JP2003094343A - Grinding wheel - Google Patents

Grinding wheel

Info

Publication number
JP2003094343A
JP2003094343A JP2002223782A JP2002223782A JP2003094343A JP 2003094343 A JP2003094343 A JP 2003094343A JP 2002223782 A JP2002223782 A JP 2002223782A JP 2002223782 A JP2002223782 A JP 2002223782A JP 2003094343 A JP2003094343 A JP 2003094343A
Authority
JP
Japan
Prior art keywords
bond
grinding
heat
vol
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002223782A
Other languages
Japanese (ja)
Inventor
Tetsuji Yamashita
哲二 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002223782A priority Critical patent/JP2003094343A/en
Publication of JP2003094343A publication Critical patent/JP2003094343A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To have superior frangibility, impact absorption capacity, and grinding ratio in grinding a material hard to be ground. SOLUTION: An elastic base metal 2 of a super abrasive grain wheel 1 is provided with an abrasive grain layer 3 with brittle super abrasive grains SD retained by bond. The bond whose hardness is set within a range of HRF 30-80, is so formed that different types of thermosetting resin of 10-60 vol.% or preferably 20 vol.% such as all aromatic polyimides is heat treated and mixed to the thermosetting resin such as phenolics or polyimide. Or, it is formed by mixing the heat-treated phenolics or engineering plastic of 10-60 vol.% to the thermosetting resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被削材、特にTi
N系サーメット等の難削材を研削するための砥石に関す
る。
TECHNICAL FIELD The present invention relates to a work material, particularly Ti.
The present invention relates to a grindstone for grinding difficult-to-cut materials such as N-based cermets.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
TiN系サーメット、SiC、Si34等の難削材を研
削する場合、例えばTiN系サーメットをレジンボンド
砥石等の超砥粒ホイールによって研削すると、TiN系
サーメットは超硬合金等の被削材と比較して硬度が高い
ために、ホイール寿命が約1/10程度と短くなり、被
削材中の窒素含有量が増えれば被削性が更に悪くなると
いう問題がある。本発明は、このような実情に鑑みて、
難削材の研削において研削面粗さが向上して良好な加工
が得られ、研削比を向上できるようにした砥石を提供す
ることを目的とする。
2. Description of the Related Art Conventionally, the problems to be solved by the invention
When grinding difficult-to-cut materials such as TiN cermet, SiC, Si 3 N 4, etc., for example, when TiN cermet is ground with a superabrasive wheel such as a resin bond grindstone, TiN cermet is a work material such as cemented carbide. Since the hardness is higher than the above, the wheel life is shortened to about 1/10, and there is a problem that the machinability is further deteriorated if the nitrogen content in the work material increases. The present invention, in view of such a situation,
An object of the present invention is to provide a grindstone capable of improving the grinding ratio by improving the grinding surface roughness in grinding a difficult-to-cut material and improving the grinding ratio.

【0003】[0003]

【課題を解決するための手段】本発明者らは、TiN系
サーメット、SiC、Si34等の難削材を超砥粒ホイ
ールで研削する場合、超砥粒は強靱なメタルボンド用超
砥粒(以下、MDとする)よりも脆弱で破砕性のよいレ
ジンボンド用超砥粒(以下、SDとする)の方が研削能
力に優れ、しかも靱性の大きいボンド(結合剤)を用い
た方が砥粒脱落が少なく、衝撃吸収力が大きく、研削比
が高くなるという知見に基づき、本発明を創作するに至
った。即ち、本発明は、台金に、ボンドによって脆弱な
超砥粒が保持された砥粒層が設けられた砥石において、
ボンドは複数種類の樹脂材料を混合した材質からなり、
硬さがHRF30〜80の範囲とされていることを特徴
とするものである。
The present inventors have found that when a difficult-to-cut material such as TiN-based cermet, SiC, or Si 3 N 4 is ground with a super-abrasive wheel, the super-abrasive particles are super strong for metal bonding. A resin bond superabrasive grain (hereinafter referred to as SD), which is more brittle and has better friability than an abrasive grain (hereinafter referred to as MD), has a bond (binder) having a higher grinding ability and a higher toughness. The present invention has been made on the basis of the findings that the abrasive grains are less likely to fall off, the shock absorbing power is larger, and the grinding ratio is higher. That is, the present invention, in the base metal, in a grindstone provided with an abrasive grain layer, in which fragile superabrasive grains are held by bonds,
The bond consists of a mixture of multiple resin materials,
Hardness is characterized in that it is in the range of H R F30~80.

【0004】本発明によれば、TiN系サーメット等の
難削材の研削に際して、脆弱な超砥粒SDは微小破砕し
ながら研削することになり、研削能力が高く、しかも破
砕した微小切刃が被削材を研削し続けることで研削比が
高い。また、この砥粒層のボンドは靱性が大きいので衝
撃吸収力が高く、砥粒脱落を抑制して研削性を向上させ
ることができ、また切れ味が安定して自生作用がスムー
ズに行なわれる。
According to the present invention, when grinding a difficult-to-cut material such as TiN-based cermet, the fragile superabrasive grains SD are ground while being finely crushed, so that the grinding ability is high and the crushed fine cutting edge is The grinding ratio is high by continuing to grind the work material. Further, since the bond of this abrasive grain layer has a high toughness, it has a high impact absorbing power, and it is possible to suppress the removal of the abrasive grains and improve the grindability, and the sharpness is stable and the self-generating action is smoothly performed.

