JP2003090386A - Vibrationproof engineering method - Google Patents

Vibrationproof engineering method

Info

Publication number
JP2003090386A
JP2003090386A JP2001281855A JP2001281855A JP2003090386A JP 2003090386 A JP2003090386 A JP 2003090386A JP 2001281855 A JP2001281855 A JP 2001281855A JP 2001281855 A JP2001281855 A JP 2001281855A JP 2003090386 A JP2003090386 A JP 2003090386A
Authority
JP
Japan
Prior art keywords
vibration
tire
waste
tires
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2001281855A
Other languages
Japanese (ja)
Inventor
Hirokazu Takemiya
宏和 竹宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IWAMI KAIHATSU KK
Bridgestone Corp
Original Assignee
IWAMI KAIHATSU KK
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IWAMI KAIHATSU KK, Bridgestone Corp filed Critical IWAMI KAIHATSU KK
Priority to JP2001281855A priority Critical patent/JP2003090386A/en
Publication of JP2003090386A publication Critical patent/JP2003090386A/en
Ceased legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a more practical and excellent vibrationproof engineering method capable of unconventionally providing a favorable vibrationproof effect and also capable of contributing to the reduction of construction costs. SOLUTION: At least one layer of waste tires is buried in a horizontal and/or vertical arrangement underground right below or in the circumference of a structure under the application of the vibrationproof engineering method to prevent and reduce vibration to propagate to a periphery of the structure of generating or receiving vibration. It is preferable to fill at least one kind as a filling material selected from site sediment, fluidized treated soil and urethane foam into the waste tires. Additionally, it is preferable to arrange the waste tires in the horizontal state and to connect the adjoining tires to each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は防振工法に関し、詳
しくは、道路や鉄道構造物等の振動発生源の近傍の地盤
内における振動の伝播を抑制することにより、周辺の建
造物や地表面の振動を防止または低減するための防振工
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anti-vibration method, and more specifically, it suppresses the propagation of vibrations in the ground near a vibration source such as a road or railway structure to thereby prevent the surrounding buildings and ground surfaces from being vibrated. Vibration-proof construction method for preventing or reducing the vibration of the.

【0002】[0002]

【従来の技術】近年、交通振動や機械振動によって、道
路、鉄道構造物等の周辺における振動障害が多発してい
る。特に、通行量の多い道路や鉄道の軌道近傍において
は、かかる振動が周辺家屋や住民に及ぼす悪影響は甚大
であり、より効果的に、かつ、効率よく振動の抑制を図
るための方策が強く求められている。
2. Description of the Related Art In recent years, vibration disturbances frequently occur around roads, railway structures and the like due to traffic vibrations and mechanical vibrations. In particular, in the vicinity of roads and railroad tracks with heavy traffic, the adverse effects of such vibrations on surrounding houses and residents are enormous.Therefore, there is a strong demand for measures to more effectively and efficiently suppress vibrations. Has been.

【0003】従来知られている振動の抑制方法として
は、例えば、振動の伝播経路の地盤内に空溝を設ける防
振溝工法や、この空溝を特定の材料により充填して地中
壁を形成する防振地中壁工法等がある。これらの工法
は、夫々空溝または地中溝の存在により地盤内を伝播す
る振動を直接遮断して防振効果を得るものであるが、前
者の場合、空溝をそのまま保持することは実際上不可能
であるために土留や支保部材を設置する補助工事を行う
必要が生じてコスト増を招くことに加え、かかる補助工
事により振動遮断効果が低減してしまうという難点があ
った。また、後者の方法は、前者における補助工事の必
要性をなくすために空溝を一定の材質の地中壁に代えた
ものに過ぎず、一般に、前者ほどの防振効果が得られる
ものではなかった。
As a conventionally known method for suppressing vibration, for example, a vibration-proof groove construction method in which a groove is provided in the ground of a vibration propagation path, or a method of filling the groove with a specific material to form an underground wall There is an anti-vibration underground wall construction method to form. These construction methods directly isolate the vibration propagating in the ground due to the existence of the trench or the subterranean trench, respectively, to obtain the vibration isolation effect.However, in the former case, it is practically impossible to keep the trench as it is. Since it is possible to do so, it is necessary to perform auxiliary work for installing soil retaining members and supporting members, which leads to an increase in cost, and there is a drawback that the vibration isolation effect is reduced by such auxiliary work. In addition, the latter method merely replaces the groove with an underground wall of a certain material in order to eliminate the need for auxiliary work in the former, and generally does not provide the same vibration isolation effect as the former method. It was

【0004】これらに対し、本発明者らは先に、平板ブ
ロックを埋設することによる制振方法(平板ブロック
(WIB)工法)を提案している(特許第285018
7号)。この技術は、振動を発するが、または振動を受
ける基礎構造物の下方若しくはその周囲の地中に、特定
の大きさおよび剛性を有する平板ブロックを特定の深さ
で埋設することを特徴とするものであり、平板ブロック
が従来用いられていた鉛直方向の地中壁に比べて制振効
果が高いことを見出したことにより、本発明者らの確立
した地盤内における波動伝播に関する理論(波動の伝播
・非伝播現象の識別法)に基づき実現されたものであ
る。
On the other hand, the present inventors have previously proposed a vibration damping method (flat plate block (WIB) method) by burying a flat plate block (Patent No. 285018).
No. 7). This technique is characterized by burying a flat plate block having a specific size and rigidity at a specific depth below or around a foundation structure that emits or receives vibration. Therefore, by finding that the flat plate block has a higher damping effect than the vertical underground wall that has been conventionally used, the theory of wave propagation in the ground established by the inventors (wave propagation・ It was realized based on the non-propagation phenomenon identification method.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この方
法は有効な振動抑制方法ではあるものの、近年ますます
高まってきている防振効果の要求水準を現在においてま
で十分に満たしているものとは云えず、また、材料費を
含めた工費が高額になるという難点もあった。
However, although this method is an effective method for suppressing vibration, it cannot be said that it has sufficiently satisfied the required level of vibration-proofing effect that has been increasing in recent years. Also, there was a drawback that the construction cost including material cost would be high.

