JP2003098552A - Method for manufacturing light control device and empty cell for liquid crystal optical element - Google Patents
Method for manufacturing light control device and empty cell for liquid crystal optical elementInfo
- Publication number
- JP2003098552A JP2003098552A JP2001291510A JP2001291510A JP2003098552A JP 2003098552 A JP2003098552 A JP 2003098552A JP 2001291510 A JP2001291510 A JP 2001291510A JP 2001291510 A JP2001291510 A JP 2001291510A JP 2003098552 A JP2003098552 A JP 2003098552A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- gap
- cell
- control device
- light control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、入射光の光量を調
節して出射するための調光装置の製造方法及びこれに用
いられる液晶光学素子用の空セルに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a light control device for adjusting and emitting the amount of incident light and an empty cell for a liquid crystal optical element used therein.
【0002】[0002]
【従来の技術】通常、液晶光学素子(液晶セル)を用い
る調光装置には、偏光板が使用される。この液晶セルに
は、例えばTN(Twisted Nematic)型液晶セルやゲス
ト−ホスト(GH(Guest Host))型液晶セルが用いら
れる。2. Description of the Related Art Usually, a polarizing plate is used in a light control device using a liquid crystal optical element (liquid crystal cell). For this liquid crystal cell, for example, a TN (Twisted Nematic) type liquid crystal cell or a guest-host (GH (Guest Host)) type liquid crystal cell is used.
【0003】図14は、従来の調光装置の動作原理を示
す概略図である。この調光装置は、主に偏光板1とGH
セル2とで構成され、GHセル2は、図示省略したが、
2枚のガラス基板の間に封入され、また動作電極や液晶
配向膜を有している(以下、同様)。GHセル2内に
は、液晶分子3と二色性染料分子4とが封入されてい
る。FIG. 14 is a schematic diagram showing the operating principle of a conventional light control device. This light control device mainly uses the polarizing plate 1 and the GH.
The GH cell 2 is not shown in the drawing,
It is enclosed between two glass substrates and has a working electrode and a liquid crystal alignment film (the same applies hereinafter). Liquid crystal molecules 3 and dichroic dye molecules 4 are enclosed in the GH cell 2.
【0004】二色性染料分子4は、光の吸収に異方性を
有し、例えば分子長軸方向の光を吸収するポジ型(p
型)色素分子である。また、液晶分子3は、誘電率異方
性が正のポジ型(正型)である。The dichroic dye molecule 4 has anisotropy in light absorption, and is, for example, a positive type (p type) that absorbs light in the long axis direction of the molecule.
Type) dye molecule. The liquid crystal molecule 3 is a positive type (positive type) having a positive dielectric anisotropy.
【0005】図14(a)は、電圧を印加していない
(電圧無印加)時のGHセル2の状態を示す。入射光5
は、偏光板1を通過することによって直線偏光にされ
る。図14(a)では、この偏光方向と、二色性染料分
子4の分子長軸方向とが一致するので、入射光5は二色
性染料分子4に吸収され、GHセル2の透過率が低下す
る。FIG. 14A shows a state of the GH cell 2 when no voltage is applied (no voltage is applied). Incident light 5
Is converted into linearly polarized light by passing through the polarizing plate 1. In FIG. 14A, since the polarization direction matches the molecular long axis direction of the dichroic dye molecule 4, the incident light 5 is absorbed by the dichroic dye molecule 4 and the transmittance of the GH cell 2 is increased. descend.
【0006】そして、図14(b)で示すように、GH
セル2に電圧印加を行なうと、液晶分子3が電界方向に
向くに伴って二色性染料分子4の分子長軸方向は、直線
偏光の偏光方向と直角になる。このため、入射光5はG
Hセル2によりほとんど吸収されずに透過する。Then, as shown in FIG. 14B, GH
When a voltage is applied to the cell 2, the molecular major axis direction of the dichroic dye molecule 4 becomes perpendicular to the polarization direction of the linearly polarized light as the liquid crystal molecule 3 faces the electric field direction. Therefore, the incident light 5 is G
It is almost absorbed by H cell 2 and is transmitted.
【0007】なお、分子短軸方向の光を吸収するネガ型
(n型)の二色性染料分子を用いる場合は、上記ポジ型
の二色性染料分子4の場合と逆になり、電圧無印加時に
は光が吸収されず、電圧印加時に光が吸収される。When a negative type (n-type) dichroic dye molecule that absorbs light in the minor axis direction of the molecule is used, this is the reverse of the case of the positive type dichroic dye molecule 4, and no voltage is applied. Light is not absorbed when applied, and absorbed when voltage is applied.
【0008】図14に示された調光装置では、電圧印加
時と電圧無印加時との吸収度の比、即ち、光学濃度の比
が約10である。これは、偏光板1を使用せずにGHセ
ル2のみで構成される調光装置に比べて約2倍の光学濃
度比を有する。In the light control device shown in FIG. 14, the ratio of the absorption when the voltage is applied and when the voltage is not applied, that is, the ratio of the optical density is about 10. This has an optical density ratio that is about twice as high as that of a light control device including only the GH cell 2 without using the polarizing plate 1.
【0009】[0009]
【発明に至る経過】本出願人は、この光学濃度比のより
一層の向上を図ることが可能な調光装置及び撮像装置
を、特願平11−322186号において提起した。即
ち、特願平11−322186号(以下、先願発明と称
する。)によれば、液晶素子と、この液晶素子に入射す
る光の光路中に配される偏光板とで調光装置を構成し、
更に、ネガ型液晶をホスト材料とするゲスト−ホスト型
液晶を用いるので、電圧無印加時(透明時)と電圧印加
時(遮光時)の吸光度の比(即ち光学濃度の比)が向上
し、調光装置のコントラスト比が大きくなり、明るい場
所から暗い場所までにおいて、調光動作を正常に行なう
ことを可能とする。The present applicant has proposed, in Japanese Patent Application No. 11-322186, a light control device and an image pickup device capable of further improving the optical density ratio. That is, according to Japanese Patent Application No. 11-322186 (hereinafter referred to as prior invention), a liquid crystal device and a polarizing plate arranged in an optical path of light incident on the liquid crystal device constitute a light control device. Then
Furthermore, since a guest-host type liquid crystal having a negative type liquid crystal as a host material is used, the ratio of absorbance (that is, the ratio of optical density) when no voltage is applied (transparent) and when voltage is applied (light-shielded) is improved, The contrast ratio of the light control device is increased, and the light control operation can be normally performed from a bright place to a dark place.
【0010】図14に示されるゲスト−ホスト型液晶セ
ル(GHセル)2は、ホスト材料3として誘電率異方性
(Δε)が正のポジ型の液晶を用い、ゲスト材料4には
二色性を有する光吸収異方性(ΔA)が正のポジ型染料
4を用い、偏光板1がGHセル2の入射側に配されてい
る。このGHセル2について、矩形波を駆動波形として
動作電圧印加時の光透過率の変化を計測すると、図15
に示すように、動作電圧の印加に伴って、可視光の平均
光透過率(空気中。液晶セルに加えて偏光板を足したと
きの透過率を参照(=100%)とした:以下、同様)
が増加するが、電圧を10Vにまで上昇させても最大透
過率は60%程度となり、しかも光透過率の変化が比較
的穏やかである。In the guest-host type liquid crystal cell (GH cell) 2 shown in FIG. 14, a positive type liquid crystal having a positive dielectric anisotropy (Δε) is used as the host material 3, and the guest material 4 is of two colors. A positive dye 4 having a positive light absorption anisotropy (ΔA) is used, and the polarizing plate 1 is disposed on the incident side of the GH cell 2. For this GH cell 2, a change in light transmittance when an operating voltage is applied is measured using a rectangular wave as a drive waveform.
As shown in, the average light transmittance of visible light (in air; transmittance when a polarizing plate was added in addition to the liquid crystal cell was referred to (= 100%) with application of an operating voltage: The same)
However, even if the voltage is increased to 10 V, the maximum transmittance is about 60%, and the change in light transmittance is relatively gentle.
【0011】これは、ポジ型のホスト材料を用いる場
合、電圧無印加時に液晶セルの液晶配向膜との界面での
液晶分子の相互作用(interaction)が強いため、電圧
を印加してもダイレクタの向きが変化しない(或いは、
変化し難い)液晶分子が残ってしまうからであると考え
られる。This is because, when a positive type host material is used, the interaction of liquid crystal molecules at the interface with the liquid crystal alignment film of the liquid crystal cell is strong when no voltage is applied, and therefore the director of the director is applied even if a voltage is applied. Orientation does not change (or
It is considered that this is because liquid crystal molecules remain (which are difficult to change).
【0012】これに対し、先願発明では、図4に示すよ
うに、ゲスト−ホスト型液晶セル(GHセル)12にお
いて、ホスト材料13として、誘電率異方性(Δε)が
負のネガ型の液晶であるMerck社製のMLC−66
08を一例として用い、ゲスト材料4には二色性を有す
るポジ型染料であるBDH社製のD5を一例として用い
ることにより、偏光板11をGHセル12の入射側に配
し、矩形波を駆動波形として動作電圧印加時の光透過率
の変化を計測したところ、図5に示すように、動作電圧
の印加に伴って、可視光の平均光透過率(空気中)が最
大透過率約75%から10%以下にまで減少し、しかも
光透過率の変化が比較的急峻となる。On the other hand, in the prior invention, as shown in FIG. 4, in the guest-host type liquid crystal cell (GH cell) 12, as the host material 13, a negative type having a negative dielectric anisotropy (Δε) is used. Liquid crystal of Merck MLC-66
08 is used as an example, and the guest material 4 is a positive dye having dichroism, D5 manufactured by BDH, Inc. is used as an example, whereby the polarizing plate 11 is arranged on the incident side of the GH cell 12 and a rectangular wave is generated. When a change in light transmittance when an operating voltage is applied as a drive waveform is measured, as shown in FIG. 5, the average light transmittance (in air) of visible light is about 75% with the application of the operating voltage. % To 10% or less, and the change in light transmittance becomes relatively sharp.
【0013】これは、ネガ型のホスト材料を用いる場
合、電圧無印加時に液晶セルの液晶配向膜との界面での
液晶分子の相互作用(interaction)が非常に弱いた
め、電圧無印加時に光が透過し易く、また電圧印加と共
に液晶分子のダイレクタの向きが変化し易くなるからで
あると考えられる。This is because when a negative-type host material is used, the interaction of liquid crystal molecules at the interface with the liquid crystal alignment film of the liquid crystal cell is very weak when no voltage is applied, so that light is not applied when no voltage is applied. It is considered that this is because the light is easily transmitted, and the direction of the director of the liquid crystal molecules is easily changed with the application of the voltage.
【0014】このようにして、ネガ型のホスト材料を用
いてGHセルを構成することにより、光透過率(特に透
明時)が向上し、GHセルを撮像光学系中にそのまま位
置固定して使用できるコンパクトな調光装置が実現可能
となる。この場合、液晶素子への入射光の光路中に偏光
板を配することにより、電圧無印加時と電圧印加時の吸
光度の比(即ち、光学濃度の比)が一層向上し、調光装
置のコントラスト比が更に大きくなり、明るい場所から
暗い場所にまでにおいて、調光動作をより正常に行なう
ことができる。By thus constructing the GH cell using the negative type host material, the light transmittance (especially when transparent) is improved, and the GH cell is used by fixing the position as it is in the image pickup optical system. A compact dimming device that can be realized can be realized. In this case, by arranging a polarizing plate in the optical path of the incident light to the liquid crystal element, the ratio of the absorbance when no voltage is applied and when the voltage is applied (that is, the optical density ratio) is further improved, and The contrast ratio is further increased, and the dimming operation can be performed more normally from a bright place to a dark place.
