JP2003098125A - Sample holder for evaluating magnetic orientation properties and magnetic orientation measuring method - Google Patents

Sample holder for evaluating magnetic orientation properties and magnetic orientation measuring method

Info

Publication number
JP2003098125A
JP2003098125A JP2001295435A JP2001295435A JP2003098125A JP 2003098125 A JP2003098125 A JP 2003098125A JP 2001295435 A JP2001295435 A JP 2001295435A JP 2001295435 A JP2001295435 A JP 2001295435A JP 2003098125 A JP2003098125 A JP 2003098125A
Authority
JP
Japan
Prior art keywords
sample
sample holder
magnetic orientation
magnetic
ray diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001295435A
Other languages
Japanese (ja)
Inventor
Kazuhide Hayashi
林  一英
Hidezo Ozawa
秀造 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001295435A priority Critical patent/JP2003098125A/en
Publication of JP2003098125A publication Critical patent/JP2003098125A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sample holder capable of evaluating the magnetic orienta tion properties of a material powder having magnetism by X-ray diffraction and to provide a magnetic orientation measuring method for measuring the magnetic orientation properties of the material powder having magnetism. SOLUTION: As the constitution of the sample holder for evaluating magnetic orientation properties, a magnet lump having a surface on which a sample to be inspected can be placed, a container having no crystallinity for fixing the magnet lump therein and a base part for fixing the container are provided. Further, as the magnetic orientation measuring method, a sample holder having a sample stage part having the magnet lump fixed therein is prepared and the sample to be inspected is sprinkled over the magnet lump of the sample holder to magnetically orient the sample to be inspected and the magnetically oriented sample to be inspected is subjected to X-ray diffraction and a degree of magnetic orientation is calculated from the measured result of X-ray diffraction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁性を有する材料
粉末の磁気方位配向性を評価するためのX線回折測定に
使用する試料ホルダーおよび該試料ホルダーを用いた磁
気方位配向測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample holder used for X-ray diffraction measurement for evaluating the magnetic orientation of a material powder having magnetism and a magnetic orientation measuring method using the sample holder.

【0002】[0002]

【従来の技術】結晶構造に起因して特定方向に結晶が揃
うことを結晶配向といい、圧延鋼板やめっき皮膜などは
何らかの方向へ結晶配向していることが多い。このよう
な材料の結晶配向度を定量的に評価するには、配向した
サンプルのX線回折ピーク強度比と無配向サンプルのX線
回折ピーク強度比の相対値から求めることができる。こ
れに対し、結晶構造ではなく磁気的に揃うことを磁気方
位配向といい、磁性を有する材料はある特定方向へ磁気
方位配向する。
2. Description of the Related Art Alignment of crystals in a specific direction due to the crystal structure is called crystal orientation, and rolled steel sheets, plating films, etc. are often oriented in some direction. In order to quantitatively evaluate the crystal orientation degree of such a material, it can be obtained from the relative value of the X-ray diffraction peak intensity ratio of the oriented sample and the X-ray diffraction peak intensity ratio of the non-oriented sample. On the other hand, magnetic alignment, not crystal structure, is called magnetic orientation, and a magnetic material is magnetically oriented in a specific direction.

【0003】[0003]

【発明が解決しようとする課題】材料が粉末である場
合、個々の結晶粒がランダムに存在するため一般的には
配向しないが、力を加えて試料を押し付けたり固めたり
することにより結晶方位配向することがある。磁性を有
する粉末試料についても同様であり、固定することによ
って結晶配向する場合があるが、結晶配向した方位は磁
気方位配向の方位とは必ずしも−致しない。そのため、
従来の固定法を採用してX線回折を行うことにより、磁
性を有する材料粉末の結晶配向性は定量的に評価できる
が、磁気方位配向性は評価できない。
When the material is a powder, it does not generally orient because the individual crystal grains are randomly present, but the crystal orientation is orientated by pressing or hardening the sample by applying force. I have something to do. The same applies to a powder sample having magnetism, and the crystal orientation may occur by fixing, but the orientation of the crystal orientation does not necessarily correspond to the orientation of the magnetic orientation. for that reason,
By performing X-ray diffraction using the conventional fixing method, the crystal orientation of the magnetic material powder can be quantitatively evaluated, but the magnetic orientation cannot be evaluated.

