ蒸着装置を
用いて下記条件によりポリイミドフィルム基板上に厚さ
1μm以下のLaNi系合金薄膜を作製した。
Example 1 A LaNi-based alloy thin film having a thickness of 1 μm or less was produced on a polyimide film substrate under the following conditions using the above flash vapor deposition apparatus.

【0028】到達真空度:10-3Pa以下 基板の材質:ポリイミドフィルム 基板の厚み:11μm 試料温度:室温(但し、基板温度は輻射熱により356K
(83℃)まで上昇する。) 粉末組成:LaNi5 合金薄膜の平均膜厚:0.2μm 蒸着合金薄膜組成:LaNi6.5 なお、基板としてポリイミドフィルムの他にパラフィン
等の高分子薄膜またはシリコーン単結晶や金属薄膜を用
いるようにしてもよい。
Degree of ultimate vacuum: 10 -3 Pa or less Substrate material: Polyimide film Substrate thickness: 11 μm Sample temperature: Room temperature (however, the substrate temperature is 356 K due to radiant heat)
Temperature rises to (83 ℃). ) Powder composition: average film thickness of LaNi 5 alloy thin film: 0.2 μm Vapor-deposited alloy thin film composition: LaNi 6.5 In addition to polyimide film, polymer thin film such as paraffin or silicone single crystal or metal thin film should be used as the substrate. Good.

【0029】作製した水素吸蔵薄膜はEnergy Dispersio
n X-ray Spectroscopy(エネルギー分散型X線分光法)
を用いて組成を分析した結果、LaNi6.5の水素吸蔵
薄膜であることが判明した。作製した水素吸蔵合金形状
記憶薄膜はステンレス鋼(SUS316)製の反応管中
で、高純度水素(5N)(以上)の雰囲気中、約50b
arの水素圧で試料中の水素吸蔵合金に対しての初期活
性化作業を行った。
The produced hydrogen storage thin film is Energy Dispersio
n X-ray Spectroscopy
As a result of analyzing the composition by using, it was found to be a hydrogen storage thin film of LaNi 6.5 . The produced hydrogen storage alloy shape memory thin film was placed in a reaction tube made of stainless steel (SUS316) in an atmosphere of high purity hydrogen (5N) (or more), and was stored for about 50b.
The initial activation operation was performed on the hydrogen storage alloy in the sample at a hydrogen pressure of ar.

【0030】活性化した試料を図2に示すガラス製の反
応管からなる水素吸蔵形状記憶効果測定装置40の加熱
容器41内に装入し、真空引きと水素化とを交互に数回
繰り返した後、各試料温度における形状変位(Y/X)
をビデオレコーダー49を用いて計測した。加熱容器4
1は図示しない(外部からの)ヒータを備え、試料32
を0℃から90℃までの温度に昇温させることができる
ようになっている。加熱容器41の内部は、蓋42を貫
通する管43によりロータリポンプ45、水素ガスボン
ベ46、温度計47、圧力計48に各バルブ44a〜4
4cを介してそれぞれ連通している。温度計47は容器
内の試料32の温度を検出するものであり、圧力計48
はガスボンベ46から容器41内に導入される水素ガス
圧力を検出するものである。
The activated sample was placed in a heating vessel 41 of a hydrogen storage shape memory effect measuring apparatus 40 comprising a glass reaction tube shown in FIG. 2, and evacuation and hydrogenation were alternately repeated several times. After that, shape displacement (Y / X) at each sample temperature
Was measured using a video recorder 49. Heating container 4
1 is equipped with a heater (not shown) (not shown)
Can be heated to a temperature of 0 ° C. to 90 ° C. Inside the heating container 41, a pipe 43 penetrating through the lid 42 is used to connect the rotary pump 45, the hydrogen gas cylinder 46, the thermometer 47, the pressure gauge 48 to the valves 44a-4.
4c communicate with each other. The thermometer 47 detects the temperature of the sample 32 in the container, and the pressure gauge 48
Is for detecting the pressure of hydrogen gas introduced from the gas cylinder 46 into the container 41.

【0031】試料の形状変化の測定は、図3に示すよう
に、試料32の横方向の長さXと縦方向の長さをYと
し、両者の比(Y/X)として求めた。
The change in shape of the sample was measured as shown in FIG. 3, where the horizontal length X and the vertical length of the sample 32 were Y, and the ratio (Y / X) between them was obtained.

【0032】図4を参照して上記の測定装置40により
試料の形状を計測した結果について説明する。図4の
(a),(b),(c)は試料温度303.15Kでの
水素導入による形状変形を示す写真である。水素化(活
性化)前においては、図4の(a)に示すように、試料
は蒸着による応力の作用によりポリイミドフィルム基板
が内側になり、LaNi6.5合金薄膜が外側になるよう
に曲がった状態にある。真空排気後、試料の形状は図4
の(b)に示すようになった。ここで、試料温度30
3.15Kで、圧力3.86barの水素ガスを導入す
ることにより、さらに薄膜は体積膨張を示し、図4の
(c)に示すように、より一層ポリイミドフィルム側に
形状変形した。この形状変化はLaNi6.5合金薄膜が
水素吸蔵により体積膨張を示したために生じたものと説
明できる。
The result of measuring the shape of the sample by the measuring device 40 will be described with reference to FIG. 4 (a), (b) and (c) are photographs showing the shape deformation due to the introduction of hydrogen at a sample temperature of 303.15K. Before hydrogenation (activation), as shown in FIG. 4 (a), the sample was bent so that the polyimide film substrate was on the inside and the LaNi 6.5 alloy thin film was on the outside due to the effect of stress due to vapor deposition. It is in. After evacuation, the shape of the sample is shown in Fig. 4.
(B) of FIG. Here, the sample temperature 30
By introducing hydrogen gas at 3.15 K under a pressure of 3.86 bar, the thin film further expanded in volume, and as shown in FIG. 4C, the shape was further deformed toward the polyimide film side. This shape change can be explained as being caused by the LaNi 6.5 alloy thin film exhibiting volume expansion due to hydrogen absorption.

【0033】図8は、横軸に水素導入開始からの時間t
(秒)をとり、縦軸に形状変位(Y/X)をとって、各
温度における水素導入時のLaNi6.5合金薄膜の形状
変化について調べた結果を示す特性図である。図中にて
三角プロットは温度296.15Kの結果を、四角プロ
ットは温度303.15Kの結果を、菱形プロットは3
11.15Kの結果を、丸プロットは温度316.15
Kの結果をそれぞれ示す。なお、水素分圧Pを3.86
bar(一定)とした。この図から明らかなように、ポ
リイミドフィルム上に真空蒸着したLaNi6.5薄膜
は、各試料温度のそれぞれにおいて水素導入時間が増加
するにつれて、形状変位量が増加することを確認でき
た。
In FIG. 8, the horizontal axis represents time t from the start of hydrogen introduction.
(Sec) is taken, and the vertical axis represents the shape displacement (Y / X), and is a characteristic diagram showing the results of examining the shape change of the LaNi 6.5 alloy thin film when hydrogen is introduced at each temperature. In the figure, the triangular plot shows the result of the temperature of 296.15K, the square plot shows the result of the temperature of 303.15K, and the rhombic plot shows the result of 3.
The result of 11.15K, the circle plot shows the temperature of 316.15.
The results of K are shown respectively. The hydrogen partial pressure P is 3.86.
It was set to bar (constant). As is clear from this figure, it was confirmed that the LaNi 6.5 thin film vacuum-deposited on the polyimide film had an increased amount of shape displacement as the hydrogen introduction time increased at each sample temperature.

【0034】図9は、横軸にLaNi6.5薄膜の試料の
形状変位(Y/X)が0.007になるときの温度の逆
数(1/T)をとり、縦軸に水素導入開始からの時間の
逆数(1/t)をとって、両者の相関について調べた特
性図である。図中の直線の傾きから見掛けの活性化エネ
ルギーを求めたところ、Ea=11.2kal/molである
ことが判明した。これは金属中の水素の拡散の活性化エ
ネルギーの値にほぼ対応している。
In FIG. 9, the horizontal axis represents the reciprocal of temperature (1 / T) when the shape displacement (Y / X) of the LaNi 6.5 thin film sample becomes 0.007, and the vertical axis represents the hydrogen introduction from the start. It is the characteristic view which took the reciprocal of time (1 / t) and investigated the correlation of both. When the apparent activation energy was obtained from the slope of the straight line in the figure, it was found that Ea = 11.2 kal / mol. This roughly corresponds to the value of the activation energy for diffusion of hydrogen in the metal.

【0035】以上のようにして本実施形態のLaNi系
合金薄膜は、温度または導入水素圧力の変化により(水
素が吸収されたり放出されたりすることによって)形状
記憶効果を発現することが確認された。
As described above, it was confirmed that the LaNi-based alloy thin film of the present embodiment exhibits a shape memory effect by changing the temperature or the introduced hydrogen pressure (by absorbing or releasing hydrogen). .

【0036】また、形状記憶効果が発現されるときの変
形出力として、試料の全断面積から応力(σL)を算出
すると1000kPaとなり、また、歪み変化に伴う駆
動源となる水素吸蔵合金薄膜だけの断面積から応力(σ
t)を算出すると56193.5kPaの大きな力を測
定することができた。
As the deformation output when the shape memory effect is exhibited, the stress (σ L ) is calculated from the total cross-sectional area of the sample to be 1000 kPa, and only the hydrogen storage alloy thin film which is the driving source due to the strain change is calculated. The stress (σ
When t ) was calculated, a large force of 56193.5 kPa could be measured.