【0015】[0015]
【発明が解決しようとする課題】本発明者は、このよう
なGHセルを用いた調光装置の特性の更なる向上を鋭意
検討したところ、図16に示すように、液晶素子の透明
時と遮光時との光学濃度比は、GHセルを構成する2枚
のガラス基板間の距離(セルギャップ)によっても大き
く左右されることが判明した。The present inventor diligently studied to further improve the characteristics of the light control device using such a GH cell. As shown in FIG. 16, when the liquid crystal element is transparent. It was found that the optical density ratio between when the light was shielded was also greatly influenced by the distance (cell gap) between the two glass substrates forming the GH cell.
【0016】即ち、セルギャップが大きい程、換言すれ
ば、液晶層が厚い程、透明時と遮光時との光透過率の差
が大きくなり、光学濃度比は大きく取れるものの、ホス
ト材料にネガ型液晶を使うことの利点である透明時の光
透過率が低下してしまう。That is, the larger the cell gap, in other words, the thicker the liquid crystal layer, the larger the difference in light transmittance between the transparent state and the light-shielded state, and the larger the optical density ratio, the more negative the host material. The light transmittance at the time of transparency, which is an advantage of using liquid crystal, is reduced.
【0017】また、図17に示すように、セルギャップ
が変わると、GHセルによる調光装置としての応答速度
も大きく変化し、セルギャップが大きくなって液晶層が
厚くなると、応答速度は低下してしまうことも判明し
た。但し、駆動a、bは中間調駆動、駆動c、dは透明
−遮光時の駆動を表わす。Also, as shown in FIG. 17, when the cell gap changes, the response speed of the GH cell as a light control device also changes significantly, and when the cell gap increases and the liquid crystal layer becomes thicker, the response speed decreases. It turns out that it will end up. However, drives a and b represent halftone driving, and drives c and d represent transparent-light-shielding driving.
【0018】これらのことから、ゲスト−ホスト型液晶
を用いて調光装置を作製する場合には、透明時の光透過
率、遮光時の光透過率、液晶素子の応答時間といった、
両立の難しい各々の特性を満足させるためのセルギャッ
プの範囲が存在することを知見するに至ったのである。From the above, when a guest-host type liquid crystal is used to manufacture a light control device, the light transmittance when transparent, the light transmittance when light is blocked, the response time of the liquid crystal element, and the like.
We have found that there is a range of cell gaps to satisfy each of the characteristics that are difficult to achieve at the same time.
【0019】即ち、液晶素子を用いて実用的に有利な調
光装置を実現するためには、応答速度を低下させずに充
分な光学濃度比を確保する必要があり、GHセルにおい
て液晶を封入するガラス基板間の間隙(セルギャップ)
を2μm以上、4μm以下に制御するのが望ましいこと
が分かった。That is, in order to realize a practically advantageous light control device using a liquid crystal element, it is necessary to secure a sufficient optical density ratio without lowering the response speed, and the liquid crystal is sealed in the GH cell. Gap between glass substrates (cell gap)
It was found that it is desirable to control the value of 2 μm or more and 4 μm or less.
【0020】換言すれば、セルギャップが2μm未満で
あると、調光装置としての応答速度は大きくなり、また
透明時の光透過率が向上するものの、遮光時の光透過率
も上昇してしまい、結果として光学濃度比(コントラス
ト比)が確保し難くなる。逆に、セルギャップが4μm
を超えると、光学濃度比は大きく確保できるものの、透
明時の光透過率が低下し、また調光装置としての応答速
度が悪化し易く、特に中間調において光透過率をわずか
に変化させるような駆動を行なうと、遅くなってしまう
のである。In other words, if the cell gap is less than 2 μm, the response speed as a light control device is increased, and the light transmittance when transparent is improved, but the light transmittance when shielded is also increased. As a result, it becomes difficult to secure the optical density ratio (contrast ratio). Conversely, the cell gap is 4 μm
If it exceeds, the optical density ratio can be secured large, but the light transmittance at the time of transparency is lowered, and the response speed as the light control device is apt to be deteriorated, and the light transmittance is slightly changed particularly in the halftone. When it is driven, it becomes slow.
【0021】しかしながら、更に検討を進めていく中
で、液晶封入前の空セルの状態如何によっては、図18
(a)及び(b)に示すように、液晶封入前後でセルギ
ャップが図18(b)に示すように、有効光路をなす中
央部20が大きく変動し、同一セル内でのギャップ厚の
ばらつきが顕著に現れてしまうという不良が発生するこ
とが確認された。However, during further examination, depending on the state of the empty cell before the liquid crystal is filled, FIG.
As shown in FIGS. 18A and 18B, the cell gap before and after the liquid crystal filling is largely varied as shown in FIG. 18B in the central portion 20 forming the effective optical path, and the gap thickness varies within the same cell. It has been confirmed that a defect in which is markedly appears occurs.
【0022】そして、不良サンプルと空セル構造との相
関を調査した結果、液晶封入後のセルギャップのばらつ
きが特に大きく、図19(b)に示すように、斜光下の
目視で複数のニュートンリングが観察できるような不良
サンプルは、いずれも図18(a)及び図19(a)に
示す空セルの状態で、セル中央部20のギャップ厚がセ
ル周辺部24のギャップ厚に比べて小さく、液晶封入前
の空セルが凹状に仕上がっていることが特徴的であるこ
とを突き止めた。As a result of investigating the correlation between the defective sample and the empty cell structure, the dispersion of the cell gap after the liquid crystal filling is particularly large, and as shown in FIG. 19B, a plurality of Newton rings are visually observed under oblique light. 18A and 19A, the gap thickness of the cell central portion 20 is smaller than the gap thickness of the cell peripheral portion 24. We have found that the empty cell before the liquid crystal is filled is concave.
【0023】この原因は、図18(a)のような空セル
に液晶が注入される際に、ギャップの大きい周辺部へ容
易に充填されながら中央部へも充填されることになり、
ギャップの大きい周辺部へ充填された液晶の圧力によ
り、中央部の小さいギャップを変化させるためと考えら
れる。The reason for this is that when liquid crystal is injected into an empty cell as shown in FIG. 18A, the liquid crystal is easily filled in the peripheral portion with a large gap and also in the central portion.
It is considered that this is because the pressure of the liquid crystal filled in the peripheral portion having a large gap changes the small gap in the central portion.
【0024】こうした中で、上述したような液晶セルを
用いた調光装置を搭載して、高機能な撮像装置を実現す
るためには、透明時と遮光時との光透過率の差で決まる
光学濃度比(コントラスト比)を充分に大きく確保し、
なおかつ高い応答速度と大きな光学濃度比を両立させ、
両立の難しい高い過渡応答速度で駆動することが切望さ
れている。Under these circumstances, in order to realize a highly functional image pickup device by mounting the light control device using the liquid crystal cell as described above, it is determined by the difference in the light transmittance between the transparent state and the light shielding state. Ensure a sufficiently large optical density ratio (contrast ratio),
Moreover, both high response speed and large optical density ratio are compatible,
It is desired to drive at a high transient response speed that is difficult to achieve at the same time.
【0025】そこで、本発明の目的は、上述した先願発
明の特長を生かしつつ、液晶光学素子の光学濃度比(コ
ントラスト比)を充分に確保しながら、液晶封入後も液
晶封入前の基体間の間隙(セルギャップ)の変化を抑制
する調光装置の製造方法及び液晶光学素子用の空セルを
提供することにある。Therefore, the object of the present invention is to obtain a sufficient optical density ratio (contrast ratio) of the liquid crystal optical element while making use of the features of the above-mentioned prior invention, and between the substrates after the liquid crystal is sealed and before the liquid crystal is sealed. Another object of the present invention is to provide a method for manufacturing a dimming device that suppresses a change in the gap (cell gap) and an empty cell for a liquid crystal optical element.
【0026】[0026]
【課題を解決するための手段】即ち、本発明は、互いに
対向した基体間に液晶を封入した液晶光学素子からなる
調光装置を製造するに際し、前記対向基体間の間隙のう
ち、基体中央部での間隙を基体周辺部での間隙よりも大
きく保持し、この状態で前記対向基体間に前記液晶を封
入する、調光装置の製造方法(以下、本発明の製造方法
と称する。)に係るものである。That is, according to the present invention, in manufacturing a light control device composed of a liquid crystal optical element in which liquid crystal is sealed between substrates opposed to each other, a central portion of the substrate among the gaps between the opposed substrates is manufactured. The present invention relates to a method of manufacturing a light control device (hereinafter, referred to as a manufacturing method of the present invention) in which the gap is maintained larger than that in the peripheral portion of the substrate and the liquid crystal is sealed between the opposing substrates in this state. It is a thing.
【0027】本発明の製造方法によれば、基体中央部で
の間隙を基体周辺部での間隙よりも大きく保持し、この
状態でこの基体間に液晶を封入するので、液晶注入の際
に容易に液晶を基体間の全域にほぼ均等に充填でき、そ
の結果、液晶封入前後における基体間の間隙の変化(ば
らつき)を抑制し、設定した条件の透過率及び応答速度
を常に実現できる調光装置の製造方法を提供することが
できる。こうした効果が得られるのは、基体間の間隙の
大きい中央部へ液晶が容易に充填されながら周辺部へも
充填されることになり、基体間の間隙内の全域へほぼ均
等な量及び圧力で液晶が注入されて基体間の間隙の変化
が少なくなるからであると考えられる。According to the manufacturing method of the present invention, the gap in the central portion of the substrate is kept larger than that in the peripheral portion of the substrate, and the liquid crystal is sealed between the substrates in this state, so that it is easy to inject the liquid crystal. In this way, the liquid crystal can be filled almost uniformly between the substrates, and as a result, the change (dispersion) in the gap between the substrates before and after the liquid crystal is sealed can be suppressed, and the transmittance and the response speed under the set conditions can be always realized. Can be provided. This effect can be obtained because the liquid crystal is easily filled into the central portion where the gap between the bases is large and the liquid crystal is also filled into the peripheral portion. It is considered that this is because the liquid crystal is injected and the change in the gap between the substrates is reduced.
【0028】また、本発明は、互いに対向した基体間に
液晶を封入すべき液晶光学素子用の空セルであって、前
記対向基体間の間隙のうち、基体中央部での間隙が基体
周辺部での間隙よりも大きく保持されている、液晶光学
素子用の空セル(以下、本発明の空セルと称する。)に
係るものである。Further, according to the present invention, there is provided an empty cell for a liquid crystal optical element in which liquid crystal is to be sealed between the substrates facing each other, and the gap at the center of the substrate among the gaps between the opposing substrates is the peripheral portion of the substrate. The present invention relates to an empty cell for a liquid crystal optical element (hereinafter referred to as an empty cell of the present invention) which is held larger than the gap.
【0029】本発明の空セルによれば、本発明の製造方
法に効果的に用い得る空セルを提供することができる。According to the empty cell of the present invention, an empty cell which can be effectively used in the manufacturing method of the present invention can be provided.
