JP2003089082A - Method for detecting force of constraint acting between objects and system thereof - Google Patents

Method for detecting force of constraint acting between objects and system thereof

Info

Publication number
JP2003089082A
JP2003089082A JP2001281755A JP2001281755A JP2003089082A JP 2003089082 A JP2003089082 A JP 2003089082A JP 2001281755 A JP2001281755 A JP 2001281755A JP 2001281755 A JP2001281755 A JP 2001281755A JP 2003089082 A JP2003089082 A JP 2003089082A
Authority
JP
Japan
Prior art keywords
objects
constraint
point
interference
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001281755A
Other languages
Japanese (ja)
Inventor
Hirohisa Hirukawa
博久 比留川
Hideji Kajita
秀司 梶田
Kazuhito Yokoi
一仁 横井
Kenji Kaneko
健二 金子
Seiji Fujiwara
清司 藤原
Fumio Kanehiro
文男 金広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001281755A priority Critical patent/JP2003089082A/en
Publication of JP2003089082A publication Critical patent/JP2003089082A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect a force of constraint acting between objects even when an inner point of the object comes into contact with a vertex of the other object as in the case where an inner point of foot rear interferes with a vertex on an unprepared ground when a walking robot moves on the unprepared ground. SOLUTION: According to this invention, a point of constraint is obtained by analyzing mutual positional relation of object shapes as they are instead of a simple method in which processing for obtaining the point of constraint is performed by analyzing positional relation between a representative point and a face. When considering the case where two rectangular parallelopiped boxes come into contact mutually, an intersection of two rectangular parallelopiped is obtained, and interference depth of this intersection and normal vector at the intersection are obtained together. A force of constraint is calculated based on the interference information. Consequently, a force of constraint can be calculated even when two objects interfere mutually on the halfway of a side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、歩行ロボットが不
整地上を移動する場合に足裏の内点と不整地上の頂点が
干渉する場合のように、対象物の内点と他方の頂点が接
触した場合にも、物体間に働く拘束力を検出することを
可能にする拘束力検出方法及びシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the contact between the inner point of an object and the other vertex, such as when the inside point of the foot interferes with the apex on the irregular ground when the walking robot moves on the irregular ground. The present invention also relates to a binding force detection method and system capable of detecting a binding force acting between objects even in the case of doing so.

【0002】[0002]

【従来の技術】対象となる物体上に代表点と呼ばれる少
数の点を予め指定し、各々の代表点と他の物体との干渉
検査を行い、各代表点毎に干渉位置・干渉深さ・拘束方
向等の干渉情報を求める。この代表点における干渉情報
と力学モデルに基づいて物体間に働く拘束力を計算する
のが従来の技術である。例えば、代表的な動力学シミュ
レーションソフトウェアであるLMSCADSI社のDADSでは、
この方式が利用されている。ここに、拘束力とは2つの
物体が接触しているときに、物体間に働く抗力または摩
擦力によって発生する力のことで、物体の運動は重力と
この拘束力によって決定される。人間型ロボット動作の
動力学シミュレーションを例として考えると、ロボット
の足裏面の頂点が代表点として選ばれ、この代表点と床
面の干渉検査を行い、その干渉位置・深さ等の情報に基
づいて拘束力を計算する。干渉検査の処理が、点と面と
の位置関係の解析に限定されるので必要な処理は大きく
簡略化される。汎用性を犠牲にして、処理の簡単化を図
るというのが基本的な考え方である。この他、ハプティ
ックインターフェイスによって物体が操作される際に反
力を計算する場合を考えると、操作される物体の頂点を
代表点とするのが一般的である。この場合も、代表点と
環境物体の干渉検査を行うが、やはり点と面との位置関
係の解析に限定されるので、必要な処理は単純化されて
いる。図11の例では、矢印の出ている点が代表点であ
る。
2. Description of the Related Art A small number of points called representative points are designated in advance on a target object, interference inspection between each representative point and another object is performed, and the interference position / interference depth / Obtain interference information such as the restraint direction. The conventional technique is to calculate the binding force acting between the objects based on the interference information at the representative point and the dynamic model. For example, in the DADS of LMS CADSI, which is a typical dynamics simulation software,
This method is used. Here, the binding force is a force generated by a drag force or a frictional force acting between the two objects when two objects are in contact with each other, and the motion of the object is determined by gravity and the binding force. Considering the dynamic simulation of humanoid robot motion as an example, the vertex of the bottom of the foot of the robot is selected as a representative point, and the interference inspection between this representative point and the floor surface is performed, and based on the information such as the interference position and depth. Calculate the binding force. Since the process of the interference inspection is limited to the analysis of the positional relationship between the points and the surface, the required process is greatly simplified. The basic idea is to simplify processing at the expense of versatility. In addition, considering the case where the reaction force is calculated when the object is operated by the haptic interface, it is common to use the vertex of the operated object as the representative point. In this case as well, the interference inspection between the representative point and the environmental object is performed, but the processing required is simplified because it is still limited to the analysis of the positional relationship between the point and the surface. In the example of FIG. 11, the point with an arrow is the representative point.

