JP2003090821A - System for detecting abnormality in air-fuel ratio system - Google Patents

System for detecting abnormality in air-fuel ratio system

Info

Publication number
JP2003090821A
JP2003090821A JP2001285517A JP2001285517A JP2003090821A JP 2003090821 A JP2003090821 A JP 2003090821A JP 2001285517 A JP2001285517 A JP 2001285517A JP 2001285517 A JP2001285517 A JP 2001285517A JP 2003090821 A JP2003090821 A JP 2003090821A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
abnormality
sensor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001285517A
Other languages
Japanese (ja)
Other versions
JP4699658B2 (en
Inventor
Norikazu Ieda
典和 家田
Yuji Oi
雄二 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2001285517A priority Critical patent/JP4699658B2/en
Publication of JP2003090821A publication Critical patent/JP2003090821A/en
Application granted granted Critical
Publication of JP4699658B2 publication Critical patent/JP4699658B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To provide a system for detecting abnormality in the air-fuel ratio system capable of detecting abnormality in the air-fuel ratio sensor with a smaller number of signal lines. SOLUTION: This system for detecting abnormality superimposes P/START information indicating abnormality on YRPVS output. Thereby, there is no need to prepare a signal line indicating the P/START information. It also prevents increasing troubles in wiring due to increasing additional signal lines and lowering reliability due to disconnection of the wire.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空燃比検出システ
ムの異常検出システムに関する。更に詳しくは、信号線
数を増加させることなく様々な異常検出を行うことがで
きる空燃比検出システムの異常検出システムの保護方法
に関する。本発明は、ガソリンエンジン等の内燃機関の
空燃比を酸素濃度から検出することができる空燃比セン
サの制御システムに用いることができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an abnormality detection system for an air-fuel ratio detection system. More specifically, the present invention relates to a method for protecting an abnormality detection system of an air-fuel ratio detection system, which can detect various abnormalities without increasing the number of signal lines. INDUSTRIAL APPLICATION This invention can be used for the control system of the air-fuel ratio sensor which can detect the air-fuel ratio of internal combustion engines, such as a gasoline engine, from oxygen concentration.

【0002】[0002]

【従来の技術】ガソリンエンジン等の内燃機関に供給す
る混合気の空燃比が目標値となるように制御し、排気ガ
ス中のCO、NOx及びHC等を軽減するために、排気
系に酸素センサを設け、空燃比と相関関係を持つ排気中
の酸素濃度に応じて、燃料供給量をフィードバック制御
することが知られている。
2. Description of the Related Art An oxygen sensor is provided in an exhaust system in order to reduce CO, NOx, HC and the like in exhaust gas by controlling an air-fuel ratio of an air-fuel mixture supplied to an internal combustion engine such as a gasoline engine to a target value. It is known that the fuel supply amount is feedback-controlled in accordance with the oxygen concentration in the exhaust gas that has a correlation with the air-fuel ratio.

【0003】このようなフィードバック制御に用いられ
る酸素センサとしては、特定の酸素濃度(特に理論空燃
比雰囲気近辺)で出力が急激に変化するλセンサと、リ
ーン領域からリッチ領域まで連続的に出力が変化する全
領域空燃比センサとが主に用いられている。全領域空燃
比センサは、上述したように排気ガス中の酸素濃度を連
続的に測定でき、フィードバック制御の速度及び精度を
向上させ得るため、より高速で高精度な制御が要求され
る際に用いられている。
As an oxygen sensor used for such feedback control, a λ sensor whose output changes abruptly at a specific oxygen concentration (especially in the vicinity of a stoichiometric air-fuel ratio atmosphere) and an output which continuously outputs from a lean region to a rich region. Mainly used are variable range air-fuel ratio sensors. Since the full-range air-fuel ratio sensor can continuously measure the oxygen concentration in the exhaust gas as described above and can improve the speed and accuracy of feedback control, it is used when higher speed and higher accuracy control is required. Has been.

【0004】上記全領域空燃比センサは、酸素イオン伝
導性固体電解質体を用いた2つのセルを対向配設し、一
方のセルを間隔内の酸素を汲み出しや、汲み込みを行う
ポンプセルとして用い、また、他方のセルを酸素基準室
と間隔との酸素濃度差によって電圧を生じる酸素濃度検
出セルとして用い、酸素濃度検出セルの出力が一定にな
るようにポンプセルを動作させ、その時に該ポンプセル
に流す電流を、測定酸素濃度比例値として測定する。こ
の全領域空燃比センサの動作原理は、本出願人の出願に
係る特開昭62−148849号公報中に詳述されてい
る。一方、このような空燃比センサが正常に作動してい
るか否かを検出する空燃比センサの異常検出方法として
は、本出願人の出願に係る特開平3−272452号公
報の「空燃比センサの異常診断方法」等、様々なものが
開示されている。
In the above-mentioned full-range air-fuel ratio sensor, two cells using an oxygen ion conductive solid electrolyte body are arranged so as to face each other, and one cell is used as a pump cell for pumping out and pumping oxygen in an interval, Further, the other cell is used as an oxygen concentration detection cell that generates a voltage due to the oxygen concentration difference between the oxygen reference chamber and the interval, and the pump cell is operated so that the output of the oxygen concentration detection cell becomes constant, and at that time, the current is supplied to the pump cell. The current is measured as a proportional value to the measured oxygen concentration. The operating principle of this full-range air-fuel ratio sensor is described in detail in Japanese Patent Application Laid-Open No. 62-148849 filed by the present applicant. On the other hand, as an abnormality detection method of the air-fuel ratio sensor for detecting whether or not such an air-fuel ratio sensor is normally operating, as a method of detecting the abnormality of the air-fuel ratio sensor disclosed in Japanese Patent Application Laid-Open No. 3-272452 of the present applicant. Various methods such as "abnormality diagnosis method" are disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかし、異常検出の結
果は、ECU(Electronic Control Unit)等が入力信
号線から読み取るが、この信号線数は他の用途にも使わ
れるため、できるだけ使わないようにすることが望まれ
ている。本発明は、このような問題点を解決するもので
あり、空燃比センサの異常検出をより少ない信号線数で
おこなうことが可能な空燃比検出システムの異常検出シ
ステムを提供することを目的とする。
However, an ECU (Electronic Control Unit) or the like reads the result of the abnormality detection from the input signal line, but since the number of this signal line is used for other purposes, it should be avoided as much as possible. Is desired. The present invention solves such a problem, and an object of the present invention is to provide an abnormality detection system of an air-fuel ratio detection system capable of performing abnormality detection of an air-fuel ratio sensor with a smaller number of signal lines. .