【0006】そこで本発明の目的は、従来になく良好な
防振効果を得ることができ、かつ、工費の低コスト化に
も寄与することのできる、より実用的で優れた防振工法
を提供することにある。
[0006] Therefore, an object of the present invention is to provide a more practical and excellent vibration-proofing method which can obtain a better vibration-proofing effect than ever before and can also contribute to cost reduction. To do.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記特許
第2850187号公報に記載の地盤内波動伝播理論を
基礎にして、より防振効果の向上を実現すべく鋭意検討
した結果、廃タイヤの力学的特性を利用した構築物によ
り、従来方法にはない優れた防振効果が得られることを
見出し、本発明を完成するに至った。即ち、本発明の防
振工法は、以下の通りである。
Means for Solving the Problems Based on the wave propagation theory in the ground described in the above-mentioned Japanese Patent No. 2850187, the inventors of the present invention have earnestly studied to realize further improvement of the vibration isolation effect, The present inventors have completed the present invention by finding that a structure utilizing the mechanical properties of a tire can provide an excellent vibration damping effect that cannot be obtained by conventional methods. That is, the vibration-proof construction method of the present invention is as follows.

【0008】(1)振動を発するかまたは振動を受ける
構造物の周辺に伝播する振動を防止、低減するための防
振工法において、廃タイヤを、前記構造物の下方または
周囲の地中に、横置きおよび/または縦置き配列状態に
て少なくとも1層埋設することを特徴とする防振工法で
ある。
(1) In a vibration-proof construction method for preventing and reducing vibrations that propagate or propagate around a structure that emits or receives vibrations, waste tires are provided below or around the structure, in the ground. It is a vibration-proof construction method characterized by burying at least one layer in a horizontally and / or vertically arranged state.

【0009】(2)前記(1)の防振工法において、前
記廃タイヤに、現地土砂、流動化処理土およびウレタン
フォームから選ばれる少なくとも1種を中詰材として充
填する防振工法である。
(2) The vibration isolation method of the above (1), in which the waste tire is filled with at least one selected from local earth and sand, fluidized soil and urethane foam as a filling material.

【0010】(3)前記(1)または(2)の防振工法
において、前記廃タイヤを横置き状態にて配列し、隣接
する廃タイヤ同士を連結させる防振工法である。
(3) In the vibration isolation method of the above (1) or (2), the waste tires are arranged horizontally and the adjacent waste tires are connected to each other.

【0011】(4)前記(1)または(2)の防振工法
において、前記廃タイヤをハニカム形状を形成するよう
に横置き状態にて配列する防振工法である。
(4) The vibration isolation method of the above (1) or (2), in which the waste tires are arranged horizontally so as to form a honeycomb shape.

【0012】(5)前記(1)または(2)の防振工法
において、前記廃タイヤを縦置き状態にてタイヤ中心軸
が一致するように配列する防振工法である。
(5) In the vibration isolation method of the above (1) or (2), the waste tires are arranged so that their tire central axes coincide with each other in a vertically installed state.

【0013】(6)前記(1)または(2)の防振工法
において、埋設廃タイヤの下層面に硬質層を形成する防
振工法である。
(6) The vibration isolation method of the above (1) or (2), wherein a hard layer is formed on the lower surface of the buried waste tire.

【0014】上記本発明によれば、前述の地盤内波動伝
播理論に基づく波動バリアーの構築技術(特許第285
0187号)と、中詰タイヤの力学的特性に関する新た
な知見との組合せにより、タイヤの特性を最大限活用し
て地盤内振動伝播の減衰効果の大幅な向上を図ることが
できるとともに、本来廃材である廃タイヤのリサイクル
効果で工費の削減にも大いに寄与することができる。そ
の結果、実用価値の高い防振技術の提供が可能となる。
According to the present invention described above, a wave barrier construction technique based on the aforementioned wave propagation theory in the ground (Patent No. 285) is used.
No. 0187) and new knowledge about the mechanical characteristics of a medium-sized tire, it is possible to maximize the characteristics of the tire to greatly improve the damping effect of vibration propagation in the ground, The recycling effect of waste tires can greatly contribute to the reduction of construction cost. As a result, it becomes possible to provide a vibration-proof technology having high practical value.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。本発明においては、振動を発するか、また
は振動を受ける構造物の下方または周囲の地中に、以下
に詳述する本発明に係る中詰タイヤを用いた構築物を埋
設する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. In the present invention, a structure using the filled tire according to the present invention, which will be described in detail below, is embedded in the ground below or around the structure that emits or receives vibration.