【0003】[0003]

【発明が解決しようとする課題】従来の技術を用いた場
合、予め指定した代表点以外で他の物体と干渉した場合
には、物体間に働く拘束力を計算することが出来ない。
例えば、ある物体の形状が直方体のときに、その頂点を
代表点として選んだ場合を考えてみると、いずれかの面
の内点と他の物体の頂点等が干渉した場合には、これら
の物体間に働く拘束力を計算することは出来ない。応用
の観点から見ると、歩行ロボットが不整地上を移動する
場合に足裏の内点と不整地上の頂点が干渉する場合には
拘束力を計算できない。ハプティックインターフェイス
においては、対象物の内点と他方の頂点が接触した場合
には拘束力を計算できない。ビデオゲームでも同様の場
合に拘束力を計算できない。そこで、本発明は、歩行ロ
ボットが不整地上を移動する場合に足裏の内点と不整地
上の頂点が干渉する場合のように、対象物の内点と他方
の頂点が接触した場合にも、物体間に働く拘束力を検出
することを目的としている。
In the case of using the conventional technique, the binding force acting between the objects cannot be calculated when the object interferes with other objects at a representative point other than the designated representative point.
For example, consider the case where the shape of an object is a rectangular parallelepiped and its vertices are selected as representative points. If the inside points of any surface interfere with the vertices of other objects, It is not possible to calculate the binding force that acts between objects. From an application point of view, when a walking robot moves on an irregular ground, the binding force cannot be calculated if the inner point of the sole and the apex on the irregular ground interfere. In the haptic interface, the binding force cannot be calculated when the inner point of the object contacts the other vertex. Even in a video game, the binding force cannot be calculated in the same case. Therefore, the present invention, even when the inner point of the object and the other vertex contact, such as when the inner point of the sole and the vertex of the irregular ground interfere when the walking robot moves on the irregular ground, The purpose is to detect the binding force acting between objects.

【0004】[0004]