【0006】[0006]

【課題を解決するための手段】本発明の空燃比検出シス
テムの異常検出システムは、センサと、該センサに複数
のリード線で接続されており、該センサを制御する制御
回路と、該制御回路からの信号が入力されるエンジン制
御装置とからなる空燃比検出システムの異常検出システ
ムにおいて、該制御回路は、該センサ又は該リード線の
異常を検出する異常検出手段を有し、該異常検出手段
は、上記信号の電圧を正常時の範囲外の電圧にすること
で該エンジン制御装置に該異常を通知することを特徴と
する。
An abnormality detection system for an air-fuel ratio detection system according to the present invention includes a sensor, a control circuit connected to the sensor with a plurality of lead wires, and a control circuit for controlling the sensor and the control circuit. In the abnormality detection system of the air-fuel ratio detection system, which comprises an engine control device to which a signal from is input, the control circuit has abnormality detection means for detecting an abnormality of the sensor or the lead wire, and the abnormality detection means. Is characterized by notifying the engine control device of the abnormality by setting the voltage of the signal to a voltage outside the normal range.

【0007】また、上記センサは、酸素ポンプセルと酸
素濃度検出セルの組み合わせにより構成され、上記制御
回路は該酸素濃度検出セルの出力電圧が所定値になるよ
うに該酸素ポンプセルを制御する空燃比センサであっ
て、上記制御回路は、上記酸素濃度検出セルの内部抵抗
を電圧に変換した内部抵抗信号を上記エンジン制御装置
に出力しており、上記異常検出手段は、該内部抵抗信号
の値を正常時の範囲外の値とすることで、該エンジン制
御装置に異常を通知することができる。
The sensor is composed of a combination of an oxygen pump cell and an oxygen concentration detection cell, and the control circuit controls the oxygen pump cell so that the output voltage of the oxygen concentration detection cell becomes a predetermined value. The control circuit outputs an internal resistance signal obtained by converting the internal resistance of the oxygen concentration detection cell into a voltage to the engine control device, and the abnormality detection means normalizes the value of the internal resistance signal. By setting the value outside the time range, it is possible to notify the engine control device of the abnormality.

【0008】〔作用〕本空燃比検出システムの異常検出
システムは、信号線に正常な信号が出力されている時は
一定範囲の電圧であることを利用し、異常発生時に該範
囲外の電圧を使用することで異常状態の通知を行うこと
を特徴としている。これによって異常状態を通知するた
めに新たな信号線を用意する必要がなくなり、空燃比検
出システム及びECU間の配線数を減らして煩雑さを減
らし、信頼性を上げるとともに、該当する信号線の信号
の妥当性の確認を行う際に、同時にその他の異常状態を
判別することができるため、ECUの処理も軽減するこ
とができ好ましい。
[Operation] The abnormality detection system of the present air-fuel ratio detection system utilizes the fact that the voltage is within a certain range when a normal signal is output to the signal line, and when an abnormality occurs, a voltage outside the range is used. It is characterized by using it to notify an abnormal state. This eliminates the need to prepare a new signal line to notify the abnormal state, reduces the number of wires between the air-fuel ratio detection system and the ECU to reduce complexity, improve reliability, and increase the signal of the corresponding signal line. Since it is possible to determine other abnormal states at the same time when confirming the adequacy of, the processing of the ECU can be reduced, which is preferable.

【0009】また、本空燃比検出システムの異常検出シ
ステムは、酸素ポンプセルと酸素濃度検出セルを組み合
わせた空燃比センサにおいて、上記酸素濃度検出セルの
内部抵抗を表わす内部抵抗信号に、異常信号を重畳する
ことで、僅かな回路変更で信号線を増やすことなく様々
な異常検出を行うことができる。また、制御回路として
ソフトウエア的にプログラミング可能なデジタル回路及
び素子を用いた場合には、回路の変更をすることもな
く、同様な効果を奏する事ができるので、更に好まし
い。
Further, the abnormality detection system of the present air-fuel ratio detection system is an air-fuel ratio sensor in which an oxygen pump cell and an oxygen concentration detection cell are combined, and an abnormality signal is superimposed on the internal resistance signal representing the internal resistance of the oxygen concentration detection cell. By doing so, various abnormality detections can be performed without increasing the number of signal lines with a slight circuit change. Further, when a software programmable digital circuit or element is used as the control circuit, the same effect can be obtained without changing the circuit, which is more preferable.

【0010】[0010]

【発明の実施の形態】本空燃比検出システムの異常検出
システムは、空燃比検出システムとECU間との信号線
を増やすことなく異常状態を検出するため、既存の信号
線に異常情報の重畳を行っている。また、この重畳の方
法として、該当する信号線の正常時の電圧範囲を一意に
求めることができ、通常、ECUの入力側の電圧範囲が
前者より広い範囲であることを利用し、異常信号の電圧
を正常時の範囲外の電圧にすることで行う。これによっ
て、余分な信号線を増やすことによる配線の引き回しの
煩雑さが増加することが無く、配線の断線による信頼性
の低下を招くことがない。更に、既存の信号と異常信号
との双方の出力範囲が重複しないため、通常の利用に問
題が起きることはない。
BEST MODE FOR CARRYING OUT THE INVENTION Since the abnormality detection system of the present air-fuel ratio detection system detects an abnormal state without increasing the number of signal lines between the air-fuel ratio detection system and the ECU, it is possible to superimpose abnormality information on existing signal lines. Is going. In addition, as a method of this superposition, it is possible to uniquely determine the voltage range of the corresponding signal line at the time of normal operation, and normally, by utilizing the fact that the voltage range on the input side of the ECU is wider than the former, This is done by setting the voltage outside the normal range. As a result, the complexity of routing the wiring due to the increase of extra signal lines does not increase, and the reliability is not deteriorated due to the disconnection of the wiring. Furthermore, since the output ranges of both the existing signal and the abnormal signal do not overlap, no problem occurs in normal use.

【0011】[0011]

【実施例】以下、図1〜2を用いて本発明の空燃比検出
システムの異常検出システムの実施形態について詳しく
説明する。 1.空燃比センサの構成 空燃比検出システムの異常検出システムに用いるセンサ
素子10を図1に示す。このセンサ素子10はガソリン
エンジンの排気ガス系に配設され、2つのセルを接合し
て構成されており、3本の配線41、42、43を介し
てセンサ制御回路50に接続されている。このため、こ
のセンサ制御回路50では、通常、排気ガス中の酸素濃
度測定とセンサ素子10の温度測定とを主に行うが、そ
の他にセンサ素子10の2つのセルに接続された3本の
配線41、42、43の異常検出を行う機能も備えてい
る。
Embodiments of the abnormality detection system for an air-fuel ratio detection system according to the present invention will be described in detail below with reference to FIGS. 1. Configuration of Air-Fuel Ratio Sensor A sensor element 10 used in an abnormality detection system of an air-fuel ratio detection system is shown in FIG. The sensor element 10 is arranged in an exhaust gas system of a gasoline engine, is configured by joining two cells, and is connected to a sensor control circuit 50 via three wires 41, 42, 43. For this reason, in the sensor control circuit 50, normally, the oxygen concentration in the exhaust gas and the temperature of the sensor element 10 are mainly measured. In addition, three wires connected to the two cells of the sensor element 10 are also used. It also has a function of detecting abnormalities 41, 42, and 43.