【0030】[0030]
【発明の実施の形態】以下、本発明の好ましい実施の形
態を図面参照下で説明する。BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below with reference to the drawings.
【0031】上記した本発明の製造方法及び空セルにお
いては、図1(a)に示すように、基体中央部20での
間隙d1と、基体周辺部24での間隙d2との比を1<d
1/d2≦1.1とすることが望ましい。In the above-described manufacturing method and empty cell of the present invention, as shown in FIG. 1A, the ratio of the gap d 1 in the central portion 20 of the base body to the gap d 2 in the peripheral portion 24 of the base body is set. 1 <d
It is desirable that 1 / d 2 ≦ 1.1.
【0032】このことを図3(ギャップ比と液晶封入後
のギャップ差のばらつきの傾向を示すグラフ)により説
明すると、上記したセルギャップ比(d1/d2)と、液
晶封入後のギャップのばらつき(Δd1)には、太線で
示す曲線A1のような傾向を有するが、この傾向線には
斜線A2で示すような一定の変動幅が見られる。ここで
は、平均的な傾向曲線A1に基づいて説明する。This will be described with reference to FIG. 3 (a graph showing the tendency of variations in the gap ratio and the gap difference after the liquid crystal is filled), and the cell gap ratio (d 1 / d 2 ) and the gap after the liquid crystal is filled. The variation (Δd 1 ) has a tendency like the curve A 1 shown by the thick line, but a constant fluctuation range shown by the diagonal line A 2 is seen in this tendency line. Here, description will be given based on the average tendency curve A 1 .
【0033】即ち、セルギャップ比(d1/d2)が1.
0以下であると液晶封入後のギャップのばらつきΔd1
が著しく増大し、ギャップ比が0.92でΔd1は0.
5μmに達する。しかし、ギャップ比が1.0を超える
と、ばらつきΔd1が小さくて著しく安定し、ギャップ
比が1.01〜1.08(特に1.03又はその近傍)
で、ばらつきΔd1は一層小さくなる。ギャップ比が
1.1を超えると、ばらつきΔd1が再び上昇するが、
ギャップ比が1.0を超え、特に1.1以下では、ばら
つきΔd1が0.06以下で安定し、望ましい状態とな
る。このことから、空セル状態でのセルギャップ比(d
1/d2)は1.0<(d1/d2)≦1.1が望ましく、
更には1.01〜1.08の範囲がばらつきΔd1を安
定して小さくする上で好ましい。That is, the cell gap ratio (d 1 / d 2 ) is 1.
If it is 0 or less, the gap variation Δd 1 after the liquid crystal is sealed
Is significantly increased, the gap ratio is 0.92, and Δd 1 is 0.
Reach 5 μm. However, when the gap ratio exceeds 1.0, the variation Δd 1 is small and remarkably stable, and the gap ratio is 1.01 to 1.08 (particularly 1.03 or its vicinity).
Thus, the variation Δd 1 becomes smaller. When the gap ratio exceeds 1.1, the variation Δd 1 rises again,
When the gap ratio exceeds 1.0, particularly 1.1 or less, the variation Δd 1 is 0.06 or less and is stable, which is a desirable state. From this fact, the cell gap ratio (d
1 / d 2 ) is preferably 1.0 <(d 1 / d 2 ) ≦ 1.1,
Further, the range of 1.01 to 1.08 is preferable in order to stably reduce the variation Δd 1 .
【0034】これによって、図1(b)に示すように、
液晶34を封入したGHセル12における基体中央部2
0−基体周辺部24間の間隙のばらつきを効果的に抑え
ることができる。即ち、後述することからも明らかなよ
うに、図1(a)の空セルの状態で、敢えてセル中央部
のギャップd1をセル周辺部のギャップd2よりも幾分大
きめにし、基体を予め凸状にして空セルを作製しておく
ことにより、液晶34がギャップ内に均等に注入される
のに非常に効果的である。As a result, as shown in FIG.
Central part 2 of base body in GH cell 12 in which liquid crystal 34 is enclosed
It is possible to effectively suppress the variation in the gap between the 0-base peripheral portion 24. That is, as will be apparent from what will be described later, in the empty cell state of FIG. 1A, the gap d 1 at the cell center is made slightly larger than the gap d 2 at the cell periphery, and the base is preliminarily set. It is very effective to evenly inject the liquid crystal 34 into the gap by forming the empty cell in a convex shape.
【0035】こうしたギャップ比に設定し、液晶封入後
のギャップのばらつきを抑えるには、前記対向基体間に
スペーサーを配し、前記間隙を保持することが、液晶の
注入時及び封入後も間隙を保持し易い点で望ましい。In order to suppress the dispersion of the gap after the liquid crystal is sealed by setting such a gap ratio, it is necessary to dispose a spacer between the opposed bases and hold the gap so that the gap is maintained even after the liquid crystal is injected and after the liquid is filled. It is desirable because it is easy to hold.
【0036】この場合、透明電極及び配向膜がそれぞれ
形成された対向透明基板間に前記スペーサーを配し、周
辺部をシール材で封止する際、前記シール材を前記スペ
ーサーよりも小さく形成するか、或いはより硬質の材料
を含有した混合物で形成するのが前記間隙の保持性を維
持し易い点で望ましい。In this case, when the spacer is arranged between the opposing transparent substrates on which the transparent electrode and the alignment film are respectively formed, and the peripheral portion is sealed with the sealing material, is the sealing material formed smaller than the spacer? Alternatively, it is preferable to form a mixture containing a harder material from the viewpoint of easily maintaining the holding property of the gap.
【0037】更に、前記硬質材料をボール状又はファイ
バー状としてこれらを含有するシール材で封止し、ま
た、基体間に散布するスペーサーの分布密度を150〜
500個/mm2となるように制御することが望まし
い。Further, the hard material is formed into a ball shape or a fiber shape and sealed with a sealing material containing them, and the distribution density of the spacers dispersed between the substrates is 150 to 150.
It is desirable to control so as to be 500 pieces / mm 2 .
【0038】このように、図6に示すGHセル12の周
辺部のシール材35に含有させる例えばガラスファイバ
ーの径よりも、セル全面に散布する例えばプラスチック
ボールからなるスペーサー36(図6b)の直径、また
は印刷形成する透明レジストからなるスペーサー37
(図6c)の高さを大きくして、基板31A、31Bの
貼り合わせを行うか、シール材35と同一サイズのスペ
ーサーであれば、セル内での分布密度を150ケ/mm
2以上にすることが液晶注入方法や注入条件に依存せず
に有効である。As described above, the diameter of the spacer 36 (FIG. 6b) made of, for example, plastic balls dispersed over the entire surface of the cell is larger than the diameter of, for example, glass fiber contained in the sealing material 35 at the periphery of the GH cell 12 shown in FIG. Or a spacer 37 made of a transparent resist formed by printing
If the height of (FIG. 6c) is increased and the substrates 31A and 31B are attached to each other, or if the spacer has the same size as the sealing material 35, the distribution density in the cell is 150 cells / mm.
It is effective to set it to 2 or more regardless of the liquid crystal injection method and injection conditions.
【0039】しかし、スペーサーがあまり多過ぎると、
一般的な製法である散布法(ドライやウェットでも)で
散布する場合に粗密のむらを無くすのが困難となった
り、細かく観察すると液晶分子による調光動作に違和感
(白抜け)が出てくるようになる。従って、調光素子と
しての液晶セルを作製するためのスペーサー分布密度の
上限としては、500ケ/mm2以下が妥当と考えられ
る。However, if there are too many spacers,
It is difficult to eliminate the unevenness of the density when spraying with the general spraying method (even when dry or wet), and when you observe it closely, the light control operation by the liquid crystal molecules may give you a feeling of strangeness (white spots). become. Therefore, it is considered appropriate that the upper limit of the spacer distribution density for producing a liquid crystal cell as a light control element is 500 cells / mm 2 or less.
【0040】即ち、スペーサーが少ないために中央部2
0のギャップが周辺部24よりも小さい場合は、その形
状を維持し難く液晶注入時に中央部が膨らみ、スペーサ
ーがなければ更に膨らむため、スペーサーを効果的な分
布密度で設けるのがよい。That is, since there are few spacers, the central portion 2
When the gap of 0 is smaller than that of the peripheral portion 24, it is difficult to maintain its shape and the central portion swells when the liquid crystal is injected, and further swells if there is no spacer. Therefore, it is preferable to provide the spacers with an effective distribution density.
【0041】このように、セル内に効果的なサイズと効
果的な密度でスペーサー(36又は37)を形成するこ
とにより、スペーサーがセルギャップを維持するための
支持材的な働きと、膨張を防ぐためのバインダー的な働
きで効果的に作用することによって、ギャップ厚を設計
通りに保持すると共に、液晶注入によるセルの膨らみを
も抑制することができる。Thus, by forming the spacer (36 or 37) in the cell with an effective size and an effective density, the spacer functions as a support material for maintaining the cell gap and expands. By effectively acting as a binder for preventing, the gap thickness can be maintained as designed and the bulge of the cell due to liquid crystal injection can be suppressed.
【0042】そして、前記液晶の封入後において、液晶
光学素子の有効光路における対向基体間の間隙を2μm
以上、4μm以下に制御することが、上述したように、
光透過時と遮光時の光学濃度比を高く保持し、応答速度
を大きくできる点で望ましい。これは、図1(a)のよ
うに空セルを作製することにより確実に実現できる。After the liquid crystal is filled, the gap between the opposing substrates in the effective optical path of the liquid crystal optical element is set to 2 μm.
As described above, controlling to 4 μm or less is as follows.
This is desirable in that the optical density ratio between light transmission and light shielding can be kept high and the response speed can be increased. This can be surely realized by producing an empty cell as shown in FIG.
【0043】また、前記液晶として、例えば誘電率異方
性(Δε)が負のネガ型液晶をホスト材料とし、かつ2
色性染料(ポジ型)をゲスト材料とするゲスト−ホスト
型液晶を封入することにより、電圧印加時の光透過率が
向上し、電圧無印加時と電圧印加時の光学濃度比が向上
してコントラスト比を更に大きくできる点で望ましい。
なお、誘電率異方性(Δε)が負のネガ型液晶として
は、上記したMerck社製品以外に公知の材料を使用
することができる。但し、本発明は、ネガ型液晶やポジ
型の二色性染料に限られることはなく、ポジ型液晶やネ
ガ型二色性染料を使用することも差支えない。As the liquid crystal, for example, a negative liquid crystal having a negative dielectric anisotropy (Δε) is used as a host material, and 2
By enclosing a guest-host type liquid crystal containing a chromatic dye (positive type) as a guest material, the light transmittance is improved when a voltage is applied and the optical density ratio is improved when a voltage is not applied and when a voltage is applied. It is desirable in that the contrast ratio can be further increased.
As the negative liquid crystal having a negative dielectric anisotropy (Δε), known materials can be used in addition to the products manufactured by Merck. However, the present invention is not limited to the negative type liquid crystal or the positive type dichroic dye, and the positive type liquid crystal or the negative type dichroic dye may be used.