【課題を解決するための手段】従来技術の問題は、拘束
点を求める処理を代表点と面の間の位置関係を解析する
という簡易な方法により実現していたために発生してい
た。本発明では、この様な簡略化を行わず、そのままの
物体形状どうしの位置関係を解析することにより拘束点
を求めるので、従来技術が有していた課題を解決するこ
とができる。例えば、2つの直方体の箱が接触する場合
を考えると、2つの直方体どうしの交点を求め、合わせ
てこの交点の干渉深さ、交点における法線ベクトルを求
める。そして、これらの干渉情報に基づいて拘束力を計
算するのである。図15に2次元の模式図を示す。この
例の様に、辺の途中で2つの物体が干渉している場合に
も、拘束力が計算できるのが本発明の特徴である。図1
は、本発明に基づき、物体間に働く拘束力の検出を説明
する図である。入力は、物体の形状・位置・物性データ
である。本発明では、物体の形状は多角形の集合あるい
は多面体の集合で表現されるあるいは近似可能とする。
本発明は、位置が与えられた多角形の集合あるいは多面
体の集合で表現された物体の幾何モデル間の形状処理に
より干渉情報を求め(ステップS1)、物性データに基
づいた力学モデルを用いて、干渉情報から物体間に働く
拘束力を計算する(ステップS2)。従来の様に物体上
に代表点を設定せず、汎用性の高い形状処理により干渉
情報を求める点に特徴があり、任意の状態で物体が干渉
した場合に拘束力を計算することが可能となる。形状表
現は多角形の集合あるいは多面体の集合に限定されてい
るが、多くの物体の形状はこれらの表現により近似可能
なので、適用対象となる物体の範囲は非常に広い。ま
た、任意の干渉状態に対して拘束力を計算可能なことか
ら、上述した様な従来技術が適用不可能だった場合にも
拘束力を計算することができる。
The problem of the prior art has arisen because the processing for obtaining the constraint point is realized by a simple method of analyzing the positional relationship between the representative point and the surface. In the present invention, the constraint point is obtained by analyzing the positional relationship between the object shapes as they are without performing such simplification, so that the problem of the conventional technique can be solved. For example, considering the case where two rectangular parallelepiped boxes contact each other, the intersection of the two rectangular parallelepipeds is obtained, and the interference depth of this intersection and the normal vector at the intersection are obtained together. Then, the binding force is calculated based on the interference information. FIG. 15 shows a two-dimensional schematic diagram. It is a feature of the present invention that the binding force can be calculated even when two objects interfere with each other in the middle of the side like this example. Figure 1
FIG. 6 is a diagram illustrating detection of a restraining force acting between objects based on the present invention. The input is the shape / position / physical property data of the object. In the present invention, the shape of the object can be expressed or approximated by a set of polygons or a set of polyhedra.
The present invention obtains interference information by shape processing between geometric models of an object represented by a set of polygons or a set of polyhedra given a position (step S1), and uses a dynamic model based on physical property data, The binding force acting between the objects is calculated from the interference information (step S2). It is characterized in that interference information is obtained by highly versatile shape processing without setting a representative point on the object as in the past, and it is possible to calculate the binding force when the object interferes in any state. Become. The shape representation is limited to a set of polygons or a set of polyhedra, but since the shapes of many objects can be approximated by these representations, the range of applicable objects is very wide. Further, since the binding force can be calculated for an arbitrary interference state, the binding force can be calculated even when the above-described conventional technique cannot be applied.

【0005】[0005]

【発明の実施の形態】図2は、実施例の流れを説明する
図である。以下、本発明を、例示に基づき具体的に説明
する。対象となる物体は多角形の集合あるいは多面体の
集合で表現されている。これら物体の表面を三角形の集
合で表現する(ステップS10)。各三角形の法線ベク
トルは、物体の外部を向いているものとする。なお、三
角形の集合ではなく、多角形や四面体のような他の形状
の集合で表現することも可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 is a diagram for explaining the flow of the embodiment. Hereinafter, the present invention will be specifically described based on examples. The target object is represented by a set of polygons or a set of polyhedra. The surfaces of these objects are represented by a set of triangles (step S10). It is assumed that the normal vector of each triangle points out of the object. It should be noted that instead of a set of triangles, a set of other shapes such as a polygon or a tetrahedron can be used.

【0006】各物体を表現する三角形の集合間において
干渉検査を行い、干渉している三角形のペアを求める
(ステップS11)。これは例えば米国ノースカロライ
ナ大学で開発されたRAPIDというソフトウェアを用いて
高速に求めることが出来る。
Interference inspection is performed between a set of triangles representing each object to obtain a pair of interfering triangles (step S11). This can be obtained at high speed using software called RAPID developed at the University of North Carolina, USA.

【0007】干渉している三角形のペアの各々について
以下の手順で干渉情報を求める。まず、一方の三角形が
他方の三角形の内部を貫いているか、あるいは相互に内
部を貫いているかを判定する(ステップS12)。図3
にそれぞれの場合を示す。
Interference information is obtained for each of the pair of interfering triangles by the following procedure. First, it is determined whether one triangle penetrates the inside of the other triangle or mutually penetrates the inside (step S12). Figure 3
Shows each case.