【0012】また、このセンサ素子10には、ヒータ制
御回路60にて制御されるヒータ70が、セラミック系
接合剤を介して取り付けられている。ヒータ70は、絶
縁材料としてアルミナ等のセラミックからなり、その内
部にはヒータ配線72が配設されている。ヒータ制御回
路60は、センサ制御回路50により測定されるセンサ
素子10の温度を目標値に保つように、ヒータ70へ電
力を供給し、センサ素子10の温度を目標値に維持する
ように機能する。
A heater 70 controlled by a heater control circuit 60 is attached to the sensor element 10 via a ceramic-based bonding agent. The heater 70 is made of ceramic such as alumina as an insulating material, and the heater wiring 72 is arranged inside the heater 70. The heater control circuit 60 functions to supply electric power to the heater 70 so as to maintain the temperature of the sensor element 10 measured by the sensor control circuit 50 at the target value and maintain the temperature of the sensor element 10 at the target value. .

【0013】センサ素子10は、ポンプセル14、多孔
質拡散層18、酸素濃度検出セル24および補強板30
を積層することにより構成されている。ポンプセル14
は、酸素イオン伝導性固体電解質である安定化または部
分安定化ジルコニアにより板状に形成され、その両面に
主として白金で形成された多孔質電極12、16を有し
ている。測定ガスに晒される表面側の多孔質電極12
は、IP電流を流すためにIP+電圧が印加されるので
Ip+電極として参照する。また裏面側の多孔質電極1
6は、Ip電流を流すためにIp−電圧が印加されるの
でIp−電極として参照する。なお、Ip+電極には配
線43、Ip−電極には配線42がそれぞれ接続されて
いる。
The sensor element 10 includes a pump cell 14, a porous diffusion layer 18, an oxygen concentration detection cell 24 and a reinforcing plate 30.
It is configured by stacking. Pump cell 14
Is formed into a plate shape with stabilized or partially stabilized zirconia, which is an oxygen ion conductive solid electrolyte, and has porous electrodes 12 and 16 mainly formed of platinum on both surfaces thereof. Surface side porous electrode 12 exposed to measurement gas
Is referred to as an Ip + electrode because an IP + voltage is applied to flow an IP current. Also, the porous electrode 1 on the back side
Reference numeral 6 is referred to as an Ip-electrode because an Ip-voltage is applied to flow an Ip current. A wiring 43 is connected to the Ip + electrode and a wiring 42 is connected to the Ip− electrode.

【0014】酸素濃度検出セル24も同様に安定化また
は部分安定化ジルコニアにより形成され、その両面に主
として白金で形成された多孔質電極22、28を有して
いる。ポンプセル14と酸素濃度検出セル24との間に
は、多孔質拡散層18により包囲された間隙20が形成
されている。
Similarly, the oxygen concentration detection cell 24 is also formed of stabilized or partially stabilized zirconia, and has porous electrodes 22 and 28 mainly formed of platinum on both surfaces thereof. A gap 20 surrounded by the porous diffusion layer 18 is formed between the pump cell 14 and the oxygen concentration detection cell 24.

【0015】即ち、この間隙20は、多孔質拡散層18
を介して測定ガス雰囲気と連通されている。間隙20側
に配設された多孔質電極22は、酸素濃度検出セル24
の起電力のマイナス電圧が生じるためVs−電極として
参照し、また基準酸素室26側に配設された多孔質電極
28は、酸素濃度検出セル24の起電力のプラス電圧が
生じるためVs+電極として参照する。基準酸素室26
の基準酸素は多孔質電極22から一定量の酸素を多孔質
電極28にポンピングすることにより生成する。なお、
Vs+電極には配線41、Vs−電極には配線42がそ
れぞれ接続され。ている。
That is, the gap 20 is formed by the porous diffusion layer 18
Through which the measurement gas atmosphere is communicated. The porous electrode 22 arranged on the side of the gap 20 has an oxygen concentration detection cell 24.
Is referred to as a Vs- electrode because a negative voltage of electromotive force is generated, and the porous electrode 28 disposed on the reference oxygen chamber 26 side is a Vs + electrode because a positive voltage of electromotive force of the oxygen concentration detection cell 24 is generated. refer. Reference oxygen chamber 26
The reference oxygen is generated by pumping a certain amount of oxygen from the porous electrode 22 to the porous electrode 28. In addition,
A wiring 41 is connected to the Vs + electrode, and a wiring 42 is connected to the Vs− electrode. ing.

【0016】ここで、測定ガスの酸素濃度と間隙20の
酸素濃度との差に応じた酸素が、間隙20側に多孔質拡
散層18を介して拡散して行く。間隙20内の雰囲気が
理論空燃比に保たれるとき、ほぼ酸素濃度が一定に保た
れている基準酸素室26との間の酸素濃度差により、酸
素濃度検出セル24のVs+電極28とVs−電極22
との間には、約450mVの電位差が生じる。このた
め、センサ制御回路50は、ポンプセル14に流す電流
Ipを、上記酸素濃度検出セル24の起電圧Vsが45
0mVとなるように調整することで、間隙20内の雰囲
気を理論空燃比に保ち、この理論空燃比に保つためのポ
ンプセル電流量1Pに基づき、測定ガス中の酸素濃度を
測定する。
Here, oxygen according to the difference between the oxygen concentration of the measurement gas and the oxygen concentration of the gap 20 diffuses toward the gap 20 through the porous diffusion layer 18. When the atmosphere in the gap 20 is maintained at the stoichiometric air-fuel ratio, the Vs + electrode 28 and the Vs− electrode of the oxygen concentration detection cell 24 and the Vs− are due to the oxygen concentration difference between the oxygen concentration of the reference oxygen chamber 26 and the oxygen concentration of the reference oxygen chamber. Electrode 22
There is a potential difference of about 450 mV between and. Therefore, the sensor control circuit 50 changes the current Ip flowing through the pump cell 14 to the electromotive voltage Vs of the oxygen concentration detection cell 24 of 45.
By adjusting to 0 mV, the atmosphere in the gap 20 is kept at the stoichiometric air-fuel ratio, and the oxygen concentration in the measurement gas is measured based on the pump cell current amount 1P for keeping the stoichiometric air-fuel ratio.