【0044】図6には、図1(b)に示した液晶封入後
のセルを各種示すものである。即ち、図6(a)はスペ
ーサーが設けられていない例であるが、この場合にも本
発明に基づいて基体間の間隙は中央部20の間隙d1が
周辺部24の間隙d2よりもよりも大きく形成されるこ
とにより、上記したように、基体中央部へ液晶を容易に
注入しながら基板全域に亘ってほぼ均等に注入すること
ができ、液晶注入前後におけるセルギャップのばらつき
を少なくすることができる。図6(b)は球状のスペー
サー36を設けた例、図6(c)は柱状のスペーサー3
7を設けた例であるが、いずれも、上記した理由から望
ましいものである。即ち、間隙(セルギャップ)にスペ
ーサーを介在させることによってd1及びd2を確実に形
成できることになり、液晶注入後のギャップを設計した
値に常に確保できる。FIG. 6 shows various cells after the liquid crystal shown in FIG. 1 (b) is filled. That is, FIG. 6A shows an example in which a spacer is not provided, but in this case as well, the gap between the bases according to the present invention is such that the gap d 1 in the central portion 20 is larger than the gap d 2 in the peripheral portion 24. By being formed larger than the above, as described above, it is possible to easily inject the liquid crystal into the central portion of the base body while injecting the liquid crystal substantially uniformly over the entire area of the substrate, and to reduce the variation in the cell gap before and after the liquid crystal injection. be able to. 6B shows an example in which a spherical spacer 36 is provided, and FIG. 6C shows a columnar spacer 3.
7 is an example in which 7 are provided, all of them are desirable for the reasons described above. That is, d 1 and d 2 can be reliably formed by interposing a spacer in the gap (cell gap), and the gap after liquid crystal injection can always be secured at the designed value.
【0045】上述したGHセル12からなる調光装置2
3は、例えば図7に示すように、ズームレンズのように
複数のレンズで構成されるレンズ前群15とレンズ後群
16との間に配置される。レンズ前群15を透過した光
は、偏光板11を介して直線偏光された後、GHセル1
2に入射する。GHセル12を透過した光は、レンズ後
群16で集光され、撮像面17に映像として映し出され
る。A light control device 2 including the above-mentioned GH cell 12
For example, as shown in FIG. 7, the lens element 3 is arranged between a front lens group 15 and a rear lens group 16 including a plurality of lenses such as a zoom lens. The light that has passed through the front lens group 15 is linearly polarized through the polarizing plate 11, and then the GH cell 1
Incident on 2. The light that has passed through the GH cell 12 is condensed by the rear lens group 16 and is displayed as an image on the imaging surface 17.
【0046】この調光装置23を構成する偏光板11
は、本出願人による上述した先願発明と同様に、GHセ
ル12に入射する光の有効光路に対して出し入れ可能で
ある。具体的には、偏光板11を仮想線で示す位置に移
動させることにより、光の有効光路の外へ出すことがで
きる。この偏光板11を出し入れする手段として、図8
に示すような機械式アイリスが用いられてもよい。Polarizing plate 11 constituting this light control device 23
Can be put in and taken out from the effective optical path of the light incident on the GH cell 12, similarly to the above-mentioned prior invention by the present applicant. Specifically, by moving the polarizing plate 11 to a position indicated by an imaginary line, it is possible to let the light out of the effective optical path. As means for putting in and taking out this polarizing plate 11, FIG.
A mechanical iris as shown in may be used.
【0047】この機械式アイリスは、一般にデジタルス
チルカメラやビデオカメラ等に用いられる機械式絞り装
置であり、主として2枚のアイリス羽根18、19と、
アイリス羽根18に貼付された偏光板11とからなる。
アイリス羽根18、19は、上下方向に移動させること
ができる。矢印27で示される方向に、図示せぬ駆動モ
ーターを用いてアイリス羽根18、19を相対的に移動
させる。This mechanical iris is a mechanical diaphragm device generally used in a digital still camera, a video camera, etc., and mainly comprises two iris blades 18 and 19.
The polarizing plate 11 is attached to the iris blade 18.
The iris blades 18 and 19 can be moved in the vertical direction. The iris blades 18, 19 are relatively moved in the direction indicated by the arrow 27 by using a drive motor (not shown).
【0048】これにより、図8で示すように、アイリス
羽根18、19は部分的に重ねられ、この重なりが大き
くなると、アイリス羽根18、19の中央付近に位置す
る有効光路20上の開口部22が、偏光板11により覆
われる。As a result, as shown in FIG. 8, the iris blades 18 and 19 are partially overlapped, and when this overlap becomes large, the opening 22 on the effective optical path 20 located near the center of the iris blades 18 and 19 is formed. Is covered with the polarizing plate 11.
【0049】図9は、有効光路20付近の機械式アイリ
スの部分拡大図である。アイリス羽根18が下方に移動
すると同時に、アイリス羽根19が上方に移動する。こ
れに伴って、図9(a)に示すように、アイリス羽根1
8に貼付された偏光板11も有効光路20の外へと移動
する。逆に、アイリス羽根18を上方に、またアイリス
羽根19を下方に移動させることにより、互いのアイリ
ス羽根18、19が重なる。これに従って、図9(b)
に示すように、偏光板11は有効光路20上に移動し、
開口部22を次第に覆う。アイリス羽根18、19の互
いの重なりが大きくなると、図9(c)に示すように、
偏光板11は開口部22を全て覆う。FIG. 9 is a partially enlarged view of the mechanical iris near the effective optical path 20. At the same time that the iris blade 18 moves downward, the iris blade 19 moves upward. Along with this, as shown in FIG. 9A, the iris blade 1
The polarizing plate 11 attached to 8 also moves to the outside of the effective optical path 20. On the contrary, by moving the iris blade 18 upward and the iris blade 19 downward, the iris blades 18 and 19 overlap each other. According to this, FIG. 9 (b)
As shown in, the polarizing plate 11 moves to the effective optical path 20,
The opening 22 is gradually covered. When the overlapping of the iris blades 18 and 19 with each other increases, as shown in FIG. 9C,
The polarizing plate 11 covers the entire opening 22.
【0050】次に、この機械式アイリスを用いた調光装
置23の調光動作について説明する。Next, the dimming operation of the dimming device 23 using this mechanical iris will be described.
【0051】図示せぬ被写体が明るくなるにつれて、図
9(a)で示したように、上下方向に開いていたアイリ
ス羽根18、19は、図示せぬモーターにより駆動さ
れ、重なり始める。これによって、アイリス羽根18に
貼付されている偏光板11は、有効光路20上に入り始
め、開口部22の一部を覆う(図9(b))。As the subject (not shown) becomes brighter, as shown in FIG. 9A, the iris blades 18 and 19 that have been opened in the vertical direction are driven by a motor (not shown) and start overlapping. As a result, the polarizing plate 11 attached to the iris blade 18 starts to enter the effective optical path 20 and covers a part of the opening 22 (FIG. 9B).
【0052】この時、GHセル12は光を吸収しない状
態にある(なお、熱的揺らぎ、又は表面反射等のため、
GHセル12による若干の吸収はある。)。このため、
偏光板11を通過した光と開口部22を通過した光は、
ほぼ強度分布が同等となる。At this time, the GH cell 12 is in a state of not absorbing light (note that due to thermal fluctuation, surface reflection, etc.,
There is some absorption by the GH cell 12. ). For this reason,
The light passing through the polarizing plate 11 and the light passing through the opening 22 are
The intensity distributions are almost the same.
【0053】その後、偏光板11は、完全に開口部22
を覆った状態になる(図9(c))。さらに、被写体の
明るさが増す場合は、GHセル12への電圧を上昇し、
GHセル12で光を吸収することにより調光を行なう。Then, the polarizing plate 11 is completely opened 22.
Is covered (FIG. 9C). Furthermore, when the brightness of the subject increases, the voltage to the GH cell 12 is increased,
Light control is performed by absorbing light in the GH cell 12.
【0054】これとは逆に、被写体が暗くなる場合は、
まず、GHセル12への電圧を減少又は無印加とするこ
とにより、GHセル12による光の吸収効果を無くす
る。さらに被写体が暗くなった場合は、図示せぬモータ
ーを駆動することにより、アイリス羽根18を下方へ、
またアイリス羽根19を上方へ移動させる。こうして、
偏光板11を有効光路20の外へ移動させる(図9
(a))。On the contrary, when the subject becomes dark,
First, by reducing or not applying the voltage to the GH cell 12, the light absorption effect by the GH cell 12 is eliminated. When the subject becomes darker, drive a motor (not shown) to move the iris blade 18 downward.
Further, the iris blade 19 is moved upward. Thus
The polarizing plate 11 is moved out of the effective optical path 20 (see FIG. 9).
(A)).
【0055】また、図7〜図9に示したように、偏光板
11(透過率例えば40%〜50%)を光の有効光路2
0から外に出すことができるので、偏光板11に光が吸
収されない。従って、調光装置の最大透過率を例えば2
倍以上に高めることができる。具体的には、この調光装
置を、従来の固定されて設置される偏光板及びGHセル
からなる調光装置と比較すると、最大透過率は例えば約
2倍になる。なお、最低透過率は両者で等しい。As shown in FIGS. 7 to 9, the polarizing plate 11 (transmittance, for example, 40% to 50%) is passed through the effective optical path 2 of light.
Since the light can be emitted from 0, light is not absorbed by the polarizing plate 11. Therefore, the maximum transmittance of the dimmer is, for example, 2
It can be more than doubled. Specifically, when this light control device is compared with a conventional light control device including a fixedly installed polarizing plate and a GH cell, the maximum transmittance is, for example, about twice. The minimum transmittance is the same for both.
【0056】また、デジタルスチルカメラ等に実用化さ
れている機械式アイリスを用いて、偏光板11の出し入
れが行なわれるので、調光装置は容易に実現可能とな
る。また、GHセル12を用いるので、偏光板11によ
る調光に加えて、GHセル12自体が光を吸収すること
により、調光を行なうことができる。Further, since the polarizing plate 11 is put in and out by using the mechanical iris which is put to practical use in a digital still camera or the like, the light control device can be easily realized. Further, since the GH cell 12 is used, in addition to the light control by the polarizing plate 11, the GH cell 12 itself absorbs light, so that the light control can be performed.
【0057】このようにして、この調光装置は、明、暗
のコントラスト比を高めると共に、光量分布をほぼ均一
に保つことができるものとなる。In this way, the light control device can increase the contrast ratio of light and dark and can keep the light amount distribution substantially uniform.
【0058】[0058]
【実施例】以下、本発明の好ましい実施例を図面参照下
に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings.
【0059】実施例1
まず、本実施のゲスト−ホスト型液晶(GH)セルを図
1及び図2に示す。図1はその概略断面図であり、
(a)は空セル状態、(b)は液晶封入後、そして図2
は図1(a)及び(b)それぞれの概略平面図である。 Example 1 First, a guest-host type liquid crystal (GH) cell of this example is shown in FIGS. FIG. 1 is a schematic sectional view thereof,
(A) is an empty cell state, (b) is after the liquid crystal is filled, and FIG.
1A and 1B are schematic plan views of FIGS. 1A and 1B, respectively.
【0060】このGHセル12は透明電極32A、32
Bと配向膜33A、33Bをそれぞれ形成した2枚のガ
ラス基板31A、31Bが配向膜を内側に向けて対向配
置され、セル周辺24がシール材35によって封止され
て図1(a)のGHセル12の空セルが形成されるが、
基板31Aと31B間のセルギャップは、図1(a)に
示すように、有効光路となる中央部20のセルギャップ
d1の方が周辺部24のセルギャップd2より大きく形成
されている。This GH cell 12 has transparent electrodes 32A and 32A.