【0037】(第2の実施形態) (水素吸蔵合金形状記憶複合材料)各種組成の水素吸蔵
合金粉末をシリコーンゴム中に分散固定した複合材料A
の上に合金を含まないシリコーンゴム単体(無添加シリ
コーンゴム)Bを接着したバイポリマー形状記憶材料を
作製し、その形状記憶効果についてそれぞれ計測した。
(Second Embodiment) (Hydrogen storage alloy shape memory composite material) Composite material A in which hydrogen storage alloy powders of various compositions are dispersed and fixed in silicone rubber.
A bipolymer shape memory material was prepared by adhering a silicone rubber simple substance (non-added silicone rubber) B on top of the alloy, and the shape memory effect was measured.

【0038】(実施例2) (LaNi系水素吸蔵合金形状記憶複合材料)実施例2
の試料の作製方法を説明する。
(Example 2) (LaNi-based hydrogen storage alloy shape memory composite material) Example 2
The method for producing the sample will be described.

【0039】試料Aとして、LaNi5合金に代表され
る水素吸蔵合金粉末(粒径:25〜40μm)0.61
3gとシリコーンゴム(セメダイン株式会社の製品名
「HJ−125」)0.095gを充分に混練・分散さ
せた形状30×5×lmm3(長さ×幅×厚さ)の複合
材料を作製した。
As sample A, hydrogen storage alloy powder represented by LaNi 5 alloy (particle size: 25-40 μm) 0.61
A composite material having a shape of 30 × 5 × 1 mm 3 (length × width × thickness) was prepared by sufficiently kneading and dispersing 3 g and 0.095 g of silicone rubber (product name “HJ-125” of Cemedine Co., Ltd.). .

【0040】試料Bとして、無添加シリコーンゴム0.
145gを同じ形状(30×5×1mm3)に作製し
た。
As the sample B, the additive-free silicone rubber 0.
145 g was produced in the same shape (30 × 5 × 1 mm 3 ).

【0041】試料AとBとを面合わせ接着し、バイポリ
マーを作製した。作製したバイポリマー形状記憶材料は
ステンレス鋼(SUS316)製の反応管中で、超高純
度水素7Nの雰囲気中、約50barの水素圧で試料中
の水素吸蔵合金に対しての初期活性化作業を行った。活
性化した試料を上記測定装置40の容器41内に装入
し、真空引きと水素化とを交互に数回繰り返した後、各
導入水素圧における試料の形状変化をビデオレコーダー
49により計測した。
Samples A and B were face-to-face bonded to each other to prepare a bipolymer. The produced bipolymer shape memory material was subjected to an initial activation operation for a hydrogen storage alloy in a sample in a reaction tube made of stainless steel (SUS316) in an atmosphere of ultra-high purity hydrogen 7N at a hydrogen pressure of about 50 bar. went. The activated sample was loaded into the container 41 of the measuring device 40, and after evacuation and hydrogenation were repeated alternately several times, the shape change of the sample at each introduced hydrogen pressure was measured by the video recorder 49.

【0042】試料の形状変化の測定は、上記と同様に図
3に示すように、試料の横方向の長さXと縦方向の長さ
をYとし、形状変化の比(Y/X)として求めた。
As shown in FIG. 3, the change in shape of the sample is measured as shown in FIG. 3, where the horizontal length X and the vertical length of the sample are Y and the shape change ratio (Y / X) is used. I asked.

【0043】図5の(a),(b)は試料温度296.
15Kでの試料の真空排気時と水素導入時の形状変形の
様子を示す写真である。活性化後のバイポリマー形状記
憶合金の形状変化は、図5の(a)に示すように、先ず
真空排気時には複合材料が内側に、無添加シリコーンゴ
ムが外側になるようにある曲率を持った形状に曲がって
いる。次いで、容器41への導入水素ガスの圧力を徐々
に上げていくと、試料の曲率が次第に大きくなってい
き、図5の(b)に示すように、約2barの圧力で試
料はほぼ直線状の形状になることが確認された。
5A and 5B show the sample temperature 296.
It is a photograph which shows the mode of shape change at the time of evacuation of a sample at 15K and hydrogen introduction. The shape change of the bipolymer shape memory alloy after activation had a certain curvature such that the composite material was inside and the additive-free silicone rubber was outside during vacuum evacuation, as shown in FIG. 5 (a). Bent in shape. Then, when the pressure of the hydrogen gas introduced into the container 41 is gradually increased, the curvature of the sample gradually increases, and as shown in FIG. 5B, the sample is substantially linear at a pressure of about 2 bar. It was confirmed that the shape would be.

【0044】図6を参照して上記バイポリマー材におい
て形状記憶効果が発現されるメカニズムについて説明す
る。
The mechanism by which the shape memory effect is exhibited in the above bipolymer material will be described with reference to FIG.

【0045】図6の(a)及び(b)に示すように、真
空排気により複合材料31から水素が抜かれることによ
って複合材料31の側(B側)が縮み、複合材料31が
内側に、無添加シリコーンゴム30が外側になるように
試料32が曲がる。
As shown in FIGS. 6 (a) and 6 (b), the side (B side) of the composite material 31 is contracted by removing hydrogen from the composite material 31 by evacuation, and the composite material 31 is inward. The sample 32 bends so that the additive-free silicone rubber 30 is on the outside.

【0046】一方、図6の(c)及び(d)に示すよう
に、水素吸蔵により複合材料31内で水素化物形成さ
れ、体積膨張することによって複合材料31の側(B
側)が伸び、試料32の曲率が次第に大きくなってい
き、最終的にはほぼ直線状の形状となる。
On the other hand, as shown in (c) and (d) of FIG. 6, a hydride is formed in the composite material 31 by hydrogen absorption, and the composite material 31 side (B) is expanded by volume expansion.
Side) extends, the curvature of the sample 32 gradually increases, and finally it becomes a substantially linear shape.

【0047】図10は、横軸に容器41内の絶対圧力P
(bar)をとり、縦軸に試料の形状変位(Y/X)を
とって、水素導入時のLaNi5合金分散形状記憶材料
の水素導入圧力と形状変位との相関を示す特性図であ
る。図中にて白抜き四角プロットは真空排気時の形状変
位を、黒丸は水素導入から10分間経過後の各圧力の形
状変位をそれぞれ示す。この図から明らかなように、印
加水素圧力が上昇するとともに形状変位(Y/X)が減
少し、圧力Pが約3bar以上の領域では試料が曲率を
もった形状からほとんど直線状の形状になることが確認
できた。
In FIG. 10, the horizontal axis represents the absolute pressure P in the container 41.
FIG. 4 is a characteristic diagram showing the correlation between the hydrogen introduction pressure and the shape displacement of the LaNi 5 alloy dispersed shape memory material at the time of hydrogen introduction, in which (bar) is taken and the shape displacement (Y / X) of the sample is plotted on the vertical axis. In the figure, the white square plots show the shape displacement at the time of vacuum evacuation, and the black circles show the shape displacement at each pressure 10 minutes after the introduction of hydrogen. As is apparent from this figure, as the applied hydrogen pressure rises, the shape displacement (Y / X) decreases, and in the region where the pressure P is about 3 bar or more, the sample has a curved shape and becomes almost a linear shape. I was able to confirm that.

【0048】図11は、横軸に水素導入開始からの時間
t(秒)をとり、縦軸に試料の形状変位(Y/X)をと
って、各試料温度における水素導入時の形状変位につい
て調べた結果を示す特性図である。図中にて四角プロッ
トは温度296.34Kの結果を、丸プロットは温度3
03.15Kの結果を、三角プロットは309.15K
の結果をそれぞれ示す。なお、水素分圧Pを3.84b
ar(一定)とした。この図から明らかなように、水素
吸蔵合金分散形状記憶バイポリマーは、各試料温度にお
いて水素導入時間が増加するに従って形状変位量がそれ
ぞれ増加することが確認できた。
In FIG. 11, the horizontal axis represents the time t (seconds) from the start of hydrogen introduction, and the vertical axis represents the shape displacement (Y / X) of the sample, showing the shape displacement at the time of introducing hydrogen at each sample temperature. It is a characteristic view which shows the examined result. In the figure, the square plot shows the results at a temperature of 296.34K, and the circle plot shows the results at a temperature of 3
The result of 03.15K, the triangular plot is 309.15K
The results are shown below. The hydrogen partial pressure P is 3.84b.
It was set to ar (constant). As is clear from this figure, it was confirmed that in the hydrogen storage alloy dispersed shape memory bipolymer, the amount of shape displacement increased as the hydrogen introduction time increased at each sample temperature.

【0049】図12は、横軸に水素吸蔵合金分散形状記
憶材料の形状変位(Y/X)が0.0018になるとき
の温度の逆数(1/T)をとり、縦軸に水素導入開始か
らの時間の逆数(1/t)をとって両者の相関について
調べた結果を示す特性図である。図中の黒丸プロットを
結んだ直線の傾きから水素吸蔵合金分散形状記憶材料の
見掛けの活性化エネルギーを求めたところ、Ea=1
4.5kcal/molであることが判明した。これは金属中の
水素の拡散の活性化エネルギーとほぼ一致している。
In FIG. 12, the horizontal axis represents the reciprocal of temperature (1 / T) when the shape displacement (Y / X) of the hydrogen storage alloy dispersed shape memory material is 0.0018, and the vertical axis represents the introduction of hydrogen. It is a characteristic view showing the result of examining the correlation between the two by taking the reciprocal of the time from (1 / t). The apparent activation energy of the hydrogen storage alloy dispersed shape memory material was calculated from the slope of the straight line connecting the black circle plots in the figure, and Ea = 1
It was found to be 4.5 kcal / mol. This is almost in agreement with the activation energy for diffusion of hydrogen in the metal.

【0050】(実施例3) (LaNi系水素吸蔵合金形状記憶複合材料)実施例3
としてLaNi5合金粉末を固定し、合金が水素を吸収
し放出する時に発現される形状記憶効果について調べ
た。
(Example 3) (LaNi-based hydrogen storage alloy shape memory composite material) Example 3
As a result, the LaNi 5 alloy powder was fixed, and the shape memory effect exhibited when the alloy absorbs and releases hydrogen is investigated.