【0005】しかも、ボンドは、熱硬化性樹脂(好まし
くはフェノール樹脂又はポリイミド)に熱処理した種類
の異なる熱硬化性樹脂(好ましくは全芳香族ポリイミ
ド)を10〜60vol%の割合で混合してなるものでも
よい。または、ボンドは、熱硬化性樹脂に熱処理したフ
ェノール樹脂を10〜60vol%の割合で混合してなる
ものでもよい。または、ボンドは、熱硬化性樹脂に熱処
理したエンジニアリングプラスチックを10〜60vol
%の割合で混合してなるものでもよい。上述のように混
合したボンドは添加する樹脂を熱処理することで耐熱性
が高くなるので熱損傷が少なく、耐摩耗性も高くなる。
特に種類の異なる熱硬化性樹脂として全芳香族ポリイミ
ドを混合したものは熱的に安定している。また、台金を
比較的弾性係数の低いものに設定することで、難削材の
研削時に超砥粒や砥粒層だけでなく台金でも衝撃を吸収
できて切削抵抗を少なくすることができ、一層砥粒脱落
を抑制して研削性を向上させることができる。
Moreover, the bond is formed by mixing a thermosetting resin (preferably phenol resin or polyimide) with a different type of thermosetting resin (preferably wholly aromatic polyimide) which is heat-treated at a ratio of 10 to 60 vol%. It may be one. Alternatively, the bond may be a mixture of a thermosetting resin and a heat-treated phenol resin in a proportion of 10 to 60 vol%. Or, the bond is 10 to 60 vol of engineering plastic obtained by heat treatment of thermosetting resin.
It may be mixed at a ratio of%. The bond mixed as described above has high heat resistance by heat treatment of the resin to be added, so that heat damage is small and wear resistance is also high.
In particular, a mixture of wholly aromatic polyimide as a different type of thermosetting resin is thermally stable. In addition, by setting the base metal to one with a relatively low elastic modulus, it is possible to absorb impact not only with superabrasive grains or abrasive grain layers but also with the base metal when grinding difficult-to-cut materials and reduce cutting resistance. Further, it is possible to further suppress the removal of the abrasive grains and improve the grindability.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態を図1
乃至図10により説明する。図1は実施の形態による砥
石の回転軸線に沿う断面図、図2は図1に示す砥石の部
分平面図、図3以降は実験結果を示すものであり、図3
は超砥粒SDとMDによる難削材の研削比を示す図、図
4は台金材質の相違によるTiN系サーメットの研削性
能を示す図、実施例と比較例のホイールによる周速と研
削比との関係を示す図、図6はTiN系サーメットを被
削材とした累積加工量と砥石表面状態との関係を示す
図、図7は熱重量分析結果を示す図、図8は各ボンドに
対するSiCフィラーと抗折力との関係を示す図、図9
はSiCフィラーを25vol%添加した場合の各ボンド
の曲げ弾性率を示す図、図10は熱処理雰囲気の異なる
各ホイールのエッジの摩耗の度合を示す図である。図1
及び図2において、実施の形態による超砥粒ホイール1
は略カップ型のレジンホイール砥石を示すものであり、
回転軸線Oを中心に回転可能に保持されている。このホ
イール1は回転軸線Oに沿ってその外周面に略円筒状の
台金2が設けられ、この台金2の回転軸線O方向の上面
にセグメント型または一体型の砥粒層3が設けられてい
る。ここで、台金2は比較的弾性の高い材質を使用する
ものとし、例えばAl粉末に熱硬化性樹脂が混合されて
形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIG.
It will be described with reference to FIG. 1 is a cross-sectional view of the grindstone according to the embodiment along the axis of rotation, FIG. 2 is a partial plan view of the grindstone shown in FIG. 1, and FIG. 3 and subsequent figures show experimental results.
Is a diagram showing a grinding ratio of a difficult-to-cut material by superabrasive grains SD and MD, FIG. 4 is a diagram showing a grinding performance of a TiN-based cermet due to a difference in material of a base metal, and peripheral speeds and grinding ratios by wheels of Examples and Comparative Examples. FIG. 6 is a diagram showing the relationship between the cumulative amount of machining using TiN cermet as a work material and the grindstone surface state, FIG. 7 is a diagram showing thermogravimetric analysis results, and FIG. 8 is for each bond. The figure which shows the relationship between SiC filler and transverse rupture strength, FIG.
Is a diagram showing the flexural modulus of each bond when 25 vol% of SiC filler was added, and FIG. 10 is a diagram showing the degree of wear of the edge of each wheel in different heat treatment atmospheres. Figure 1
2 and 2, the superabrasive wheel 1 according to the embodiment
Indicates a cup-shaped resin wheel grindstone,
It is held rotatably around the rotation axis O. The wheel 1 is provided with a substantially cylindrical base metal 2 on its outer peripheral surface along the rotation axis O, and a segment type or integral type abrasive grain layer 3 is provided on the upper surface of the base metal 2 in the rotation axis O direction. ing. Here, the base metal 2 is made of a material having a relatively high elasticity, and is formed, for example, by mixing an Al powder with a thermosetting resin.