B and the two glass substrates 31A and 31B on which the alignment films 33A and 33B are respectively formed are arranged so as to face each other with the alignment film facing inward, and the cell periphery 24 is sealed by the sealing material 35, and the GH of FIG. An empty cell of cell 12 is formed,
The cell gap between the substrates 31A and 31B, as shown in FIG. 1 (a), is formed towards the cell gap d 1 of the central portion 20 of the effective optical path is greater than the cell gap d 2 of the peripheral portion 24.
【0061】この状態の空セル12に液晶34を注入
後、液晶注入口39をエンドシール材38で封入した状
態が図1(b)及び図2(b)である。このように空セ
ル状態において、図1(a)に示すように予め中央部2
0と周辺部24とでギャップ差を形成しておくことによ
り、中央部のd1が周辺部のd2より大きいため液晶34
が中央部へ充填され易く、液晶34をギャップ全域に容
易に充填させることができる。After the liquid crystal 34 is injected into the empty cell 12 in this state, the liquid crystal injection port 39 is sealed with the end seal material 38 as shown in FIGS. 1 (b) and 2 (b). In this way, in the empty cell state, as shown in FIG.
By forming a gap difference between 0 and the peripheral portion 24, since d 1 in the central portion is larger than d 2 in the peripheral portion, the liquid crystal 34
Is easily filled in the central portion, and the liquid crystal 34 can be easily filled in the entire gap.
【0062】この結果、液晶34を封入後もGHセル1
2のギャップが液晶注入時の圧力等による変形が抑制さ
れ、図3に示したように、中央部のギャップd1と周辺
部のギャップd2との比が(d1/d2)を1.0<(d1
/d2)≦1.1に保つことにより、d1のばらつきΔd
1を許容限度内に抑制することができる。As a result, even after the liquid crystal 34 is filled, the GH cell 1
Deformation due to the pressure at the time of liquid crystal injection is suppressed in the No. 2 gap, and as shown in FIG. 3, the ratio of the central gap d 1 to the peripheral gap d 2 is (d 1 / d 2 ). .0 <(d 1
/ D 2 ) ≦ 1.1, the variation of d 1 Δd
1 can be suppressed within the allowable limit.
【0063】本実施例によるGHセルを用いる調光装置
の一例を図4に示す、この調光装置は、図4に示すよう
に、GHセル12と偏光板11とからなる。そして、G
Hセル12は、上記のように形成した空セル12の中に
液晶34としてネガ型の液晶分子(ホスト材料)13と
ポジ型の二色性染料分子(ゲスト材料)4との混合物が
封入されている。An example of the light control device using the GH cell according to this embodiment is shown in FIG. 4. This light control device comprises a GH cell 12 and a polarizing plate 11 as shown in FIG. And G
In the H cell 12, a mixture of a negative type liquid crystal molecule (host material) 13 and a positive type dichroic dye molecule (guest material) 4 is enclosed as the liquid crystal 34 in the empty cell 12 formed as described above. ing.
【0064】液晶分子13には、誘電率異方性が負のネ
ガ型液晶であるMerck社製のMLC−6608を一
例として用い、また二色性染料分子4には、光の吸収に
異方性を有し、分子長軸方向の光を吸収するポジ型染料
であるBDH社製のD5を用いた。偏光板11の光吸収
軸は、GHセル12に電圧を印加した時の光吸収軸と直
交させた。As the liquid crystal molecule 13, MLC-6608 manufactured by Merck Co., which is a negative type liquid crystal having a negative dielectric anisotropy, is used as an example, and the dichroic dye molecule 4 is anisotropic in light absorption. D5 manufactured by BDH, which is a positive type dye having properties and absorbing light in the long axis direction of the molecule, was used. The light absorption axis of the polarizing plate 11 was orthogonal to the light absorption axis when a voltage was applied to the GH cell 12.
【0065】このGHセル12からなる調光装置23
は、例えば図7に示したように、ズームレンズのように
複数のレンズで構成されるレンズ前群15とレンズ後群
16との間に配置された。レンズ前群15を透過した光
は、偏光板11を介して直線偏光された後、GHセル1
2に入射する。GHセル12を透過した光は、レンズ後
群16で集光され、撮像面17に映像として映し出され
る。A light control device 23 including the GH cell 12
Is disposed between the front lens group 15 and the rear lens group 16 including a plurality of lenses such as a zoom lens, as shown in FIG. The light that has passed through the front lens group 15 is linearly polarized through the polarizing plate 11, and then the GH cell 1
Incident on 2. The light that has passed through the GH cell 12 is condensed by the rear lens group 16 and is displayed as an image on the imaging surface 17.
【0066】そして、この調光装置23を構成する偏光
板11は、本出願人による上述した先願発明と同様に、
GHセル12に入射する光の有効光路に対して出し入れ
可能である。具体的には、偏光板11を仮想線で示す位
置に移動させることにより、光の有効光路の外へ出すこ
とができる。この偏光板11を出し入れする手段とし
て、図8に示した機械式アイリスが用いられてもよい。The polarizing plate 11 which constitutes the light control device 23 is the same as the above-mentioned prior invention by the present applicant.
It can be put into and taken out of the effective optical path of the light that enters the GH cell 12. Specifically, by moving the polarizing plate 11 to a position indicated by an imaginary line, it is possible to let the light out of the effective optical path. The mechanical iris shown in FIG. 8 may be used as a means for moving the polarizing plate 11 in and out.
【0067】ここで、GHセル12を製造する方法を述
べると、前述した透明電極パターン32A、32Bと配
向膜33A、33Bを予め形成したガラス基板31A、
31Bのうち一方のガラス基板の周辺に、直径3μmの
ガラスファイバーを含有した、熱硬化性エポキシ樹脂か
らなる封止(シール)材35を圧縮空気の作用下でノズ
ルにより所定の幅で塗布した(図10)後、他方の基板
上に、3.2μm径のプラスチックボールからなるスペ
ーサ36を均一に散布し、2枚のガラス基板を位置合わ
せして重ねてから、熱プレス板により適度な条件で(一
例として150〜170℃、1〜2kg/cm2)、圧
力を加えながら加熱処理することにより、周辺部のシー
ル材が硬化し、基板の貼り合わせが完了した(図6
(b))。Here, a method of manufacturing the GH cell 12 will be described. A glass substrate 31A on which the above-mentioned transparent electrode patterns 32A and 32B and alignment films 33A and 33B are formed in advance,
A sealing (sealing) material 35 made of a thermosetting epoxy resin containing a glass fiber having a diameter of 3 μm was applied to the periphery of one of the glass substrates of 31B with a predetermined width by a nozzle under the action of compressed air ( 10) After that, spacers 36 made of plastic balls having a diameter of 3.2 μm are evenly dispersed on the other substrate, and the two glass substrates are aligned and stacked, and then heat-pressed under appropriate conditions. By heat treatment while applying pressure (150 to 170 ° C., 1 to 2 kg / cm 2 as an example), the sealing material in the peripheral portion is cured and the bonding of the substrates is completed (FIG. 6).
(B)).
【0068】このようにスペーサーの大きさ及び加圧・
加熱条件によってギャップを制御する。また、スペーサ
ーの配置はラビング処理後にシール印刷によって行うこ
ともできる。後述する実施例2も同様。なお、図10で
は実際的に、シール材35の位置よりもガラス基板31
A、31Bの周縁が外側に存在するように配置している
(図6では簡略図示している)。Thus, the size of the spacer and the pressure
The gap is controlled by the heating conditions. The spacers can be arranged by sticker printing after the rubbing process. The same applies to Example 2 described later. Note that, in FIG. 10, the glass substrate 31 is practically more than the position of the sealing material 35.
It is arranged so that the peripheral edges of A and 31B are located outside (illustrated in a simplified manner in FIG. 6).
【0069】そして、上記のスペーサー36は、一般的
な手法(ウェット散布ないしドライ散布)を用いて、基
板上方から散布し、概ね300〜350個/mm2の密
度で、ガラス基板全面に、ほぼ均一に配置されていた
(図11)。The spacers 36 are sprayed from above the substrate by a general method (wet spraying or dry spraying), and the density is approximately 300 to 350 pieces / mm 2 , and the spacers 36 are spread over the entire surface of the glass substrate. They were evenly arranged (Fig. 11).
【0070】上記のように貼り合わせ基板は、3インチ
(76.2mm)2のガラス基板上に透明電極、配向膜
及びスペーサーを設けて対向配置された素子部がマトリ
ックス状に30個形成されており、これをそれぞれ上下
基板ごとにダイヤモンドカッター等を用いて切断し、個
片化(スクライブ及びブレイク)して得られた空セルの
セルギャップを、光の干渉を利用する測定機で計測した
ところ、セル中央部のギャップd1が約3.1μmに、
セル周辺部のギャップd2が約2.9μmに仕上がって
いた。As described above, the bonded substrate is a 3 inch (76.2 mm) 2 glass substrate provided with transparent electrodes, alignment films and spacers, and 30 element parts arranged opposite to each other are formed in a matrix. The cell gap of the empty cells obtained by cutting each of the upper and lower substrates with a diamond cutter etc. and singulating (scribing and breaking) was measured with a measuring machine that uses optical interference. , The gap d 1 at the center of the cell is about 3.1 μm,
The gap d 2 around the cell was finished to about 2.9 μm.
【0071】このような空セルに液晶材料34を封入
(注入+封孔)して出来上がったGHセル12は、図1
に示すように、セル中央部20のギャップd1がセル周
辺部24のギャップd2に比べて幾分大きく、液晶注入
前の空セルのギャップ厚の面分布をほぼ反映した状態が
維持できていることを確認できた。The GH cell 12 completed by enclosing (injecting + sealing) the liquid crystal material 34 in such an empty cell is shown in FIG.
As shown in FIG. 7, the gap d 1 in the cell central portion 20 is somewhat larger than the gap d 2 in the cell peripheral portion 24, and the state in which the surface distribution of the gap thickness of the empty cell before liquid crystal injection is almost reflected can be maintained. I was able to confirm that
【0072】このようなセルに液晶材料34を封入して
出来上がったGHセル12に、矩形波を駆動波形として
入力し、動作電圧印加時の光透過率の変化を計測したと
ころ(図4)、図5に示すように、動作電圧の印加に伴
って、可視光の平均光透過率(空気中)が最大透過率約
75%から数%にまで減少した。用いる液晶セル構造や
構成材料によっても異なるが、GHセル12は、±5V
(1kHz)以上のパルス電圧印加で、ほぼ最小透過率
に達した。A rectangular wave was input as a drive waveform to the GH cell 12 thus completed by encapsulating the liquid crystal material 34 in such a cell, and the change in light transmittance when an operating voltage was applied was measured (FIG. 4). As shown in FIG. 5, with the application of the operating voltage, the average light transmittance of visible light (in air) was decreased from the maximum transmittance of about 75% to several percent. The GH cell 12 is ± 5 V, although it depends on the liquid crystal cell structure and constituent materials used.
When a pulse voltage of (1 kHz) or higher was applied, the transmittance almost reached the minimum.