【0051】実施例3の試料の作製方法を説明する。A method of manufacturing the sample of Example 3 will be described.

【0052】試料Aとして、LaNi5合金微粒子とシ
リコーンゴムとを十分に混錬し、30×5×1mm(長
さ×幅×厚さ)の板状の試料を作製した。
As sample A, LaNi 5 alloy fine particles and silicone rubber were sufficiently kneaded to prepare a plate-like sample of 30 × 5 × 1 mm (length × width × thickness).

【0053】試料Bとして、無添加シリコーンゴム0.
145gを実質的に同じ形状(30×5×1mm3)に
作製した。
As sample B, additive-free silicone rubber 0.
145 g was made into substantially the same shape (30 × 5 × 1 mm 3 ).

【0054】試料AとBとを面合わせ接着し、バイポリ
マーを作製した。作製したバイポリマー形状記憶材料は
ステンレス鋼(SUS316)製の反応管中で、高圧ジ
ーベルト装置を用いて、超高純度水素(7N)の雰囲気
中、約50barの水素圧(約5MPaの圧力)で試料
中の水素吸蔵合金に対して初期活性化を行った。活性化
した試料を上記測定装置40の容器41内に装入し、
0.04MPa、0.08MPa、0.12MPa、
0.16MPa、0.2MPaの印加水素圧力下と油回
転ポンプを用いた真空中での試料の形状変化をビデオレ
コーダー49により計測した。
Samples A and B were face-to-face bonded to each other to prepare a bipolymer. The produced bipolymer shape memory material was placed in a reaction tube made of stainless steel (SUS316) using a high pressure Giebelt apparatus in an atmosphere of ultra-high purity hydrogen (7N) at a hydrogen pressure of about 50 bar (a pressure of about 5 MPa). Initial activation was performed on the hydrogen storage alloy in the sample. The activated sample is loaded into the container 41 of the measuring device 40,
0.04 MPa, 0.08 MPa, 0.12 MPa,
The shape change of the sample under the applied hydrogen pressure of 0.16 MPa and 0.2 MPa and in the vacuum using the oil rotary pump was measured by the video recorder 49.

【0055】図13は、横軸にガス供給系の水素分圧
(MPa)をとり、縦軸に試料の形状変位(Y/X)を
とって、実施例3のLaNi5合金形状記憶複合材料試
料について導入水素圧力と形状変化との相関を示す特性
図である。この図から明らかなように、印加水素圧力が
高くなるに従って試料が曲率を持った形状から試料形状
が直線状になり、水素分圧の変化により試料が再現性良
く形状変化した。
In FIG. 13, the horizontal axis represents the hydrogen partial pressure (MPa) of the gas supply system, and the vertical axis represents the shape displacement (Y / X) of the sample. The LaNi 5 alloy shape memory composite material of Example 3 was obtained. It is a characteristic view which shows the correlation of the introduced hydrogen pressure and shape change about a sample. As is clear from this figure, as the applied hydrogen pressure increased, the sample changed from a shape having a curvature to a linear shape, and the shape of the sample changed with good reproducibility due to changes in the hydrogen partial pressure.

【0056】(実施例4) (LaNiCo系水素吸蔵合金形状記憶複合材料)試料
Aとして、LaNi3Co2合金に代表される水素吸蔵合
金粉末(粒径:25〜40μm)0.684gとシリコ
ーンゴム(セメダイン株式会社の製品名「HJ−12
5」)0.065gを充分に混練・分散させた形状30
×5×lmm 3(長さ×幅×厚さ)の複合材料を作製し
た。
(Example 4) (LaNiCo-based hydrogen storage alloy shape memory composite material) Sample
As A, LaNi3Co2Hydrogen storage represented by alloys
0.684 g of gold powder (particle size: 25-40 μm) and silicon
Rubber (Product name "HJ-12 of Cemedine Co., Ltd.
5 ") Shape 30 in which 0.065 g was sufficiently kneaded and dispersed
× 5 × lmm 3Create a composite material (length x width x thickness)
It was

【0057】試料Bとして、無添加シリコーンゴム0.
172gを同じ形状(30×5×1mm3)に作製し
た。
As the sample B, the additive-free silicone rubber 0.
172 g was produced in the same shape (30 × 5 × 1 mm 3 ).

【0058】試料AとBとを面合わせ接着し、バイポリ
マーを作製した。作製したバイポリマー形状記憶材料は
ステンレス鋼(SUS316)製の反応管中で、超高純
度水素7Nの雰囲気中、約50barの水素圧で試料中
の水素吸蔵合金に対しての初期活性化作業を行った。活
性化した試料を上記測定装置40の容器41内に装入
し、真空引きと水素化とを交互に数回繰り返した後、各
導入水素圧における試料の形状変化をビデオレコーダー
49により計測した。
Samples A and B were face-to-face bonded to each other to prepare a bipolymer. The produced bipolymer shape memory material was subjected to an initial activation operation for a hydrogen storage alloy in a sample in a reaction tube made of stainless steel (SUS316) in an atmosphere of ultra-high purity hydrogen 7N at a hydrogen pressure of about 50 bar. went. The activated sample was loaded into the container 41 of the measuring device 40, and after evacuation and hydrogenation were repeated alternately several times, the shape change of the sample at each introduced hydrogen pressure was measured by the video recorder 49.

【0059】図14を参照して上記の測定装置40によ
り実施例4の試料の形状を計測した結果について説明す
る。図14の(A),(B)は試料温度37〜38℃に
おける試料の真空排気時の形状と水素導入時の形状とを
それぞれ示す写真である。図14の(A)に示すよう
に、真空排気後の試料の形状は実質的に直線状である。
一方、水素分圧2barでの水素導入開始から3000
秒経過後には、図14の(B)に示すように、試料は形
状変化し、無添加シリコーンゴムの側に大きく曲がっ
た。この形状変化はLaNi3.3Co2.1合金形状記憶複
合材料が水素吸蔵により体積膨張を示したために生じた
ものと説明できる。
The result of measuring the shape of the sample of Example 4 by the measuring device 40 will be described with reference to FIG. 14A and 14B are photographs showing the shape of the sample at the time of evacuation and the shape at the time of introducing hydrogen at a sample temperature of 37 to 38 ° C., respectively. As shown in FIG. 14A, the shape of the sample after evacuation is substantially linear.
On the other hand, from the start of hydrogen introduction at a hydrogen partial pressure of 2 bar,
After a lapse of seconds, as shown in FIG. 14 (B), the shape of the sample was changed and the sample was greatly bent toward the non-added silicone rubber. It can be explained that this shape change occurred because the LaNi 3.3 Co 2.1 alloy shape memory composite material exhibited volume expansion due to hydrogen absorption.

【0060】図15を参照して上記バイポリマー材にお
いて形状記憶効果が発現されるメカニズムについて説明
する。
The mechanism by which the shape memory effect is exhibited in the above bipolymer material will be described with reference to FIG.

【0061】図15の(a)及び(b)に示すように、
真空排気により複合材料Aから水素が抜かれることによ
って複合材料Aの側が縮み、この縮んだ状態の複合材料
Aと無添加シリコーンゴムBとが同じ長さに揃い、バイ
ポリマー材は実質的に直線状の形状をなしている。
As shown in FIGS. 15A and 15B,
When hydrogen is removed from the composite material A by evacuation, the side of the composite material A contracts, the composite material A in this contracted state and the additive-free silicone rubber B are aligned in the same length, and the bipolymer material is substantially linear. It has a shape of a shape.

【0062】一方、図15の(c)及び(d)に示すよ
うに、水素吸蔵により複合材料A内で水素化物形成さ
れ、体積膨張することによって複合材料Aの側が伸び、
その結果バイポリマー材は、複合材料Aを外側に、無添
加シリコーンゴムBを内側にして曲がり変形する。
On the other hand, as shown in (c) and (d) of FIG. 15, hydride is formed in the composite material A by hydrogen storage, and volume expansion causes the composite material A side to expand,
As a result, the bipolymer material is bent and deformed with the composite material A on the outside and the additive-free silicone rubber B on the inside.

【0063】図16は、横軸に容器41内の絶対圧力P
(bar)をとり、縦軸に試料の形状変位(Y/X)を
とって、水素導入時のLaNi3.3Co2.1合金形状記憶
複合材料における水素圧力と形状変位との相関について
調べた結果を示す特性図である。この場合に試料の温度
を36.5±0.5℃(309.65±0.5K)とし
た。図中にて白抜き四角プロットは真空排気時の形状変
位を示し、黒丸プロットは水素導入開始から10分間経
過後における各水素圧力の形状変位をそれぞれ示した。
この図から明らかなように、印加水素圧が上昇するに従
って形状変位量が増大し、約2bar以上の圧力になる
と真空排気による直線状の形状から曲率を持った形状に
なることが確認できた。
In FIG. 16, the horizontal axis represents the absolute pressure P in the container 41.
(Bar) is taken, and the shape displacement (Y / X) of the sample is plotted on the vertical axis. The results of examining the correlation between hydrogen pressure and shape displacement in the LaNi 3.3 Co 2.1 alloy shape memory composite material at the time of hydrogen introduction are shown. It is a characteristic diagram. In this case, the temperature of the sample was set to 36.5 ± 0.5 ° C. (309.65 ± 0.5K). In the figure, the open square plots show the shape displacement at the time of vacuum evacuation, and the black circle plots show the shape displacement of each hydrogen pressure 10 minutes after the start of hydrogen introduction.
As is clear from this figure, it was confirmed that the amount of shape displacement increased as the applied hydrogen pressure increased, and when the pressure reached about 2 bar or higher, the shape was changed from a linear shape by evacuation to a shape having a curvature.

