JP2003102687A - Ophthalmic refractive power measuring instrument - Google Patents

Ophthalmic refractive power measuring instrument

Info

Publication number
JP2003102687A
JP2003102687A JP2001338607A JP2001338607A JP2003102687A JP 2003102687 A JP2003102687 A JP 2003102687A JP 2001338607 A JP2001338607 A JP 2001338607A JP 2001338607 A JP2001338607 A JP 2001338607A JP 2003102687 A JP2003102687 A JP 2003102687A
Authority
JP
Japan
Prior art keywords
refractive power
cornea
light
pattern
eye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001338607A
Other languages
Japanese (ja)
Inventor
Toshiyuki Suzuki
敏行 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomey Corp
Original Assignee
Tomey Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomey Corp filed Critical Tomey Corp
Priority to JP2001338607A priority Critical patent/JP2003102687A/en
Publication of JP2003102687A publication Critical patent/JP2003102687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and device for presenting the refractive power distribution of a human eye by the distribution of refractive power represented by each position on a cornea. SOLUTION: In an instrument for irradiating an eyeground with a specific pattern, guiding reflected light therefrom to a photodetective element by a photodetective optical system incorporated in the instrument and measuring the refractive power distribution of the human eye from a reflection pattern obtained on the element, two kinds of multiplex ring patterns where a specific pattern repeats transmission/shielding alternately as multiplex ring patterns form images on the cornea and on the eyeground. Due to the fact that the position of the pattern on the cornea and the position of the pattern on the eyeground correspond to each other, one to one, the ophthalmic refractive power measuring instrument presents a refractive power obtained from the eyeground pattern as a distribution on the cornea.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、眼科/眼鏡分野におけ
る人眼の屈折力を他覚的に自動で測定する眼屈折力測定
装置(通称オートレフ)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eye-refractive-power measuring device (commonly called "autoref") for objectively and automatically measuring the refractive power of the human eye in the field of ophthalmology / glasses.

【0002】[0002]

【従来技術】特定の光束を人眼内に照射し、被検者の眼
底からの反射光を検知し、この反射光の情報を用いて演
算を行い、人眼の屈折力を測定するオートレフには、種
々な方法が実現されている。例えば、入射光では連続光
を用いる装置と断続光を用いる装置があり、受光する側
でも眼底からの反射光を面で受けるもの/線で受けるも
の/点で受けるものという違いがある。測定対象も像の
大きさを測るものと移動像の時間差を測るものにも分け
られる。そして受光面に結像を合致させるかさせないか
等、測定をより早く正確にするために幾多の改良がなさ
れてきている。
2. Description of the Related Art An autoref that measures the refractive power of the human eye by irradiating a specific light beam into the human eye, detecting the reflected light from the fundus of the subject, and performing calculation using the information of this reflected light. Have been implemented in various ways. For example, there are a device that uses continuous light and a device that uses intermittent light as incident light, and there is a difference even on the light receiving side that the reflected light from the fundus is received by a surface / received by a line / received by a point. The measurement target is also divided into those that measure the size of the image and those that measure the time difference between the moving images. A number of improvements have been made to make the measurement faster and more accurate, such as whether or not the image is formed on the light receiving surface.

【0003】しかしながら、従来のオートレフは、角膜
のある位置での屈折力情報、すなわち、人眼の角膜の一
定位置に代表される球面度数、柱面度数及びその軸角度
を与えるものであり、角膜広範囲にわたって、それぞれ
の角膜位置に代表される人眼の屈折力分布を測定するこ
とはできなかった。
However, the conventional autoreflector gives the refractive power information at a certain position of the cornea, that is, the spherical power, the cylindrical power and the axial angle thereof, which are typified by a fixed position of the cornea of the human eye. It was not possible to measure the refractive power distribution of the human eye represented by each corneal position over a wide range.