【0007】また、砥粒層3は、超砥粒として、脆弱な
レジンボンド用超砥粒SDを用いるものとして、砥粒層
3内に分散配置してボンド(結合剤)で固定する。そし
て、このボンドとして、主として複数種類の樹脂材料を
混合したものを用いるものとし、例えば熱硬化性樹脂、
例えばフェノール樹脂又はポリイミドと、熱処理した種
類の異なる熱硬化性樹脂、例えば全芳香族ポリイミドと
を混合したものを用いる。この場合、ボンドはフェノー
ル樹脂又はポリイミドに10〜60vol%の全芳香族ポ
リイミドの粉末を混合したものを用い、好ましくは、フ
ェノール樹脂又はポリイミドと全芳香族ポリイミドを8
0〜60%:20〜40%の割合で合計100%となる
ように混合する。この場合、全芳香族ポリイミドは窒素
雰囲気中で300〜800℃程度で熱処理させるのがよ
い。他にも水素雰囲気中や酸素雰囲気中で熱処理するこ
とも考えられるが、超砥粒ホイール1の砥粒層3の研削
時の摩耗度は、窒素雰囲気中で熱処理したものが最も少
ない。
Further, the abrasive grain layer 3 is made by using fragile resin-bonding superabrasive grains SD as superabrasive grains, and is dispersed in the abrasive grain layer 3 and fixed by a bond (bonding agent). Then, as the bond, a mixture of a plurality of types of resin materials is mainly used, and for example, a thermosetting resin,
For example, a mixture of a phenol resin or polyimide and a thermosetting resin of a different heat-treated type, for example, wholly aromatic polyimide is used. In this case, the bond is a mixture of a phenol resin or polyimide with 10 to 60 vol% of a powder of wholly aromatic polyimide, preferably a phenol resin or polyimide and a wholly aromatic polyimide of 8%.
Mix in a ratio of 0 to 60%: 20 to 40% so that the total becomes 100%. In this case, the wholly aromatic polyimide is preferably heat-treated at about 300 to 800 ° C. in a nitrogen atmosphere. In addition, heat treatment in a hydrogen atmosphere or an oxygen atmosphere can be considered, but the degree of wear during grinding of the abrasive grain layer 3 of the superabrasive grain wheel 1 is the smallest when heat treated in a nitrogen atmosphere.

【0008】ボンドの他の例として、熱硬化性樹脂に1
0〜60vol%の熱処理して硬化したフェノール樹脂を
混合してもよい。この場合、フェノール樹脂は窒素雰囲
気中で300〜800℃程度で熱処理して硬化させるの
がよい。ボンドの別の例として、熱硬化性樹脂に10〜
60vol%の熱処理したエンジニアリングプラスチック
を混合してもよい。エンジニアリングプラスチックは窒
素雰囲気中で300〜800℃程度で熱処理するのがよ
い。フェノール樹脂又はポリイミド等の熱硬化性樹脂に
対する上記他の種類の熱硬化性樹脂の混合率を10〜6
0vol%としたのは、10%未満であるとフェノール樹
脂又はポリイミド等の熱硬化性樹脂の割合が大きいため
に、ボンドの弾性率が大きくなり難削材の研削時の衝撃
吸収力が低くなるためであり、60%を超えるとボンド
の弾性率が低下し、超砥粒の保持力が著しく低下して研
削比が悪くなるからである。このようにして得られた砥
粒層3のボンドは、その硬さがHRF30〜80に設定
される。ここで、硬さがHRF30未満であると弾性率
が小さすぎて応力がかかった際の砥粒層3の変形が大き
すぎ、また逆に硬さがHRF80を超えると弾性率が大
きく過ぎて、衝撃吸収力が小さく、研削時の超砥粒の破
砕や自生作用が十分に行なわれず、超砥粒が平滑摩耗す
るおそれが高くなる。
As another example of the bond, a thermosetting resin is used.
You may mix the phenol resin hardened by 0-60 vol% heat processing. In this case, the phenol resin is preferably heat-treated at about 300 to 800 ° C. in a nitrogen atmosphere to be cured. As another example of the bond, a thermosetting resin may be added to 10
60 vol% heat-treated engineering plastic may be mixed. The engineering plastic is preferably heat-treated at about 300 to 800 ° C. in a nitrogen atmosphere. The mixing ratio of the other type of thermosetting resin to the thermosetting resin such as phenol resin or polyimide is 10 to 6
The content of 0 vol% is less than 10%, because the ratio of the thermosetting resin such as phenol resin or polyimide is large, the elastic modulus of the bond is large, and the impact absorbing power when grinding difficult-to-cut materials is low. This is because if it exceeds 60%, the elastic modulus of the bond is lowered, the holding power of the superabrasive grains is significantly lowered, and the grinding ratio is deteriorated. Abrasive grain layer 3 bonds thus obtained, the hardness is set to H R F30~80. Here, when the hardness is less than H R F30, the elastic modulus is too small and the deformation of the abrasive grain layer 3 when stress is applied is too large, and conversely, when the hardness exceeds H R F80, the elastic modulus is If it is too large, the shock absorbing power is small, the crushing of the superabrasive grains during grinding and the self-generated effect are not sufficiently performed, and the superabrasive grains are more likely to be worn smoothly.