【0017】このようにセンサ素子10は、センサ制御
回路50により、通常、酸素濃度検出セル24の起電圧
Vsが450mVとなるようにポンプセル14に流す電
流Ipを調整している。そのため、このようなセンサ制
御回路50によるセンサ素子10のIp電流の電流制御
の特徴を利用することによって、以下に説明するような
センサ素子10の配線41、42、43の異常検出を行
うことができる。
As described above, in the sensor element 10, the sensor control circuit 50 normally adjusts the current Ip flowing through the pump cell 14 so that the electromotive voltage Vs of the oxygen concentration detection cell 24 becomes 450 mV. Therefore, by utilizing the characteristics of the current control of the Ip current of the sensor element 10 by the sensor control circuit 50, the abnormality detection of the wirings 41, 42, 43 of the sensor element 10 as described below can be performed. it can.

【0018】2.センサ制御回路の構成 次に、本発明の一実施態様に係る空燃比センサの異常検
出方法を適用したセンサ制御回路50の構成を図2に基
づいて説明する。図2に示すように、センサ制御回路5
0は、主に、Ipドライバ51、PID制御回路52、
オペアンプ53、Rpvs測定回路54、Vpリミッタ
55、自己診断回路58等から構成されており、例えば
本実施形態では特定用途向集積回路(ASIC;Application
Specific IC)として実現されている。また、本センサ
制御回路50の出力VIP、VVS、VRPVSは、E
CUのアナログ入力端子に接続される。このうち、VI
P端子はポンプセル14の電極Ip+、Ip−間に流れ
る電流の大きさに比例した電圧、VVS端子は酸素濃度
検出セル24の電極Vs+、Vs−間の電圧差に比例し
た電圧を出力する。
2. Configuration of Sensor Control Circuit Next, the configuration of the sensor control circuit 50 to which the abnormality detection method for an air-fuel ratio sensor according to an embodiment of the present invention is applied will be described with reference to FIG. As shown in FIG. 2, the sensor control circuit 5
0 is mainly the Ip driver 51, the PID control circuit 52,
It is composed of an operational amplifier 53, an Rpvs measurement circuit 54, a Vp limiter 55, a self-diagnosis circuit 58, etc. For example, in this embodiment, an integrated circuit (ASIC; Application specific application).
Specific IC). The outputs VIP, VVS, VRPVS of the sensor control circuit 50 are E
It is connected to the analog input terminal of the CU. Of these, VI
The P terminal outputs a voltage proportional to the magnitude of the current flowing between the electrodes Ip + and Ip− of the pump cell 14, and the VVS terminal outputs a voltage proportional to the voltage difference between the electrodes Vs + and Vs− of the oxygen concentration detection cell 24.

【0019】Ipドライバ51は、センサ素子10にI
p電流を流すためのオペアンプで、反転入力端子にはV
cent端子、非反転入力端子には基準電圧3.6Vが
それぞれ接続されており、また出力端子にはIp+端子
が接続されている。そして、このようなVcent端子
とIp+端子との間にセンサ素子10のポンプセル14
が接続されている。これにより、Ipドライバ51は負
帰還回路を構成するため、Vcent端子の電位が基準
電圧(3.6V)を常に維持するように、Ip電流が制
御される。このようにVcent端子の電圧を基準電圧
の3.6Vに保つように制御することにより、PID制
御回路と共同して、起電力Vsが制御目標値になる様に
ポンプ電流が制御される。
The Ip driver 51 connects the sensor element 10 with Ip.
It is an operational amplifier for flowing p current, and V is connected to the inverting input terminal.
A reference voltage of 3.6 V is connected to each of the cent terminal and the non-inverting input terminal, and an Ip + terminal is connected to the output terminal. Then, the pump cell 14 of the sensor element 10 is provided between the Vcent terminal and the Ip + terminal.
Are connected. As a result, the Ip driver 51 constitutes a negative feedback circuit, and thus the Ip current is controlled so that the potential of the Vcent terminal always maintains the reference voltage (3.6V). By controlling the voltage of the Vcent terminal so as to maintain the reference voltage of 3.6V, the pump current is controlled in cooperation with the PID control circuit so that the electromotive force Vs becomes the control target value.

【0020】PID制御回路52は、ASICの入出力
用信号線であるP1端子、P2端子およびP3端子に接
続される抵抗やコンデンサとともに、PID演算回路を
構成するものである。このPID制御回路52は、Vs
制御目標値の450mVに対する酸素濃度検出セル24
の起電圧Vsの偏差量△VsをPID演算した電圧をP
out端子に出力するもので、これによりIpドライバ
51によるIp電流が制御される。
The PID control circuit 52 constitutes a PID arithmetic circuit together with resistors and capacitors connected to the P1 terminal, P2 terminal and P3 terminal which are the input / output signal lines of the ASIC. This PID control circuit 52 is Vs
Oxygen concentration detection cell 24 for control target value of 450 mV
Of the deviation ΔVs of the electromotive voltage Vs of
It is output to the out terminal, and the Ip current by the Ip driver 51 is controlled by this.

【0021】即ち、酸素濃度検出セル24の起電圧Vs
が450mVよりも高い場合には、間隙20の酸素濃度
が酸素基準室26の酸素濃度よりも低い状態、つまり理
論空燃比に対して燃料供給過剰(リッチ)側の状態にあ
るので、その不足分の酸素をポンプセル14により汲み
込むためのIp電流が流れるように偏差量△VsをPI
D演算した電圧をPout端子に出力する。一方、酸素
濃度検出セル24の起電圧Vsが450mVよりも低い
場合には、間隙20の酸素渡度が酸素基準室26の酸素
濃度よりも高い状態、つまり理論空燃比に対して燃料供
給不足(リーン)側の状態にあるので、その過剰分の酸
素をポンプセル14により汲み出すためのIp電流が流
れるように偏差量△VsをPID演算した電圧をPou
t端子に出力する。
That is, the electromotive voltage Vs of the oxygen concentration detection cell 24
Is higher than 450 mV, the oxygen concentration in the gap 20 is lower than the oxygen concentration in the oxygen reference chamber 26, that is, on the fuel supply excess (rich) side with respect to the stoichiometric air-fuel ratio. The deviation amount ΔVs is set to PI so that the Ip current for pumping the oxygen in the pump cell 14 flows.
The voltage calculated by D is output to the Pout terminal. On the other hand, when the electromotive voltage Vs of the oxygen concentration detection cell 24 is lower than 450 mV, the oxygen transfer rate in the gap 20 is higher than the oxygen concentration in the oxygen reference chamber 26, that is, the fuel supply is insufficient with respect to the theoretical air-fuel ratio ( Since it is on the lean side, a voltage obtained by PID-calculating the deviation amount ΔVs so that an Ip current for pumping the excess oxygen by the pump cell 14 flows is Pou.
Output to the t terminal.