【0016】本発明においては、廃タイヤの中詰材とし
て現地土砂、流動化処理土、ウレタンフォーム等を用い
ることができるが、少なくとも廃タイヤの中空部(ドー
ナツ部)の中詰材としてはウレタンフォームが好まし
い。この場合、ウレタンフォーム原料配合により硬度を
調節することで振動入力に対する中詰タイヤの剪断速度
を容易に変えることができる。また、中詰材として現地
土砂や流動化処理土を用いた場合には、タイヤ中空部の
充填に空隙が生じやすく、空隙が存在すると強度が低下
してしまうために、充填には十分注意を払う必要がある
が、ウレタンフォームの場合、タイヤの中空部の屈曲に
対しても空隙を生ずることなく密な充填を行うことが容
易であり、この点でも好ましい。さらに、ウレタンフォ
ームは他の材料に比べて軽量であるため、中詰タイヤ自
体も非常に軽量に形成できることから、持ち運びは勿
論、軟弱地盤上にも好適に適用することができ、地下水
による浮力効果で軽量な地中構築物とすることができ
る。
In the present invention, as the filling material for the waste tire, local earth and sand, fluidized soil, urethane foam, etc. can be used, but at least urethane is used as the filling material for the hollow portion (donut portion) of the waste tire. Foam is preferred. In this case, by adjusting the hardness by blending the urethane foam raw material, it is possible to easily change the shear rate of the padded tire against vibration input. In addition, when using local earth and sand or fluidized soil as the filling material, voids are likely to occur in the filling of the tire hollow part, and strength will decrease if there are voids, so be careful when filling. It is necessary to pay, but in the case of urethane foam, it is easy to perform dense packing without producing voids even when the hollow portion of the tire is bent, and this is also preferable. Furthermore, since urethane foam is lighter than other materials, the inner tire itself can be made extremely lightweight, which makes it suitable not only for carrying, but also for soft ground, and the buoyancy effect of groundwater. And can be a lightweight underground structure.

【0017】図1の(B)に模式的に示すように、廃タ
イヤ2の中空部に、中詰材3を充填した中詰タイヤ1を
地中に埋設することにより入力振動の減衰効果が得られ
る理由としては、伝播する周期的な入力がタイヤ材自体
の弾性変形により変調効果を受け、入力エネルギーが消
失することが挙げられる。例えば、図1の(A)に示す
ように中詰タイヤ1を地中に縦置き配置した場合、地表
面から伝播する振動が中詰タイヤ内に入力すると、タイ
ヤに弾性変形が生じて入力振動の周期特性をタイヤの径
の2倍に対応する形で変調させ、結果として、入力振動
がタイヤの車軸に沿ったオーバリング振動に変換される
という波動の散乱現象が起こる。即ち、鉛直方向の入力
応力がタイヤ周方向に伝播するフープ応力に変換され、
中詰材に応じた波長にて干渉作用により入力する振動エ
ネルギーの損失が生じて、伝播する振動が大幅に減衰さ
れることになる。尚、図1の(A)には縦置きの場合の
振動減衰機構について示したが、横置きの場合でも理論
的には同じであり、地表面に対し水平に伝播する振動に
対して同様のことがいえる。
As schematically shown in FIG. 1B, by embedding the filled tire 1 filled with the filling material 3 in the hollow portion of the waste tire 2 in the ground, an input vibration damping effect can be obtained. The reason for this is that the propagating periodic input undergoes a modulation effect due to the elastic deformation of the tire material itself, and the input energy disappears. For example, when the filled tire 1 is placed vertically in the ground as shown in FIG. 1A, when vibration propagating from the ground surface is input into the filled tire, the tire is elastically deformed and the input vibration is generated. Is modulated in a manner corresponding to twice the diameter of the tire, and as a result, a wave scattering phenomenon occurs in which the input vibration is converted into the overring vibration along the tire axle. That is, the vertical input stress is converted into hoop stress propagating in the tire circumferential direction,
At the wavelength corresponding to the filling material, the input vibration energy is lost due to the interference action, and the propagating vibration is greatly attenuated. In addition, although the vibration damping mechanism in the case of vertical installation is shown in FIG. 1 (A), the theory is the same in the case of horizontal installation, and the same is true for vibration propagating horizontally to the ground surface. I can say that.

【0018】廃タイヤ内に充填する中詰材3を変えるこ
とによって中詰タイヤ内の振動の伝播波長を適宜調整す
ることができるため、例えば、対象となる構造物、例え
ば、道路の交通荷重の周期帯に対応して、入力振動の周
期性に応じた波長とすることにより、減衰効果を高める
ことができる。
By changing the filling material 3 to be filled in the waste tire, the propagation wavelength of the vibration in the filling tire can be adjusted appropriately, so that, for example, the target structure, for example, the traffic load on the road The damping effect can be enhanced by setting the wavelength corresponding to the periodicity of the input vibration in correspondence with the periodic band.