【0004】[0004]

【発明が解決しようとする課題】本発明は、角膜の広範
囲にわたり、それぞれの位置で代表される人眼の屈折力
を測定し、人眼の角膜上での屈折力分布情報を提供する
ことである。
DISCLOSURE OF THE INVENTION The present invention is to measure the refractive power of the human eye represented by the respective positions over a wide range of the cornea and provide information on the refractive power distribution on the cornea of the human eye. is there.

【0005】[0005]

【課題を解決するための手段】人眼内に測定のための光
を照射する投光光学系と、人眼の眼底からの反射光を検
知する受光光学系と、人眼の角膜を見るための観察光学
系と、被検者が常にリラックスし測定時に調節作用をお
こさないための雲霧光学系と、情報を画像処理して屈折
力を算出する処理系を基本的に内蔵するオートレフにお
いて、以下の手段を有する装置を提供する。
[Means for Solving the Problems] A projection optical system for irradiating light for measurement into the human eye, a light receiving optical system for detecting reflected light from the fundus of the human eye, and a cornea of the human eye In the autoref that basically has the observation optical system, the fog optical system that the subject is always relaxed and does not cause the adjustment action during measurement, and the processing system that performs image processing of information to calculate the refractive power, An apparatus having the above-mentioned means is provided.

【0006】投光光学系には、測定光源と、そこからの
光束を集光し人眼に導く集光光学部を有する。この集光
光学部の中に角膜位置に特定パターンを結像させるため
の絞り1と、眼底位置に特定パターンを結像させるため
の絞り2があり、それぞれの絞り1、2の特定パターン
の形状は角膜を広範囲で測定するための多重リング構造
をもち、特に眼底結像用の絞り2は投光光学部の焦点位
置におかれる。
The projecting optical system has a measuring light source and a condensing optical section for condensing the light flux from the measuring light source and guiding it to the human eye. In this condensing optical unit, there are a diaphragm 1 for forming a specific pattern at a corneal position and a diaphragm 2 for forming a specific pattern at a fundus position, and the shapes of the specific patterns of the respective diaphragms 1 and 2. Has a multi-ring structure for measuring the cornea in a wide range, and in particular, the diaphragm 2 for forming a fundus image is placed at the focal position of the projection optical unit.

【0007】受光光学系には、眼底からの反射光を集光
し結像させる結像光学部と、眼底反射像を検知する平面
受光素子からなり、平面受光素子部は眼底からのパター
ンが最良に受光できるようにモーターに接続され一定方
向に動く合致移動(フォーカシング)機構を有してい
る。なお受光光学系と投光光学系はそれぞれがより効率
的に照射/受光を行うため、ハーフミラーで分離されて
いる。処理系は、受光素子で選られたパターン形状から
画像解析をすることにより、人眼の屈折力分布を計算す
るのである。
The light receiving optical system comprises an image forming optical section for collecting and forming an image of reflected light from the fundus of the eye, and a flat light receiving element for detecting a reflected image of the fundus of the eye. It has a matching movement mechanism that is connected to a motor so that it can receive light and moves in a certain direction. The light receiving optical system and the light projecting optical system are separated by a half mirror in order to more efficiently irradiate / receive light. The processing system calculates the refractive power distribution of the human eye by performing image analysis from the pattern shape selected by the light receiving element.

【0008】[0008]

【作用】測定光源から照射された光は、投光光学系の絞
り1、2を透過し、角膜、眼底に絞りのパターンを結像
させる。この時、角膜上のパターンと眼底のパターンは
1対1に対応する。これは測定光学系及び人眼のもつ光
軸対称性によるためである。つまり、眼底の屈折力情報
は眼底上のパターンの大きさで表わされると同時に、相
対する角膜上の位置にも相当するのである。
The light emitted from the measuring light source passes through the diaphragms 1 and 2 of the projection optical system and forms a pattern of the diaphragm on the cornea and the fundus of the eye. At this time, the pattern on the cornea and the pattern on the fundus of the eye have a one-to-one correspondence. This is because of the optical axis symmetry of the measuring optical system and the human eye. That is, the refractive power information of the fundus is represented by the size of the pattern on the fundus and, at the same time, corresponds to the position on the cornea opposite to the pattern.