【0064】また、形状記憶効果が発現されるときの変
形出力として試料の全断面積から応力(σL)を算出す
ると10.4kPa、歪み変化に伴う駆動源となるバイ
ポリマーの複合材料だけの断面積から応力(σt)を算
出すると20.4kPaの力を発現することが認められ
た。
Further, when the stress (σ L ) was calculated from the total cross-sectional area of the sample as the deformation output when the shape memory effect was exhibited, it was 10.4 kPa. When the stress (σ t ) was calculated from the cross-sectional area, it was confirmed that a force of 20.4 kPa was developed.

【0065】(第3の実施形態) (医療用ソフトカテーテル)次に、図7を参照して上記
の複合材料を用いた医療用ソフトカテーテルについて説
明する。
(Third Embodiment) (Medical Soft Catheter) Next, a medical soft catheter using the above composite material will be described with reference to FIG.

【0066】図7の(a)に示すように、先ず半円筒状
の第1及び第2のエレメント31,30を腹側平面で接
着し、円筒状のエレメントアッセンブリ32Aを作製す
る。第1及び第2のエレメント31,30はガスを通流
させるための中空部33,34をそれぞれ有している。
第1及び第2のエレメント31,30の基端側はガス供
給源(図示せず)にそれぞれ接続され、水素と窒素の混
合ガスが第1のエレメントの中空部33に供給され、カ
テーテル先端を経由して第2のエレメントの中空部34
を通って元のガス供給源に戻る循環回路が形成されてい
る。なお、導入ガスにおいて水素濃度調整のためにアル
ゴンを添加した。水素とArとの混合比率は、例えば5
対95(H2:Ar=5:95)とした。
As shown in FIG. 7A, first, the semi-cylindrical first and second elements 31 and 30 are bonded to each other on the ventral side plane to produce a cylindrical element assembly 32A. The first and second elements 31 and 30 respectively have hollow portions 33 and 34 for allowing gas to flow therethrough.
The proximal ends of the first and second elements 31 and 30 are respectively connected to a gas supply source (not shown), and a mixed gas of hydrogen and nitrogen is supplied to the hollow portion 33 of the first element so that the catheter tip is Via the hollow portion 34 of the second element
A circulation circuit is formed through which the gas is returned to the original gas supply source. In the introduced gas, argon was added to adjust the hydrogen concentration. The mixing ratio of hydrogen and Ar is, for example, 5
To 95 (H 2 : Ar = 5: 95).

【0067】なお、H2−N2混合ガスはについても調べ
た結果、H2−Ar混合ガスとほぼ同じ結果が得られ
る。
As a result of investigating the H 2 —N 2 mixed gas, almost the same results as the H 2 —Ar mixed gas are obtained.

【0068】このように水素濃度を調節することによっ
て又は水素導入するエレメントアッセンブリ32Aを適
宜選択することによってカテーテル先端を所望の方位に
所望の変位量だけ変位させることができる。
By adjusting the hydrogen concentration in this way or by appropriately selecting the element assembly 32A for introducing hydrogen, the catheter tip can be displaced in the desired direction by the desired displacement amount.

【0069】第1のエレメント31には上記第2の実施
形態において説明した水素吸蔵合金形状記憶複合材料を
用い、第2のエレメント30には無添加シリコーンゴム
を用いた。せん孔圧延法により中空線材を作製し、この
中空線材を押し出し加工により半円筒形状に成形して第
1及び第2のエレメント31,30を得た。
The hydrogen storage alloy shape memory composite material described in the second embodiment was used for the first element 31, and the additive-free silicone rubber was used for the second element 30. A hollow wire rod was produced by a punching rolling method, and the hollow wire rod was extruded to be formed into a semi-cylindrical shape to obtain first and second elements 31 and 30.

【0070】図7の(b)に示すように、円筒状のエレ
メントアッセンブリ32Aを4本束ね、互いに接着し、
医療用ソフトカテーテル36とする。この場合に、第1
のエレメント31を内側に、第2のエレメント30を外
側に配置する。このように複数のエレメントアッセンブ
リ32Aを一体化することで任意の方向へとカテーテル
36を動かすことができる。すなわち、4つの第1のエ
レメント31のうちから適宜選択して水素含有ガスを供
給することにより、当該第1のエレメント31が伸び、
カテーテル36の先端を変位させたい所望の方向に曲げ
変形させることができる。なお、人体の害を防ぐために
カテーテル36の全体を生体適合性に優れた高分子のフ
ィルムで覆うようにしてもよい。
As shown in FIG. 7 (b), four cylindrical element assemblies 32A are bundled and adhered to each other.
The medical soft catheter 36 is used. In this case, the first
The element 31 is disposed inside and the second element 30 is disposed outside. By thus integrating the plurality of element assemblies 32A, the catheter 36 can be moved in any direction. That is, by appropriately selecting from the four first elements 31 and supplying the hydrogen-containing gas, the first elements 31 extend,
The tip of the catheter 36 can be bent and deformed in a desired direction to be displaced. The entire catheter 36 may be covered with a polymer film having excellent biocompatibility in order to prevent harm to the human body.

【0071】次に、水素吸蔵合金形状記憶材料の諸特性
について図17〜図26を用いてそれぞれ説明する。
Next, various characteristics of the hydrogen storage alloy shape memory material will be described with reference to FIGS. 17 to 26.

【0072】(温度依存性)図17は、横軸に水素導入
開始からの経過時間(秒)をとり、縦軸に試料の歪み変
化量Δε(ppm)をとって、LaNi3.3Co2.1合金
形状記憶複合材料からなる試料の温度を種々変えて水素
導入時間と歪み変化量との相関について調べた結果を示
す特性図である。図中にて四角プロットは試料温度28
3±1K、水素圧力2.0barの結果を、丸プロット
は試料温度311±1K、水素圧力1.9barの結果
を、三角プロットは試料温度329±1K、水素圧力
1.9barの結果を、逆三角プロットは試料温度35
9±1K、水素圧力2.0barの結果をそれぞれ示し
た。この図から明らかなように、水素導入開始から約5
00秒後のあたりから温度が311±1Kと329±1
Kの試料に変形がそれぞれ認められ、時間の経過ととも
に試料の変形量が増大することが判明した。
[0072] (temperature dependence) 17, the elapsed time from the hydrogen feed initiated the horizontal axis (in seconds), taking the strain variation Δε of sample (ppm) on the vertical axis, LaNi 3.3 Co 2.1 alloy shaped It is a characteristic view which shows the result of having investigated about the correlation of hydrogen introduction time and the amount of strain changes, changing the temperature of the sample which consists of memory composite materials variously. The square plot in the figure indicates the sample temperature of 28.
The results of 3 ± 1K and hydrogen pressure of 2.0 bar, the circle plots of sample temperature 311 ± 1K and hydrogen pressure of 1.9 bar, the triangular plots of sample temperature 329 ± 1K and hydrogen pressure of 1.9 bar, and vice versa. Triangle plot shows sample temperature 35
The results at 9 ± 1 K and hydrogen pressure of 2.0 bar are shown. As is clear from this figure, about 5
After 00 seconds, the temperature is 311 ± 1K and 329 ± 1
Deformation was observed in each of the K samples, and it was found that the amount of deformation of the sample increased with the passage of time.

【0073】図18は、横軸に試料の温度(K)をと
り、縦軸に試料の歪み変化量Δε(ppm)をとって、
水素導入開始からの経過時間を種々変えてLaNi3.3
Co2.1合金形状記憶複合材料からなる試料の温度と歪
み変化量との相関を示す特性図である。水素圧力条件を
1.95±0.5barとして測定した。図中にて四角
プロットは水素導入から100秒経過後の結果を、丸プ
ロットは水素導入から300秒経過後の結果を、三角プ
ロットは水素導入から1000秒経過後の結果を、逆三
角プロットは水素導入から3000秒経過後の結果をそ
れぞれ示した。この図から明らかなように、34℃〜4
0℃の温度範囲において試料の歪み変化量Δεが著しく
増加することが認められた。すなわち、本実施例の材料
は人の体温(38±1℃)の温度域において形状記憶効
果を顕著に発現することが確認された。また、本実施例
の材料は、水素導入経過時間が3000秒のときに歪み
変化量Δεが最大になることも確認された。
In FIG. 18, the horizontal axis represents the sample temperature (K) and the vertical axis represents the strain change amount Δε (ppm) of the sample.
LaNi 3.3 by changing the elapsed time from the start of hydrogen introduction
It is a characteristic view which shows the correlation of the temperature and the amount of strain changes of the sample which consists of Co2.1 alloy shape memory composite materials. The hydrogen pressure condition was measured as 1.95 ± 0.5 bar. In the figure, square plots show the results after 100 seconds from the hydrogen introduction, circle plots show the results after 300 seconds from the hydrogen introduction, triangular plots show the results after 1000 seconds from the hydrogen introduction, and inverse triangle plots. The results after 3000 seconds from the introduction of hydrogen are shown. As is clear from this figure, 34 ° C to 4 ° C
It was confirmed that the strain change amount Δε of the sample significantly increased in the temperature range of 0 ° C. That is, it was confirmed that the material of this example remarkably exhibits the shape memory effect in the temperature range of human body temperature (38 ± 1 ° C.). It was also confirmed that the material of this example had a maximum strain change amount Δε when the hydrogen introduction elapsed time was 3000 seconds.