【0019】中詰材3としてウレタンフォームを用いる
場合の、配合原料、廃タイヤ2に対する充填法等は特に
制限されるべきものではなく、例えば、配合原料として
は、主剤にTDIとポリオールからのプレポリマーを使
用し、硬化剤の架橋剤にMOCA(3,3’−ジクロロ
−4,4’−ジアミノジフェニルメタン)とポリオール
とを併用することを一般的に行うことができるが、硬化
性向上のために主剤に反応性の高いMDI系プレポリマ
ーや、硬化剤に反応性の高いポリアミン(ジエチルトル
エンジアミン、3,5−ジメチルチオトルエンジアミ
ン、3,3’−ジエチル−4,4’−ジアミノジフェニ
ルメタン等)を使用することもできる。また、充填法と
しては、例えば、現場発泡ウレタンスプレー機を用いる
ことができる。
When urethane foam is used as the filling material 3, the compounding raw material, the filling method for the waste tire 2 and the like are not particularly limited. For example, as the compounding raw material, a prepolymer containing TDI and a polyol as the main ingredients is used. It is generally possible to use a polymer and use MOCA (3,3′-dichloro-4,4′-diaminodiphenylmethane) and a polyol together as a crosslinking agent for the curing agent, but in order to improve the curability. MDI-based prepolymers that are highly reactive to the base compound, and polyamines that are highly reactive to curing agents (diethyltoluenediamine, 3,5-dimethylthiotoluenediamine, 3,3'-diethyl-4,4'-diaminodiphenylmethane, etc.) ) Can also be used. Further, as a filling method, for example, an on-site foaming urethane spray machine can be used.

【0020】廃タイヤ2の中空部(ドーナツ部)4とホ
イール配置領域(中央部)5の双方に流動化処理土を使
用するか、または廃タイヤ2の中空部の中詰材3はウレ
タンフォームとしホイール配置領域5に流動化処理土を
使用する場合、かかる流動化処理土としては汎用の流動
化処理土に産業廃棄物を混合して用いてもよく、本工法
においてはこれにより廃棄物処理にも寄与することが可
能となる。但し、この場合、地盤汚染への考慮が必要で
あり、周囲地盤への悪影響がないようにすることが重要
となる。
Fluidized soil is used for both the hollow portion (donut portion) 4 of the waste tire 2 and the wheel arrangement area (central portion) 5, or the filling material 3 for the hollow portion of the waste tire 2 is urethane foam. When fluidized soil is used for the wheel placement region 5, industrial fluid may be mixed with general-purpose fluidized soil as such fluidized soil. Can also contribute to. However, in this case, it is necessary to consider the ground pollution, and it is important to prevent the surrounding ground from being adversely affected.

【0021】本発明の工法においては、本来廃棄物であ
る廃タイヤを主要材料として使用するために材料コスト
を大幅に削減することが可能であり、防振効果の向上に
加えて、低コスト性の点でも従来工法に比し優れてい
る。
In the construction method of the present invention, since the waste tire which is originally a waste is used as the main material, the material cost can be greatly reduced, and in addition to the improvement of the vibration isolation effect, the low cost In terms of, it is also superior to the conventional method.

【0022】中詰タイヤ1の配置形態については特に制
限はなく、対称となる構造物に応じて適宜決定すること
が可能である。タイヤの埋設方向は、横置き、縦置きの
いずれでもよく、双方を組合せて用いてもよい。好適に
は、対象構造物の下方の地中に、前記公報に基づく好適
深さにおいて、前記公報に基づく好適面積にわたり硬質
層を形成し、この硬質層上に、廃タイヤ1を適宜間隔に
て配置して、埋設を行う。尚、かかる硬質層は地盤の硬
さに応じその厚さおよび硬さを適宜選定すればよい。
There is no particular limitation on the arrangement form of the inside tire 1, and it can be appropriately determined according to the symmetrical structure. The direction in which the tire is embedded may be horizontal or vertical, or both may be used in combination. Preferably, in the ground below the target structure, at a suitable depth based on the above publication, a hard layer is formed over a suitable area based on the above publication, and the waste tires 1 are disposed on the hard layer at appropriate intervals. Place and bury. The thickness and hardness of the hard layer may be appropriately selected according to the hardness of the ground.

【0023】かかる硬質層上への廃タイヤ1の配置形態
の好適例を図2の(イ)および(ロ)に示す。図2の
(イ)および(ロ)は、いずれも硬質層上に中詰タイヤ
1を隙間なく配置した例であり、このような廃タイヤ層
は1層にて形成してもよいが、配置位置をずらして全体
の強度を一定に保ちつつ、深さ方向に2層以上の廃タイ
ヤ層を形成することが好適である。廃タイヤ層を2層ま
たは3層にて積層した場合における廃タイヤの埋設構造
の一例の断面図を図3の(イ)および(ロ)に示す。図
中の6は地中に形成した硬質層であり、7は地表面であ
る。尚、かかる廃タイヤ層を形成する場合に、廃タイヤ
のホイール配置領域およびタイヤ間の隙間には、現地土
砂や流動化処理土を土嚢等に詰めて充填することができ
る。
A preferred example of the arrangement of the waste tire 1 on the hard layer is shown in FIGS. 2 (a) and 2 (b). 2 (a) and 2 (b) are both examples in which the solid tire 1 is arranged on the hard layer without a gap, and such a waste tire layer may be formed by one layer, It is preferable to form two or more waste tire layers in the depth direction while shifting the positions to keep the overall strength constant. 3A and 3B are cross-sectional views of an example of a buried structure of a waste tire when the waste tire layers are laminated in two or three layers. In the figure, 6 is a hard layer formed in the ground, and 7 is the ground surface. In addition, when forming such a waste tire layer, a sandbag or the like can be filled with local earth and sand or fluidized soil in the wheel arrangement region of the waste tire and the gap between the tires.