【0009】眼底で反射され受光素子上に結像されたパ
ターン像は被検者の屈折力情報をもち、これを装置内蔵
あるいは外部の情報処理機器で画像処理し、変位量を解
析することで角膜の各特定位置に代表される屈折力を計
算するのである。この時、より画像の認識精度をあげる
ため受光素子はモーターに接続され、パターン分布の最
大高さを求めて移動できる。
The pattern image reflected on the fundus and formed on the light receiving element has information on the refractive power of the subject, and the amount of displacement is analyzed by image processing of this information by an information processing device built in the apparatus or external. The refractive power represented by each specific position of the cornea is calculated. At this time, the light receiving element is connected to a motor in order to improve the recognition accuracy of the image, and can be moved by obtaining the maximum height of the pattern distribution.

【0010】[0010]

【実施例】以下、本発明の眼科装置の実施形態につい
て、図面を参照しつつ詳述する。本実施例の広範囲測定
方法は、角膜表面の複数の所定位置においてその位置か
ら入射した光線による屈折力を計算するもので、これら
のデータを総合的に評価することで、角膜上の屈折力の
分布がわかるのである。
Embodiments of the ophthalmologic apparatus of the present invention will be described in detail below with reference to the drawings. The wide-range measurement method of the present example calculates the refractive power of light rays incident from the plurality of predetermined positions on the corneal surface, and by comprehensively evaluating these data, the refractive power on the cornea can be calculated. You can see the distribution.

【0011】図1は本発明を織り込んだオートレフの光
学系の実施例である。1は投光光学系、2は受光光学
系、3は雲霧光学系で、4は観察光学系を表わす。投光
光学系1を図2を用いて説明する。10は人眼(焦点距
離f0)、12は対物レンズ(f1)、13はリング絞
り1、14は投光レンズ(f2),15はリング絞り
2、そして16は点光源を表わしている。ここに、1
3、15のリング絞りは図4で示されたような複数のリ
ングパターンをもつ。リング絞り13は人眼の眼底に、
リング絞り15は角膜に結像する配置になっている。図
2のように、リング絞り上の各リングの半径h2i、h
1iと、人眼での結像パターンの半径H1i、H2iと
は以下の関係式で結ばれる。ここにm1は人眼から見た
対物レンズ12の結像倍率を、bは絞りと投光レンズ間
の長さを示す。 H1i=((m1・f2/(m1・f1−f2−b))・h1i...(1) H2i=(f0/f1)・h2i....(2)
FIG. 1 shows an embodiment of an optical system for an auto reflex incorporating the present invention. Reference numeral 1 is a projection optical system, 2 is a light receiving optical system, 3 is a fog optical system, and 4 is an observation optical system. The projection optical system 1 will be described with reference to FIG. Reference numeral 10 is a human eye (focal length f0), 12 is an objective lens (f1), 13 is a ring diaphragm 1, 14 is a projection lens (f2), 15 is a ring diaphragm 2, and 16 is a point light source. Here 1
The ring diaphragms 3 and 15 have a plurality of ring patterns as shown in FIG. The ring diaphragm 13 is located on the fundus of the human eye.
The ring diaphragm 15 is arranged to form an image on the cornea. As shown in FIG. 2, the radii h2i, h of each ring on the ring diaphragm
1i and the radii H1i and H2i of the image formation pattern for the human eye are connected by the following relational expression. Here, m1 indicates the image forming magnification of the objective lens 12 as seen from the human eye, and b indicates the length between the diaphragm and the light projecting lens. H1i = ((m1.f2 / (m1.f1-f2-b)). H1i ... (1) H2i = (f0 / f1) .h2i ... (2)

【0012】なお、光源の絞りからの長さaと、この像
の眼前距離t(光源の結像位置P)とは、ここでは詳細
説明をしないが幾何光学の計算で関連づけられる。tの
距離の取り方により、眼底H2iの大きさをかえること
ができる。
The length a from the aperture of the light source and the in-eye distance t of this image (image forming position P of the light source) are related to each other in the calculation of geometrical optics, although not described in detail here. The size of the fundus H2i can be changed by changing the distance t.