【0022】なお、配線42が接続されるCOM端子
に、−15μAの定電流源が接続されているが、これは
Icp電流によるPID演算の誤差を防止するためであ
る。即ち、VS+端子には+15μAの定電流源が接続
されており、これにより酸素濃度検出セル24にIcp
電流を供給して酸素基準を作り出している。このため、
COM端子に−15μAの定電流源を接続し、PID演
算回路に流れ込む電流からこの15μA分を差し引くこ
とによって、Icp電流による演算誤差を防止してい
る。
A -15 μA constant current source is connected to the COM terminal to which the wiring 42 is connected, in order to prevent an error in PID calculation due to the Icp current. That is, a constant current source of +15 μA is connected to the VS + terminal, which allows the oxygen concentration detection cell 24 to have Icp.
It supplies an electric current to create an oxygen standard. For this reason,
By connecting a constant current source of −15 μA to the COM terminal and subtracting 15 μA from the current flowing into the PID calculation circuit, a calculation error due to the Icp current is prevented.

【0023】また、VS+端子とPID制御回路52と
の間に接続されるオペアンプ53は、ボルテージフォロ
ア回路を構成している。これにより、VS+端子からは
PID制御回路52側が高インピーダンスに見えるた
め、+15μAの定電流源による供給電流がPID制御
回路52に流れ込むことを抑制している。
Further, the operational amplifier 53 connected between the VS + terminal and the PID control circuit 52 constitutes a voltage follower circuit. As a result, the PID control circuit 52 side looks like a high impedance from the VS + terminal, so that the supply current from the +15 μA constant current source is suppressed from flowing into the PID control circuit 52.

【0024】Rpvs測定回路54は、センサ素子10
の内部抵抗Rpvsからセンサ素子10の温度を測定す
るもので、(オペアンプ、抵抗及びコンデンサ等により
構成されている。)このRpvs測定回路53では、所
定時間毎に酸素濃度検出セル24に所定の測定電流を流
すことにより素子温度と相関関係のある酸素濃度検出セ
ル24の内部抵抗値に対応する電圧変化を生じさせ、こ
れにより得られた酸素濃度検出セルの両端の電圧の変化
量を定数倍に演算増幅して0〜4.5Vの範囲で変化す
るVRpvs電圧とする。また、このVRpvs電圧
は、P/START情報とOR回路59により重畳さ
れ、VRPVS端子から出力される。
The Rpvs measuring circuit 54 includes the sensor element 10
The temperature of the sensor element 10 is measured from the internal resistance Rpvs of the Rpvs (which is composed of an operational amplifier, a resistor, a capacitor, etc.). By passing a current, a voltage change corresponding to the internal resistance value of the oxygen concentration detection cell 24, which has a correlation with the element temperature, is generated, and the obtained voltage change amount across the oxygen concentration detection cell is multiplied by a constant. The VRpvs voltage is calculated and amplified to change in the range of 0 to 4.5V. Further, this VRpvs voltage is superimposed on the P / START information by the OR circuit 59 and is output from the VRPVS terminal.

【0025】なお、Rpvs測定回路53による測定電
流を酸素濃度検出セル24に流す際には測定電流による
電圧変化がPID制御回路の出力に変化を生じさせない
ようにPID制御回路52とオペアンプ53との間に介
在するスイッチSWにより両者間の接続を切断してい
る。したがって、このSWによって、PID制御回路5
2とオペアンプ53との間が切断されている時間にRp
vs測定回路54による測定が行われる。
When the current measured by the Rpvs measurement circuit 53 is passed through the oxygen concentration detection cell 24, the PID control circuit 52 and the operational amplifier 53 are connected so that the voltage change due to the measurement current does not change the output of the PID control circuit. The switch SW interposed therebetween disconnects the connection between the two. Therefore, by this SW, the PID control circuit 5
Rp during the disconnection between the 2 and the operational amplifier 53
The measurement by the vs measurement circuit 54 is performed.

【0026】Vpリミッタ55は、ポンプセル14のい
わゆるブラックニングを防止するための回路で、ポンプ
セル14の両端電圧Vpが一定の範囲を超える場合に作
動してVs目標値をシフトさせるものである。なお、
「ブラックニング」とは、酸素イオンの喪失によるポン
プセルの表面黒化現象のことをいう。
The Vp limiter 55 is a circuit for preventing so-called blackening of the pump cell 14, and operates when the voltage Vp across the pump cell 14 exceeds a certain range to shift the Vs target value. In addition,
“Blackening” refers to a phenomenon in which the surface of a pump cell is blackened due to the loss of oxygen ions.

【0027】自己診断回路58は、主に、ウィンドウコ
ンパレータ58a、58b、コンパレータ58cおよび
OR回路58dから構成されており、センサ素子10の
2つのセルに接続された3本の配線41、42、43の
異常検出等を行う。
The self-diagnosis circuit 58 is mainly composed of window comparators 58a and 58b, a comparator 58c and an OR circuit 58d, and three wirings 41, 42 and 43 connected to two cells of the sensor element 10. Abnormality detection is performed.

【0028】即ち、ASICのVS+端子の電位が所定
の範囲内にあるか否かをウィンドウコンパレータ58a
により判断し、ASICのCOM端子の電位が所定の範
囲内にあるか否かをウィンドウコンパレータ58bによ
り判断する。またASICのVS+端子、IP+端子、
Vcent端子、COM端子及びPout端子のうちの
いずれか一つの端子の電位が所定値(所定電圧)を超え
たか否かをコンパレータ58cにより判断する。そし
て、これら3つのコンパレータによる判断結果の論理和
をOR回路58dにより測定可能である状態を表わすP
/START情報として出力する。このP/START
情報は、異常が発生した場合を4.7V以上の電圧で表
わし、VRpvs電圧とOR回路59により重畳され、
VRPVS端子から出力される。
That is, it is determined whether or not the potential of the VS + terminal of the ASIC is within a predetermined range.
The window comparator 58b determines whether or not the potential of the COM terminal of the ASIC is within a predetermined range. In addition, VS + terminal, IP + terminal of ASIC,
The comparator 58c determines whether or not the potential of any one of the Vcent terminal, the COM terminal, and the Pout terminal has exceeded a predetermined value (predetermined voltage). Then, P indicating the state in which the logical sum of the judgment results of these three comparators can be measured by the OR circuit 58d.
/ Output as START information. This P / START
The information represents a voltage of 4.7 V or more when an abnormality occurs, and is superimposed on the VRpvs voltage by the OR circuit 59,
It is output from the VRPVS terminal.

【0029】例えばVS+端子では、その電位は、通
常、COM端子の基準電圧3.6Vに酸素濃度検出セル
24の起電圧Vs(450mV)を加えた値である4.
05Vに保たれている。そのため、ウィンドウコンパレ
ータ58aの上限値を6.35V、下限値を2.5Vに
設定することにより、VS+端子の電位が上限値の6.
35Vを超えて上昇したとき、あるいはVS+端子の電
位が下限値の2.5Vを超えて下降したときには異常が
発生したものとして信号を発する。
For example, at the VS + terminal, its potential is usually a value obtained by adding the electromotive voltage Vs (450 mV) of the oxygen concentration detection cell 24 to the reference voltage of 3.6 V at the COM terminal.
It is kept at 05V. Therefore, by setting the upper limit value of the window comparator 58a to 6.35V and the lower limit value to 2.5V, the potential of the VS + terminal becomes 6.
When the voltage rises above 35V, or when the potential of the VS + terminal drops below the lower limit value of 2.5V, a signal is output indicating that an abnormality has occurred.