【0024】また、配置形態としては、図4(イ)に示
すように、中詰タイヤ1を横置き状態にて一定個数で正
六角形を描くように配置して、図4(ロ)に示すよう
に、全体としてハニカム形状配置とすることも好適であ
る。この場合も適宜深さ方向に1層または2層以上に
て、廃タイヤ層を形成することができる。
As for the arrangement form, as shown in FIG. 4 (a), a fixed number of the filled tires 1 are arranged in a horizontal position so as to draw a regular hexagon, as shown in FIG. 4 (b). As described above, it is also preferable to adopt a honeycomb-shaped arrangement as a whole. Also in this case, the waste tire layer can be formed by one layer or two or more layers in the depth direction as appropriate.

【0025】さらに、本発明の工法においては、廃タイ
ヤの地盤変形に伴う移動や、廃タイヤと周辺地盤との間
に生ずる摩擦によっても、入力エネルギーの吸収が起こ
り、地盤内の振動減衰効果をより向上することができ
る。例えば、図5および6に示すように、中詰タイヤ1
を硬質層6上に縦置き状態にてタイヤ中心軸が一致する
よう並置して、1層または2層以上の廃タイヤ層を形成
した好適配置形態の場合には、地表面からの入力応力に
対して、上部地盤8と硬質層6との間に挟まれた廃タイ
ヤ層にサンドイッチ効果が働くことになる。即ち、この
廃タイヤ層は剪断速度が高く密度が小さいことから、垂
直方向の入力応力は、廃タイヤ層に対し、上下地盤間で
水平方向への剪断変形を引き起こす方向に働くことにな
り、これにより、前述の個々の廃タイヤ内における振動
減衰効果に加え、中詰タイヤ1の水平方向への移動およ
び周囲地盤との間の摩擦によっても、振動を減衰させる
ことができるのである。
Further, in the construction method of the present invention, the input energy is absorbed due to the movement of the waste tire due to the ground deformation and the friction generated between the waste tire and the surrounding ground to reduce the vibration damping effect in the ground. It can be improved. For example, as shown in FIGS. 5 and 6, a solid tire 1
In the case of a preferred arrangement mode in which one or two or more waste tire layers are formed by arranging the tires vertically on the hard layer 6 so that the tire central axes coincide with each other, the input stress from the ground surface On the other hand, the waste tire layer sandwiched between the upper ground 8 and the hard layer 6 has a sandwich effect. That is, since the waste tire layer has a high shear rate and a small density, the input stress in the vertical direction acts on the waste tire layer in the direction of causing the shear deformation in the horizontal direction between the upper and lower base plates. Thus, in addition to the above-described vibration damping effect in each of the waste tires, the vibration can be damped by the horizontal movement of the filled tire 1 and the friction with the surrounding ground.

【0026】また、この配置形態の場合には、中詰タイ
ヤ1のホイール配置領域に形成された連通する貫通孔1
0内に、流動化処理土11を充填することで、流動化処
理土11が並置された中詰タイヤ1間を連結する機能を
発揮し、特に接続手段を設けなくても、各タイヤ間の連
続状態を安定して維持することができる。尚、図2、3
および4に例示したような横置き状態で各タイヤ間を隣
接させた配置形態の場合には、例えば、ビニールテープ
等の適宜の接続部材を用いて各タイヤ間の隣接部位を繋
ぎ合わせ等して連結させ、夫々のタイヤが独立に動かな
いようにすればよい。
Further, in the case of this arrangement mode, the communicating through holes 1 formed in the wheel arrangement area of the filled tire 1
By filling the fluidized soil 11 in 0, the fluidized soil 11 exerts a function of connecting the packed tires 1 juxtaposed with each other, and even if no connecting means is provided between the tires. The continuous state can be stably maintained. 2 and 3
In the case of the arrangement configuration in which the tires are adjacent to each other in the laterally placed state as illustrated in 4 and 4, for example, an appropriate connecting member such as vinyl tape is used to join the adjacent portions between the tires. The tires should be connected so that each tire does not move independently.

【0027】かかる中詰タイヤ1または廃タイヤ層の埋
設深さおよび埋設領域面積については、前記公報中に記
載の地盤内波動伝播理論に基づき適宜定めることができ
る。特には、中詰タイヤ1の埋設領域面積、または、例
示したような廃タイヤ層のうち少なくとも1層の面積
が、対象となる構造物の底面部面積と略同一以上となる
ようにすることが好適である。例えば、図3の(イ)お
よび(ロ)に示すような断面配置形態にて廃タイヤ層を
形成する場合には、図示する廃タイヤ層の最大幅Wを、
対象構造物、例えば、道路または線路等の幅と同じかま
たはそれ以上とすることが好ましい。
The embedding depth and the embedding area area of the inside tire 1 or the waste tire layer can be appropriately determined based on the wave propagation theory in the ground described in the above publication. In particular, the area of the buried region of the filled tire 1 or the area of at least one of the waste tire layers as illustrated may be substantially equal to or larger than the bottom surface area of the target structure. It is suitable. For example, when the waste tire layer is formed in the cross-sectional arrangement form as shown in FIGS. 3A and 3B, the maximum width W of the waste tire layer shown in FIG.
It is preferable that the width is equal to or larger than the width of the target structure, for example, a road or a track.