【0013】図3では受光光学系2が示され、21は対
物レンズ(f3)、22は角膜反射防止絞り、23は結
像レンズ(f4)、24は受光素子をそれぞれ表わして
いる。受光素子24上での結像高さをYi、受光対物レ
ンズの結像倍率をm2とするとこのYiはH2iと次の
関係式で結ばれる。 Yi=f4・H2i/m2/(f0+x)....(3) ここに、xは人眼の屈折力Dに依存する量で、xとDは
次式のように関係づけられる。 x=D・f0・f0/(1000−D・f0)....(4)
In FIG. 3, a light receiving optical system 2 is shown, 21 is an objective lens (f3), 22 is a corneal antireflection diaphragm, 23 is an image forming lens (f4), and 24 is a light receiving element. If the image forming height on the light receiving element 24 is Yi and the image forming magnification of the light receiving objective lens is m2, this Yi is connected to H2i by the following relational expression. Yi = f4 · H2i / m2 / (f0 + x). . . . (3) Here, x is an amount depending on the refractive power D of the human eye, and x and D are related by the following equation. x = D · f0 · f0 / (1000−D · f0). . . . (4)

【0014】こうして、受光素子上の各リング径を経線
毎に計算することから人眼の全屈折力を計算できるので
あるが、実際には、予め値のわかっている模義眼を複数
個用意し、その模義眼毎に受光素子で得られるパターン
の数値を登録しておき、実際のパターンの大きさと登録
パターンの大きさとを比較することで屈折力を算出す
る。こうすることで、光学部品の製作誤差及び組立調整
誤差に無関係に、基準模義眼で校正された装置が製作で
きるのである。
In this way, the total refractive power of the human eye can be calculated by calculating each ring diameter on the light receiving element for each meridian. In practice, however, a plurality of simulated eyes whose values are known in advance are prepared. The numerical value of the pattern obtained by the light receiving element is registered for each of the simulated eyes, and the refractive power is calculated by comparing the actual pattern size with the registered pattern size. By doing so, it is possible to manufacture a device calibrated with a reference eye, irrespective of the manufacturing error and assembly adjustment error of the optical component.

【0015】ここで計算されたリング上のある一点の屈
折力は、そのリングに1対1に対応する角膜位置の値と
なり、全リングの値を計算することで、全角膜位置での
屈折力分布を求めることと同値になる。つまり、角膜上
の対応するH1iの位置に、屈折力H2i(受光素子上
ではYi)を対応させるのである。
The refractive power of a certain point on the ring calculated here becomes the value of the corneal position corresponding to the ring one by one, and by calculating the values of all the rings, the refractive power at the whole corneal position is calculated. It is equivalent to finding the distribution. That is, the refractive power H2i (Yi on the light receiving element) is made to correspond to the corresponding position H1i on the cornea.

【0016】本装置と被検眼との位置関係は、観察光学
系4により、受光対物レンズ21、観察結像レンズ42
を経て観察用撮像素子43に導かれる。この撮像素子の
画像が本発明では図示されていない別のモニターに写さ
れるのであるが、このモニターには角膜位置に相当する
ところにマークがつけられていてこの位置に角膜画像を
合せることで人眼の本装置との位置関係を確認するので
ある。
The positional relationship between the present apparatus and the eye to be inspected is determined by the observation optical system 4 by the light receiving objective lens 21 and the observation imaging lens 42.
And is guided to the image pickup device 43 for observation. The image of this image sensor is displayed on another monitor (not shown) in the present invention, and a mark is attached to this monitor at a position corresponding to the corneal position. The positional relationship between the human eye and this device is confirmed.