【0074】(圧力依存性)図19は、横軸に水素圧力
H2(bar)をとり、縦軸に試料の歪み変化量Δε
(ppm)をとって、LaNi3.3Co2.1合金形状記憶
複合材料の印加水素圧力と歪み変化量との相関を示す特
性図である。試料温度を309.5±0.5K(一定)
とする条件下で各試料の歪み変化量Δεをそれぞれ測定
した。図中にて四角プロットは真空排気時の歪み変化量
を、黒丸プロットは水素導入開始から10分経過後の歪
み変化量をそれぞれ示した。この図から明らかなよう
に、印加水素圧力が約1barになると試料の歪み変化
量が出現し、水素圧力が1〜2barの範囲において試
料の歪み変化量が大きく変化し、さらに水素圧力が2b
ar以上に上昇すると歪み変化量が飽和して変化が小さ
くなることが判明した。
(Pressure Dependence) In FIG. 19, the horizontal axis represents the hydrogen pressure P H2 (bar), and the vertical axis represents the strain change amount Δε of the sample.
(Ppm) is a characteristic diagram showing the correlation between the applied hydrogen pressure and the strain change amount of the LaNi 3.3 Co 2.1 alloy shape memory composite material. Sample temperature 309.5 ± 0.5K (constant)
The strain change amount Δε of each sample was measured under the following conditions. In the figure, a square plot shows the strain change amount at the time of vacuum evacuation, and a black circle plot shows the strain change amount 10 minutes after the start of hydrogen introduction. As is clear from this figure, when the applied hydrogen pressure becomes about 1 bar, the strain change amount of the sample appears, and the strain change amount of the sample greatly changes in the hydrogen pressure range of 1 to 2 bar.
It was found that the strain change amount saturates and the change becomes smaller when the temperature rises above ar.

【0075】このように体温の温度領域(36.5℃、
309.5K)で、1〜2barの低い水素圧力で大き
な歪み変化を示すことは、LaNi3.3Co2.1合金形状
記憶複合材料を医療用カテーテルに利用した場合に、そ
れが人体に対して実質的に無害であることの1つの証拠
となる。
Thus, the temperature range of body temperature (36.5 ° C.,
At 309.5 K), a large strain change at a low hydrogen pressure of 1-2 bar indicates that when LaNi 3.3 Co 2.1 alloy shape memory composite material is applied to a medical catheter, it is substantially effective for the human body. This is one proof that it is harmless.

【0076】なお、このような圧力依存性は、前出の図
10に示した特性図からも明らかであり、本発明の材料
は1〜3bar程度の低い水素圧力の条件下で形状記憶
効果を発現する。
Such pressure dependence is also apparent from the characteristic diagram shown in FIG. 10 described above, and the material of the present invention exhibits a shape memory effect under the condition of low hydrogen pressure of about 1 to 3 bar. Express.

【0077】(荷重依存性)図20は、横軸に導入水素
圧(PH2)をとり、縦軸に歪み変化量(Δε)をとっ
て、LaNi3.3Co2.1合金形状記憶複合材料試料にか
かる負荷応力を種々変えて導入水素圧(PH2)と歪み変
化量(Δε)との相関を示す特性図である。試料温度を
体温附近である310.0±0.5K(一定)とする条
件下で水素導入開始から10分経過後に各試料の歪み変
化量Δεをそれぞれ測定した。図中にて四角プロットは
水素圧力0.478kPaのときの歪み変化量を、丸プ
ロットは水素圧力0.956kPaのときの歪み変化量
を、三角プロットは水素圧力4.781kPaのときの
歪み変化量を、菱形プロットは水素圧力9.561kP
aのときの歪み変化量をそれぞれ示した。この図から明
らかなように、導入水素圧力が高くなると、歪み変化量
Δεも大きくなることが判明した。一方、試料にかかる
荷重が大きくなると、最大歪み変化量Δεmaxは小さく
なることが認められた。
(Load Dependence) In FIG. 20, the introduced hydrogen pressure (P H2 ) is plotted on the abscissa and the strain change amount (Δε) is plotted on the ordinate, and applied to the LaNi 3.3 Co 2.1 alloy shape memory composite material sample. FIG. 6 is a characteristic diagram showing a correlation between an introduced hydrogen pressure (P H2 ) and a strain change amount (Δε) by changing load stress variously. The strain change amount Δε of each sample was measured 10 minutes after the start of hydrogen introduction under the condition that the sample temperature was 310.0 ± 0.5 K (constant), which is close to the body temperature. In the figure, square plots show strain change amounts when hydrogen pressure is 0.478 kPa, circle plots show strain change amounts when hydrogen pressure is 0.956 kPa, and triangular plots show strain change amounts when hydrogen pressure is 4.781 kPa. The rhombus plot shows hydrogen pressure of 9.561 kP
The amount of change in strain when a is shown. As is clear from this figure, it has been found that the strain change amount Δε increases as the introduced hydrogen pressure increases. On the other hand, it was confirmed that the maximum strain change amount Δεmax decreases as the load applied to the sample increases.

【0078】(応力と最大歪みとの関係)図21は、横
軸に応力σ(kPa)をとり、縦軸に最大歪みΔεmax
(ppm)をとって、水素吸蔵合金形状記憶材料(複合
材料および薄膜)を汎用の形状記憶材料であるNi−T
i合金と比べて応力σと最大歪みΔεmaxとの相関をそ
れぞれ示す特性図である。図中にて四角プロットはNi
−Ti合金の応力−歪み特性を、白丸プロット及び黒丸
プロットは水素吸蔵合金形状記憶薄膜の応力−歪み特性
を、白三角プロット及び黒三角プロットは水素吸蔵合金
分散形状記憶複合材料の応力−歪み特性をそれぞれ示し
た。
(Relationship between stress and maximum strain) In FIG. 21, the horizontal axis represents stress σ (kPa) and the vertical axis represents maximum strain Δεmax.
(Ppm) to obtain a hydrogen storage alloy shape memory material (composite material and thin film) as a general-purpose shape memory material Ni-T
It is a characteristic view which shows the correlation of stress (sigma) and maximum strain (DELTA) (epsilon) max, respectively compared with i alloy. Square plots in the figure are Ni
-The stress-strain characteristics of the Ti alloy, the white circle plots and the black circle plots show the stress-strain characteristics of the hydrogen storage alloy shape memory thin film, and the white triangle plots and the black triangle plots show the stress strain characteristics of the hydrogen storage alloy dispersed shape memory composite material. Are shown respectively.

【0079】白丸プロットと黒丸プロットとの相違は、
前者が負荷荷重Lwを試料全体の総断面積Aで除した応
力σLを示すのに対して、後者が負荷荷重と試料の重量
との和(Lw+Ls)を薄膜部の断面積Atで除した応
力σtを示したものである(図24の式(3),(4)
参照)。また、白三角プロットと黒三角プロットとの相
違は、前者が負荷荷重Lwを試料全体の総断面積Aで除
した応力σLを示すのに対して、後者が負荷荷重と試料
の重量との和(Lw+Ls)を複合材料部の断面積Ac
で除した応力σcを示したものである(図26の式
(7),(8)参照)。
The difference between the white circle plot and the black circle plot is
The former shows the stress σ L obtained by dividing the load Lw by the total cross-sectional area A of the whole sample, while the latter divides the sum of the load and the weight of the sample (Lw + Ls) by the cross-sectional area At of the thin film portion. The stress σ t is shown (equations (3) and (4) in FIG. 24).
reference). The difference between the white triangle plot and the black triangle plot is that the former shows the stress σ L obtained by dividing the load load Lw by the total cross-sectional area A of the entire sample, whereas the latter shows the load load and the sample weight. Sum (Lw + Ls) is the cross-sectional area Ac of the composite material part
27 shows the stress σc divided by (see equations (7) and (8) in FIG. 26).

【0080】この図から明らかなように、水素吸蔵合金
分散形状記憶複合材料はNi−Ti合金に比べて変形に
伴う力は小さいが、最大歪みΔεmaxがNi−Ti合金
のそれに近い値を示し、形状記憶効果による大きな変形
が得られることが期待される。一方、水素吸蔵合金形状
記憶薄膜はNi−Ti合金に比べて歪み変形量は小さい
が、歪み変化に伴う駆動源である薄膜部のみの応力σt
はNi−Ti合金のそれを上回ることが確認された。
As is apparent from this figure, the hydrogen storage alloy dispersed shape memory composite material has a smaller force associated with deformation than the Ni-Ti alloy, but the maximum strain Δεmax shows a value close to that of the Ni-Ti alloy. It is expected that a large deformation due to the shape memory effect will be obtained. On the other hand, the hydrogen storage alloy shape memory thin film has a smaller amount of strain deformation than the Ni—Ti alloy, but the stress σ t of only the thin film portion, which is the drive source, accompanying the strain change
Was confirmed to exceed that of the Ni-Ti alloy.

【0081】図22の(a)は、真空排気後の試料(左
側)、水素ガス導入後(水素圧力3bar)の試料(中
央)、アルゴン希釈水素ガス(Ar+5%H2)雰囲気
に5000秒間曝露したときの試料(右側)をそれぞれ
示す写真である。また、図22の(b)は、横軸に水素
導入開始からの経過時間(秒)をとり、縦軸に歪みε
(ppm)をとって、アルゴン希釈水素ガス(Ar+5
%H2)雰囲気中での試料の歪み変化を示す特性図であ
る。試料温度を37.0±1.0℃(一定)とし、アル
ゴン希釈水素ガス(Ar+5%H2)圧力を1barと
した。図中にて歪みεが約7500ppmのところに引
いた実線は真空排気後の歪み(初期歪み)に該当し、ま
た、白丸プロットはアルゴン希釈水素ガス(Ar+5%
2)を流し続けたときの各時間における試料の歪み測
定値の結果を示した。この図から明らかなように、水素
ガスからアルゴン希釈水素ガス(Ar+5%H2)に切
り替えることにより、複合材料側に分散固定されている
水素吸蔵合金の水素化物形成に伴う体積膨張による小さ
な曲率をもった形状(図22の(a)の中央)から大き
な曲率をもった形状(図22の(a)の右側)に戻るこ
とが確認された。
FIG. 22A shows a sample after vacuum evacuation (left side), a sample after hydrogen gas introduction (hydrogen pressure 3 bar) (center), and exposure to an atmosphere of diluted argon gas (Ar + 5% H 2 ) for 5000 seconds. It is a photograph which shows a sample (right side) when doing. Further, in FIG. 22B, the horizontal axis represents the elapsed time (seconds) from the start of hydrogen introduction, and the vertical axis represents strain ε.
(Ppm) to obtain argon diluted hydrogen gas (Ar + 5
It is a characteristic view showing a strain change of a sample in a% H 2 ) atmosphere. The sample temperature was 37.0 ± 1.0 ° C. (constant), and the argon diluted hydrogen gas (Ar + 5% H 2 ) pressure was 1 bar. In the figure, the solid line drawn at the strain ε of about 7500 ppm corresponds to the strain (initial strain) after evacuation, and the white circle plot shows the argon diluted hydrogen gas (Ar + 5%).
The result of the strain measurement value of the sample at each time when H 2 ) was kept flowing is shown. As is clear from this figure, by switching from hydrogen gas to argon-diluted hydrogen gas (Ar + 5% H 2 ), a small curvature due to volume expansion due to hydride formation of the hydrogen storage alloy dispersed and fixed on the composite material side can be achieved. It was confirmed that the shape having a large curvature (center of FIG. 22A) returned to the shape having a large curvature (right side of FIG. 22A).