【0008】判定された干渉状態に基づいて干渉情報を
取得する(ステップS13)。一方の三角形が他方の三
角形の内部を貫いている場合は、干渉点が十分干渉頂点
に近い場合は貫通されている三角形の法線ベクトルを拘
束法線ベクトルとし、このベクトルの方向に干渉深さを
求める。干渉位置は貫通している頂点とする。図4にこ
の場合を示す。
Interference information is acquired based on the determined interference state (step S13). When one triangle penetrates the inside of the other triangle, when the interference point is close enough to the interference vertex, the normal vector of the penetrating triangle is set as the constraint normal vector, and the interference depth in the direction of this vector. Ask for. The interference position is the apex that penetrates. This case is shown in FIG.

【0009】貫通している三角形の頂点を他方の三角形
を含む面に射影した点が他方の三角形上にないときは、
貫通している三角形の法線ベクトルを拘束法線ベクトル
とし、このベクトルの方向に干渉深さを求める。干渉位
置は2つの三角形の交点とする。図5にこの場合を示
す。
When a point obtained by projecting the vertices of a penetrating triangle on the surface containing the other triangle is not on the other triangle,
The normal vector of the penetrating triangle is used as the constraint normal vector, and the interference depth is obtained in the direction of this vector. The interference position is the intersection of two triangles. This case is shown in FIG.

【0010】図4又は図5のいずれかのルールで判定で
きないときは、2つの三角形の法線ベクトルに沿った干
渉深さが浅い方を拘束法線ベクトルとし、干渉深さおよ
び干渉位置は、図4又は図5の場合と同様に定めるもの
とする。
When the rule of FIG. 4 or FIG. 5 cannot be determined, the shallower interference depth along the normal vectors of the two triangles is defined as the constraint normal vector, and the interference depth and the interference position are It shall be determined in the same manner as in the case of FIG. 4 or FIG.

【0011】2つの三角形が相互に内部を貫いている場
合、各々の三角形の貫通している辺の外積を拘束法線ベ
クトルの方向とする。干渉深さは2つの貫通している辺
の共通垂線の2つの足間の距離、干渉位置は2つの足の
中点とする。拘束法線ベクトルの向きは以下の方法によ
り定める。
When two triangles penetrate each other, the outer product of the penetrating sides of each triangle is the direction of the constraint normal vector. The interference depth is the distance between two feet of a common perpendicular to the two penetrating sides, and the interference position is the midpoint of the two feet. The direction of the constraint normal vector is determined by the following method.

【0012】まず、2つの三角形の法線ベクトルの内積
が正のときは2つの三角形は干渉検査の対象から取除
く。これを図6に示す。また、干渉点から第3の頂点へ
のベクトル間の内積が正の場合も同様とする。これを図
7に示す。これら2つの条件は、2つの三角形が互いに
「面している」かどうかの検査で、面していない場合は
より条件の強い三角形のペアが必ず存在するので、処理
する必要はない。
First, when the inner product of the normal vectors of the two triangles is positive, the two triangles are removed from the object of interference inspection. This is shown in FIG. The same applies when the inner product between the vectors from the interference point to the third vertex is positive. This is shown in FIG. These two conditions do not need to be processed because they are tests of whether the two triangles are “facing” each other, and if they are not facing, there is always a pair of stronger triangles.

【0013】貫通している2辺の外積ベクトルと、干渉
点から各々の三角形の第3の頂点へ向けたベクトル間の
内積が同符号のときは、2つの三角形のペアを干渉検査
の対象から取除く。これは、干渉点の近傍における2つ
の三角形の分離性検査である。これを図8に示す。
When the inner product between the outer product vector of the two penetrating sides and the vector directed from the interference point to the third vertex of each triangle has the same sign, two pairs of triangles are subject to interference inspection. Remove. This is a separability test of two triangles near the interference point. This is shown in FIG.

【0014】図6〜図8によって棄却されなかった三角
形のペアについては、拘束法線ベクトルと干渉点から第
3の頂点へのベクトルとの角度、拘束法線ベクトルと三
角形の法線ベクトルとの角度について、ゼロ度または1
80度により近い方の角度を選び、選ばれた2つのベク
トルの内積の符号により拘束法線ベクトルの向きを定め
る。前者あるいは後者が選ばれる場合を各々図9に示
す。
For pairs of triangles not rejected by FIGS. 6-8, the angle between the constraint normal vector and the vector from the interference point to the third vertex, the constraint normal vector and the triangle normal vector. 0 degree or 1 for angle
The angle closer to 80 degrees is selected, and the orientation of the constraint normal vector is determined by the sign of the inner product of the two selected vectors. The case where the former or the latter is selected is shown in FIG.