【0017】雲霧光学系3では、34のターゲット視標
が雲霧結像レンズ33、対物レンズ21を通して眼底に
結像されるようになっている。視標34は被検眼の屈折
力に対応して移動するのであるが、この量は受光素子2
4の移動に対応した量だけ移動し、被検者がじっと見つ
めることのないようにあらかじめ2〜3Dの屈折力の分
だけ遠目に設定されている。この機能により、測定中に
被検者は視標を凝視することなくリラックスして固視で
きるのである。
In the fog optical system 3, the target target 34 is imaged on the fundus through the fog imaging lens 33 and the objective lens 21. The optotype 34 moves in accordance with the refractive power of the eye to be inspected.
The distance is moved by an amount corresponding to the movement of 4 and is set to a distance far in advance by a refractive power of 2 to 3D so that the subject does not stare. This function allows the subject to relax and fixate his eyes during the measurement without staring at the target.

【0018】[0018]

【発明の効果】本発明は、近年の屈折矯正手術におい
て、屈折力分布を測定するために用いられ、しかもその
分布を角膜の上での分布で示すことができるため、手術
により角膜表面の切削手術を行う場合には有効にはたら
くのである。また、被検者の視力を測定する場合に、屈
折力分布の影響による各種の収差を評価することがで
き、よりよい視力を得るためにも有効に使用できるので
ある。
INDUSTRIAL APPLICABILITY The present invention is used for measuring refractive power distribution in recent refractive surgery, and since the distribution can be shown by distribution on the cornea, cutting of the corneal surface by surgery is performed. It works well when performing surgery. Further, when measuring the visual acuity of the subject, various aberrations due to the influence of the refractive power distribution can be evaluated, and it can be effectively used to obtain better visual acuity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態としての眼科装置の構造を
概略的に示す図である。
FIG. 1 is a diagram schematically showing the structure of an ophthalmologic apparatus according to an embodiment of the present invention.

【図2】本発明の一実施形態としての投光光学系を示す
図である。
FIG. 2 is a diagram showing a projection optical system as an embodiment of the present invention.

【図3】本発明の一実施形態としての受光光学系示す図
である。
FIG. 3 is a diagram showing a light receiving optical system as an embodiment of the present invention.

【図4】本発明の一実施形態としてのリングパターンを
示す図である。 1 投光光学系 2 受光光学系 3 雲霧光学系 4 観察光学系 10 人眼 11 ハーフミラー 12 対物レンズ 13 リング絞り(眼底) 14 投光リレーレンズ 15 リング絞り(角膜) 16 測定光源 21 対物レンズ 22 角膜反射絞り 23 受光結像レンズ 24 受光素子 31 ハーフミラー 32 角膜反射絞り 33 雲霧結像レンズ 34 視標 41 反射ミラー 42 観察結像レンズ 43 撮像素子
FIG. 4 is a diagram showing a ring pattern as an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 Projection optical system 2 Receiving optical system 3 Fog optical system 4 Observation optical system 10 Human eye 11 Half mirror 12 Objective lens 13 Ring diaphragm (fundus) 14 Projection relay lens 15 Ring diaphragm (cornea) 16 Measurement light source 21 Objective lens 22 Corneal reflection diaphragm 23 Light receiving imaging lens 24 Light receiving element 31 Half mirror 32 Corneal reflection diaphragm 33 Cloud fog imaging lens 34 Visual target 41 Reflecting mirror 42 Observation imaging lens 43 Imaging element