【0082】このように水素ガスとアルゴン希釈水素ガ
スとを切り替えて流すことにより、上記第3の実施形態
での医療用ソフトカテーテルを所望の曲率の形状に変形
させることができるようになり、臨床医学の現場で治療
用カテーテルとして非常に有用性が高いものとなる。
By switching and flowing the hydrogen gas and the argon-diluted hydrogen gas in this way, it becomes possible to deform the medical soft catheter in the third embodiment into a shape having a desired curvature. It will be very useful as a therapeutic catheter in the medical field.

【0083】図23は、水素吸蔵合金形状記憶薄膜の歪
み(ε)測定方法を説明するための数式と試料の模式図
である。図中に示したρ,η,df,dsをそれぞれ測定
し、これらの測定値と式(1),(2)とを用いて薄膜
部分(0.2μm)の水素吸蔵に伴う歪み(Δεf)値
を算出した。
FIG. 23 is a schematic diagram of a mathematical formula and a sample for explaining the strain (ε) measuring method of the hydrogen storage alloy shape memory thin film. The ρ, η, d f , and d s shown in the figure were measured, and the strains (0.2 μm) associated with hydrogen absorption of the thin film portion (0.2 μm) were measured using these measured values and equations (1) and (2). The Δε f ) value was calculated.

【0084】図24は、水素吸蔵合金形状記憶薄膜の応
力(σ)算出方法を説明するための数式と試料の模式図
である。図中に示したLw,A,Ls,Atをそれぞれ
測定し、これらの測定値と式(3),(4)とを用いて
試料の総断面積(11.2μm)と薄膜部分(0.2μ
m)の水素吸蔵に伴うσL,σt,値をそれぞれ算出し
た。
FIG. 24 is a schematic diagram of a mathematical formula and a sample for explaining the method of calculating the stress (σ) of the hydrogen storage alloy shape memory thin film. Lw shown in FIG., A, Ls, A t was measured, these measurements and equation (3), (4) and the total cross-sectional area of the sample (11.2 .mu.m) using a thin film portion (0 .2μ
The values of σ L , σ t , and values associated with the hydrogen storage of m) were calculated.

【0085】図25は、水素吸蔵合金分散形状記憶複合
材料の歪み(ε)測定方法を説明するための数式と試料
の模式図である。図中に示したρ,η,d,r,ε0
それぞれ測定し、これらの測定値と式(5),(6)と
を用いて複合材料部分の水素吸蔵に伴う歪み(ε)値を
算出した。
FIG. 25 is a schematic diagram of mathematical expressions and samples for explaining the strain (ε) measuring method of the hydrogen storage alloy dispersed shape memory composite material. Ρ, η, d, r, ε 0 shown in the figure are measured, and the strain (ε) value due to hydrogen storage in the composite material portion is calculated by using these measured values and equations (5) and (6). Was calculated.

【0086】図26は、水素吸蔵合金分散形状記憶複合
材料応力(σ)算出方法を説明するための数式と試料の
模式図である。図中に示したLw,A,Ls,Acをそ
れぞれ測定し、これらの測定値と式(7),(8)とを
用いて試料の総断面積と複合材料部分の水素吸蔵に伴う
σL,σc,値をそれぞれ算出した。
FIG. 26 is a schematic diagram of mathematical expressions and samples for explaining the method for calculating the stress (σ) of the hydrogen storage alloy dispersed shape memory composite material. Lw, A, Ls, and Ac shown in the figure were measured, respectively, and using these measured values and equations (7) and (8), the total cross-sectional area of the sample and σ L accompanying the hydrogen absorption of the composite material portion were measured. , Σc, and the value were calculated.

【0087】[0087]

【発明の効果】本発明によれば、人の体温の温度領域に
おいて強力な形状記憶効果を発現して周囲の生体組織の
抵抗に打ち克って変形することができる強力水素吸蔵合
金形状記憶薄膜および強力水素吸蔵合金形状記憶複合材
料を提供することができる。
EFFECTS OF THE INVENTION According to the present invention, a strong hydrogen storage alloy shape memory thin film capable of exerting a strong shape memory effect in the temperature range of human body temperature and being able to overcome the resistance of surrounding living tissues to be deformed. And a strong hydrogen storage alloy shape memory composite material can be provided.

【0088】また、本発明によれば、生体適合性が良好
であり、人体にやさしいソフトな性質を有し、さらに熱
を加えずに形状記憶効果を発現することができる医療用
ソフトカテーテルを提供することができる。
Further, according to the present invention, there is provided a medical soft catheter which has good biocompatibility, has a soft property that is kind to the human body, and can exert a shape memory effect without applying heat. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の強力水素吸蔵形状記憶合金薄膜の製造
に用いた成膜装置(フラッシュ蒸着装置)の概要を示す
内部透視断面図。
FIG. 1 is an internal perspective sectional view showing an outline of a film forming apparatus (flash vapor deposition apparatus) used for manufacturing a strong hydrogen storage shape memory alloy thin film of the present invention.

【図2】ガラス製の反応管を備えた水素吸蔵形状記憶効
果の測定装置を示す概略構成ブロック図。
FIG. 2 is a schematic configuration block diagram showing a hydrogen storage shape memory effect measuring device equipped with a glass reaction tube.

【図3】試料が水素吸蔵形状記憶効果を示すときの形状
変位(Y/X)の測定方法を説明する断面模式図。
FIG. 3 is a schematic sectional view illustrating a method for measuring shape displacement (Y / X) when a sample exhibits a hydrogen storage shape memory effect.

【図4】(a)は活性化前のLaNi6.5合金薄膜試料
の外観を示す写真、(b)は真空排気時のLaNi6.5
合金薄膜試料の外観を示す写真、(c)は水素導入時の
LaNi6.5合金薄膜試料の外観を示す写真。
4 (a) is a photograph showing the appearance of LaNi 6.5 alloy thin film sample before activation, (b) the LaNi 6.5 during evacuation
Photograph showing the appearance of the alloy thin film sample, (c) is a photograph showing the appearance of the LaNi 6.5 alloy thin film sample when hydrogen is introduced.

【図5】(a)は本発明の強力水素吸蔵合金分散形状記
憶複合材料(真空排気時に曲率を有する形状のLaNi
5合金微粒子/シリコーンゴム複合材料)試料の外観を
示す写真、(b)は水素導入(約2barの水素圧力)
により曲率形状から直線形状に変化した本発明の強力水
素吸蔵合金分散形状記憶複合材料の試料の外観を示す写
真。
FIG. 5 (a) is a strong hydrogen storage alloy dispersed shape memory composite material of the present invention (LaNi having a shape having a curvature during evacuation).
5 alloy fine particles / silicone rubber composite material) Photograph showing the appearance of the sample, (b) hydrogen introduction (hydrogen pressure of about 2 bar)
3 is a photograph showing the appearance of a sample of the strong hydrogen-absorbing alloy dispersed shape memory composite material of the present invention that has changed from a curvature shape to a linear shape by the above.

【図6】(a)〜(d)は本発明の複合材料の形状記憶
メカニズムを説明するための模式図。
6A to 6D are schematic views for explaining the shape memory mechanism of the composite material of the present invention.

【図7】(a)は本発明の強力水素吸蔵合金分散形状記
憶複合材料を用いたソフトカテーテル部材を模式的に示
す斜視図、(b)はソフト形状記憶カテーテルを模式的
に示す斜視図。
FIG. 7A is a perspective view schematically showing a soft catheter member using the strong hydrogen storage alloy dispersed shape memory composite material of the present invention, and FIG. 7B is a perspective view schematically showing a soft shape memory catheter.

【図8】LaNi6.5薄膜の各試料温度における水素導
入開始からの経過時間と形状変位(Y/X)との相関を
示す特性図。
FIG. 8 is a characteristic diagram showing the correlation between the elapsed time from the start of hydrogen introduction and the shape displacement (Y / X) at each sample temperature of the LaNi 6.5 thin film.

【図9】LaNi6.5合金薄膜試料の形状変位(Y/
X)が0.007になるときの温度の逆数(1/T)と
時間の逆数(1/t)との相関を示す特性図。
FIG. 9: Shape displacement of LaNi 6.5 alloy thin film sample (Y /
The characteristic view which shows the correlation of the reciprocal of temperature (1 / T) and the reciprocal of time (1 / t) when (X) becomes 0.007.