【0015】以上の方法により物体の幾何モデルより干
渉情報を求めることが出来る。人間型ロボットが床面上
にあるプレートを踏んでいる例を図10に示す。この様
に人間型ロボットの足裏の途中でプレートを踏んでいる
場合でも、拘束法線ベクトルの位置、干渉深さ等の干渉
情報を求めることが出来る。
By the above method, the interference information can be obtained from the geometric model of the object. An example of a humanoid robot stepping on a plate on the floor is shown in FIG. Thus, even when the plate is stepped on the sole of the humanoid robot, it is possible to obtain the interference information such as the position of the constraint normal vector and the interference depth.

【0016】この干渉情報から、力学モデルに基づいて
物体間に働く拘束力を以下の方法により求める。例とし
て、スプリング・ダンパモデルに基づいて拘束力を求め
る方法を説明する。この他、運動量保存則に基づいて拘
束力を求める方法もある。
From this interference information, the constraint force acting between the objects is determined based on the dynamic model by the following method. As an example, a method of obtaining the binding force based on the spring damper model will be described. In addition to this, there is also a method of obtaining the binding force based on the law of conservation of momentum.

【0017】拘束力のスプリングに対応する成分は、例
えば、各干渉位置における拘束法線ベクトル方向の干渉
深さが、求まった値に最小自乗の意味で最も近くなる様
な物体の微小並進及び回転成分を求め、これらを独立変
数として力及びトルクとして計算する。ただし、物体間
の拘束は一般には片側拘束なので、ある向きには働くが
反対方向には発生しない場合がある。例えば、平面上に
箱が載っている場合を考えると、床から箱に対して上向
きの拘束力は働くが逆は発生しない。この様な力の発生
条件は連立線形不等式で表現される。例えば、上記で求
まった微小並進及び回転成分をこの連立線形不等式を満
たす様に正射影するとこの様な解が求まる(ステップS
14)。あるいは、以上の問題を非線形計画問題として
定式化し、解を求めるという方法もある。
The component of the restraint force corresponding to the spring is, for example, a minute translation and rotation of an object such that the interference depth in the direction of the restraint normal vector at each interference position is closest to the obtained value in the meaning of least squares. The components are calculated, and these are calculated as force and torque with the independent variables. However, restraint between objects is generally one-sided restraint, so that it works in one direction but may not occur in the opposite direction. For example, considering the case where the box is placed on a plane, the upward restraining force acts on the box from the floor, but the reverse does not occur. Such force generation conditions are expressed by simultaneous linear inequalities. For example, such a solution is obtained by orthographically projecting the minute translational and rotational components obtained above so as to satisfy the simultaneous linear inequalities (step S
14). Alternatively, there is a method of formulating the above problem as a non-linear programming problem and obtaining a solution.

【0018】図11に、2次元の説明図で、一つの箱が
他の箱にめり込んでいる場合を示している。図中の矢印
が拘束法線ベクトルである。この場合、図の上方向に並
進し、反時計回りに回転すれば、2つの箱をぴったり合
わせることが出来る。この様な並進及び回転に比例した
力およびトルクを2つの箱の間に働く拘束力とする。ま
た、飽和特性を考慮するときは、単に比例させるのでは
なく、適当な非線形関数により力およびトルクを計算す
る。
FIG. 11 is a two-dimensional explanatory view showing a case where one box is embedded in another box. The arrow in the figure is the constraint normal vector. In this case, the two boxes can be fitted closely by translating in the upward direction of the figure and rotating counterclockwise. The force and torque proportional to such translation and rotation are set as the restraining force acting between the two boxes. Further, when considering the saturation characteristic, the force and the torque are calculated by an appropriate non-linear function rather than simply making them proportional.