【0073】また、図5に示すように、駆動パルス電圧
を変化させた時の光透過率の応答時間も30ms以下の
高速動作が可能であった。Further, as shown in FIG. 5, the high-speed operation was possible in which the response time of the light transmittance when the drive pulse voltage was changed was 30 ms or less.
【0074】その結果、本実施例においても、液晶セル
の透明時と遮光時との光透過率の差(光学濃度比)を充
分に確保しながら、より高速に過渡応答動作する調光装
置を実現することができた。As a result, also in the present embodiment, a light control device capable of performing a transient response operation at a higher speed while sufficiently securing a difference in optical transmittance (optical density ratio) between when the liquid crystal cell is transparent and when it is shielded. Could be realized.
【0075】実施例2
本実施例は、液晶セルの作製において、シール材及び基
板間に設けるプラスチックボールの径を変え、これに基
板上への散布をスクリーン印刷により配置した例であ
る。 Example 2 This example is an example in which, in the production of a liquid crystal cell, the diameter of a plastic ball provided between a sealing material and a substrate is changed, and spraying on the substrate is arranged by screen printing.
【0076】GHセル12の製造において、透明電極パ
ターン32A、32Bと配向膜33A、33Bを予め形
成した一対のガラス基板31A、31Bの一方のガラス
基板の周辺部に、直径2.5μmのガラスファイバーを
含有した熱硬化性エポキシ樹脂からなる封止(シール)
材35を所定の幅で塗布し(図10)、他方の基板上
に、2.7μm径のプラスチックボールからなるスペー
サー36を均一に散布し、2枚のガラス基板を位置合わ
せして重ねてから、熱プレス板により適度な条件で圧力
(一例として150〜170℃、1〜2kg/cm2)
を加えながら加熱処理することにより、周辺部のシール
材35を硬化させ、液晶セルを完成させた(図6
(b))。In the manufacture of the GH cell 12, a glass fiber having a diameter of 2.5 μm is formed around the periphery of one of the pair of glass substrates 31A and 31B on which the transparent electrode patterns 32A and 32B and the alignment films 33A and 33B are formed in advance. Seal made of thermosetting epoxy resin containing
The material 35 is applied in a predetermined width (FIG. 10), the spacers 36 made of plastic balls having a diameter of 2.7 μm are evenly dispersed on the other substrate, and the two glass substrates are aligned and stacked. , Pressure under moderate conditions by hot press plate (150-170 ° C, 1-2 kg / cm 2 as an example)
By applying heat treatment while adding, the sealing material 35 in the peripheral portion is cured to complete the liquid crystal cell (FIG. 6).
(B)).
【0077】ここで、上記のスペーサー36は、所定の
開口部を形成したスクリーンマスクを通して、スキージ
で掻き出して基板上に散布(スクリーン印刷)したが、
約300個/mm2の密度で、ガラス基板全面にほぼ均
一に配置されていた。Here, the spacer 36 is scraped out by a squeegee through a screen mask having a predetermined opening and sprayed on the substrate (screen printing).
The density was about 300 pieces / mm 2 , and they were arranged almost uniformly on the entire surface of the glass substrate.
【0078】上記のように貼り合わせた基板を個片化し
て得られた空セルのセルギャップを、光の干渉を利用す
る測定機で計測したところ、セル中央部20のセルギャ
ップが約2.6μmに、セル周辺部24のギャップが約
2.5μmに仕上がっていた。また、上記したスクリー
ン印刷によるプラスチックボール36からなるスペーサ
ーの均等な配設によって、セルギャップのばらつきは、
実施例1よりも低減できていた。The cell gap of an empty cell obtained by dividing the above-mentioned bonded substrates into pieces was measured by a measuring machine utilizing light interference, and the cell gap of the cell central portion 20 was about 2. The cell peripheral portion 24 had a gap of about 2.5 μm. In addition, due to the uniform arrangement of the spacers made of the plastic balls 36 by the screen printing described above, the variation in the cell gap is
It was able to be reduced compared with Example 1.
【0079】このような空セルに液晶材料34を封入
(注入+封孔)して出来上がったGHセル12は、実施
例1と同様に、図1に示す様に、セル中央部20のギャ
ップd 1がセル周辺部24のギャップd2に比べて幾分大
きく、液晶注入前の空セルのギャップ厚の面分布をほぼ
反映した状態が維持できていることを確認できた。A liquid crystal material 34 is enclosed in such an empty cell.
GH cell 12 completed by (injection + sealing)
As in Example 1, as shown in FIG.
Up d 1Is the gap d in the cell peripheral portion 242Somewhat larger than
Of the gap thickness of the empty cell before liquid crystal injection.
It was confirmed that the reflected state was maintained.
【0080】このようなセルに、ネガ型の液晶分子(ホ
スト材料)13とポジ型の二色性染料分子(ゲスト材
料)4とからなる液晶材料34を封入し、出来上がった
GHセル12に矩形波を駆動波形として入力し、動作電
圧印加時の光透過率の変化を計測したところ(図4)、
実施例1と同様に、図5に示すように、動作電圧の印加
に伴って、可視光の平均光透過率(空気中)が最大透過
率約75%から数%にまで減少した。A liquid crystal material 34 composed of a negative type liquid crystal molecule (host material) 13 and a positive type dichroic dye molecule (guest material) 4 is enclosed in such a cell, and the resulting GH cell 12 is rectangular. Wave was input as a drive waveform and the change in light transmittance when an operating voltage was applied was measured (Fig. 4).
As in Example 1, as shown in FIG. 5, the average light transmittance of visible light (in air) was decreased from the maximum transmittance of about 75% to several% as the operating voltage was applied.
【0081】また、駆動パルス電圧を変化させた時の光
透過率の応答時間は、15ms以下となり、実施例1以
上の高速動作が可能であった。Further, the response time of the light transmittance when the drive pulse voltage was changed was 15 ms or less, and the high speed operation of Example 1 or higher was possible.
【0082】これらの結果、液晶セルの透明時と遮光時
との光透過率の差(光学濃度比)を充分に確保しなが
ら、高速に過渡応答動作する調光装置を実現することが
出来た。As a result of the above, it was possible to realize a light control device capable of performing a transient response operation at a high speed while sufficiently securing a difference (optical density ratio) in light transmittance between when the liquid crystal cell is transparent and when the light is shielded. .
【0083】実施例3
図12は、上記実施例による調光装置23をCCD(Ch
arge coupled device)カメラに組み込んだ例を示すも
のである。 Embodiment 3 FIG. 12 shows a case where the light control device 23 according to the above embodiment is a CCD (Ch
arge coupled device) shows an example incorporated in a camera.
【0084】即ち、CCDカメラ50において、一点鎖
線で示す光軸に沿って、前記のレンズ前群15に相当す
る1群レンズ51及び2群レンズ(ズーム用)52、前
記のレンズ後群16に相当する3群レンズ53及び4群
レンズ(フォーカス用)54、CCDパッケージ55が
適宜の間隔をおいてこの順に配設されており、CCDパ
ッケージ55には赤外カットフィルタ55a、光学ロー
パスフィルタ系55b、CCD撮像素子55cが収納さ
れている。That is, in the CCD camera 50, the first group lens 51 and the second group lens (for zoom) 52 corresponding to the front lens group 15 and the rear lens group 16 are arranged along the optical axis shown by the alternate long and short dash line. The corresponding third group lens 53, fourth group lens (for focus) 54, and CCD package 55 are arranged in this order at appropriate intervals, and the CCD package 55 has an infrared cut filter 55a and an optical low-pass filter system 55b. , CCD image pickup element 55c is housed.
【0085】2群レンズ52と3群レンズ53との間に
は、3群レンズ53寄りに、上述した本発明に基づくG
Hセル12と偏光板11からなる調光装置23が光量調
節(光量絞り)のために同じ光路上に取付けられてい
る。なお、フォーカス用の4群レンズ54は、リニアモ
ータ57により光路に沿って3群レンズ53とCCDパ
ッケージ55との間を移動可能に配設され、またズーム
用の2群レンズ52は、光路に沿って1群レンズ51と
調光装置23との間を移動可能に配設されている。Between the second lens group 52 and the third lens group 53, the G group based on the above-described present invention is provided near the third lens group 53.
A light control device 23 including an H cell 12 and a polarizing plate 11 is mounted on the same optical path for adjusting the light amount (light amount stop). The focusing fourth group lens 54 is arranged so as to be movable between the third group lens 53 and the CCD package 55 along the optical path by the linear motor 57, and the zoom second group lens 52 is located in the optical path. It is arranged so as to be movable between the first group lens 51 and the dimmer 23.
【0086】図13には、このカメラシステムにおける
調光装置23による光透過率制御のシーケンスのアルゴ
リズムを示す。FIG. 13 shows an algorithm of a sequence of light transmittance control by the light control device 23 in this camera system.
【0087】この実施例によると、2群レンズ52と3
群レンズ53の間に本発明に基づく調光装置23が設け
られているので、上述したように電界の印加によって光
量を調節でき、システムを小型化でき、実質的に光路の
有効範囲の大きさまで小型化できる。したがって、CC
Dカメラの小型化を達成することが可能である。また、
パターン化された電極への印加電圧の大きさによって光
量を適切に制御できるので、従来のような回折現象を防
止し、撮像素子へ十分な光量を入射させ、像のぼやけを
なくせる。According to this embodiment, the second group lenses 52 and 3 are
Since the dimming device 23 according to the present invention is provided between the group lenses 53, the amount of light can be adjusted by applying an electric field as described above, the system can be downsized, and the effective range of the optical path can be substantially achieved. Can be miniaturized. Therefore, CC
It is possible to achieve miniaturization of the D camera. Also,
Since the amount of light can be appropriately controlled by the magnitude of the voltage applied to the patterned electrode, the conventional diffraction phenomenon can be prevented, and a sufficient amount of light can be made incident on the image sensor to eliminate the blurring of the image.
【0088】以上、本発明を実施の形態及び実施例につ
いて説明したが、上述の例は、本発明の技術的思想に基
づき種々に変形が可能である。The embodiments and examples of the present invention have been described above, but the above examples can be variously modified based on the technical idea of the present invention.
【0089】例えば、上述した液晶素子のセルギャップ
は少なくとも有効光路において2〜4μmの範囲で変化
させてよく、特に2〜3.5μm、特に2〜3μm前後
とするのがよい。また、セル周辺部のセルギャップも2
〜4μmとしてよいが、中央部よりは小さく形成するの
がよい。For example, the cell gap of the above-mentioned liquid crystal element may be changed at least in the range of 2 to 4 μm in the effective optical path, and is preferably set to 2 to 3.5 μm, particularly about 2 to 3 μm. Also, the cell gap around the cell is 2
The thickness may be up to 4 μm, but it is preferable to form it smaller than the central portion.
【0090】そして、セル中央部のギャップd1と周辺
部のギャップd2との比(d1/d2)は実施の形態以外
であってもよく、液晶注入前後のギャップのばらつき
(Δd1)を一層抑制できるものであればよい。The ratio (d 1 / d 2 ) of the gap d 1 at the central portion of the cell to the gap d 2 at the peripheral portion may be different from that of the embodiment, and the variation of the gap before and after the liquid crystal injection (Δd 1 ) Can be further suppressed.