【0004】したがって、本発明は、磁性を有する材料
粉末の磁気方位配向性をX線回折で評価できるようにす
るための試料ホルダーを提供することを目的とする。
Therefore, it is an object of the present invention to provide a sample holder for making it possible to evaluate the magnetic azimuth orientation of a material powder having magnetism by X-ray diffraction.

【0005】本発明は、磁性を有する材料粉末の磁気方
位配向性を測定する磁気方位配向測定方法を提供するこ
とを目的とする。
It is an object of the present invention to provide a magnetic azimuth orientation measuring method for measuring the magnetic azimuth orientation of a magnetic material powder.

【0006】[0006]

【課題を解決するための手段】本発明者は、磁性を有す
る材料粉末の磁気方位配向性をX線回折で評価するため
には、試料ステージ部とベース部で構成された試料ホル
ダーを用いることが効果的であることを見出した。試料
ステージ部は、結晶性を有しない材料で作製した容器、
磁石塊および固着剤で構成しており、容器内に磁石塊を
入れて固着剤で固定する。これをベース部に装着し、試
料ステージ部の上面に被検試料をふりかけると、試料ス
テージ部の磁石塊の磁力によって被検試料が磁気方位に
配向するため、これをX線回折測定すれば磁気方位配向
性を反映したX線回折パターンを観測することができ
る。測定後の被検試料は、試料ステージ部の固着剤を除
去し磁石塊を取り外すことによって、被検試料の全量を
簡単に回収する。
The present inventor uses a sample holder composed of a sample stage section and a base section in order to evaluate the magnetic azimuth orientation of a magnetic material powder by X-ray diffraction. Have been found to be effective. The sample stage part is a container made of a material having no crystallinity,
It is composed of a magnet block and an adhesive, and the magnet block is put in a container and fixed with an adhesive. When this is mounted on the base part and the test sample is sprinkled on the upper surface of the sample stage part, the test sample is oriented in the magnetic direction by the magnetic force of the magnet mass of the sample stage part. An X-ray diffraction pattern reflecting the azimuthal orientation can be observed. For the test sample after the measurement, the adhesive agent on the sample stage portion is removed and the magnet block is removed to easily collect the entire amount of the test sample.

【0007】[0007]

【発明の実施の形態】本発明の試料ホルダーの構造およ
び測定方法の工程を図1に示す。図1a、図1bに示す
ように、試料ステージ部3は、結晶性を有しない容器1
と磁石塊2と固着剤で構成されており、容器1の中に磁石
塊2を入れ固着剤で固定することで試料ステージ部3を構
成する。
BEST MODE FOR CARRYING OUT THE INVENTION The structure of a sample holder of the present invention and steps of a measuring method are shown in FIG. As shown in FIGS. 1a and 1b, the sample stage unit 3 includes a container 1 having no crystallinity.
And the magnet mass 2 and the adhesive agent, and the magnet mass 2 is placed in the container 1 and fixed with the adhesive agent to form the sample stage section 3.

【0008】次に、図1b、図1cに示すように、ベー
ス部4に固定剤5を載せた試料ステージ部3をベース部4に
装着することによって、本発明の試料ホルダー6を構成
する。試料ホルダー6のガイド部分の高さ(図中の点
線)と一致するように調節しながら試料ステージ部3の
上面に被検試料7をふりかける。
Next, as shown in FIGS. 1b and 1c, the sample stage portion 3 having the fixing agent 5 placed on the base portion 4 is mounted on the base portion 4 to form the sample holder 6 of the present invention. The sample 7 to be inspected is sprinkled on the upper surface of the sample stage part 3 while adjusting so as to match the height of the guide part of the sample holder 6 (dotted line in the figure).

【0009】図1dに示すように、ふりかけられた被検
試料7は磁石塊2の磁力により、ある特定方向に磁気的に
配向した状態で高さ方向に積み重なるようにして固定さ
れる。これをX線回折装置に装着してX線回折測定を行
うことにより、磁気方位配向性を反映したX線回折パタ
ーンを得ることができる。
As shown in FIG. 1d, the test sample 7 sprinkled is fixed by the magnetic force of the magnet mass 2 so as to be stacked in the height direction while being magnetically oriented in a specific direction. By mounting this on an X-ray diffractometer and performing X-ray diffraction measurement, an X-ray diffraction pattern reflecting the magnetic orientation can be obtained.