【図10】水素吸蔵合金分散形状記憶材料(複合材料)
の水素導入圧力と形状変位(Y/X)との相関を示す特
性図。
FIG. 10: Hydrogen storage alloy dispersed shape memory material (composite material)
FIG. 6 is a characteristic diagram showing the correlation between the hydrogen introduction pressure and the shape displacement (Y / X) of FIG.

【図11】本発明の強力水素吸蔵合金分散形状記憶複合
材料の各試料温度における水素導入時間と形状変位(Y
/X)との相関を示す特性図。
FIG. 11: Hydrogen introduction time and shape displacement (Y) at each sample temperature of the strong hydrogen storage alloy-dispersed shape memory composite material of the present invention.
/ X) is a characteristic diagram showing a correlation with.

【図12】本発明の強力水素吸蔵合金分散形状記憶複合
材料の形状変位(Y/X)が0.0018になるときの
温度の逆数(1/T)と時間の逆数(1/t)との関係
を示す特性図。
FIG. 12 shows the reciprocal of temperature (1 / T) and the reciprocal of time (1 / t) when the shape displacement (Y / X) of the strong hydrogen storage alloy dispersed shape memory composite material of the present invention becomes 0.0018. FIG.

【図13】水素圧力と形状変位(Y/X)との関係を示
す特性線図。
FIG. 13 is a characteristic diagram showing the relationship between hydrogen pressure and shape displacement (Y / X).

【図14】(A)はLaNi3.3Co2.1粉末分散ポリマ
ーを有する複合材料試料(水素放出時)の外観を示す写
真、(B)はLaNi3.3Co2.1粉末分散ポリマーを有
する複合材料試料(水素吸蔵時)の外観を示す写真。
FIG. 14 (A) is a photograph showing the appearance of a composite material sample having a LaNi 3.3 Co 2.1 powder-dispersed polymer (when hydrogen is released), and FIG. 14B is a composite material sample having a LaNi 3.3 Co 2.1 powder-dispersed polymer (hydrogen storage). A photograph showing the appearance of

【図15】(a)〜(d)は本発明の合金薄膜および複
合材料の形状記憶メカニズムをそれぞれ説明するための
模式図。
15A to 15D are schematic views for explaining the shape memory mechanism of the alloy thin film and the composite material of the present invention, respectively.

【図16】LaNi3.3Co2.1合金微粒子分散ポリマー
を有する複合材料の水素吸蔵形状記憶効果を調べた結果
を示す特性図。
FIG. 16 is a characteristic diagram showing the results of examining the hydrogen storage shape memory effect of a composite material having a LaNi 3.3 Co 2.1 alloy fine particle dispersed polymer.

【図17】水素吸蔵合金分散形状記憶複合材料の各試料
温度における水素導入時間と歪み変化量との相関を示す
特性図。
FIG. 17 is a characteristic diagram showing a correlation between hydrogen introduction time and strain change amount at each sample temperature of the hydrogen storage alloy dispersed shape memory composite material.

【図18】水素吸蔵合金分散形状記憶複合材料の各試料
温度と歪み変化量との相関を示す特性図。
FIG. 18 is a characteristic diagram showing the correlation between each sample temperature and the amount of strain change of the hydrogen storage alloy dispersed shape memory composite material.

【図19】水素吸蔵合金分散形状記憶複合材料の印加水
素圧力と歪み変化量との相関を示す特性図。
FIG. 19 is a characteristic diagram showing a correlation between an applied hydrogen pressure and a strain change amount of a hydrogen storage alloy dispersed shape memory composite material.

【図20】各負荷応力における導入水素圧(PH2)と歪
み変化量(Δε)との相関を示す特性図。
FIG. 20 is a characteristic diagram showing a correlation between introduced hydrogen pressure (P H2 ) and strain change amount (Δε) at each load stress.

【図21】Ni−Ti合金および水素吸蔵合金形状記憶
材料(バイポリマー)における応力σと最大歪み変化量
Δεmaxとの相関をそれぞれ示す特性図。
FIG. 21 is a characteristic diagram showing the correlation between the stress σ and the maximum strain change amount Δεmax in the Ni—Ti alloy and the hydrogen storage alloy shape memory material (bipolymer).

【図22】(a)は真空排気後の試料(左側)、水素ガ
ス導入後の試料(中央)、アルゴン希釈水素ガス(Ar
+5%H2)雰囲気に5000秒間曝露したときの試料
(右側)をそれぞれ示す写真、(b)はアルゴン希釈水
素ガス(Ar+5%H2)雰囲気中での試料の歪み変化
を示す特性図。
FIG. 22 (a) is a sample after vacuum evacuation (left side), a sample after hydrogen gas introduction (center), and argon diluted hydrogen gas (Ar).
Photographs showing the sample (right side) when exposed to + 5% H 2 ) atmosphere for 5000 seconds, (b) is a characteristic diagram showing the strain change of the sample in an argon diluted hydrogen gas (Ar + 5% H 2 ) atmosphere.

【図23】水素吸蔵合金形状記憶薄膜の歪み(ε)測定
方法を説明するための数式と試料の模式図。
FIG. 23 is a schematic diagram of a mathematical formula and a sample for explaining a strain (ε) measuring method of a hydrogen storage alloy shape memory thin film.

【図24】水素吸蔵合金形状記憶薄膜の応力(σ)算出
方法を説明するための数式と試料の模式図。
FIG. 24 is a schematic diagram of a mathematical formula and a sample for explaining a stress (σ) calculation method of a hydrogen storage alloy shape memory thin film.

【図25】水素吸蔵合金分散形状記憶複合材料の歪み
(ε)測定方法を説明するための数式と試料の模式図。
FIG. 25 is a schematic diagram of a mathematical formula and a sample for explaining a strain (ε) measuring method of a hydrogen storage alloy dispersed shape memory composite material.

【図26】水素吸蔵合金分散形状記憶複合材料応力
(σ)算出方法を説明するための数式と試料の模式図。
FIG. 26 is a schematic diagram of a mathematical formula and a sample for explaining a method for calculating a stress (σ) of a hydrogen storage alloy dispersed shape memory composite material.

【符号の説明】[Explanation of symbols]

1…成膜装置(フラッシュ蒸着装置)、 2…真空容器、 3…排気路、 4…フラッシュ加熱ユニット、 5…ヒータ、6…原料粉、7,11…ポスト、8,9…
絶縁部材、 10…ホッパー、 17…ガイドポスト、 18…昇降部材、 19…支持板、 20…試料保持部、 21…モータ、22…駆動軸、23…ホルダ、24…カ
バー、 29…基板(試料)、 30…高分子材料(シリコーンゴム基板)、 31…形状記憶合金と高分子材料(シリコーンゴム)と
の混合材料、 32…複合化試料、 32A…複合化材料、 33…ガス導入流路、 34…ガス放出流路、 35…仕切、 36…ソフトカテーテル、 40…測定装置、 41…加熱容器、42…蓋、43…管、44a〜44c
…バルブ、 45…ロータリポンプ、 46…水素ガスボンベ、 47…温度計、 48…圧力計、 49…ビデオカメラ。
DESCRIPTION OF SYMBOLS 1 ... Film-forming apparatus (flash vapor deposition apparatus), 2 ... Vacuum container, 3 ... Exhaust path, 4 ... Flash heating unit, 5 ... Heater, 6 ... Raw material powder, 7, 11 ... Post, 8, 9 ...
Insulating member, 10 ... Hopper, 17 ... Guide post, 18 ... Elevating member, 19 ... Support plate, 20 ... Sample holding part, 21 ... Motor, 22 ... Drive shaft, 23 ... Holder, 24 ... Cover, 29 ... Substrate (sample ), 30 ... Polymer material (silicone rubber substrate), 31 ... Mixed material of shape memory alloy and polymer material (silicone rubber), 32 ... Composite sample, 32A ... Composite material, 33 ... Gas introduction channel, 34 ... Gas discharge flow path, 35 ... Partition, 36 ... Soft catheter, 40 ... Measuring device, 41 ... Heating container, 42 ... Lid, 43 ... Tube, 44a to 44c
... Valve, 45 ... Rotary pump, 46 ... Hydrogen gas cylinder, 47 ... Thermometer, 48 ... Pressure gauge, 49 ... Video camera.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢部 洋正 神奈川県平塚市北金目1117 東海大学大学 院工学研究科内 (72)発明者 キム・ビョンスク 神奈川県平塚市北金目1117 東海大学大学 院工学研究科内 Fターム(参考) 4C081 AC08 CA271 CA272 CG04 DC03 4C167 AA01 BB02 BB07 BB37 BB51 CC04 EE03 FF01 GG02 GG03 GG23 GG26 GG32 GG42 HH30   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiromasa Yabe             1117 Kitakaneme, Hiratsuka-shi, Kanagawa Tokai University             Graduate School of Engineering (72) Inventor Kim Byung-suk             1117 Kitakaneme, Hiratsuka-shi, Kanagawa Tokai University             Graduate School of Engineering F-term (reference) 4C081 AC08 CA271 CA272 CG04                       DC03                 4C167 AA01 BB02 BB07 BB37 BB51                       CC04 EE03 FF01 GG02 GG03                       GG23 GG26 GG32 GG42 HH30