【0030】また、COM端子では、その電位は、Ip
ドライバ51により常に基準電圧3.6Vになるように
制御されている。そのため、ウィンドウコンパレータ5
8bの上限値を5.5V、下限値を2.5Vに設定する
ことにより、COM端子の電位が上限値の5.5Vを超
えて上昇したとき、あるいはCOM端子の電位が下限値
の2.5Vを超えて下降したときには異常が発生したも
のとして信号を発する。これらの異常は、いずれかの端
子が断線した、バッテリの電源ラインと短絡したものと
判断する。
At the COM terminal, the potential is Ip
The driver 51 always controls the reference voltage to be 3.6V. Therefore, the window comparator 5
By setting the upper limit value of 8b to 5.5V and the lower limit value to 2.5V, when the potential of the COM terminal rises above the upper limit value of 5.5V, or when the potential of the COM terminal has the lower limit value of 2. When the voltage drops below 5 V, a signal is emitted indicating that an abnormality has occurred. It is determined that these abnormalities are due to a break in one of the terminals or a short circuit with the power supply line of the battery.

【0031】更に、コンパレータ58cでは、ASIC
のVS+端子、IP+端子、Vcent端子、COM端
子及びPout端子の各電位が、ASIC内の回路の駆
動電圧である8Vを超えているか否かを判断している。
これらの各端子は、駆動電源の電圧変動等を見込んだ値
の8Vを上限値に設定したコンパレータ58cによって
監視されており、いずれかの端子の電位が8Vを超えて
上昇したときには、その端子がバッテリの電源ラインB
ATTに短絡し、異常が発生したものと判断して信号を
発する。
Further, in the comparator 58c, the ASIC
It is determined whether or not the respective potentials of the VS + terminal, the IP + terminal, the Vcent terminal, the COM terminal, and the Pout terminal of 8 above exceed 8V which is the drive voltage of the circuit in the ASIC.
Each of these terminals is monitored by a comparator 58c whose upper limit value is 8V, which is a value that allows for voltage fluctuations of the driving power supply, and when the potential of any of the terminals rises above 8V, that terminal is Battery power line B
It is short-circuited to ATT, and it is judged that an abnormality has occurred, and a signal is issued.

【0032】3.空燃比検出システムの異常検出システ
ムの効果 以上に示したように、本実施例は、VRPVS出力に異
常を表わすP/START情報を重畳している。このた
め、P/START情報を表わす信号線を用意する必要
が無い。また、余分な信号線を増やすことによる配線の
引き回しの煩雑さが増加することが無く、配線の断線に
よる信頼性の低下を招くことがない。更に、VRPVS
出力の範囲は0〜4.5V、P/STARTによる異常
状態の通知は4.7V以上と、双方の出力範囲が重複し
ないため、通常のVRPVS情報の利用に問題が起きる
ことはない。また、VRPVS出力の正当性(0〜4.
5Vに収まっているか)を確認すると同時に、P/ST
ART情報(4.7Vかどうか)を確認することができ
るため、判定に必要な数を減らすことができ、ECUの
処理負担を軽減することができる。また、重畳に必要な
回路もOR回路59を追加するのみでよく、容易に実現
することができる。
3. Effect of Abnormality Detection System of Air-Fuel Ratio Detection System As described above, in this embodiment, P / START information indicating an abnormality is superimposed on the VRPVS output. Therefore, it is not necessary to prepare a signal line representing P / START information. In addition, the complexity of routing the wiring due to the increase of extra signal lines does not increase, and the reliability is not deteriorated due to the disconnection of the wiring. Furthermore, VRPVS
The output range is 0 to 4.5 V, and the abnormal state notification by P / START is 4.7 V or more. Since both output ranges do not overlap, there is no problem in using normal VRPVS information. Also, the validity of VRPVS output (0-4.
At the same time as confirming that it is within 5V), P / ST
Since the ART information (whether it is 4.7 V or not) can be confirmed, the number required for the determination can be reduced and the processing load on the ECU can be reduced. Further, the circuit necessary for superposition only needs to be added with the OR circuit 59 and can be easily realized.

【0033】尚、本発明においては、上記実施例に限ら
ず、目的、用途に応じて本発明の範囲内で種々変更した
実施例とすることができる。即ち、本実施例ではP/S
TART情報をVRPVS出力に重畳したがこれに限ら
れず、VVS出力やVIP出力等、任意の信号線に重畳
することができる。また、本実施例の異常時の電圧は、
正常時の範囲を超える電圧としたが、正常時の範囲未満
の電圧とすることもできる。これらの対応としても実施
例と同様の効果が得られるためである。
It should be noted that the present invention is not limited to the above-described embodiments, but various modifications can be made within the scope of the present invention according to the purpose and application. That is, in this embodiment, P / S
Although the TART information is superposed on the VRPVS output, the present invention is not limited to this, and it can be superposed on an arbitrary signal line such as the VVS output or the VIP output. Further, the voltage at the time of abnormality in this embodiment is
Although the voltage exceeds the normal range, the voltage may be less than the normal range. This is because the same effect as that of the embodiment can be obtained even with these measures.

【0034】更に、異常検出の対象は各端子が所定の範
囲を越えた場合とすることに限られず、線間ショート
等、それぞれの端子が同電位になった場合等の条件で異
常を検出することができる。また、空燃比検出システム
のセンサとして、酸素イオン伝導性固体電解質のセルを
2枚使用する全領域空燃比センサを用いているが、1つ
のセルから構成される酸素センサを備えるシステムに対
して使用することもできる。
Further, the target of the abnormality detection is not limited to the case where each terminal exceeds the predetermined range, and the abnormality is detected under the condition that the terminals have the same potential, such as a short circuit between lines. be able to. Also, as the sensor of the air-fuel ratio detection system, the full-range air-fuel ratio sensor that uses two cells of the oxygen ion conductive solid electrolyte is used, but it is used for the system having the oxygen sensor composed of one cell. You can also do it.