【0010】以下、実施例に、当該試料ホルダーの特徴
を示す。 (実施例)磁気特性の高いSm2Fe17N3のサンプルAおよび
磁気特性の低いSm2Fe17N3のサンプルBについて、当該
試料ホルダーに固定して行ったX線回折測定結果を図2
に示す。また、図2の測定結果から、任意の回折ピーク9
本を用いた配向度算出結果を図3に示す。ここで、配向
度の算出は、以下のような方法で行った。
The features of the sample holder will be described below in Examples. (Example) For low Sm 2 Fe17N 3 samples B of the sample A and the magnetic properties of high Sm 2 Fe 17 N 3 magnetic properties, FIG fixed to the X-ray diffraction measurements were performed on the sample holder 2
Shown in. In addition, from the measurement results in Fig. 2, an arbitrary diffraction peak 9
The results of calculating the degree of orientation using a book are shown in FIG. Here, the degree of orientation was calculated by the following method.

【0011】任意のピークの磁気方位配向度をK、任意
のピークの実サンプルでのピーク強度をIPO(実サンプ
ル)、選んだ全てのピークの実サンプルでのピーク強度
の総和をIPS(実サンプル)、任意のピークの無配向状
態でのピーク強度をIPO(無配向)、選んだ全てのピー
クの無配向状態でのピーク強度の総和をIPS(無配向)
とすると、 K={IPO(実サンプル)/IPS(実サンプル)}/ {IPO(無配向)/IPS(無配向)}
The magnetic orientation degree of an arbitrary peak is K, the peak intensity of an arbitrary peak in an actual sample is I PO (actual sample), and the sum of the peak intensities of all selected peaks in the actual sample is I PS ( (Actual sample), the peak intensity in the non-oriented state of any peak is I PO (non-oriented), and the sum of the peak intensities of all selected peaks in the non-oriented state is I PS (non-oriented)
Then, K = {I PO (actual sample) / I PS (actual sample)} / {I PO (non-oriented) / I PS (non-oriented)}

【0012】図3から、サンプルAの(006)ピークにお
けるK値が高く算出されており、特性が高い方がC軸配
向が顕著であることが分かる。
It can be seen from FIG. 3 that the K value at the (006) peak of sample A is calculated to be high, and the higher the characteristic, the more the C-axis orientation is remarkable.

【0013】(比較例)実施例のSm2Fe17N3のサンプルA
について、当該試料ホルダーで固定した場合およびガラ
ス製試料ホルダーに押し付け法で固定した場合における
X線回折測定結果を図4に示す。さらに、図4の測定結果
から、任意の回折ピーク9本を用いた配向度算出結果を
図5に示す。図5から、ガラス製試料ホルダーの場合は特
に配向は認められなかったが、当該試料ホルダーで固定
した場合は特定方向(C軸方向)へ磁気的に配向した状
態でX線回折測定できることが分かる。
Comparative Example Sm 2 Fe 17 N 3 Sample A of the Example
FIG. 4 shows the X-ray diffraction measurement results for the sample, which was fixed with the sample holder and when it was fixed with the glass sample holder by the pressing method. Further, FIG. 5 shows the calculation result of the orientation degree using the arbitrary nine diffraction peaks from the measurement result of FIG. From FIG. 5, it can be seen that no particular orientation was observed in the case of the glass sample holder, but when the sample holder was fixed, X-ray diffraction measurement could be performed in a state of being magnetically oriented in a specific direction (C-axis direction). .

【0014】また、当該試料ホルダーおよびガラス製試
料ホルダーで測定した際のサンプルの回収率を比較した
結果を表1に示す。
Table 1 shows the results of comparison of the sample recovery rates when measured with the sample holder and the glass sample holder.

【表1】 [Table 1]

【0015】当該試料ホルダーによれば、測定に供した
サンプルのほぼ全量を回収することができる。
According to the sample holder, almost all of the sample used for the measurement can be collected.