【0028】[0028]

【実施例】以下、本発明を実施例により説明する。最初
に、平均サイズで外径60cm、幅20cm程度の廃タ
イヤの中空部(ドーナツ部)および中央部(ホイール配
置領域)に流動化処理土を充填して所定の個数の中詰タ
イヤ(図7〜10中「流動化処理土WIB」と称する)
を作製した。また、同程度の廃タイヤに同様に原地盤の
土砂を充填して所定の個数の中詰タイヤ(図7〜10中
「廃タイヤWIB」と称する)を作製した。なお、図7
〜10中、地盤改良前については「原地状態」または
「WIB施工前」と称する。用いた流動化処理土の配合
は下記の表1に示す通りである。
EXAMPLES The present invention will be described below with reference to examples. First, the hollow portion (donut portion) and the central portion (wheel arrangement region) of a waste tire having an average size of 60 cm in outer diameter and 20 cm in width are filled with fluidized soil, and a predetermined number of medium-sized tires (see FIG. 7). -10 out of 10 is called "fluidized soil WIB")
Was produced. Further, a similar number of waste tires were similarly filled with the soil of the original ground to prepare a predetermined number of medium-sized tires (referred to as “waste tire WIB” in FIGS. 7 to 10). Note that FIG.
Among 10 to 10, before the ground improvement is referred to as "original condition" or "before WIB construction". The composition of the fluidized soil used is as shown in Table 1 below.

【0029】[0029]

【表1】 [Table 1]

【0030】実験地には、地表面の下にN値10以下の
表層が存在し、GL11.5m付近にN値50以上の砂
礫層が存在していた。ここに、地表面からの深さ0.5
mの位置に硬質層を形成して、図2(イ)に示す配置形
態および図3(ロ)に示す積層形態にて、最上層の埋設
領域面積が幅5m×長さ10mとなるよう廃タイヤ層を
3層にて積層し、埋設を行った。各タイヤ間は、個々の
タイヤが独立して動くのを防ぐため、ビニールテープ止
めで拘束した。
At the experimental site, a surface layer having an N value of 10 or less was present below the ground surface, and a gravel layer having an N value of 50 or more was present near GL 11.5 m. Here, the depth from the ground surface is 0.5
A hard layer is formed at the position of m, and the buried region area of the uppermost layer is abolished so as to have a width of 5 m and a length of 10 m in the arrangement form shown in FIG. 2 (a) and the laminated form shown in FIG. 3 (b). Three tire layers were laminated and embedded. Each tire was restrained with vinyl tape to prevent the individual tires from moving independently.

【0031】上記廃タイヤ埋設領域の中心部を加振点
(ゼロ地点)として、振動源としての、ヒンジ構造のア
ーム(約70cm)の先端に重錘(約70kg)を取り
付けたガイド・ハンマーによる衝撃載荷と、ダンプトラ
ックおよびキャタピラ車の走行による繰り返し振動載荷
とを適用し、幅方向に向かって5mの間隔ごとに30m
地点までの一測線上の7地点で、周辺地盤の振動の計測
を行った。制振の効果を図7に示す。なお、計測には、
サーボ型速度計((株)東京測振製)を用いた。また、
比較として、廃タイヤ埋設前の未改良状態の地盤につい
ても同様の計測を行った。
By using the center of the waste tire burying region as a vibration point (zero point), a guide hammer having a weight (about 70 kg) attached to the tip of an arm (about 70 cm) of a hinge structure as a vibration source. Impact loading and repeated vibration loading by traveling of a dump truck and a caterpillar vehicle are applied, and every 30 m at intervals of 5 m in the width direction.
The vibration of the surrounding ground was measured at 7 points on one measuring line to the point. The effect of damping is shown in FIG. In addition, for measurement,
A servo type speedometer (manufactured by Tokyo Senshin Co., Ltd.) was used. Also,
For comparison, the same measurement was performed on the unimproved ground before burying the waste tires.

【0032】図7のグラフは地盤の速度応答に関して描
いたもので、横軸に時間(秒)、縦軸に速度(cm/
秒)をとる。また、図8は、図7に示す結果のフーリエ
・スペクトルを示しており、横軸に振動数(Hz)、縦
軸にフーリエ振幅(cm/秒・秒)をとる。
The graph of FIG. 7 is drawn with respect to the speed response of the ground. The horizontal axis represents time (sec) and the vertical axis represents speed (cm / cm).
Seconds). Further, FIG. 8 shows the Fourier spectrum of the result shown in FIG. 7, where the horizontal axis represents the frequency (Hz) and the vertical axis represents the Fourier amplitude (cm / sec.sec).

【0033】上述の測定結果から、地盤改良前に比べて
改良後は50%以上の振動抑制効果を発揮していること
が分かる。特に、地盤改良後の応答は減衰性が大きいこ
とを示している。
From the above-mentioned measurement results, it can be seen that after the improvement, the vibration suppressing effect of 50% or more is exhibited compared to before the ground improvement. In particular, it shows that the response after ground improvement is highly damped.

【0034】次に、図9は、廃タイヤ中詰を原地盤の土
砂で施工した場合の測定結果である。図9から、一般の
交通車両から発生する振動数は10Hz余りであるが、
実施例の施工法においてはこの加振振動数に対して30
%の有効な制振効果を全距離にわたって示すことが確か
められた。
Next, FIG. 9 shows the measurement results when the waste tire filling is constructed with the earth and sand of the original ground. From Fig. 9, the frequency of vibration generated from a general traffic vehicle is about 10Hz,
In the construction method of the embodiment, the vibration frequency is 30
It was confirmed to show an effective damping effect of% over the entire distance.