【0035】[0035]

【発明の効果】本請求項1の空燃比検出システムの異常
検出システムによれば、異常状態を通知するために新た
な信号線を用意する必要がなく、空燃比検出システム及
びECU間の配線数を減らして煩雑さを減らし、信頼性
を上げるとともに、該当する信号線の信号の妥当性の確
認を行う際に、同時にその他の異常状態を判別すること
ができるため、ECUの処理も軽減することができる。
また、僅かな回路変更で信号線を増やすことなく様々な
異常検出を行うことができる。
According to the abnormality detection system of the air-fuel ratio detection system of the present invention, it is not necessary to prepare a new signal line for notifying an abnormal state, and the number of wires between the air-fuel ratio detection system and the ECU is increased. To reduce complexity and improve reliability, and at the same time, when checking the validity of the signal of the corresponding signal line, it is possible to determine other abnormal states at the same time, so the processing of the ECU is also reduced. You can
Moreover, various abnormality detections can be performed without increasing the number of signal lines with a slight circuit change.

【図面の簡単な説明】[Brief description of drawings]

【図1】本空燃比センサの異常検出方法を適用する空燃
比センサの構造と、その制御回路等の接続構成を説明す
るための模式図である。
FIG. 1 is a schematic diagram for explaining the structure of an air-fuel ratio sensor to which the abnormality detection method of the present air-fuel ratio sensor is applied, and the connection configuration of a control circuit and the like thereof.

【図2】本空燃比センサの異常検出方法を適用した空燃
比センサ、及びその制御回路等を示す説明回路図であ
る。
FIG. 2 is an explanatory circuit diagram showing an air-fuel ratio sensor to which an abnormality detection method of the present air-fuel ratio sensor is applied, a control circuit thereof, and the like.

【符号の説明】[Explanation of symbols]

10;センサ素子、12、16、22、28;多孔質電
極、14;ポンプセル、18;多孔質拡散層、20;間
隙、24;酸素濃度検出セル、26;酸素基準室、4
1、42、43;配線、50;センサ制御回路、58;
自己診断回路、58a、58b;ウィンドウコンパレー
タ、58c;コンバレータ、70;ヒータ。
10; Sensor element, 12, 16, 22, 28; Porous electrode, 14; Pump cell, 18; Porous diffusion layer, 20; Gap, 24; Oxygen concentration detection cell, 26; Oxygen reference chamber, 4
1, 42, 43; wiring, 50; sensor control circuit, 58;
Self-diagnosis circuit, 58a, 58b; window comparator, 58c; converter, 70; heater.

フロントページの続き Fターム(参考) 3G084 BA09 DA27 DA30 EA04 EA11 EB22 FA26 FA29 3G301 JB01 JB09 JB10 MA01 NA03 NA04 NA05 NA08 NE17 NE19 PD01B PD01Z PD02Z Continued front page    F term (reference) 3G084 BA09 DA27 DA30 EA04 EA11                       EB22 FA26 FA29                 3G301 JB01 JB09 JB10 MA01 NA03                       NA04 NA05 NA08 NE17 NE19                       PD01B PD01Z PD02Z

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 センサと、該センサに複数のリード線で
接続されており、該センサを制御する制御回路と、該制
御回路からの信号が入力されるエンジン制御装置とから
なる空燃比検出システムの異常検出システムにおいて、 該制御回路は、該センサ又は該リード線の異常を検出す
る異常検出手段を有し、該異常検出手段は、上記信号の
電圧を正常時の範囲外の電圧にすることで該エンジン制
御装置に該異常を通知することを特徴とする空燃比検出
システムの異常検出システム。
1. An air-fuel ratio detection system comprising a sensor, a control circuit which is connected to the sensor by a plurality of lead wires, and which controls the sensor, and an engine control device to which a signal from the control circuit is input. In the abnormality detection system, the control circuit has abnormality detection means for detecting an abnormality in the sensor or the lead wire, and the abnormality detection means sets the voltage of the signal to a voltage outside the normal range. An abnormality detection system for an air-fuel ratio detection system, wherein the abnormality is notified to the engine control device.
【請求項2】 上記センサは、酸素ポンプセルと酸素濃
度検出セルの組み合わせにより構成され、上記制御回路
は該酸素濃度検出セルの出力電圧が所定値になるように
該酸素ポンプセルを制御する空燃比センサであって、 上記制御回路は、上記酸素濃度検出セルの内部抵抗を電
圧に変換した内部抵抗信号を上記エンジン制御装置に出
力しており、上記異常検出手段は、該内部抵抗信号の値
を正常時の範囲外の値とすることで、該エンジン制御装
置に異常を通知する請求項1記載の空燃比検出システム
の異常検出システム。
2. The air-fuel ratio sensor, wherein the sensor comprises a combination of an oxygen pump cell and an oxygen concentration detection cell, and the control circuit controls the oxygen pump cell so that the output voltage of the oxygen concentration detection cell becomes a predetermined value. Wherein the control circuit outputs an internal resistance signal obtained by converting the internal resistance of the oxygen concentration detection cell into a voltage to the engine control device, and the abnormality detection means normalizes the value of the internal resistance signal. The abnormality detection system for an air-fuel ratio detection system according to claim 1, wherein an abnormality is notified to the engine control device by setting the value to a value outside the time range.
JP2001285517A 2001-09-19 2001-09-19 Abnormality detection system for air-fuel ratio system Expired - Lifetime JP4699658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001285517A JP4699658B2 (en) 2001-09-19 2001-09-19 Abnormality detection system for air-fuel ratio system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001285517A JP4699658B2 (en) 2001-09-19 2001-09-19 Abnormality detection system for air-fuel ratio system

Publications (2)

Publication Number Publication Date
JP2003090821A true JP2003090821A (en) 2003-03-28
JP4699658B2 JP4699658B2 (en) 2011-06-15

Family

ID=19108658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001285517A Expired - Lifetime JP4699658B2 (en) 2001-09-19 2001-09-19 Abnormality detection system for air-fuel ratio system

Country Status (1)

Country Link
JP (1) JP4699658B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274554A (en) * 2004-01-27 2005-10-06 Ngk Spark Plug Co Ltd Gas detecting system
JP2006208363A (en) * 2004-12-28 2006-08-10 Ngk Spark Plug Co Ltd Method and apparatus for diagnosing abnormality of gas-concentration measuring apparatus
US7142976B2 (en) 2004-06-29 2006-11-28 Ngk Spark Plug Co., Ltd. Abnormality diagnosis method and apparatus for gas concentration measuring device
JP2008014809A (en) * 2006-07-06 2008-01-24 Toyota Motor Corp Failure diagnosis device for exhaust gas sensor
JP2008070194A (en) * 2006-09-13 2008-03-27 Ngk Spark Plug Co Ltd Device and method for controlling sensor
US7799203B2 (en) 2005-03-30 2010-09-21 Ngk Spark Plug Co., Ltd. Gas detection apparatus, gas-sensor control circuit used for gas detection apparatus, and inspection method for gas detection apparatus
JP2016070881A (en) * 2014-10-01 2016-05-09 日本特殊陶業株式会社 Gas sensor system
US20180306745A1 (en) * 2017-04-20 2018-10-25 Ngk Spark Plug Co., Ltd. Sensor control apparatus