【0016】[0016]

【発明の効果】本発明の試料ホルダーによれば、磁性を
有する材料粉末の磁気方位配向性をX線回折で評価する
ことができる。また、測定終了したサンプルについて
は、その全量を容易に回収することができる。
According to the sample holder of the present invention, it is possible to evaluate the magnetic orientation of the magnetic material powder by X-ray diffraction. In addition, the total amount of the sample after the measurement can be easily collected.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の試料ホルダーの構造を示すとと
もに測定方法の工程を示す図である。
FIG. 1 is a diagram showing a structure of a sample holder of the present invention and steps of a measuring method.

【図2】図2は磁気特性の異なるSmFeN粉末の2つのサン
プルのX線回折測定結果を示すグラフである。
FIG. 2 is a graph showing the X-ray diffraction measurement results of two samples of SmFeN powder having different magnetic properties.

【図3】図3は図2の結果を元に算出した配向度を示すグ
ラフである。
FIG. 3 is a graph showing the degree of orientation calculated based on the result of FIG. 2.

【図4】図4は当該試料ホルダーとガラス製試料ホルダ
ーを用いて測定した、同−SmFeN粉末のX線回折測定結
果を示すグラフである。
FIG. 4 is a graph showing an X-ray diffraction measurement result of the same —SmFeN powder measured using the sample holder and a glass sample holder.

【図5】図5は図4の結果を元に算出した配向度を示すグ
ラフである。
5 is a graph showing the degree of orientation calculated based on the result of FIG. 4.

【符号の説明】[Explanation of symbols]

1 結晶性を有しない容器 2 磁石塊 3 試料ステージ部 4 ベース部 5 固定剤 6 試料ホルダー 7 被検試料 1 Containers that do not have crystallinity 2 magnet mass 3 Sample stage section 4 base 5 fixative 6 Sample holder 7 Test sample

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G001 AA01 BA18 CA01 GA01 GA10 GA13 HA01 JA07 JA20 KA20 LA02 MA04 QA01 QA03    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2G001 AA01 BA18 CA01 GA01 GA10                       GA13 HA01 JA07 JA20 KA20                       LA02 MA04 QA01 QA03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 X線回折によって磁気方位配向性を評価
することが可能である、試料ステージ部とベース部で構
成されていることを特徴とする磁気方位配向性評価用試
料ホルダー。
1. A sample holder for evaluating magnetic azimuth orientation, comprising a sample stage portion and a base portion capable of evaluating the magnetic azimuth orientation property by X-ray diffraction.
【請求項2】 前記試料ステージ部が結晶性を有しない
材料で作製した容器内に固着剤を用いて磁石塊を固定し
た構造であることを特徴とする請求項1記載の試料ホル
ダー。
2. The sample holder according to claim 1, wherein the sample stage portion has a structure in which a magnet mass is fixed by using a fixing agent in a container made of a material having no crystallinity.
【請求項3】 前記ベース部は前記試料ステージ部を固
定できる構造であることを特徴とする請求項1記載の試
料ホルダー。
3. The sample holder according to claim 1, wherein the base unit has a structure capable of fixing the sample stage unit.
【請求項4】被検試料を載置できる表面を持つ磁石塊
と、 該磁石塊を内部に固定するための結晶性を有しない容器
と、 該容器を固定するためのベース部と、 を有することを特徴とする磁気方位配向性評価用試料ホ
ルダー。
4. A magnet mass having a surface on which a sample to be tested can be mounted, a container having no crystallinity for fixing the magnet mass inside, and a base portion for fixing the container. A sample holder for evaluating magnetic orientation, which is characterized in that
【請求項5】磁石塊を内部に固定した試料ステージ部を
持つ試料ホルダーを準備し、 該試料ホルダーの磁石塊上に被検試料をふりかけて被検
試料を磁気的に配向させ、 磁気的に配向した被検試料をX線回折し、 X線回折の測定結果から磁気方位配向度を算出する、こ
とを特徴とする磁気方位配向測定方法。
5. A sample holder having a sample stage part in which a magnet block is fixed is prepared, and the sample sample is sprinkled on the magnet block of the sample holder to magnetically orient the sample sample. A magnetic azimuth orientation measuring method, which comprises subjecting an oriented test sample to X-ray diffraction, and calculating a magnetic orientation degree from a measurement result of X-ray diffraction.
JP2001295435A 2001-09-27 2001-09-27 Sample holder for evaluating magnetic orientation properties and magnetic orientation measuring method Pending JP2003098125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001295435A JP2003098125A (en) 2001-09-27 2001-09-27 Sample holder for evaluating magnetic orientation properties and magnetic orientation measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001295435A JP2003098125A (en) 2001-09-27 2001-09-27 Sample holder for evaluating magnetic orientation properties and magnetic orientation measuring method