【0035】図10は、図9の測定結果のコンピュータ
・シミュレーションによる結果であり、この図10から
廃タイヤ中詰を充分に固くすることで振動の低減が大き
く現れることが分かる。特に、廃タイヤを縦置きに並べ
ることで、より大きな剛性が期待できる。
FIG. 10 shows the result of the computer simulation of the measurement result of FIG. 9, and it can be seen from this FIG. 10 that vibration can be greatly reduced by sufficiently hardening the waste tire filling. In particular, by arranging the waste tires vertically, greater rigidity can be expected.

【0036】[0036]

【発明の効果】以上説明してきたように、本発明の防振
工法によれば、従来になく良好な防振効果を得ることが
できるとともに、廃棄物としての廃タイヤの使用によ
り、工費の低コスト化にも寄与することができる。
As described above, according to the vibration isolating method of the present invention, it is possible to obtain a better vibration isolating effect than ever before, and the use of waste tires as waste reduces the construction cost. It can also contribute to cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は、地表面から伝播する振動の埋設廃タ
イヤ内への入力の様子を示す説明図である。(B)は、
本発明に係る廃タイヤの断面図である。
FIG. 1A is an explanatory diagram showing how vibration propagating from the ground surface is input into a buried waste tire. (B) is
It is a sectional view of a waste tire concerning the present invention.

【図2】廃タイヤの配置形態の好適例を示す平面図であ
る。
FIG. 2 is a plan view showing a preferred example of an arrangement form of waste tires.

【図3】廃タイヤの埋設構造の一例を示す垂直方向断面
図である。
FIG. 3 is a vertical cross-sectional view showing an example of a buried structure of a waste tire.

【図4】廃タイヤのハニカム形状の配置形態を示す概略
平面図である。
[Fig. 4] Fig. 4 is a schematic plan view showing a honeycomb-shaped arrangement form of a waste tire.

【図5】廃タイヤの縦置き状態における配置形態の好適
例を示す概略斜視図である。
FIG. 5 is a schematic perspective view showing a preferred example of an arrangement form of a waste tire in a vertically installed state.

【図6】図5の配置形態における振動減衰効果を示す説
明図である。
6 is an explanatory diagram showing a vibration damping effect in the arrangement form of FIG.

【図7】実施例における計測結果における時刻歴応答の
比較を示すグラフである。
FIG. 7 is a graph showing a comparison of time history responses in measurement results in an example.

【図8】実施例における計測結果におけるフーリエスペ
クトルの比較を示すグラフである。
FIG. 8 is a graph showing comparison of Fourier spectra in measurement results in the example.

【図9】実施例における計測結果における最大速度の距
離減衰を示すグラフである。
FIG. 9 is a graph showing the distance attenuation of the maximum velocity in the measurement result in the example.

【図10】実施例における解析結果における距離減衰を
示すグラフである。
FIG. 10 is a graph showing distance attenuation as an analysis result in an example.

【符号の説明】[Explanation of symbols]

1 中詰タイヤ 2 廃タイヤ 3 中詰材 4 中空部 5 ホイール配置領域 6 硬質層 7 地表面 8 上部地盤 9 上部地盤 10 貫通孔 11 流動化処理土 1 middle tire 2 scrap tires 3 filling materials 4 hollow part 5 Wheel placement area 6 hard layer 7 Ground surface 8 upper ground 9 Upper ground 10 through holes 11 Fluidized soil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹宮 宏和 岡山県岡山市津島中3−1−1 岡山大学 環境理工学部環境デザイン工学科内 Fターム(参考) 3J048 AA01 AC02 BA24 BD06 DA03 EA38    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hirokazu Takemiya             3-1-1 Tsushimachu, Okayama City, Okayama Prefecture Okayama University             Faculty of Environmental Science and Engineering, Department of Environmental Design Engineering F term (reference) 3J048 AA01 AC02 BA24 BD06 DA03                       EA38

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 振動を発するかまたは振動を受ける構造
物の周辺に伝播する振動を防止、低減するための防振工
法において、 廃タイヤを、前記構造物の下方または周囲の地中に、横
置きおよび/または縦置き配列状態にて少なくとも1層
埋設することを特徴とする防振工法。
1. A vibration-proof construction method for preventing and reducing vibration propagating to the periphery of a structure that emits or receives vibration, wherein a waste tire is laterally disposed below or around the structure. An anti-vibration method characterized by burying at least one layer in a standing and / or vertical arrangement state.
【請求項2】 前記廃タイヤに、現地土砂、流動化処理
土およびウレタンフォームから選ばれる少なくとも1種
を中詰材として充填する請求項1記載の防振工法。
2. The vibration isolating method according to claim 1, wherein the waste tire is filled with at least one selected from local earth and sand, fluidized soil and urethane foam as a filling material.
【請求項3】 前記廃タイヤを横置き状態にて配列し、
隣接する廃タイヤ同士を連結させる請求項1または2記
載の防振工法。
3. The waste tires are arranged sideways,
The vibration-proof construction method according to claim 1 or 2, wherein adjacent waste tires are connected to each other.
【請求項4】 前記廃タイヤをハニカム形状を形成する
ように横置き状態にて配列する請求項1または2記載の
防振工法。
4. The anti-vibration method according to claim 1, wherein the waste tires are arranged in a horizontal position so as to form a honeycomb shape.
【請求項5】 前記廃タイヤを縦置き状態にてタイヤ中
心軸が一致するように配列する請求項1または2記載の
防振工法。
5. The anti-vibration method according to claim 1, wherein the waste tires are arranged vertically so that the tire central axes thereof coincide with each other.
【請求項6】 埋設廃タイヤの下層面に硬質層を形成す
る請求項1または2記載の防振工法。
6. The vibration isolation method according to claim 1, wherein a hard layer is formed on the lower surface of the buried waste tire.
JP2001281855A 2001-09-17 2001-09-17 Vibrationproof engineering method Ceased JP2003090386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001281855A JP2003090386A (en) 2001-09-17 2001-09-17 Vibrationproof engineering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001281855A JP2003090386A (en) 2001-09-17 2001-09-17 Vibrationproof engineering method