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 物理気相法、化学気相法又は物理化学的
な気相法のいずれかを用いて基板上に積層して得られた
LaNix系合金からなることを特徴とする強力水素吸
蔵合金形状記憶薄膜。
1. A strong hydrogen storage characterized by comprising a LaNix-based alloy obtained by laminating on a substrate using any one of a physical vapor phase method, a chemical vapor phase method and a physicochemical vapor phase method. Alloy shape memory thin film.
【請求項2】 化学量論的な係数xを4〜7の範囲とす
ることを特徴とする請求項1記載の薄膜。
2. The thin film according to claim 1, wherein the stoichiometric coefficient x is in the range of 4 to 7.
【請求項3】 LaNi5合金からなることを特徴とす
る請求項1記載の薄膜。
3. The thin film according to claim 1, which is made of a LaNi 5 alloy.
【請求項4】 LaNi6.5合金からなることを特徴と
する請求項1記載の薄膜。
4. The thin film according to claim 1, which is made of LaNi 6.5 alloy.
【請求項5】 さらにCoを含むLaNixCoy合金
からなることを特徴とする請求項1記載の薄膜。
5. The thin film according to claim 1, further comprising a LaNixCoy alloy containing Co.
【請求項6】 化学量論的な係数xを3〜4の範囲と
し、かつ化学量論的な係数yを1.5〜2.5の範囲と
することを特徴とする請求項5記載の薄膜。
6. The stoichiometric coefficient x is in the range of 3 to 4, and the stoichiometric coefficient y is in the range of 1.5 to 2.5. Thin film.
【請求項7】 LaNi3.3Co2.1合金からなることを
特徴とする請求項5又は6のいずれか1記載の薄膜。
7. The thin film according to claim 5, which is made of a LaNi 3.3 Co 2.1 alloy.
【請求項8】 膜厚を1μm以下とすることを特徴とす
る請求項1乃至7のうちのいずれか1記載の薄膜。
8. The thin film according to claim 1, wherein the film thickness is 1 μm or less.
【請求項9】 LaNix系合金の微粒子を高分子材料
中に分散させて複合化したことを特徴とする強力水素吸
蔵合金形状記憶複合材料。
9. A strong hydrogen storage alloy shape memory composite material, characterized in that fine particles of LaNix alloy are dispersed in a polymer material to form a composite.
【請求項10】 前記合金の微粒子は、平均粒径が1〜
40μmの範囲の微粒子からなることを特徴とする請求
項9記載の複合材料。
10. The fine particles of the alloy have an average particle size of 1 to
The composite material according to claim 9, wherein the composite material comprises fine particles in the range of 40 μm.
【請求項11】 前記高分子材料は、シリコーンゴムか
らなることを特徴とする請求項9記載の複合材料。
11. The composite material according to claim 9, wherein the polymer material is made of silicone rubber.
【請求項12】 前記合金の微粒子は、化学量論的な係
数xを4〜7の範囲とすることを特徴とする請求項9記
載の複合材料。
12. The composite material according to claim 9, wherein the fine particles of the alloy have a stoichiometric coefficient x in the range of 4 to 7.
【請求項13】 前記合金の微粒子は、LaNi5合金
からなることを特徴とする請求項9記載の複合材料。
13. The composite material according to claim 9, wherein the fine particles of the alloy are made of LaNi 5 alloy.
【請求項14】 前記合金の微粒子は、LaNi6.5
金からなることを特徴とする請求項9記載の複合材料。
14. The composite material according to claim 9, wherein the fine particles of the alloy are made of LaNi 6.5 alloy.
【請求項15】 前記合金の微粒子は、さらにCoを含
むLaNixCoy合金からなることを特徴とする請求
項9記載の複合材料。
15. The composite material according to claim 9, wherein the fine particles of the alloy are made of LaNixCoy alloy further containing Co.
【請求項16】 前記合金の微粒子は、化学量論的な係
数xを3〜4の範囲とし、かつ化学量論的な係数yを
1.5〜2.5の範囲とすることを特徴とする請求項1
5記載の複合材料。
16. The fine particles of the alloy have a stoichiometric coefficient x in the range of 3 to 4 and a stoichiometric coefficient y in the range of 1.5 to 2.5. Claim 1
5. The composite material according to item 5.
【請求項17】 前記合金の微粒子は、LaNi3.3
2.1合金からなることを特徴とする請求項15記載の
複合材料。
17. The fine particles of the alloy are LaNi 3.3 C.
o Composite material according to claim 15, characterized in that it consists of a 2.1 alloy.
【請求項18】 水素ガス又は水素含有ガスが通流する
中空部を有し、上記の請求項9〜17のうちのいずれか
1項に記載された複合材料からなる第1のエレメント
と、前記第1のエレメントの中空部を通流した水素ガス
又は水素含有ガスが通流する中空部を有し、前記第1の
エレメントに接着された高分子材料からなる第2のエレ
メントと、を具備することを特徴とする医療用ソフトカ
テーテル。
18. A first element made of the composite material according to any one of claims 9 to 17 having a hollow portion through which hydrogen gas or hydrogen-containing gas flows, and A second element having a hollow portion through which the hydrogen gas or the hydrogen-containing gas that has flowed through the hollow portion of the first element flows and which is made of a polymer material and is bonded to the first element; A medical soft catheter characterized by the following.
【請求項19】 前記第1及び第2のエレメントは半円
筒状に形成され、該半円筒状の第1及び第2のエレメン
トの腹側平面を接着して円筒状のエレメントアッセンブ
リとし、該エレメントアッセンブリを複数本束ねてなる
ことを特徴とする請求項19記載のカテーテル。
19. The first and second elements are formed in a semi-cylindrical shape, and the ventral planes of the semi-cylindrical first and second elements are bonded to form a cylindrical element assembly. 20. The catheter according to claim 19, wherein a plurality of assemblies are bundled.
JP2001304340A 2001-09-28 2001-09-28 Shape memory thin film composed of strongly hydrogen absorbing alloy, shape memory composite material composed of strongly hydrogen absorbing alloy, and soft catheter for medical use Pending JP2003102828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001304340A JP2003102828A (en) 2001-09-28 2001-09-28 Shape memory thin film composed of strongly hydrogen absorbing alloy, shape memory composite material composed of strongly hydrogen absorbing alloy, and soft catheter for medical use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001304340A JP2003102828A (en) 2001-09-28 2001-09-28 Shape memory thin film composed of strongly hydrogen absorbing alloy, shape memory composite material composed of strongly hydrogen absorbing alloy, and soft catheter for medical use

Publications (1)

Publication Number Publication Date
JP2003102828A true JP2003102828A (en) 2003-04-08

Family

ID=19124280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001304340A Pending JP2003102828A (en) 2001-09-28 2001-09-28 Shape memory thin film composed of strongly hydrogen absorbing alloy, shape memory composite material composed of strongly hydrogen absorbing alloy, and soft catheter for medical use

Country Status (1)

Country Link
JP (1) JP2003102828A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147003A (en) * 2005-11-29 2007-06-14 Nagasaki Univ Hydrogen storage alloy actuator and hydrogen storing material for the same
CN106938468A (en) * 2017-05-09 2017-07-11 重庆交通大学 Composite flooding shoulder joint
CN113059156A (en) * 2019-12-13 2021-07-02 中南大学 Adjustable deformation composite structure utilizing hydrogen induced expansion effect and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147003A (en) * 2005-11-29 2007-06-14 Nagasaki Univ Hydrogen storage alloy actuator and hydrogen storing material for the same
JP4734638B2 (en) * 2005-11-29 2011-07-27 国立大学法人 長崎大学 Hydrogen storage alloy actuator
CN106938468A (en) * 2017-05-09 2017-07-11 重庆交通大学 Composite flooding shoulder joint
CN113059156A (en) * 2019-12-13 2021-07-02 中南大学 Adjustable deformation composite structure utilizing hydrogen induced expansion effect and preparation method and application thereof
US11965493B2 (en) 2019-12-13 2024-04-23 Central South University Adjustable deforming composite structure based on hydrogen-induced expansion effect and preparation method therefor

Similar Documents

Publication Publication Date Title
CA2523294C (en) Shape memory alloy articles with improved fatigue performance and methods therefore
Schmidt et al. Hydrogen solubility and diffusion in the shape-memory alloy NiTi
Ng et al. Stress-induced phase transformation and detwinning in NiTi polycrystalline shape memory alloy tubes
EP1557258B1 (en) Radially expandable tubular polytetrafluoroethylene grafts and method of making same
US7771512B2 (en) Apparatus with high surface area nanostructures for hydrogen storage, and methods of storing hydrogen
US20110196473A1 (en) Methods for making an encapsulated stent and intraluminal delivery thereof
Torrisi The NiTi superelastic alloy application to the dentistry field
EP1562519A2 (en) Medical devices
JPH05506594A (en) Fixed pressure recessed pump reservoir
JP2003102828A (en) Shape memory thin film composed of strongly hydrogen absorbing alloy, shape memory composite material composed of strongly hydrogen absorbing alloy, and soft catheter for medical use
Baradararan et al. Biphasic calcium phosphate (BCP) macroporous scaffold with different ratios of HA/β-TCP by combination of gel casting and polymer sponge methods
WO2000025742A1 (en) Expandable gastroretentive therapeutical system with prolonged stomach retention time
US20180296494A1 (en) Methods to enhance bioavavailability of organic small molecules and deposited films made therefrom
Noble et al. Digital drug delivery: On–off ultrasound controlled antibiotic release from coated matrices with negligible background leaching
Baughman et al. Negative thermal expansion of a polydiacetylene single crystal
CN107723680B (en) A kind of preparation method of the regulatable Mg alloy surface multi-stage nano coating of corrosion resistance
Pineda-Castillo et al. Effects of Carbon Nanotube Infiltration on a Shape Memory Polymer‐Based Device for Brain Aneurysm Therapeutics: Design and Characterization of a Joule‐Heating Triggering Mechanism
CN103619365A (en) Methods of stabilizing molecular weight of polymer stents after sterilization
EP1791152A1 (en) Metallic gas sorbents on the basis of lithium alloys
Reiter et al. Interaction of hydrogen isotopes with stainless steel 316 L
Yen et al. Elasticity of small pulmonary veins in the cat
EP1980270A2 (en) Agent for photodynamic therapy containing porous silicon and method of quantitative measurement of reactive oxygen species produced therefrom
EP2674623B1 (en) Method and device for metered dispensing of a fluid
JP6397204B2 (en) Metal porous body
US20030226411A1 (en) Pressure indicator