【0091】また、本実施例では、GHセル全体に散布
するスペーサーの形状として、球状のものを使った例を
示したが、例えば図6(c)に示すように、柱状のスペ
ーサー37をスクリーン印刷法やリソグラフィー法等で
供給・形成することも可能である。Further, in the present embodiment, an example of using a spherical spacer as the shape of the spacer scattered over the entire GH cell is shown. For example, as shown in FIG. 6C, a columnar spacer 37 is used as a screen. It is also possible to supply and form by a printing method or a lithography method.
【0092】また、偏光板の構造や材質、その駆動機構
などは種々に変更が可能である。また、駆動波形は矩形
波、台形波、正弦波のいずれでも駆動可能であり、両電
極間の電位差に応じて液晶分子の傾きが変化し、光透過
率が制御される。従って、通常はこの波高値により透過
率制御を行う。上述の実施例では、液晶セルの駆動法に
パルス電圧変調(PHM)用いた例を示したが、パルス
幅変調(PWM)で駆動する場合にも適用できる。Further, the structure and material of the polarizing plate, its driving mechanism and the like can be variously changed. In addition, the drive waveform can be driven by any of a rectangular wave, a trapezoidal wave, and a sine wave, and the inclination of the liquid crystal molecules changes according to the potential difference between the electrodes, and the light transmittance is controlled. Therefore, normally, the transmittance is controlled by this peak value. In the above-mentioned embodiment, the example in which the pulse voltage modulation (PHM) is used for the driving method of the liquid crystal cell is shown, but it can be applied to the case of driving by the pulse width modulation (PWM).
【0093】また、GHセルとして、上述したもの以外
に、2層構造等のGHセルも使用可能である。偏光板1
1のGHセル12に対する位置は、レンズ前群15とレ
ンズ後群16との間としたが、この配置に限らず、撮像
レンズの設定条件から最適となる位置に配置されればよ
い。即ち、位相差フィルム等の偏光状態が変化する光学
素子を用いない限り、偏光板11は、例えば撮像面17
とレンズ後群16との間等、被写体側又は撮像素子側の
任意の位置に置くことができる。さらにまた、偏光板1
1は、レンズ前群15又はレンズ後群16に代わる単一
のレンズ(単レンズ)の前又は後に配置されてもよい。As the GH cell, a GH cell having a two-layer structure or the like can be used in addition to the above-mentioned ones. Polarizing plate 1
The position of No. 1 with respect to the GH cell 12 is between the front lens group 15 and the rear lens group 16. However, the position is not limited to this, and may be any position that is optimal from the setting conditions of the imaging lens. That is, unless an optical element such as a retardation film that changes the polarization state is used, the polarizing plate 11 may be, for example, the imaging surface 17.
It can be placed at any position on the subject side or the image pickup device side, such as between the lens rear group 16 and the like. Furthermore, the polarizing plate 1
1 may be arranged before or after a single lens (single lens) that replaces the front lens group 15 or the rear lens group 16.
【0094】また、アイリス羽根18、19は2枚に限
られず、より多くの枚数を用いることにしてもよいし、
逆に1枚でもよい。また、アイリス羽根18、19は、
上下方向に移動することにより重ねられるが、他の方向
に移動してもよく、周囲から中央に向けて絞り込むこと
にしてもよい。The number of iris blades 18 and 19 is not limited to two, and a larger number may be used.
On the contrary, it may be one. Also, the iris blades 18 and 19 are
Although they are stacked by moving in the vertical direction, they may be moved in other directions, or may be narrowed from the periphery toward the center.
【0095】また、偏光板11は、アイリス羽根18に
貼付されているが、アイリス羽根19の方に貼付されて
もよい。Although the polarizing plate 11 is attached to the iris blade 18, it may be attached to the iris blade 19.
【0096】また、被写体が明るくなるにつれて、先に
偏光板11の出し入れによる調光を行なった後、GHセ
ル12による光の吸収を行なったが、逆に、先にGHセ
ル12の光吸収による調光を行なうことにしてもよい。
この場合、GHセル12の透過率が所定の値まで低下し
た後に、偏光板11の出し入れによる調光を行なう。As the subject becomes brighter, light is first adjusted by moving the polarizing plate 11 in and out, and then light is absorbed by the GH cell 12. Conversely, light is absorbed by the GH cell 12 first. You may decide to perform light control.
In this case, after the transmittance of the GH cell 12 has decreased to a predetermined value, light adjustment is performed by putting the polarizing plate 11 in and out.
【0097】また、偏光板11を有効光路20から出し
入れする手段として、機械式アイリスを用いたが、これ
に限られない。例えば、偏光板11が貼付されたフィル
ムを駆動モーターに直接設置することにより、偏光板1
1を出し入れしてもよい。Further, although a mechanical iris is used as a means for moving the polarizing plate 11 in and out of the effective optical path 20, it is not limited to this. For example, by directly installing the film to which the polarizing plate 11 is attached to the drive motor, the polarizing plate 1
1 may be put in and taken out.
【0098】また、上記の例では偏光板11を有効光路
20に対し出し入れしたが、有効光路中に位置固定する
ことも勿論可能である。Further, in the above example, the polarizing plate 11 is taken in and out from the effective optical path 20, but it is of course possible to fix the position in the effective optical path.
【0099】また、本発明の調光装置は、公知の他のフ
ィルター材(例えば、有機系のエレクトロクロミック
材、液晶、エレクトロルミネッセンス材等)と組み合わ
せて用いることも可能である。The light control device of the present invention can also be used in combination with other known filter materials (for example, organic electrochromic materials, liquid crystals, electroluminescent materials, etc.).
【0100】更に、本発明の調光装置は、既述したCC
Dカメラ等の撮像装置の光学絞り以外にも、各種光学
系、例えば、電子写真複写機や光通信機器、CMOSイ
メージセンサー等の光量調節用としても広く適用が可能
である。更に、本発明の調光装置は、光学絞りやフィル
ター以外に、キャラクターやイメージを表示する各種の
画像表示素子に適用することができる。Further, the light control device of the present invention has the above-mentioned CC.
In addition to the optical diaphragm of an image pickup device such as a D camera, it can be widely applied to various optical systems such as electrophotographic copying machines, optical communication devices, and CMOS image sensors for adjusting the amount of light. Further, the light control device of the present invention can be applied to various image display elements for displaying characters and images, in addition to the optical diaphragm and the filter.
【0101】[0101]
【発明の作用効果】本発明の調光装置の製造方法及び液
晶光学素子用の空セルは、基体中央部での間隙を基体周
辺部での間隙よりも大きく保持し、この状態でこの基体
間に液晶を封入するので、液晶注入の際に容易に液晶を
基体間の全域にほぼ均等に充填でき、その結果、液晶封
入前後における基体間の間隙の変化(ばらつき)を抑制
し、設定した条件の透過率及び応答速度を常に実現でき
る調光装置を提供することができる。In the method for manufacturing a light control device and the empty cell for a liquid crystal optical element of the present invention, the gap in the central portion of the base is kept larger than that in the peripheral portion of the base, and in this state Since the liquid crystal is filled in the liquid crystal, it is easy to fill the liquid crystal almost uniformly between the bases when the liquid crystal is injected. As a result, the change (dispersion) in the gap between the bases before and after the liquid crystal filling is suppressed and the set conditions are set. It is possible to provide a light control device that can always realize the transmittance and the response speed of the light.
【図1】本発明の実施例による液晶セルの概略断面図を
示し、(a)は空セル状態、(b)は液晶封入後の状態
である。1A and 1B are schematic cross-sectional views of a liquid crystal cell according to an embodiment of the present invention, in which FIG. 1A is an empty cell state and FIG.
【図2】同、実施例による液晶セルを示し、いずれも図
1の概略平面図である。2 is a schematic plan view of FIG. 1, showing a liquid crystal cell according to the embodiment.
【図3】同、実施例による液晶セルの中央部と周辺部の
ギャップ比(d1/d2)と、液晶封入後のギャップ差
(Δd1)のばらつきの傾向を示すグラフである。FIG. 3 is a graph showing the tendency of variations in the gap ratio (d 1 / d 2 ) between the central portion and the peripheral portion of the liquid crystal cell and the gap difference (Δd 1 ) after the liquid crystal is sealed in the same example.
【図4】同、調光装置の動作原理を示す外略図である。FIG. 4 is a schematic diagram showing the operating principle of the light control device.
【図5】同、調光装置の光透過率と駆動印加電圧との関
係を示すグラフである。FIG. 5 is a graph showing the relationship between the light transmittance of the light control device and the drive applied voltage.
【図6】同、液晶光学素子のセルの各例の概略断面図で
ある。FIG. 6 is a schematic cross-sectional view of each example of cells of the liquid crystal optical element.
【図7】同、液晶光学素子を用いた調光装置の概略側面
図である。FIG. 7 is a schematic side view of a light control device using the same liquid crystal optical element.
【図8】同、調光装置の機械式アイリスの正面図であ
る。FIG. 8 is a front view of the mechanical iris of the light control device.
【図9】同、調光装置の有効光路付近の機械式アイリス
の動作を示す概略部分拡大図である。FIG. 9 is a schematic partial enlarged view showing the operation of the mechanical iris in the vicinity of the effective optical path of the light control device.
【図10】同、セル作製におけるシール材の塗布工程を
説明する図である。FIG. 10 is a diagram explaining a coating step of the sealing material in the same cell production.
【図11】同、セル作製におけるスペーサーの散布工程
を説明する図である。FIG. 11 is a diagram illustrating a spacer spraying step in the same cell production.
【図12】同、調光装置を組み込んだカメラシステムの
概略断面図である。FIG. 12 is a schematic cross-sectional view of a camera system incorporating the light control device.
【図13】同、カメラシステムにおける光透過率制御の
アルゴリズムである。FIG. 13 is an algorithm of light transmittance control in the camera system.
【図14】従来の調光装置の動作原理を示す概略図であ
る。FIG. 14 is a schematic diagram showing an operation principle of a conventional light control device.
【図15】同、調光装置の光透過率と駆動印加電圧との
関係を示すグラフである。FIG. 15 is a graph showing the relationship between the light transmittance of the light control device and the drive applied voltage.
【図16】先願発明による調光装置(液晶光学素子)の
光透過率と液晶セルギャップとの関係を示すグラフであ
る。FIG. 16 is a graph showing the relationship between the light transmittance and the liquid crystal cell gap of the light control device (liquid crystal optical element) according to the invention of the prior application.
【図17】同、調光装置の応答時間と液晶セルギャップ
との関係を示すグラフである。FIG. 17 is a graph showing the relationship between the response time of the light control device and the liquid crystal cell gap.
【図18】同、液晶セルの概略断面図を示し、(a)は
空セル状態、(b)は液晶封入後の状態である。FIG. 18 is a schematic cross-sectional view of a liquid crystal cell, in which (a) is an empty cell state and (b) is a state after liquid crystal is filled.
【図19】同、液晶セルを示し、いずれも図18の概略
平面図である。19 is a schematic plan view of FIG. 18, showing a liquid crystal cell.