Publications (1)

Publication Number Publication Date
JP2003090386A true JP2003090386A (en) 2003-03-28

Family

ID=19105604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001281855A Ceased JP2003090386A (en) 2001-09-17 2001-09-17 Vibrationproof engineering method

Country Status (1)

Country Link
JP (1) JP2003090386A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7048473B2 (en) * 2002-11-05 2006-05-23 Hirokazu Takemiya Vibration-proof construction method
JP2007120979A (en) * 2005-10-25 2007-05-17 Bridgestone Corp Water penetration testing machine and water penetration testing method
WO2008148936A1 (en) * 2007-06-04 2008-12-11 Fortecta Finland Ltd Arrangement, method, as well as use of a rubber mat
JP2011190653A (en) * 2010-03-16 2011-09-29 Ohbayashi Corp Method of suppressing construction vibration
CN110528495A (en) * 2019-08-20 2019-12-03 沈阳建筑大学 A kind of construction method of waste rubber Tyre structure ground
CN113216279A (en) * 2021-05-26 2021-08-06 华东交通大学 Horizontal hollow pipe landfill vibration isolation barrier and construction process thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7048473B2 (en) * 2002-11-05 2006-05-23 Hirokazu Takemiya Vibration-proof construction method
JP2007120979A (en) * 2005-10-25 2007-05-17 Bridgestone Corp Water penetration testing machine and water penetration testing method
WO2008148936A1 (en) * 2007-06-04 2008-12-11 Fortecta Finland Ltd Arrangement, method, as well as use of a rubber mat
JP2011190653A (en) * 2010-03-16 2011-09-29 Ohbayashi Corp Method of suppressing construction vibration
CN110528495A (en) * 2019-08-20 2019-12-03 沈阳建筑大学 A kind of construction method of waste rubber Tyre structure ground
CN113216279A (en) * 2021-05-26 2021-08-06 华东交通大学 Horizontal hollow pipe landfill vibration isolation barrier and construction process thereof
CN113216279B (en) * 2021-05-26 2022-12-13 华东交通大学 Horizontal hollow pipe landfill vibration isolation barrier and construction process thereof

Similar Documents

Publication Publication Date Title
Thompson et al. Reducing railway-induced ground-borne vibration by using open trenches and soft-filled barriers
Thompson et al. Mitigation of railway-induced vibration by using subgrade stiffening
Liu et al. Evaluation on the dynamic performance of bridge approach backfilled with fibre reinforced lightweight concrete under high-speed train loading
Jones Use of numerical models to determine the effectiveness of anti-vibration systems for railways.
JP4222812B2 (en) Anti-vibration method
Tsang Analytical design models for geotechnical seismic isolation systems
Ding et al. Prediction of vibrations from underground trains on Beijing metro line 15
Moussa et al. Numerical evaluation of buried wave barriers performance
Sun et al. Prediction and mitigation analysis of ground vibration caused by running high-speed trains on rigid-frame viaducts
JP2003090386A (en) Vibrationproof engineering method
Kirzhner et al. Attenuation of noise and vibration caused by underground trains, using soil replacement
Massarsch Mitigation of traffic-induced ground vibrations
Kawamura et al. Isolation effect of a dynamic damper and a trench on ground vibration caused by a construction machine
Hildebrand Countermeasures against railway ground and track vibrations
Krylov Ground vibration boom from high-speed trains
Bednarz Experimental verification of the developed soil model describing the propagation of vibration wave in the ground
Adam et al. Investigation of ground vibrations in the vicinity of a train track embankment
Real et al. Wave barriers for the reduction of railway induced vibrations. Analysis in tracks with geometric restrictions
Masuda et al. Source characteristics and generation mechanism of road traffic vibrations and some remarks for mitigation
JP6474753B2 (en) Construction method of ground vibration prevention structure
Adamczyk et al. The concept of limitation of the vibration generated by rail-vehicles at railway stations and railway crossings
Toward et al. Mitigation of railway induced vibrations by using subgrade stiffening and wave impeding blocks
Takemiya et al. Environmental vibration control by active piezo-actuator system
Varela et al. Attenuation of ambient vibrations induced in urban buildings
Dhanya et al. Performance of Sand–Rubber Mixture Infill Trench for Ground Vibration Screening

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071016

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081211

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20100319