【0009】本実施の形態による超砥粒ホイール1は上
述のような構成を備えているから、脆弱な超砥粒SDは
微小破砕しながら研削することになり、研削能力が高
く、しかも破砕した微小切刃が被削材を研削し続けるこ
とで研削比が高い。また、この砥粒層3のボンドは衝撃
吸収力が高くて砥粒脱落が少なく、切れ味が安定して自
生作用がスムーズに行なわれる。添加する全芳香族ポリ
イミド等を熱処理することで、耐熱性が高くて熱損傷が
少なく、耐摩耗性が高い。しかも砥粒層3を比較的弾性
係数の低い台金2に設けることで、難削材の研削時に一
層衝撃を吸収できて研削抵抗を少なくすることができ、
一層砥粒脱落を抑制して研削性を向上させることができ
る。これに対して、強靱なメタルボンド用超砥粒MDを
メタルボンドで固定した砥粒層を用いて難削材を研削す
ると、研削時に超砥粒の破砕が十分に行なわれずに摩耗
して超砥粒表面に切削方向に逃げ面のような平らな面が
形成される等のように平滑摩耗し、切れ刃交代が行なわ
れにくく、自生作用が十分に行なわれず、難削材の研削
に不向きであるという欠点がある。
Since the superabrasive grain wheel 1 according to the present embodiment has the above-mentioned structure, the fragile superabrasive grains SD are ground while being finely crushed, which has a high grinding ability and is crushed. The grinding ratio is high because the minute cutting edge continues to grind the work material. Further, the bond of the abrasive grain layer 3 has a high impact absorbing power, the abrasive grains are less likely to fall off, the sharpness is stable, and the self-generating action is smoothly performed. By heat-treating the wholly aromatic polyimide or the like to be added, heat resistance is high, heat damage is small, and wear resistance is high. Moreover, by providing the abrasive grain layer 3 on the base metal 2 having a relatively low elastic coefficient, it is possible to further absorb the impact when grinding a difficult-to-cut material and reduce the grinding resistance.
It is possible to further suppress the removal of abrasive grains and improve the grindability. On the other hand, when a difficult-to-cut material is ground using an abrasive grain layer in which a tough metal bond superabrasive grain MD is fixed with a metal bond, the superabrasive grains are not sufficiently crushed during grinding and wear out. It is not suitable for grinding difficult-to-cut materials because it wears smoothly such that a flat surface such as a flank is formed on the surface of the abrasive grain in the cutting direction, it is hard to change the cutting edge, and it does not sufficiently perform self-regeneration. There is a drawback that

【0010】次に、難削材として例えばTiN系サーメ
ットを例にとって、上述の実施の形態による超砥粒ホイ
ール1に関連して行なった研削の実験例について説明す
る。 <実験1>まず、本実施の形態で用いた脆弱なレジンボ
ンド用超砥粒SDと強靱なメタル用超砥粒MDとを用
い、ボンドとしてフェノール樹脂を用いて砥粒層を形成
し、実施の形態に示すような形状のカップホイールをそ
れぞれ製作して研削試験を行なった。研削条件は下記の
通りとする。 機械:マキノ工具研削盤、 ホイール形状:6A2.50D×30T×3W×3X 粒度&コンセント:#170(conc. 75) ホイール周速:800m/min テーブル速度:4m/min 切込み:20μm 研削液:ケミカルソリューション(×50)
Next, an example of grinding performed in connection with the superabrasive wheel 1 according to the above-described embodiment will be described by taking a TiN cermet as an example of a difficult-to-cut material. <Experiment 1> First, using the fragile resin bond super-abrasive grains SD and the tough metal super-abrasive grains MD used in the present embodiment, a phenol resin is used as a bond to form an abrasive grain layer. A cup wheel having a shape as shown in FIG. The grinding conditions are as follows. Machine: Makino tool grinder, wheel shape: 6A2.50 D × 30 T × 3 W × 3 X grain size & outlet: # 170 (conc. 75) Wheel peripheral speed: 800 m / min Table speed: 4 m / min Depth of cut: 20 μm Grinding fluid: Chemical solution (× 50)