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被測定者の眼底と角膜にそれぞれ特定パ
ターンを結像させるように入射する投光系を有し、その
眼底からの反射パターン像から人眼の屈折力分布と角膜
の通過点とを同時に求める受光処理系を備えたことを特
徴とした眼屈折力測定装置。
1. A refraction power distribution of a human eye and a passage point of a cornea from a reflection pattern image incident on a fundus of a subject and a cornea so as to form a specific pattern respectively. An eye-refractive-power measuring device having a light-receiving processing system for simultaneously obtaining and.
【請求項2】 照射する特定パターンが、光の透過/遮
光を交互に繰り返す多重リング上のスリット絞りである
ことを特長とした請求項1に記載の眼屈折力測定装置。
2. The eye refractive power measuring device according to claim 1, wherein the specific pattern to be irradiated is a slit diaphragm on a multiple ring that alternately repeats light transmission / light blocking.
【請求項3】 眼底からの反射像を受光する素子が2次
元素子であり、反射像の合焦位置に合せて移動可能にし
たことを特長とした請求項1に記載の眼屈折力測定装
置。
3. The eye refractive power measuring device according to claim 1, wherein the element that receives the reflected image from the fundus is a two-dimensional element, and is movable according to the focus position of the reflected image. .
【請求項4】 投光系と受光処理系はハーフミラーで分
離され、投光系の眼底用絞りが、投光レンズの焦点位置
におかれたことを特長とする請求項1に記載の眼屈折力
測定装置。
4. The eye according to claim 1, wherein the light projecting system and the light receiving processing system are separated by a half mirror, and the fundus diaphragm of the light projecting system is located at the focal position of the light projecting lens. Refractive power measuring device.
JP2001338607A 2001-09-28 2001-09-28 Ophthalmic refractive power measuring instrument Pending JP2003102687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001338607A JP2003102687A (en) 2001-09-28 2001-09-28 Ophthalmic refractive power measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001338607A JP2003102687A (en) 2001-09-28 2001-09-28 Ophthalmic refractive power measuring instrument

Publications (1)

Publication Number Publication Date
JP2003102687A true JP2003102687A (en) 2003-04-08

Family

ID=19153071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001338607A Pending JP2003102687A (en) 2001-09-28 2001-09-28 Ophthalmic refractive power measuring instrument

Country Status (1)

Country Link
JP (1) JP2003102687A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739517A (en) * 1993-07-30 1995-02-10 Nidek Co Ltd Ocular refraction measuring apparatus
JPH08103413A (en) * 1994-10-03 1996-04-23 Canon Inc Ophthalmological measuring instrument
JPH1075930A (en) * 1996-09-04 1998-03-24 Topcon Corp Eye refractive power measuring instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739517A (en) * 1993-07-30 1995-02-10 Nidek Co Ltd Ocular refraction measuring apparatus
JPH08103413A (en) * 1994-10-03 1996-04-23 Canon Inc Ophthalmological measuring instrument
JPH1075930A (en) * 1996-09-04 1998-03-24 Topcon Corp Eye refractive power measuring instrument

Similar Documents

Publication Publication Date Title
CN110934563B (en) Ophthalmologic information processing apparatus, ophthalmologic apparatus, and ophthalmologic information processing method
JP3740546B2 (en) Ophthalmic measuring device
JPS6216088B2 (en)
JP2005525893A (en) Optical coherence tomography scanner using negative image surface curvature
US7316480B2 (en) Eye refractive power measurement apparatus
JP3630884B2 (en) Ophthalmic examination equipment
JPH10305013A (en) Opthalmoscopic characteristic measuring instrument
JPH01262835A (en) Method and device for opthalmic diagnosis
WO2002082980A2 (en) Stereoscopic measurement of cornea and illumination patterns
JP2012075647A (en) Ophthalmologic measuring apparatus
EP2729049A1 (en) System and method for characterising eye-related systems
JP2020142072A (en) Method of testing eyes and vision testing system
US7275825B2 (en) Eye refractive power measurement apparatus
JP4620424B2 (en) Ophthalmic measuring device
JP4551107B2 (en) Optical system alignment apparatus and method, and three-dimensional observation state measurement apparatus and method using the same
JP6221249B2 (en) Eye refractive power measuring device
JP2003052632A (en) Ophthalmological characteristics measuring instrument
JP2003102687A (en) Ophthalmic refractive power measuring instrument
JP3874184B2 (en) Eye refractive power measuring device
US11154190B2 (en) Eye surface topographer
JP4618593B2 (en) Eye characteristics measuring device
JP6507503B2 (en) Slit lamp microscope
JP7480553B2 (en) Ophthalmic Equipment
JP7480552B2 (en) Ophthalmic device and axial length calculation program
CN113558563B (en) OCT-based eye axis measuring method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111130