1、11…偏光板、2、12…GHセル、3…ポジ型液
晶、4…ポジ型染料分子、5…入射光、13…ネガ型液
晶、15、16…レンズ群、17…撮像面、18、19
…アイリス羽根、20…有効光路(セル中間部又は中央
部)、22…開口部、23…調光装置、24…セル周辺
部、31A、31B…ガラス基板、32A、32B…透
明(動作)電極、33A、33B…配向膜、34…液晶
材料、35、38…封止(シール)材、36…球状スペ
ーサー、37…柱状スペーサー、39…液晶注入口、5
0…CCDカメラ、51…1群レンズ、52…2群レン
ズ、53…3群レンズ、54…4群レンズ、55…CC
Dパッケージ、55b…光学ローパスフィルタ、55c
…CCD撮像素子、A1、A2…傾向曲線1, 11 ... Polarizing plate, 2, 12 ... GH cell, 3 ... Positive type liquid crystal, 4 ... Positive type dye molecule, 5 ... Incident light, 13 ... Negative type liquid crystal, 15, 16 ... Lens group, 17 ... Imaging surface, 18, 19
... iris blade, 20 ... Effective optical path (intermediate part or central part of cell), 22 ... Opening part, 23 ... Light control device, 24 ... Cell peripheral part, 31A, 31B ... Glass substrate, 32A, 32B ... Transparent (operating) electrode , 33A, 33B ... Alignment film, 34 ... Liquid crystal material, 35, 38 ... Sealing material, 36 ... Spherical spacer, 37 ... Columnar spacer, 39 ... Liquid crystal injection port, 5
0 ... CCD camera, 51 ... 1 group lens, 52 ... 2 group lens, 53 ... 3 group lens, 54 ... 4 group lens, 55 ... CC
D package, 55b ... Optical low pass filter, 55c
... CCD image sensor, A 1 , A 2 ... trend curve
Claims (14)
液晶光学素子からなる調光装置を製造するに際し、前記
対向基体間の間隙のうち、基体中央部での間隙を基体周
辺部での間隙よりも大きく保持し、この状態で前記対向
基体間に前記液晶を封入する、調光装置の製造方法。1. When manufacturing a light control device comprising a liquid crystal optical element in which liquid crystal is sealed between substrates facing each other, among the gaps between the facing substrates, the gap at the center of the substrate is the gap at the periphery of the substrate. A method for manufacturing a light control device, in which the liquid crystal is held larger than the above, and the liquid crystal is sealed between the opposed substrates in this state.
体周辺部での間隙d2との比を1<d1/d2≦1.1と
する、請求項1に記載した調光装置の製造方法。2. The adjustment according to claim 1, wherein the ratio of the gap d 1 at the central portion of the base body to the gap d 2 at the peripheral portion of the base body is 1 <d 1 / d 2 ≦ 1.1. Optical device manufacturing method.
記間隙を保持する、請求項1に記載した調光装置の製造
方法。3. The method for manufacturing a light control device according to claim 1, wherein a spacer is arranged between the opposed bases to hold the gap.
た対向透明基板間に前記スペーサーを配し、周辺部をシ
ール材で封止する際、前記シール材を前記スペーサーよ
りも小さく形成するか、或いはより硬質の材料を含有し
た混合物で形成する、請求項3に記載した調光装置の製
造方法。4. When the spacer is arranged between opposing transparent substrates on which transparent electrodes and alignment films are respectively formed, and the peripheral portion is sealed with a sealing material, the sealing material is formed smaller than the spacer, Alternatively, the method for manufacturing a light control device according to claim 3, wherein the light control device is formed of a mixture containing a harder material.
状とする、請求項4に記載した調光装置の製造方法。5. The method for manufacturing a light control device according to claim 4, wherein the hard material has a ball shape or a fiber shape.
00個/mm2となるように制御する、請求項3に記載
した調光装置の製造方法。6. The distribution density of the spacer is 150 to 5
The method for manufacturing a light control device according to claim 3, wherein the number is controlled to be 00 / mm 2 .
学素子の有効光路における前記対向基体間の間隙を2μ
m以上、4μm以下に制御する、請求項1に記載した調
光装置の製造方法。7. After the liquid crystal is filled, the gap between the opposing bases in the effective optical path of the liquid crystal optical element is set to 2 μm.
The method for manufacturing a light control device according to claim 1, wherein the light control device is controlled to be not less than m and not more than 4 μm.
料とし、かつ2色性染料をゲスト材料とするゲスト−ホ
スト型液晶を封入する、請求項1に記載した調光装置の
製造方法。8. The method for manufacturing a light control device according to claim 1, wherein a guest-host type liquid crystal having a negative type liquid crystal as a host material and a dichroic dye as a guest material is enclosed as the liquid crystal.
き液晶光学素子用の空セルであって、前記対向基体間の
間隙のうち、基体中央部での間隙が基体周辺部での間隙
よりも大きく保持されている、液晶光学素子用の空セ
ル。9. An empty cell for a liquid crystal optical element in which liquid crystal is to be sealed between substrates facing each other, wherein a gap at a central portion of the substrate out of a gap between the opposing substrates is larger than a gap at a peripheral portion of the substrate. An empty cell for liquid crystal optical elements, which is also largely held.
基体周辺部での間隙d2との比が1<d1/d2≦1.1
とされる、請求項9に記載した液晶光学素子用の空セ
ル。10. The ratio of the gap d 1 in the central portion of the base body to the gap d 2 in the peripheral portion of the base body is 1 <d 1 / d 2 ≦ 1.1.
The empty cell for a liquid crystal optical element according to claim 9.
れ、前記間隙が保持されている、請求項9に記載した液
晶光学素子用の空セル。11. The empty cell for a liquid crystal optical element according to claim 9, wherein a spacer is arranged between the opposed substrates and the gap is held.
れた対向透明基板間に前記スペーサーが配され、周辺部
がシール材で封止される際、前記シール材が前記スペー
サーよりも小さく形成されるか、或いはより硬質の材料
を含有した混合物で形成される、請求項11に記載した
液晶光学素子用の空セル。12. The spacer is arranged between opposing transparent substrates on which transparent electrodes and alignment films are respectively formed, and when the peripheral portion is sealed with a sealing material, the sealing material is formed smaller than the spacer. The empty cell for a liquid crystal optical element according to claim 11, which is formed of a mixture containing a harder material.
ー状をなしている、請求項12に記載した液晶光学素子
用の空セル。13. The empty cell for a liquid crystal optical element according to claim 12, wherein the hard material has a ball shape or a fiber shape.
500個/mm2となるように制御される、請求項11
に記載した液晶光学素子用の空セル。14. The spacer has a distribution density of 150 to 150.
It is controlled to be 500 pieces / mm 2 11.
An empty cell for the liquid crystal optical element described in 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001291510A JP5050305B2 (en) | 2001-09-25 | 2001-09-25 | Manufacturing method of light control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001291510A JP5050305B2 (en) | 2001-09-25 | 2001-09-25 | Manufacturing method of light control device |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2003098552A true JP2003098552A (en) | 2003-04-03 |
JP2003098552A5 JP2003098552A5 (en) | 2008-10-02 |
JP5050305B2 JP5050305B2 (en) | 2012-10-17 |
Family
ID=19113644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001291510A Expired - Fee Related JP5050305B2 (en) | 2001-09-25 | 2001-09-25 | Manufacturing method of light control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5050305B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113176683A (en) * | 2020-01-27 | 2021-07-27 | 株式会社日本显示器 | Display device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06202123A (en) * | 1992-12-28 | 1994-07-22 | Stanley Electric Co Ltd | Production of liquid crystal display device |
JPH0720476A (en) * | 1993-06-30 | 1995-01-24 | Seiko Instr Inc | Liquid crystal device |
JPH095758A (en) * | 1995-06-26 | 1997-01-10 | Hitachi Ltd | Liquid crystal display element and its production |
JPH1054994A (en) * | 1996-08-08 | 1998-02-24 | Matsushita Electron Corp | Production of liquid crystal panel |
JPH11119233A (en) * | 1997-10-15 | 1999-04-30 | Canon Inc | Production of display device |
JPH11264987A (en) * | 1998-03-18 | 1999-09-28 | Seiko Epson Corp | Liquid crystal display device |
JP2001201769A (en) * | 1999-11-12 | 2001-07-27 | Sony Corp | Dimmer and image pickup device |
-
2001
- 2001-09-25 JP JP2001291510A patent/JP5050305B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06202123A (en) * | 1992-12-28 | 1994-07-22 | Stanley Electric Co Ltd | Production of liquid crystal display device |
JPH0720476A (en) * | 1993-06-30 | 1995-01-24 | Seiko Instr Inc | Liquid crystal device |
JPH095758A (en) * | 1995-06-26 | 1997-01-10 | Hitachi Ltd | Liquid crystal display element and its production |
JPH1054994A (en) * | 1996-08-08 | 1998-02-24 | Matsushita Electron Corp | Production of liquid crystal panel |
JPH11119233A (en) * | 1997-10-15 | 1999-04-30 | Canon Inc | Production of display device |
JPH11264987A (en) * | 1998-03-18 | 1999-09-28 | Seiko Epson Corp | Liquid crystal display device |
JP2001201769A (en) * | 1999-11-12 | 2001-07-27 | Sony Corp | Dimmer and image pickup device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113176683A (en) * | 2020-01-27 | 2021-07-27 | 株式会社日本显示器 | Display device |
Also Published As
Publication number | Publication date |
---|---|
JP5050305B2 (en) | 2012-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0509534B1 (en) | Liquid crystal optical element, liquid crystal display element and a projection type liquid crystal display apparatus using such element | |
EP0657761B1 (en) | A liquid crystal panel with ultraviolet radiation reducing means, manufacturing method therefor and projection display apparatus using the same | |
US6791657B2 (en) | Liquid crystal display having liquid crystal cell gap variation | |
EP1574895A1 (en) | Dimming device and driving method therefor, and imaging device | |
KR100255909B1 (en) | A liquid crystal display apparatus, a liquid crystal projector using the same, and a method of amnufacturing the liquid crystal display apparatus | |
TWI282469B (en) | Liquid crystal display element and projection display | |
JP4432356B2 (en) | Light control device and imaging device | |
JP2002533749A (en) | Reflective LCD with dark edges | |
JP5050305B2 (en) | Manufacturing method of light control device | |
US7492409B2 (en) | Light controller and imaging apparatus | |
JP2003029302A (en) | Dimmer and image pickup device | |
JP2870826B2 (en) | Active matrix liquid crystal display device and projection type active matrix liquid crystal display device | |
JP3119026B2 (en) | Liquid crystal panel, method of manufacturing the same, and liquid crystal projection television using the same | |
JP2812497B2 (en) | Camera reticle | |
JP2004126402A (en) | Light control device and imaging apparatus | |
JPH05196925A (en) | Projection type liquid crystal display device | |
JP3250836B2 (en) | Liquid crystal panel and projection display device using the liquid crystal panel | |
JP2503830B2 (en) | Liquid crystal display element | |
JP3025981B2 (en) | Active matrix liquid crystal display device and projection type active matrix liquid crystal display device | |
JP2003084310A (en) | Dimmer and imaging device | |
JP2004251947A (en) | Dimmer and image pickup device | |
JP2973288B2 (en) | Liquid crystal display | |
JPH1195220A (en) | Reflection type liquid crystal display device | |
JPH07159762A (en) | Liquid crystal panel, its production and liquid crystal projection type television using the same | |
KR20130132166A (en) | Liquid crystal display and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD13 | Notification of appointment of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7433 Effective date: 20070125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080811 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080811 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20090526 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110426 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110427 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111004 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120626 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120709 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150803 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |