JP2003094201A - Axially non-symmetric and aspherical machining machine, axially non-symmetric and aspherical machining method, and axially non-symmetric and aspherical workpiece - Google Patents

Axially non-symmetric and aspherical machining machine, axially non-symmetric and aspherical machining method, and axially non-symmetric and aspherical workpiece

Info

Publication number
JP2003094201A
JP2003094201A JP2001289428A JP2001289428A JP2003094201A JP 2003094201 A JP2003094201 A JP 2003094201A JP 2001289428 A JP2001289428 A JP 2001289428A JP 2001289428 A JP2001289428 A JP 2001289428A JP 2003094201 A JP2003094201 A JP 2003094201A
Authority
JP
Japan
Prior art keywords
aspherical surface
machining
workpiece
axially
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001289428A
Other languages
Japanese (ja)
Inventor
Satoshi Kai
聡 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001289428A priority Critical patent/JP2003094201A/en
Publication of JP2003094201A publication Critical patent/JP2003094201A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an axially non-symmetric and aspherical machining machine by which the axially non-symmetric and aspherical machining of high accuracy can be carried out. SOLUTION: A machining machine used to form a machined face by moving a machining tool 3 relatively against a work-piece 2 while rotating the work- piece 2 mounted on a rotatable main shaft 4. This machine is provided with a stage 1 for moving the work-piece used to move the work-piece 2 in the radial direction of the main shaft 4 on a vertical plane to a rotational shaft 5 by synchronizing with a machining position, a stage 32 for moving in an X-direction used to change the position of the machining tool 3 and a stage 33 for moving in a Z-direction in accordance with the above machining position.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、軸非対称非球面を
有する加工物の軸非対称非球面を形成するための軸非対
称非球面加工機、軸非対称非球面加工法及び軸非対称非
球面加工物に関し、軸非対称非球面加工物として、例え
ばプラスチックレンズ等の光学部品の射出成形用金型等
に応用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an axially asymmetric aspherical surface processing machine, an axially asymmetrical aspherical surface processing method and an axially asymmetrical aspherical surface workpiece for forming an axially asymmetrical aspherical surface of a workpiece having an axially asymmetrical aspherical surface. As an axially asymmetric aspherical surface processed product, it can be applied to, for example, a mold for injection molding of an optical component such as a plastic lens.

【0002】[0002]

【従来の技術】非球面加工を行う方法として、図9
(A)に示すように、加工物102を主軸104により
回転させ、加工物102に対して、工具103を図の
X,Z方向に走査することにより非球面加工を行う方法
がある。例えば、特開平4−141336号公報が知ら
れている。
2. Description of the Related Art FIG. 9 shows a method for performing aspherical surface processing.
As shown in (A), there is a method in which the workpiece 102 is rotated by the main shaft 104, and the workpiece 102 is scanned with the tool 103 in the X and Z directions in the drawing to perform aspherical surface machining. For example, Japanese Patent Laid-Open No. 4-141336 is known.

【0003】他の方法として、図10に示すように、加
工物106を固定した状態で、回転軸105回りに回転
する回転工具107を3次元的に走査させることによっ
て、加工を行う方法がある。例えば、特開平10−16
6212号公報が知られている。
As another method, as shown in FIG. 10, there is a method of performing processing by three-dimensionally scanning a rotary tool 107 rotating around a rotary shaft 105 with a workpiece 106 fixed. . For example, Japanese Patent Laid-Open No. 10-16
The 6212 publication is known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図9の
方法の場合、工具と加工物との相対位置を主軸の回転位
置に同期させて加工を行うことにより、軸非対称非球面
の加工を行うことができるが、図9(B)に示すよう
に、加工点Pにおける主軸の回転による加工方向TPと
加工する曲線EのPにおける接線Lとが常には平行にな
らないため、加工精度が劣るという問題があった。
However, in the case of the method shown in FIG. 9, it is possible to machine an axially asymmetric aspherical surface by synchronizing the relative position between the tool and the workpiece with the rotational position of the spindle. However, as shown in FIG. 9B, since the machining direction TP due to the rotation of the spindle at the machining point P and the tangent line L of the curve E to be machined at P are not always parallel to each other, the machining accuracy is inferior. was there.

【0005】また、図10の方法の場合、加工できる形
状の自由度は高いが、工具を回転させる必要があるた
め、工具の回転半径よりも小さい半径の加工物を加工す
ることができないという問題があった。また、単位時間
当たりの除去量を大きくすることが難しいので、加工時
間が長くなるという問題もあった。
Further, in the case of the method of FIG. 10, there is a high degree of freedom in the shape that can be machined, but since it is necessary to rotate the tool, it is impossible to machine a workpiece having a radius smaller than the radius of rotation of the tool. was there. Further, since it is difficult to increase the removal amount per unit time, there is a problem that the processing time becomes long.

【0006】そこで、本発明は、高精度な軸非対称非球
面の加工を行うことができる軸非対称非球面加工機、軸
非対称非球面加工法及び軸非対称非球面加工物を提供す
ることをその目的としている。
Therefore, an object of the present invention is to provide an axially asymmetrical aspherical surface processing machine, an axially asymmetrical aspherical surface processing method and an axially asymmetrical aspherical surface processed product which can perform highly accurate processing of an axially asymmetrical aspherical surface. I am trying.

【0007】また、本発明は、短い加工時間で高精度な
軸非対称非球面の加工を行うことができる軸非対称非球
面加工法及び軸非対称非球面加工物を提供することをそ
の目的としている。
It is another object of the present invention to provide an axially asymmetrical aspherical surface processing method and an axially asymmetrical aspherical surface processed product capable of highly accurately processing an axially asymmetrical aspherical surface in a short processing time.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に請求項1の発明は、回転可能な主軸上に取り付けられ
た加工物を回転させながら加工物に対して工具を相対的
に移動させ、加工面を形成する加工機において、加工位
置に同期させて、加工物を回転軸と垂直な平面上で、主
軸の半径方向に移動させる加工物移動手段と、前記加工
位置に応じて工具位置を変える工具移動手段とを備えて
いることを特徴とする軸非対称非球面加工機である。
In order to achieve the above object, the invention of claim 1 is to move a tool relative to a workpiece while rotating the workpiece mounted on a rotatable spindle. In a processing machine for forming a machining surface, a workpiece moving means for moving the workpiece in a radial direction of a spindle on a plane perpendicular to the rotation axis in synchronization with the machining position, and a tool position according to the machining position. And an asymmetric aspherical surface processing machine.

【0009】また、請求項2の発明は、請求項1に記載
の軸非対称非球面加工機において、前記加工物移動手段
として、前記主軸上に取り付けられた、2軸以上の移動
軸をもつ加工物移動ステージを用いることを特徴とする
軸非対称非球面加工機である。
According to a second aspect of the present invention, in the axially asymmetric aspherical surface processing machine according to the first aspect, the workpiece moving means has two or more axes of movement attached to the spindle. This is an axially asymmetric aspherical surface processing machine characterized by using an object moving stage.

【0010】また、請求項3の発明は、請求項2に記載
の軸非対称非球面加工機において、前記加工物移動ステ
ージが、前記主軸の回転軸と前記工具移動手段の移動軸
とに同期していることを特徴とする軸非対称非球面加工
機である。
According to a third aspect of the present invention, in the axially asymmetric aspherical surface processing machine according to the second aspect, the workpiece moving stage is synchronized with the rotation axis of the spindle and the movement axis of the tool moving means. It is an axially asymmetric aspherical surface processing machine.

【0011】また、請求項4の発明は、請求項1に記載
の軸非対称非球面加工機において、前記工具として単結
晶ダイヤモンドを用いていることを特徴とする軸非対称
非球面加工機である。
A fourth aspect of the present invention is the axially asymmetric aspherical surface processing machine according to the first aspect, wherein a single crystal diamond is used as the tool.

【0012】また、請求項5の発明は、請求項1に記載
の軸非対称非球面加工機において、前記工具として、回
転砥石を用いることを特徴とする軸非対称非球面加工機
である。
A fifth aspect of the present invention is the axially asymmetric aspherical surface processing machine according to the first aspect, wherein a rotary grindstone is used as the tool.

【0013】また、請求項6の発明は、回転可能な主軸
上に取り付けられた加工物を回転させながら加工物に対
して工具を相対的に移動させ、加工面を形成する加工法
において、加工位置に同期させて、加工物を回転軸と垂
直な平面上で、主軸の半径方向に移動させ、かつ、工具
位置も加工位置に応じて変えることにより、軸非対称非
球面加工を行うことを特徴とする軸非対称非球面加工法
である。
According to a sixth aspect of the present invention, there is provided a machining method for forming a machined surface by moving a tool relative to a workpiece while rotating the workpiece mounted on a rotatable spindle. Asynchronous with the position, the workpiece is moved in the radial direction of the main axis on a plane perpendicular to the rotation axis, and the tool position is also changed according to the machining position to perform asymmetric aspherical surface machining. Is an axially asymmetric aspherical surface processing method.

【0014】また、請求項7の発明は、請求項6に記載
の軸非対称非球面加工法において、加工物の移動量が大
きくなる外周部の加工を、内周部の加工より主軸の回転
数を下げて行うことを特徴とする軸非対称非球面加工法
である。
According to a seventh aspect of the present invention, in the axially asymmetric aspherical surface machining method according to the sixth aspect, the outer peripheral portion in which the movement amount of the workpiece is large is processed by rotating the main shaft more than the inner peripheral portion. This is an axially asymmetric aspherical surface processing method characterized in that

【0015】また、請求項8の発明は、請求項6に記載
の軸非対称非球面加工法において、前記軸非対称非球面
加工を行う前に、前記加工物を前記軸非対称非球面に近
似する、球面又は軸対称非球面形状に加工しておくこと
を特徴とする軸非対称非球面加工法である。
According to an eighth aspect of the present invention, in the axial asymmetric aspherical surface processing method according to the sixth aspect, the workpiece is approximated to the axial asymmetrical aspherical surface before performing the axial asymmetrical aspherical surface processing. It is an axially asymmetric aspherical surface processing method characterized by being processed into a spherical surface or an axially symmetric aspherical surface shape.

【0016】また、請求項9の発明は、請求項6に記載
の軸非対称非球面加工法により加工された軸非対称非球
面加工物である。
Further, the invention of claim 9 is an axially asymmetric aspherical surface processed product processed by the axially asymmetric aspherical surface processing method according to claim 6.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1は本発明の第1実施形態に係
る軸非対称非球面加工機の全体構成を示す斜視図であ
る。図1に示すように、この軸非対称非球面加工機は、
回転可能な主軸4上に取り付けられた加工物2を回転さ
せながら加工物2に対して加工工具3を相対的に移動さ
せ、加工面を形成する加工機において、加工位置に同期
させて、加工物2を主軸4の回転軸5と垂直な平面上
で、主軸4の半径方向に移動させる加工物移動手段であ
る加工物移動ステージ1と、加工位置に応じて加工工具
3の位置を変える工具移動手段とを備えている。この工
具移動手段は、加工工具3を取り付ける取付ブロック3
1と、取付ブロック31をX方向に移動するX方向移動
ステージ32と、X方向移動ステージ32をZ方向に移
動するZ方向移動ステージ33とから構成されている。
このZ方向移動ステージ33は、本実施形態では、加工
機本体6の上面に設けられている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing the overall configuration of an axially asymmetric aspherical surface processing machine according to a first embodiment of the present invention. As shown in FIG. 1, this axially asymmetric aspherical surface processing machine
In a processing machine that moves a processing tool 3 relative to the workpiece 2 while rotating the workpiece 2 mounted on a rotatable spindle 4, and synchronizes with a processing position in a processing machine. A workpiece moving stage 1 that is a workpiece moving unit that moves the workpiece 2 in the radial direction of the spindle 4 on a plane perpendicular to the rotation axis 5 of the spindle 4, and a tool that changes the position of the machining tool 3 according to the machining position. And means of transportation. This tool moving means is a mounting block 3 for mounting the processing tool 3.
1, an X-direction moving stage 32 that moves the mounting block 31 in the X-direction, and a Z-direction moving stage 33 that moves the X-direction moving stage 32 in the Z-direction.
The Z-direction moving stage 33 is provided on the upper surface of the processing machine body 6 in this embodiment.

【0018】前記加工物移動ステージ1は、主軸4上に
取り付けられ、2軸以上の移動軸を備え、加工物2を回
転軸5と垂直な平面上で、主軸4の半径方向に移動させ
ることができ、主軸4の回転軸5と工具移動手段の移動
軸とに同期している。本実施形態では、軸非対称非球面
加工機は、加工工具3として単結晶ダイヤモンド工具を
用いて切削加工を行う。
The workpiece moving stage 1 is mounted on the main spindle 4 and has two or more moving axes, and moves the workpiece 2 in the radial direction of the main spindle 4 on a plane perpendicular to the rotation axis 5. And is synchronized with the rotating shaft 5 of the main shaft 4 and the moving shaft of the tool moving means. In the present embodiment, the axially asymmetric aspherical surface processing machine performs cutting using a single crystal diamond tool as the processing tool 3.

【0019】図2は本発明の第2実施形態に係る軸非対
称非球面加工機の全体構成を示す斜視図である。図2に
示すように、第2実施形態の軸非対称非球面加工機は、
加工工具として、第1実施形態の単結晶ダイヤモンド工
具の代わりに回転砥石13を用いた点が第1実施形態の
軸非対称非球面加工機と異なり、他の構成は第1実施形
態の軸非対称非球面加工機と同様である。なお、図2で
は回転砥石13を用いているが、回転砥石13の代わり
に回転可能な切削工具を取り付け、フライカット加工を
行って良い。
FIG. 2 is a perspective view showing the overall construction of an axially asymmetric aspherical surface processing machine according to the second embodiment of the present invention. As shown in FIG. 2, the axially asymmetric aspherical surface processing machine according to the second embodiment is
Unlike the axially asymmetric aspherical surface processing machine of the first embodiment in that a rotating grindstone 13 is used as a processing tool instead of the single crystal diamond tool of the first embodiment, other configurations are the same as those of the first embodiment. It is similar to the spherical surface processing machine. Although the rotary grindstone 13 is used in FIG. 2, a rotatable cutting tool may be attached instead of the rotary grindstone 13 to perform fly-cut processing.

【0020】図3は図1の軸非対称非球面加工機による
軸非対称非球面加工の例を示す図である。図3は、軸非
対称非球面加工の例として、回転軸に垂直な平面で切断
した形状が楕円になる軸非対称非球面形状の加工を行っ
ている様子を示している。図3において、符号8は回転
軸に垂直な平面による断面が楕円になる軸非対称非球面
を示している。また、符号Oは主軸4の回転中心である
回転軸、符号Owは後述する図4(B)で説明される条
件を満たす点、符号Pは加工点を示している。加工物2
は主軸4上の加工物移動ステージ1によって、後述する
楕円7の中心が点Owに来るように移動される。
FIG. 3 is a view showing an example of axially asymmetrical aspherical surface processing by the axially asymmetrical aspherical surface processing machine shown in FIG. FIG. 3 shows, as an example of axially asymmetrical aspherical surface processing, processing of an axially asymmetrical aspherical surface shape in which a shape cut along a plane perpendicular to the rotation axis becomes an ellipse. In FIG. 3, reference numeral 8 indicates an axially asymmetric aspherical surface whose cross section along a plane perpendicular to the rotation axis becomes elliptical. Further, reference numeral O indicates a rotation axis that is the rotation center of the main shaft 4, reference numeral Ow indicates a point that satisfies the condition described later with reference to FIG. 4B, and reference numeral P indicates a processing point. Workpiece 2
Is moved by the workpiece moving stage 1 on the main axis 4 so that the center of an ellipse 7 described later comes to the point Ow.

【0021】図4(A)は軸非対称非球面と工具をXZ
平面による断面で見た図、(B)はZ方向から見た加工
領域を示す図である。図4(B)において、楕円7は図
4(A)で加工工具3の位置がZ1の時に切削される領
域を示している。また、点Pは楕円7がX軸と交わる点
で、点Pにおいて、図4(A)に示す加工工具3によっ
て加工が行われる。
FIG. 4A shows an axially asymmetric aspherical surface and a tool XZ.
FIG. 6B is a view seen in a cross section taken along a plane, and FIG. 6B is a view showing a processed region seen from the Z direction. In FIG. 4 (B), an ellipse 7 indicates a region to be cut when the position of the processing tool 3 is Z1 in FIG. 4 (A). The point P is a point where the ellipse 7 intersects the X axis, and the point P is machined by the machining tool 3 shown in FIG.

【0022】図4(B)において、符号Owは、加工点
Pにおける楕円7の接線がY軸に平行かつ、楕円7の加
工点Pにおける曲率がOPと等しくなる条件を満たすこ
とができる楕円7の中心(2つの焦点の中点)の位置を
示している。
In FIG. 4B, reference numeral Ow indicates an ellipse 7 which can satisfy the condition that the tangent of the ellipse 7 at the machining point P is parallel to the Y axis and the curvature of the ellipse 7 at the machining point P is equal to OP. It shows the position of the center (the midpoint of the two focal points) of.

【0023】図1に示した加工物2は、加工物移動ステ
ージ1によって、図4(B)に示すように、楕円7の中
心が点Owと一致する様に位置決めがされる。また、そ
の際、図1に示した加工工具3の加工点が、図4(B)
に示すように、点Pとなるように、加工工具3のX座標
が設定される。
The workpiece 2 shown in FIG. 1 is positioned by the workpiece moving stage 1 so that the center of the ellipse 7 coincides with the point Ow, as shown in FIG. 4 (B). At that time, the machining point of the machining tool 3 shown in FIG.
As shown in, the X coordinate of the machining tool 3 is set so as to become the point P.

【0024】図5は楕円形状の加工を説明するための図
である。図5で示される楕円形状は,楕円の式 (X2 /a2 )+(Y2 /b2 )=1 でa=1、b=0.8で示される楕円である。
FIG. 5 is a diagram for explaining the processing of an elliptical shape. The elliptical shape shown in FIG. 5 is an ellipse represented by the equation (X 2 / a 2 ) + (Y 2 / b 2 ) = 1 and a = 1 and b = 0.8.

【0025】図6は加工する楕円形状に対応した点Ow
の軌跡を示す図である。図6でX軸とY軸との交点は、
回転主軸である主軸4の回転軸5と一致する。図6で示
した符号〜は図5で示した符号〜の各点を加工
する際の点Owを示している。加工時には、加工物2は
加工物移動ステージ1によって、切削領域の楕円の中心
が、位置Owと一致するように移動される。
FIG. 6 shows a point Ow corresponding to the elliptical shape to be processed.
It is a figure which shows the locus | trajectory of. In FIG. 6, the intersection of the X axis and the Y axis is
It coincides with the rotating shaft 5 of the main shaft 4, which is the main rotating shaft. Reference numerals ~ shown in Fig. 6 denote points Ow at the time of processing the points of reference numerals ~ shown in Fig. 5. During processing, the workpiece 2 is moved by the workpiece moving stage 1 so that the center of the ellipse of the cutting area coincides with the position Ow.

【0026】図7は図5の楕円を加工している際の、加
工点PのX座標の変化を示す図である。図7の横軸の符
号〜の各点も図6と同様に、図5の符号〜の各
点に対応している。また、図7の縦軸は点PのX座標を
示している。
FIG. 7 is a diagram showing a change in the X coordinate of the processing point P when the ellipse shown in FIG. 5 is processed. Each of the symbols to on the horizontal axis in FIG. 7 also corresponds to each of the symbols to in FIG. 5, as in FIG. The vertical axis of FIG. 7 shows the X coordinate of the point P.

【0027】図8は加工中の点Ow及び加工点Pの様子
を示す図である。図8で符号〜は図5における符号
〜に対応する点を加工している様子を示している。
また、それぞれの位置における点OwをOw1〜Ow
3、加工点PをP1〜P3と表記している。
FIG. 8 is a diagram showing the states of the point Ow and the processing point P during processing. In FIG. 8, reference numerals (1) to (4) show how the points corresponding to the reference numerals (1) to (5) in FIG. 5 are processed.
In addition, the points Ow at the respective positions are Ow1 to Ow.
3, the processing point P is described as P1 to P3.

【0028】図8(A)は楕円の長軸側を加工している
様子を示している。図8(A)で、Ow1と一致するよ
うに移動された楕円7の中心は主軸の回転中心Oよりも
X軸の+方向にあることがわかる。
FIG. 8A shows a state in which the major axis side of the ellipse is processed. In FIG. 8A, it can be seen that the center of the ellipse 7 moved so as to coincide with Ow1 is located in the + direction of the X axis rather than the rotation center O of the main axis.

【0029】図8(B)は楕円7の長軸と楕円7の短軸
との間の部分を加工している状態を示している。図8
(B)で、Ow2と一致する様に移動された楕円7の中
心はY軸の+方向にあることがわかる。
FIG. 8B shows a state in which the portion between the major axis of the ellipse 7 and the minor axis of the ellipse 7 is processed. Figure 8
In (B), it can be seen that the center of the ellipse 7 moved so as to coincide with Ow2 is in the + direction of the Y axis.

【0030】図8(C)は楕円7の短軸側を加工してい
る状態を示している。この場合、Ow3と一致するよう
に移動された楕円7の中心は主軸の回転中心OよりもX
軸の−方向にあることがわかる。また、主軸の回転中心
Oから加工点Pまでの距離をそれぞれOp1、Op2、
Op3とすると、Op1 < Op2 < Op3の関
係となる。
FIG. 8C shows a state in which the minor axis side of the ellipse 7 is processed. In this case, the center of the ellipse 7 moved so as to coincide with Ow3 is X more than the rotation center O of the main axis.
It can be seen that it is in the-direction of the axis. Further, the distances from the rotation center O of the main shaft to the processing point P are Op1, Op2,
If Op3 is set, the relationship of Op1 <Op2 <Op3 is established.

【0031】図4(B)に示す楕円7の中心が点Owに
一致するように、図3に示す加工物2を回転中心Oに対
して移動させる必要がある。2軸以上の移動軸を持つ加
工物移動ステージ1を主軸4上に取り付けることによっ
て上記移動が可能になる。
It is necessary to move the work piece 2 shown in FIG. 3 with respect to the rotation center O so that the center of the ellipse 7 shown in FIG. 4 (B) coincides with the point Ow. The above-mentioned movement is possible by mounting the workpiece moving stage 1 having two or more moving axes on the main shaft 4.

【0032】加工法としては、切削が可能な被削材の場
合、単結晶ダイヤモンドバイトによる切削加工を行うこ
とにより、高精度な加工面を有する軸非対称非球面加工
物を得ることができる。この軸非対称非球面加工物を射
出成形用金型として用いることにより、高精度な軸非対
称非球面形状光学素子である、例えばプラスチックレン
ズを作成することができる。
As a processing method, in the case of a workable material which can be cut, a single crystal diamond cutting tool is used to obtain an axially asymmetric aspherical workpiece having a highly precise machined surface. By using this axially asymmetrical aspherical workpiece as a mold for injection molding, it is possible to produce a highly accurate axially asymmetrical aspherical optical element, for example, a plastic lens.

【0033】また、切削に適さない被削材の場合は、図
2に示した回転砥石13による研削を行うことによっ
て、高精度な加工面を有する軸非対称非球面加工物を得
ることができる。この軸非対称非球面加工物を射出成形
用金型として用いることにより、高精度な軸非対称非球
面形状光学素子である、例えばプラスチックレンズを作
成することができる。
Further, in the case of a work material which is not suitable for cutting, by grinding with the rotary grindstone 13 shown in FIG. 2, it is possible to obtain an axially asymmetric aspherical workpiece having a highly accurate machined surface. By using this axially asymmetrical aspherical workpiece as a mold for injection molding, it is possible to produce a highly accurate axially asymmetrical aspherical optical element, for example, a plastic lens.

【0034】加工を行いたい形状が球面形状から大きく
離れている場合、外周部での加工物2の移動量が大きく
なるため、加工物移動ステージ1が加工機の他の移動軸
と同期して移動することができなくなり、加工精度が落
ちる可能性がある。そのような場合、外周部で、主軸4
の回転数を落とすことにより、加工物移動ステージ1の
移動速度を緩和し、加工精度を向上させることができ
る。
When the shape to be machined is far away from the spherical shape, the amount of movement of the workpiece 2 at the outer peripheral portion becomes large, so that the workpiece moving stage 1 synchronizes with the other moving axes of the processing machine. It may not be possible to move it, and the processing accuracy may drop. In such a case, the spindle 4 is
By lowering the rotation speed of, the moving speed of the workpiece moving stage 1 can be moderated and the processing accuracy can be improved.

【0035】本発明の場合、主軸4の回転軸と、加工物
移動ステージ1を同期させる必要があるため、加工物移
動ステージ1の速度によって、主軸4の回転数が制限さ
れる。加工物移動ステージ1を用いない場合、主軸4の
回転数を上げることができるため、加工物移動ステージ
1を用いないで加工を行うことができる球面、軸対称非
球面形状で、最終形状に近い形状の加工面を作製してか
ら、加工物移動ステージ1を用いる軸非対称非球面加工
を行うことにより、加工時間を短縮することができる。
In the case of the present invention, since it is necessary to synchronize the rotating shaft of the spindle 4 and the workpiece moving stage 1, the rotation speed of the spindle 4 is limited by the speed of the workpiece moving stage 1. When the workpiece moving stage 1 is not used, the number of rotations of the main shaft 4 can be increased, and therefore, the spherical shape and the axisymmetric aspherical shape which can be processed without using the workpiece moving stage 1 are close to the final shape. The processing time can be shortened by forming the processed surface of the shape and then performing the axially asymmetric aspherical surface processing using the workpiece moving stage 1.

【0036】通常の軸対称非球面加工よりも、制御が必
要な軸数が増加するため、1回の加工で、高精度の形状
を創製することが難しくなるが、加工した面の形状を評
価し、形状誤差を反映させて、加工工具および、加工物
2の移動軌跡を変えることによって、形状精度に優れた
軸非対称非球面加工を行うことができる。なお、本発明
は上記実施形態に限定されるものではない。即ち、本発
明の骨子を逸脱しない範囲で種々変形して実施すること
ができる。
Since the number of axes that need to be controlled is larger than in the case of ordinary axisymmetric aspherical surface machining, it is difficult to create a highly accurate shape with a single machining, but the shape of the machined surface is evaluated. Then, by reflecting the shape error and changing the movement trajectory of the processing tool and the workpiece 2, it is possible to perform the axially asymmetric aspherical surface processing having excellent shape accuracy. The present invention is not limited to the above embodiment. That is, various modifications can be made without departing from the gist of the present invention.

【0037】[0037]

【発明の効果】以上の説明から明らかな如く請求項1又
は請求項6の発明によれば、高精度な軸非対称非球面加
工を行うことができる。
As is apparent from the above description, according to the invention of claim 1 or 6, it is possible to perform highly accurate axial asymmetric aspherical surface machining.

【0038】また、請求項2又は請求項3の発明によれ
ば、主軸上に2軸以上の移動が可能かつ、加工機の他の
移動軸と同期させて動作させることが可能な加工物移動
ステージを取り付けた加工機を用いることによって、主
軸の回転中心に対して、加工物を軸非対称非球面加工を
行うのに必要な位置に位置決めできる様になるため、軸
非対称非球面加工を実現することができる。
Further, according to the invention of claim 2 or 3, it is possible to move the work piece in two or more axes on the main spindle and to move the work piece in synchronization with the other movement axes of the processing machine. By using a processing machine equipped with a stage, the workpiece can be positioned at the position necessary for axially asymmetrical aspherical machining with respect to the center of rotation of the spindle, thus achieving axially asymmetrical aspherical machining. be able to.

【0039】また、請求項4の発明によれば、工具に単
結晶ダイヤモンド工具を用いることにより、高精度の軸
非対称非球面加工を行うことができる。
According to the fourth aspect of the present invention, by using a single crystal diamond tool as the tool, it is possible to perform highly accurate axial asymmetric aspherical surface processing.

【0040】また、請求項5の発明によれば、工具に回
転砥石を用いることにより、切削が難しい被削材に対し
ても、軸非対称非球面加工を行うことができる。
According to the fifth aspect of the present invention, by using the rotary grindstone as the tool, it is possible to perform the axially asymmetric aspherical surface machining on the work material which is difficult to cut.

【0041】また、請求項7の発明によれば、外周部
で、主軸の回転数を抑えることにより、加工物移動ステ
ージの負荷を減らすことができるため、高精度な軸非対
称非球面の加工を行うことができる。
Further, according to the invention of claim 7, since the load on the workpiece moving stage can be reduced by suppressing the rotational speed of the main shaft at the outer peripheral portion, it is possible to perform highly accurate processing of the axially asymmetric aspherical surface. It can be carried out.

【0042】請求項8の発明によれば、加工物移動ステ
ージを用いないでも加工できる球面、もしくは軸対称非
球面加工により、最終的な軸非対称非球面形状に近い形
状を作ることにより、短時間で、所望の軸非対称非球面
加工を行うことができるようになる。
According to the invention of claim 8, a spherical surface which can be machined without using the workpiece moving stage or an axially symmetric aspherical surface is formed to form a shape close to a final axially asymmetrical aspherical shape, and thus a short time is obtained. Thus, it becomes possible to perform desired axially asymmetric aspherical surface processing.

【0043】請求項9の発明によれば、高精度の軸非対
称非球面加工品が作製できる。また、作製した軸非対称
非球面加工品を用いて成形することにより、高精度な軸
非対称非球面形状の素子が作製できる。
According to the invention of claim 9, it is possible to manufacture a highly accurate axially asymmetric aspherical surface processed product. Further, by molding using the manufactured axially asymmetrical aspherical processed product, a highly accurate axially asymmetrical aspherical element can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態に係る軸非対称非球面加
工機の全体構成を示す斜視図である。
FIG. 1 is a perspective view showing an overall configuration of an axially asymmetric aspherical surface processing machine according to a first embodiment of the present invention.

【図2】本発明の第2実施形態に係る軸非対称非球面加
工機の全体構成を示す斜視図である。
FIG. 2 is a perspective view showing an overall configuration of an axially asymmetric aspherical surface processing machine according to a second embodiment of the present invention.

【図3】図1の軸非対称非球面加工機による軸非対称非
球面加工の例を示す図である。
FIG. 3 is a view showing an example of axially asymmetrical aspherical surface processing by the axially asymmetrical aspherical surface processing machine shown in FIG. 1;

【図4】(A)は軸非対称非球面と工具をXZ平面によ
る断面で見た図、(B)はZ方向から見た加工領域を示
す図である。
FIG. 4A is a view of a cross section of an axially asymmetric aspherical surface and a tool taken along the XZ plane, and FIG. 4B is a view of a machining region viewed from the Z direction.

【図5】加工する楕円形状を示した図である。FIG. 5 is a diagram showing an elliptical shape to be processed.

【図6】加工する楕円形状に対応した点Owの軌跡を示
す図である。
FIG. 6 is a diagram showing a locus of a point Ow corresponding to an elliptical shape to be processed.

【図7】図5の楕円を加工している際の、加工点PのX
座標の変化を示す図である。
7 is an X of a processing point P when processing the ellipse of FIG.
It is a figure which shows the change of coordinates.

【図8】加工中の点Ow及び加工点Pの様子を示す図で
ある。
FIG. 8 is a diagram showing the states of a processing point Ow and a processing point P during processing.

【図9】第1従来例の軸非対称非球面加工法を示す図で
ある。
FIG. 9 is a diagram showing an axially asymmetric aspherical surface processing method of a first conventional example.

【図10】第2従来例の軸非対称非球面加工法を示す図
である。
FIG. 10 is a diagram showing an axially asymmetric aspherical surface processing method of a second conventional example.

【符号の説明】[Explanation of symbols]

1 加工物移動ステージ 2 加工物 3 加工工具 4 主軸 5 主軸の回転軸 13 回転砥石 32 X方向移動ステージ 33 Z方向移動ステージ 1 Workpiece movement stage 2 Processed products 3 processing tools 4 spindles 5 Spindle rotation axis 13 rotary whetstone 32 X-direction moving stage 33 Z-direction movement stage

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 回転可能な主軸上に取り付けられた加工
物を回転させながら加工物に対して工具を相対的に移動
させ、加工面を形成する加工機において、 加工位置に同期させて、加工物を回転軸と垂直な平面上
で、主軸の半径方向に移動させる加工物移動手段と、前
記加工位置に応じて工具位置を変える工具移動手段とを
備えていることを特徴とする軸非対称非球面加工機。
1. A processing machine for forming a machined surface by moving a tool relative to a machined work while rotating the machined work mounted on a rotatable spindle, and machining in synchronization with a machining position. An axis asymmetric non-axis characterized by comprising a workpiece moving means for moving the workpiece in a radial direction of the main axis on a plane perpendicular to the rotation axis, and a tool moving means for changing the tool position according to the machining position. Sphere processing machine.
【請求項2】 請求項1に記載の軸非対称非球面加工機
において、前記加工物移動手段として、前記主軸上に取
り付けられた、2軸以上の移動軸をもつ加工物移動ステ
ージを用いることを特徴とする軸非対称非球面加工機。
2. The axis asymmetric aspherical surface processing machine according to claim 1, wherein a workpiece moving stage having two or more axes of movement attached to the spindle is used as the workpiece moving means. Characteristic axial asymmetric aspherical surface processing machine.
【請求項3】 請求項2に記載の軸非対称非球面加工機
において、前記加工物移動ステージが、前記主軸の回転
軸と前記工具移動手段の移動軸とに同期していることを
特徴とする軸非対称非球面加工機。
3. The axially asymmetric aspherical surface processing machine according to claim 2, wherein the workpiece moving stage is synchronized with a rotating shaft of the main shaft and a moving shaft of the tool moving means. Axially aspherical surface processing machine.
【請求項4】 請求項1に記載の軸非対称非球面加工機
において、前記工具として単結晶ダイヤモンドを用いて
いることを特徴とする軸非対称非球面加工機。
4. The axially asymmetric aspherical surface processing machine according to claim 1, wherein a single crystal diamond is used as the tool.
【請求項5】 請求項1に記載の軸非対称非球面加工機
において、前記工具として、回転砥石を用いることを特
徴とする軸非対称非球面加工機。
5. The axial asymmetric aspherical surface processing machine according to claim 1, wherein a rotary grindstone is used as the tool.
【請求項6】 回転可能な主軸上に取り付けられた加工
物を回転させながら加工物に対して工具を相対的に移動
させ、加工面を形成する加工法において、 加工位置に同期させて、加工物を回転軸と垂直な平面上
で、主軸の半径方向に移動させ、かつ、工具位置も加工
位置に応じて変えることにより、軸非対称非球面加工を
行うことを特徴とする軸非対称非球面加工法。
6. A machining method of forming a machining surface by moving a tool relative to a workpiece while rotating a workpiece mounted on a rotatable spindle, and machining in synchronization with a machining position. Axial asymmetric aspherical machining characterized by performing axial asymmetrical aspherical machining by moving an object in the radial direction of the main axis on a plane perpendicular to the rotation axis and changing the tool position according to the machining position. Law.
【請求項7】 請求項6に記載の軸非対称非球面加工法
において、加工物の移動量が大きくなる外周部の加工
を、内周部の加工より主軸の回転数を下げて行うことを
特徴とする軸非対称非球面加工法。
7. The axially asymmetric aspherical surface machining method according to claim 6, wherein the machining of the outer peripheral portion where the movement amount of the workpiece is large is performed at a lower rotational speed of the spindle than the machining of the inner peripheral portion. Axially asymmetric aspherical surface processing method.
【請求項8】 請求項6に記載の軸非対称非球面加工法
において、前記軸非対称非球面加工を行う前に、前記加
工物を前記軸非対称非球面に近似する、球面又は軸対称
非球面形状に加工しておくことを特徴とする軸非対称非
球面加工法。
8. The axially asymmetric aspherical surface processing method according to claim 6, wherein the workpiece is approximated to the axially asymmetrical aspherical surface before the axially asymmetrical aspherical surface processing is performed. An axially asymmetric aspherical surface processing method characterized by being processed into
【請求項9】 請求項6に記載の軸非対称非球面加工法
により加工された軸非対称非球面加工物。
9. An axially asymmetric aspherical surface processed product processed by the axially asymmetrical aspherical surface processing method according to claim 6.
JP2001289428A 2001-09-21 2001-09-21 Axially non-symmetric and aspherical machining machine, axially non-symmetric and aspherical machining method, and axially non-symmetric and aspherical workpiece Withdrawn JP2003094201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001289428A JP2003094201A (en) 2001-09-21 2001-09-21 Axially non-symmetric and aspherical machining machine, axially non-symmetric and aspherical machining method, and axially non-symmetric and aspherical workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001289428A JP2003094201A (en) 2001-09-21 2001-09-21 Axially non-symmetric and aspherical machining machine, axially non-symmetric and aspherical machining method, and axially non-symmetric and aspherical workpiece

Publications (1)

Publication Number Publication Date
JP2003094201A true JP2003094201A (en) 2003-04-03

Family

ID=19111917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001289428A Withdrawn JP2003094201A (en) 2001-09-21 2001-09-21 Axially non-symmetric and aspherical machining machine, axially non-symmetric and aspherical machining method, and axially non-symmetric and aspherical workpiece

Country Status (1)

Country Link
JP (1) JP2003094201A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7168351B2 (en) 2003-07-11 2007-01-30 Seibu Electric & Machinery Co., Ltd. High-speed cutting process for generating desired curved surface on workpiece
JP2008532783A (en) * 2005-03-17 2008-08-21 エシロール アンテルナショナル コムパニー ジェネラル ドプテイク Machining method of face of ophthalmic lens with prism at center

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7168351B2 (en) 2003-07-11 2007-01-30 Seibu Electric & Machinery Co., Ltd. High-speed cutting process for generating desired curved surface on workpiece
CN100411813C (en) * 2003-07-11 2008-08-20 西部电机株式会社 High-speed cutting process for generating desired curved surface on workpiece
JP2008532783A (en) * 2005-03-17 2008-08-21 エシロール アンテルナショナル コムパニー ジェネラル ドプテイク Machining method of face of ophthalmic lens with prism at center

Similar Documents

Publication Publication Date Title
EP1854585B1 (en) Apparatus and method for generating an optical surface on a workpiece, for example an ophthalmic lens
US6991525B2 (en) Method and device for the surface machining of workpieces composed of non-brittle materials in optical lens manufacturing and tool for this purpose
US7765903B2 (en) Method and device for processing optical workpiece surfaces
TWI359711B (en) Raster cutting technology for ophthalmic lenses
US6122999A (en) Lathe apparatus and method
JPH0655302A (en) Device for working lens edge of glasses
JP2006312233A (en) Device and method for processing optical workpiece, particularly, plastic spectacle lens
US20080273253A1 (en) Method for producing mold for zonal optical element
CN101046522B (en) Process of producing asymmetric aspheric lens
JP3880474B2 (en) Mold processing method
JP2007118117A (en) Machining device and method for fly-eye lens forming die
EP1679154A1 (en) Method for machining aspherical surface, method for forming aspherical surface, and system for machining aspherical surface
JP2003094201A (en) Axially non-symmetric and aspherical machining machine, axially non-symmetric and aspherical machining method, and axially non-symmetric and aspherical workpiece
JP7016568B1 (en) Fresnel lens mold manufacturing method, processing equipment and cutting tools
JP2000052217A (en) Tool and processing method
JP4374161B2 (en) Cutting method of optical lens or its mold
JPH10166202A (en) Machining method for die for forming fresnel lens
JP2003231001A (en) Lens shape machining method and device thereof
JP2829103B2 (en) Cutting method and cutting device for plastic lens
JP3662087B2 (en) Curved surface cutting method
JPH11300501A (en) Cutting method and cutting tool of optical part
CN113412447A (en) Precursor lens for spectacles with negative refractive power, lens for spectacles, and method for processing precursor lens for spectacles with negative refractive power
JPH0519215A (en) Aspherical eye lens and its manufacture
JP2000198001A (en) Cutting tool and cutting work method
JP2002144105A (en) Curved surface cutting method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202