【0011】図3に実験1の結果得られた脆弱なレジン
ボンド用超砥粒SDと強靱なメタルボンド用超砥粒MD
の研削比が示されている。両ホイールの表面観察では、
MDは超砥粒の摩耗が平滑摩耗で切れ刃交代は行なわれ
にくかったが、SDは破砕した超砥粒が多く、破砕した
後の微小切れ刃が被削材を削り続けるので、研削比がM
Dより高く、切れ味も安定しているので自生作用がスム
ーズに行なわれたといえる。即ち、MDは砥粒破砕しに
くいために超砥粒先端がフラットに摩耗してしまい、T
iN系サーメット等の難削材の研削に適さない超砥粒で
あるといえる。他方、脆弱なSDは破砕性が高く鋭利な
切刃創出が容易であり、TiN系サーメット等の難削材
研削に適した砥種であるといえる。
FIG. 3 shows fragile resin bond superabrasive grains SD and tough metal bond superabrasive grains MD obtained as a result of the experiment 1.
The grinding ratios are shown. In the surface observation of both wheels,
In MD, the wear of the superabrasive grains was smooth and it was difficult to change the cutting edge, but in SD, there were many crushed superabrasive grains and the minute cutting edge continued to shave the work material, so the grinding ratio was M
It is higher than D and the sharpness is stable, so it can be said that the autogenic action was performed smoothly. That is, since MD is hard to crush the abrasive grains, the tips of the superabrasive grains are worn flat and T
It can be said that the super abrasive grains are not suitable for grinding difficult-to-cut materials such as iN cermet. On the other hand, fragile SD has high friability and is easy to create a sharp cutting edge, and it can be said that it is a grinding type suitable for grinding difficult-to-cut materials such as TiN-based cermets.

【0012】<実験2>次に台金の弾性率による難削材
の研削性の相違について検討する。実施例による樹脂製
の台金2(Al粉末80vol%+熱硬化性樹脂20vol
%)の弾性率を(1×104MPa)とし、比較例1,
2としてFe台金(弾性率:7.8×104MPa)、
Al台金(弾性率:21×104MPa)を用い、各台
金に脆弱な超砥粒SDをボンド材としてフェノール樹脂
を用いて分散配置してレジンボンド砥粒層を設けてクリ
ープフィード研削を行なった。各ホイールの研削条件は
下記の通りである。 機械:岡本PSG−63A ホイール径:200D×6T ホイール周速:1000m/min 切込み:1mm ワーク:12.7□×5t×10ケ 研削液:W2(ソリュープルタイプ)
<Experiment 2> Next, the difference in grindability of the difficult-to-cut material due to the elastic modulus of the base metal will be examined. Resin base metal 2 (Al powder 80 vol% + thermosetting resin 20 vol)
%) And the elastic modulus is (1 × 10 4 MPa), Comparative Example 1,
2 as Fe base metal (elastic modulus: 7.8 × 10 4 MPa),
Creep feed grinding is performed by using Al base metal (elasticity: 21 × 10 4 MPa) and dispersively disposing fragile superabrasive grains SD on each base metal using phenol resin as a bond material to form a resin bond abrasive grain layer. Was done. The grinding conditions for each wheel are as follows. Machine: Okamoto PSG-63A Wheel diameter: 200 D x 6 T Wheel peripheral speed: 1000 m / min Depth of cut: 1 mm Workpiece: 12.7 □ x 5 t x 10 pieces Grinding fluid: W2 (Soluble type)

【0013】図4に示す実験結果から、送り速度の低い
20mm/minでは三種とも研削抵抗に差異は認められな
かったが、送り速度が高くなるにつれ次第に研削抵抗に
差異が生じ、研削抵抗は弾性係数が高いほど大きくな
り、実施例によるホイールが最も小さかった。また、研
削後のホイール表面を観察すると、実施例によるホイー
ルが最も砥粒脱落が少なかった。この実験から、研削条
件が厳しくなると砥粒脱落が促進されるが、衝撃吸収力
のある実施例の方が砥粒脱落が少なく、研削性を向上で
きることがわかった。
From the experimental results shown in FIG. 4, no difference was found in the grinding resistance among the three types at a low feed rate of 20 mm / min. However, as the feed rate increased, the grinding resistance gradually changed and the grinding resistance was elastic. The higher the coefficient, the larger it was, and the wheel according to the example was the smallest. In addition, when observing the wheel surface after grinding, the wheels according to the examples showed the least loss of abrasive grains. From this experiment, it was found that when the grinding conditions became strict, the removal of the abrasive grains was promoted, but in the example having the impact absorbing power, the abrasive grains were less dropped and the grindability could be improved.

【0014】<実験3>次に実施例によるホイールと、
耐熱レジンボンドを用いた比較例としてのホイールとで
TiN系サーメットの研削試験を行なった。実験条件は
次の通りである。実施例及び比較例共に超砥粒は脆弱な
SDとし、台金はAl粉末70%+熱硬化性樹脂によっ
て製作した。ボンドは実施例がフェノール樹脂8:全芳
香族ポリイミド2の混合比によるものとし、比較例は耐
熱レジン100%とする。 機械:岡本平面研削盤 PSG6EV 動力1.1KW 砥石径:150D×7T ホイール周速:900m/min、及び1500m/min ワーク送り速度:10m/min 切込み:5μm クーラント:w−2(1:50) 研削液:W2(ソリュープルタイプ)
<Experiment 3> Next, the wheel according to the embodiment,
A grinding test of a TiN-based cermet was performed with a wheel as a comparative example using a heat resistant resin bond. The experimental conditions are as follows. In each of the examples and the comparative examples, the superabrasive grains were fragile SD, and the base metal was made of 70% Al powder + thermosetting resin. The bonding is based on the mixing ratio of phenol resin 8: wholly aromatic polyimide 2 in the example, and the heat resistance resin is 100% in the comparative example. Machine: Okamoto Surface Grinder PSG6EV power 1.1KW grindstone diameter: 0.99 D × 7 T wheel peripheral speed: 900 meters / min, and 1500 m / min workpiece feed rate: 10 m / min cut: 5 [mu] m Coolant: w-2 (1:50 ) Grinding fluid: W2 (Soluble type)

【0015】図5及び図6に実験結果が示されている。
尚、図5における研削比と動力は比較例の1500m/
minの値を100%としている。図5において、ホイー
ル周速が速くなるにつれて実施例と比較例は共に研削比
が伸びるが、実施例の方が研削比の伸びが大きい。ま
た、比較例はホイール周速の増大につれて動力も大幅に
上昇しているが、実施例では動力の変化は小さかった。
また、研削加工面を観察すると、実施例の方がむしれが
少なく良好な加工面が得られた。図6による砥石表面状
態の観察では、比較例は累積加工量の増大につれて超砥
粒の脱落が大きく増大するが、砥粒保持が良好な実施例
は超砥粒の脱落が少なくホイールの摩耗も少なかった。
Experimental results are shown in FIGS. 5 and 6.
In addition, the grinding ratio and power in FIG.
The value of min is 100%. In FIG. 5, the grinding ratios of both the example and the comparative example increase as the wheel peripheral speed increases, but the example has a larger grinding ratio. Further, in the comparative example, the power increased significantly as the wheel peripheral speed increased, but in the example, the change in the power was small.
Further, when the ground surface was observed, it was found that the example had less peeling and a good surface was obtained. In the observation of the grindstone surface state according to FIG. 6, in the comparative example, the amount of superabrasive grains dropped greatly as the cumulative processing amount increased, but in the examples in which the retention of the abrasive grains was good, the amount of superabrasive grains was not dropped and the wheel was worn. There were few.

【0016】また、実施の形態における砥粒層3のボン
ド(例えばフェノール樹脂+全芳香族ポリイミド=8:
2)を実施例とし、比較例としてのフェノール樹脂との
熱重量分析結果が図7に示されており、フェノール樹脂
は300〜400℃程度で急激な重量減が見られるが、
実施例では約500℃までは急激な重量減は見られな
い。よって、実施例は熱に対して比較的安定していると
いえる。また、砥粒層3のボンド(例えばフェノール樹
脂+全芳香族ポリイミド=8:2)を実施例とし、比較
例1,2としてフェノール樹脂と耐熱レジンを用い、図
8に示すように超砥粒に代えてSiCフィラーを25vo
l%添加した場合、その機械的強度(抗折力)を見る
と、SiCフィラーの含有量の増大に対して比較例2は
低下するが、実施例と比較例1は増大し、しかも実施例
の方が機械的強度が高い。このことにより、実施例は砥
粒保持力が優れているといえる。また、砥粒層3のボン
ド(例えばフェノール樹脂+全芳香族ポリイミド=8:
2)を実施例とし、比較例1,2としてフェノール樹脂
と耐熱レジンを用い、図9に示すように超砥粒に代えて
SiCフィラーを添加した場合、その弾性率を見ると、
実施例と比較例2は比較例1より小さく、衝撃吸収力に
優れているといえる。
Also, the bond of the abrasive layer 3 in the embodiment (for example, phenol resin + whole aromatic polyimide = 8:
2) as an example, the thermogravimetric analysis result with a phenol resin as a comparative example is shown in FIG. 7, and the phenol resin shows a rapid weight loss at about 300 to 400 ° C.
In the examples, no sudden weight loss is observed up to about 500 ° C. Therefore, it can be said that the example is relatively stable against heat. In addition, a bond of the abrasive grain layer 3 (for example, phenol resin + whole aromatic polyimide = 8: 2) is used as an example, and a phenol resin and a heat-resistant resin are used as Comparative Examples 1 and 2, and as shown in FIG. Instead of the SiC filler 25vo
When 1% is added, the mechanical strength (flexural strength) of Comparative Example 2 decreases as the content of the SiC filler increases, but that of Examples and Comparative Example 1 increases, and Has higher mechanical strength. From this, it can be said that the examples have excellent abrasive grain holding power. In addition, a bond of the abrasive grain layer 3 (for example, phenol resin + whole aromatic polyimide = 8:
2) as an example, using a phenol resin and a heat-resistant resin as Comparative Examples 1 and 2, and adding SiC filler instead of superabrasive grains as shown in FIG.
It can be said that the example and the comparative example 2 are smaller than the comparative example 1 and are excellent in shock absorbing power.

【0017】<実験4>次に異なる熱処理条件によるボ
ンドを有するホイールの研削試験を行なった。実験条件
は次の通りである。サンプルは、ポリイミドに熱処理し
た全芳香族ポリイミドを20vol%添加したものをボン
ドとして用いて、超砥粒SDを保持させ、台金はAl粉
末70%+熱硬化性樹脂によって製作した。全芳香族ポ
リイミドの熱処理の条件については、窒素雰囲気中、水
素雰囲気中、空気雰囲気中で行なったものをそれぞれサ
ンプルA、B,Cとし、熱処理しないものをサンプルD
とする。また、熱処理温度を400℃として、1時間処
理した。 機械:岡本平面研削盤 PSG6EV 動力1.1KW ホイール径:200D×6T×3X ホイール周速:1500m/min テーブル速度:10m/min 切込み:20μm
<Experiment 4> Next, a grinding test of a wheel having a bond under different heat treatment conditions was conducted. The experimental conditions are as follows. The sample was made by adding 20 vol% of heat-treated wholly aromatic polyimide to a polyimide as a bond to hold the superabrasive grains SD, and the base metal was made of 70% Al powder + thermosetting resin. Regarding the heat treatment conditions for the wholly aromatic polyimide, samples A, B, and C were used in a nitrogen atmosphere, a hydrogen atmosphere, and an air atmosphere, and a sample D was not heat-treated.
And Further, the heat treatment temperature was set to 400 ° C., and the treatment was performed for 1 hour. Machine: Okamoto Surface Grinder PSG6EV power 1.1KW Wheel diameter: 200 D × 6 T × 3 X wheel peripheral speed: 1500 m / min Table speed: 10 m / min cut: 20 [mu] m

【0018】図10に示す実験結果によれば、窒素雰囲
気中で熱処理したものがホイールのエッジの摩耗が最も
少なく、次いで水素雰囲気中、空気雰囲気中となり、熱
処理しないものは最もエッジの摩耗が激しかった。その
ため、難削材の研削には窒素雰囲気中か水素雰囲気中で
熱処理したものを用いるのがよく、好ましくは窒素雰囲
気中で熱処理したものを用いるのがよいといえる。
According to the results of the experiment shown in FIG. 10, the one that was heat-treated in the nitrogen atmosphere had the least wear on the edge of the wheel, and then the one was in the hydrogen atmosphere and the air atmosphere, and the one that was not heat-treated had the most edge wear. It was Therefore, it can be said that it is preferable to use the one heat-treated in the nitrogen atmosphere or the hydrogen atmosphere, and preferably the one heat-treated in the nitrogen atmosphere for grinding the difficult-to-cut material.

【0019】[0019]

【発明の効果】上述のように、本発明に係る砥石は、ボ
ンドは複数種類の樹脂材料を混合した材質を含み、硬さ
がHRF30〜80の範囲とされているものであるか
ら、TiN系サーメット等の難削材の研削に際して、脆
弱な超砥粒を砥粒層に配置したことで微小破砕しながら
研削することになり、研削能力が高く、しかも破砕した
微小切刃が被削材を研削し続けることで研削比が高い。
また、この砥粒層のボンドは硬度が小さく靱性に優れて
いるので衝撃吸収力が高く、砥粒脱落が抑制されて研削
性を向上させることができる。また切れ味が安定して自
生作用がスムーズに行なわれる。
According to the present invention as described above, the grinding wheel according to the present invention, the bond comprises a material obtained by mixing a plurality of kinds of resin material, since the hardness is what is in the range of H R F30~80, When grinding difficult-to-cut materials such as TiN cermet, fragile super-abrasive grains are placed in the abrasive grain layer to perform grinding while finely crushing, so the grinding ability is high and the crushed minute cutting edge is cut The grinding ratio is high by continuing to grind the material.
Further, since the bond of the abrasive grain layer has a small hardness and an excellent toughness, it has a high impact absorbing power, and the abrasive grains are prevented from falling off, so that the grindability can be improved. In addition, the sharpness is stable and the self-reliance is smooth.

【0020】しかも、ボンドは、熱硬化性樹脂に熱処理
した種類の異なる熱硬化性樹脂、熱処理したフェノール
樹脂、または熱処理したエンジニアリングプラスチック
を10〜60vol%の割合で混合してなるものであるか
ら、耐熱性が高いので熱損傷が少なく、耐摩耗性も高
い。
Moreover, the bond is formed by mixing thermosetting resins of different kinds heat-treated with heat-curable resins, heat-treated phenolic resins, or heat-treated engineering plastics in a proportion of 10 to 60 vol%. Since it has high heat resistance, it is less likely to be damaged by heat and has high wear resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態による砥石の回転軸線に
沿う部分断面図である。
FIG. 1 is a partial cross-sectional view taken along an axis of rotation of a grindstone according to an embodiment of the present invention.

【図2】 図1に示す砥石の部分平面図である。FIG. 2 is a partial plan view of the grindstone shown in FIG.

【図3】 カップホイールの砥粒層に設けられた超砥粒
SDと超砥粒MDによる難削材の研削比を示す図であ
る。
FIG. 3 is a diagram showing a grinding ratio of a difficult-to-cut material by superabrasive particles SD and superabrasive particles MD provided on an abrasive particle layer of a cup wheel.