Publications (1)

Publication Number Publication Date
JP2003098125A true JP2003098125A (en) 2003-04-03

Family

ID=19116874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001295435A Pending JP2003098125A (en) 2001-09-27 2001-09-27 Sample holder for evaluating magnetic orientation properties and magnetic orientation measuring method

Country Status (1)

Country Link
JP (1) JP2003098125A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039379A1 (en) * 2019-08-30 2021-03-04 国立研究開発法人産業技術総合研究所 Orientation distribution calculation method, orientation distribution analysis device, and orientation distribution analysis program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039379A1 (en) * 2019-08-30 2021-03-04 国立研究開発法人産業技術総合研究所 Orientation distribution calculation method, orientation distribution analysis device, and orientation distribution analysis program
JP7460180B2 (en) 2019-08-30 2024-04-02 国立研究開発法人産業技術総合研究所 Orientation distribution calculation method, orientation distribution analysis device, and orientation distribution analysis program

Similar Documents

Publication Publication Date Title
Jacobs et al. Magnetic anisotropy and rotational hysteresis in elongated fine‐particle magnets
Schütz et al. Spin-dependent extended x-ray-absorption fine structure: Probing magnetic short-range order
Rau et al. Electron-spin polarization at single-crystalline Cr and Ni surfaces determined with electron-capture spectroscopy
Goll et al. High-throughput search for new permanent magnet materials
Pakala et al. Effect of underlayer roughness, grain size, and crystal texture on exchange coupled IrMn/CoFe thin films
Haverkort et al. Magnetic versus crystal-field linear dichroism in NiO thin films
Simpson et al. The Magnetic and Structural Properties of Bulk Amorphous and Crystalline Co‐P Alloys
Schio et al. Magnetic response of cobalt nanowires with diameter below 5 nm
Choe et al. Observation of unequal activation volumes of wall-motion and nucleation processes in Co/Pd multilayers
Madami et al. In situ Brillouin scattering study of the thickness dependence of magnetic anisotropy in uncovered and Cu-covered Fe/GaAs (100) ultrathin films
Givord et al. Determination of the degree of crystallites orientation in permanent magnets by X-ray scattering and magnetic measurements
WO2018081577A1 (en) High throughput characterization of individual magnetic nanoparticles
Tomaz et al. Orientation dependence of interlayer coupling and interlayer moments in Fe/Cr multilayers
Gehanno et al. In plane to out of plane magnetic reorientation transition in partially ordered FePd thin films
Takahashi et al. Minor hysteresis loop in Fe metal and alloys
Herrmann et al. Optical anisotropy and magneto-optical properties of Ni on preoxidized Cu (110)
Janke-Gilman et al. Measuring atomic moment and magnetic order through magnetic linear dichroism with angular dependence studies of transition-metal alloys
Hayashi et al. New crystalline soft magnetic alloy with high saturation magnetization
JP2003098125A (en) Sample holder for evaluating magnetic orientation properties and magnetic orientation measuring method
Hellwig et al. Role of B on grain sizes and magnetic correlation lengths in recording media as determined by soft X-ray scattering
Rose et al. Magnetic permeability and eddy-current measurements
JP2002260921A (en) FeCoNiN-BASED SOFT MAGNETIC THIN FILM ALLOY COMPOSITION
Reiff et al. Electronic ground states of dicyanobis (diimine) iron (III) compounds
Harris et al. Cation distribution in NiZn‐ferrite films determined using x‐ray absorption fine structure
CN101210947B (en) Electrical grade sheet electro-magnetism performance measurement method