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410756U (en) * 1977-06-24 1979-01-24
JPS6328136A (en) * 1986-07-22 1988-02-05 Matsushita Electric Ind Co Ltd Transmitter for communication equipment
JPH01120620U (en) * 1988-02-08 1989-08-16
JPH0244242A (en) * 1988-08-03 1990-02-14 Ngk Insulators Ltd Fault detection type oxygen sensor
JPH03272452A (en) * 1990-03-22 1991-12-04 Ngk Spark Plug Co Ltd Diagnosis of abnormality of air/fuel ratio sensor
JPH0645969A (en) * 1992-07-23 1994-02-18 Toshiba Corp Transmitter system
JPH07272185A (en) * 1994-03-30 1995-10-20 Toshiba Corp Two-wire transmitter
JPH0914148A (en) * 1995-06-27 1997-01-14 Ebara Densan:Kk Operation control system for pump
JPH10208180A (en) * 1997-01-16 1998-08-07 Opt Kk Signal transmitting method
JPH10246720A (en) * 1997-02-28 1998-09-14 Ngk Spark Plug Co Ltd Fault detecting method for total region air-fuel ratio sensor
JPH1131028A (en) * 1997-07-11 1999-02-02 Cable Tec Japan:Kk Signal transmission system for computer, remote operation system for computer, and repeating connection device used for the same system
JP2000231689A (en) * 1999-02-12 2000-08-22 Saginomiya Seisakusho Inc Physical quantity transmitter, state monitor system for physical quantity, and pressure monitor device for gas for electric insulation

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410756U (en) * 1977-06-24 1979-01-24
JPS6328136A (en) * 1986-07-22 1988-02-05 Matsushita Electric Ind Co Ltd Transmitter for communication equipment
JPH01120620U (en) * 1988-02-08 1989-08-16
JPH0244242A (en) * 1988-08-03 1990-02-14 Ngk Insulators Ltd Fault detection type oxygen sensor
JPH03272452A (en) * 1990-03-22 1991-12-04 Ngk Spark Plug Co Ltd Diagnosis of abnormality of air/fuel ratio sensor
JPH0645969A (en) * 1992-07-23 1994-02-18 Toshiba Corp Transmitter system
JPH07272185A (en) * 1994-03-30 1995-10-20 Toshiba Corp Two-wire transmitter
JPH0914148A (en) * 1995-06-27 1997-01-14 Ebara Densan:Kk Operation control system for pump
JPH10208180A (en) * 1997-01-16 1998-08-07 Opt Kk Signal transmitting method
JPH10246720A (en) * 1997-02-28 1998-09-14 Ngk Spark Plug Co Ltd Fault detecting method for total region air-fuel ratio sensor
JPH1131028A (en) * 1997-07-11 1999-02-02 Cable Tec Japan:Kk Signal transmission system for computer, remote operation system for computer, and repeating connection device used for the same system
JP2000231689A (en) * 1999-02-12 2000-08-22 Saginomiya Seisakusho Inc Physical quantity transmitter, state monitor system for physical quantity, and pressure monitor device for gas for electric insulation

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274554A (en) * 2004-01-27 2005-10-06 Ngk Spark Plug Co Ltd Gas detecting system
US7142976B2 (en) 2004-06-29 2006-11-28 Ngk Spark Plug Co., Ltd. Abnormality diagnosis method and apparatus for gas concentration measuring device
JP2006208363A (en) * 2004-12-28 2006-08-10 Ngk Spark Plug Co Ltd Method and apparatus for diagnosing abnormality of gas-concentration measuring apparatus
JP4646129B2 (en) * 2004-12-28 2011-03-09 日本特殊陶業株式会社 Abnormality diagnosis method for gas concentration measuring device and abnormality diagnostic device for gas concentration measuring device
US7799203B2 (en) 2005-03-30 2010-09-21 Ngk Spark Plug Co., Ltd. Gas detection apparatus, gas-sensor control circuit used for gas detection apparatus, and inspection method for gas detection apparatus
EP1707950B1 (en) * 2005-03-30 2012-10-31 NGK Spark Plug Co., Ltd. Gas detection apparatus, gas-sensor control circuit used for gas detection apparatus, and inspection method for gas detection apparatus
JP2008014809A (en) * 2006-07-06 2008-01-24 Toyota Motor Corp Failure diagnosis device for exhaust gas sensor
JP2008070194A (en) * 2006-09-13 2008-03-27 Ngk Spark Plug Co Ltd Device and method for controlling sensor
US8268147B2 (en) 2006-09-13 2012-09-18 Ngk Spark Plug Co., Ltd. Gas sensor control device and method
JP2016070881A (en) * 2014-10-01 2016-05-09 日本特殊陶業株式会社 Gas sensor system
US20180306745A1 (en) * 2017-04-20 2018-10-25 Ngk Spark Plug Co., Ltd. Sensor control apparatus
US10746689B2 (en) * 2017-04-20 2020-08-18 Ngk Spark Plug Co., Ltd. Sensor control apparatus

Also Published As

Publication number Publication date
JP4699658B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP4646129B2 (en) Abnormality diagnosis method for gas concentration measuring device and abnormality diagnostic device for gas concentration measuring device
JP4835375B2 (en) Gas concentration detector
US7656303B2 (en) Gas sensor system with failure diagnostic function and failure diagnosis method for gas sensor system
US7416649B2 (en) Oxygen concentration detection system and vehicle control system having the same
US20040238378A1 (en) Nox measurement device, nox sensor self-diagnosis device, and self-diagnosis method thereof
EP1860431B1 (en) Gas concentration measuring apparatus with multiple amplification ranges
JP5099070B2 (en) Sensor control device and sensor unit
JP4485718B2 (en) Abnormality detection system for air-fuel ratio system
JPH07119741B2 (en) Output correction method for proportional exhaust concentration sensor
JP3664980B2 (en) Compound gas sensor
JP2004205488A (en) Device for detecting concentration of gas
JP2004317488A (en) Gas concentration detector
JP4699658B2 (en) Abnormality detection system for air-fuel ratio system
JP4433009B2 (en) Sensor control device
US9217726B2 (en) Gas sensor control apparatus
JP2009229148A (en) Gas sensor control device
JP5096395B2 (en) Abnormality diagnosis method and gas concentration measuring device
JP4028503B2 (en) Oxygen concentration detection system and vehicle system having the same
JP4520652B2 (en) Abnormality detection method for air-fuel ratio sensor
JP4569701B2 (en) Gas concentration detector
US7862697B2 (en) Sensor control device
JP4570094B2 (en) Gas detection device and gas sensor control circuit used in the gas detection device
JP4787903B2 (en) Sensor control circuit protection method
JP6809927B2 (en) Gas sensor controller
JP2002071641A (en) Complex gas detector

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110303

R150 Certificate of patent or registration of utility model

Ref document number: 4699658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term