【図4】 台金材質の相違によるTiN系サーメットの
研削性能を示す図である。
FIG. 4 is a diagram showing the grinding performance of a TiN-based cermet depending on the material of the base metal.

【図5】 本発明の実施例と比較例のホイールによる周
速と研削比との関係を示す図である。
FIG. 5 is a diagram showing a relationship between a peripheral speed and a grinding ratio by wheels of an example of the present invention and a comparative example.

【図6】 本発明の実施例と比較例について、TiN系
サーメットを被削材とした累積加工量と砥石表面状態と
の関係を示す図である。
FIG. 6 is a diagram showing a relationship between a cumulative amount of machining using a TiN-based cermet as a work material and a grindstone surface state in Examples and Comparative Examples of the present invention.

【図7】 各ボンドの熱重量分析結果を示す図である。FIG. 7 is a diagram showing a thermogravimetric analysis result of each bond.

【図8】 各ボンドに対するSiCフィラーの含有量と
抗折力との関係を示す図、
FIG. 8 is a graph showing the relationship between the content of SiC filler and the transverse rupture strength for each bond,

【図9】 SiCフィラーを25vol%添加した場合の
各ボンドの曲げ弾性率を示す図である。
FIG. 9 is a diagram showing the flexural modulus of each bond when 25 vol% of SiC filler is added.

【図10】 熱処理雰囲気の異なる各ホイールのエッジ
の摩耗の度合を示す図である。
FIG. 10 is a diagram showing the degree of wear of the edges of the wheels having different heat treatment atmospheres.

【符号の説明】[Explanation of symbols]

1 超砥粒ホイール 2 台金 3 砥粒層 1 Super Abrasive Wheel 2 units 3 Abrasive layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 台金に、ボンドによって脆弱な超砥粒が
保持された砥粒層が設けられた砥石において、前記ボン
ドは複数種類の樹脂材料を混合した材質を含み、硬さが
RF30〜80の範囲とされていることを特徴とする
砥石。
1. A grindstone in which a base metal is provided with an abrasive grain layer in which fragile superabrasive grains are held by a bond, wherein the bond includes a material in which a plurality of kinds of resin materials are mixed, and has a hardness of H R A grindstone characterized by being in the range of F30 to 80.
【請求項2】 前記ボンドは、熱硬化性樹脂に熱処理し
た種類の異なる熱硬化性樹脂を10〜60vol%の割合
で混合してなることを特徴とする請求項1記載の砥石。
2. The grindstone according to claim 1, wherein the bond is formed by mixing thermosetting resins of different types heat-treated with a thermosetting resin at a ratio of 10 to 60 vol%.
【請求項3】 前記ボンドは、熱硬化性樹脂に熱処理し
たフェノール樹脂を10〜60vol%の割合で混合して
なることを特徴とする請求項1記載の砥石。
3. The grindstone according to claim 1, wherein the bond is formed by mixing a thermosetting resin with a heat-treated phenol resin at a ratio of 10 to 60 vol%.
【請求項4】 前記ボンドは、熱硬化性樹脂に熱処理し
たエンジニアリングプラスチックを10〜60vol%の
割合で混合してなることを特徴とする請求項1記載の砥
石。
4. The grindstone according to claim 1, wherein the bond is made by mixing a thermosetting resin with a heat-treated engineering plastic at a ratio of 10 to 60 vol%.
JP2002223782A 2002-07-31 2002-07-31 Grinding wheel Withdrawn JP2003094343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002223782A JP2003094343A (en) 2002-07-31 2002-07-31 Grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002223782A JP2003094343A (en) 2002-07-31 2002-07-31 Grinding wheel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13230196A Division JP3355928B2 (en) 1996-05-27 1996-05-27 Whetstone

Publications (1)

Publication Number Publication Date
JP2003094343A true JP2003094343A (en) 2003-04-03

Family

ID=19196133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002223782A Withdrawn JP2003094343A (en) 2002-07-31 2002-07-31 Grinding wheel

Country Status (1)

Country Link
JP (1) JP2003094343A (en)

Similar Documents

Publication Publication Date Title
US10377017B2 (en) Bonded abrasive article and method of forming
JP5314030B2 (en) Polishing hard and / or brittle materials
TW200300378A (en) Porous abrasive tool and method for making the same
US20120066982A1 (en) Bonded abrasive articles, method of forming such articles, and grinding performance of such articles
JP2015077683A (en) Method of grinding workpiece comprising superabrasive grain material
TW425338B (en) Composite bond wheel and wheel having resin bonding phase
JP5594749B2 (en) Abrasive materials used for grinding superabrasive workpieces
JP3355928B2 (en) Whetstone
CN113329846B (en) Metal bond grindstone for high-hardness brittle material
JP2003094343A (en) Grinding wheel
JP3440818B2 (en) Resin bond whetstone
JP3292134B2 (en) Resin bond whetstone
TW200300377A (en) Tough and weak crystal mixing for low power grinding
JPH03277473A (en) Solid grinding wheel
JPH04152066A (en) Metal bond tool

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207