【0019】図11の例で拘束法線ベクトルは、まず各
々の箱を三角形の集合で表現してから、物体の幾何モデ
ルより干渉情報を求める上述の方法を適用することによ
って求めることが出来る。2次元の説明図上で、各箱を
三角形の集合で表現した様子を図12に示す。
In the example of FIG. 11, the constraint normal vector can be obtained by first expressing each box by a set of triangles and then applying the above-mentioned method of obtaining interference information from the geometric model of the object. FIG. 12 shows how each box is represented by a set of triangles on a two-dimensional explanatory diagram.

【0020】拘束力のダンパに対応する成分は、例え
ば、物体の速度に適当な負の係数を乗じたベクトルを、
上述の連立線形不等式の解集合に相当する凸多面錘に正
射影したベクトルとの差により与える方法により求ま
る。これは、物理的には物体の速度成分の中、干渉して
いる物体によって拘束される方向にのみダンパ反力を与
えることに相当している。図13に一つの箱が斜め下方
向の速度を持っていて、他の箱と干渉した例を示す。こ
の場合、物体の幾何モデルより干渉情報を求める上述の
方法により求まる拘束法線ベクトルは図中の2つの上向
きベクトルになり、速度成分の中下向きの成分のみが拘
束法線ベクトルにより拘束されるので、抗力は上向きに
発生する。水平方向の成分に対して抗力は発生せず、箱
と箱の間の摩擦係数に応じた摩擦力が発生する。以上の
方法により、ダンパに対応する成分が求められる(ステ
ップS15)。あるいは、抗力方向には非線形ダンパを
発生させ、接線力方向には線形ダンパを発生させるとい
う方法もある。この場合、拘束を表現する行列の零空間
への射影行列を求めることにより、計算を行う。
The component of the restraint force corresponding to the damper is, for example, a vector obtained by multiplying the velocity of the object by an appropriate negative coefficient,
It can be obtained by the method of giving the difference from the vector orthogonally projected to the convex polyhedron corresponding to the solution set of the simultaneous linear inequalities. This physically corresponds to giving the damper reaction force only in the direction constrained by the interfering object in the velocity component of the object. FIG. 13 shows an example in which one box has a diagonal downward speed and interferes with another box. In this case, the constraint normal vectors obtained by the above method for obtaining the interference information from the geometric model of the object are the two upward vectors in the figure, and only the middle and downward velocity components are constrained by the constraint normal vector. , Drag is generated upward. A drag force is not generated with respect to the horizontal component, and a friction force is generated according to the friction coefficient between the boxes. By the above method, the component corresponding to the damper is obtained (step S15). Alternatively, there is also a method of generating a non-linear damper in the drag force direction and a linear damper in the tangential force direction. In this case, the calculation is performed by obtaining the projection matrix of the matrix expressing the constraint on the null space.

【0021】図14に、図10に示した人間型ロボット
が歩行した際の鉛直床反力のシミュレーション結果と、
対応するロボットハードウェアによる実験結果を示す。
充分一致していることが観察される。
FIG. 14 shows a simulation result of the vertical floor reaction force when the humanoid robot shown in FIG. 10 walks,
The experimental result by the corresponding robot hardware is shown.
It is observed that there is good agreement.

【0022】[0022]

【発明の効果】本発明により、従来の技術である代表点
方式では不可能であった、物体が任意の位置で干渉する
場合に拘束力を計算することができる様になった。人間
型ロボットが不整地上を歩行する場合、ハプティックイ
ンターフェイス装置で帰還力を計算する場合、ビデオゲ
ームソフトウェアで反力を計算する場合等に応用可能で
ある。
As described above, according to the present invention, it becomes possible to calculate the binding force when an object interferes at an arbitrary position, which is not possible with the conventional representative point method. It can be applied to a case where a humanoid robot walks on an irregular ground, a feedback force is calculated by a haptic interface device, and a reaction force is calculated by video game software.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の「物体間に働く拘束力の検出」を説明
する図である。
FIG. 1 is a diagram illustrating “detection of a restraining force acting between objects” of the present invention.

【図2】実施例の流れを説明する図である。FIG. 2 is a diagram illustrating a flow of an embodiment.

【図3】一つの三角形が他方の内部を貫く場合と、相互
に貫く場合を示す図である。
FIG. 3 is a diagram showing a case where one triangle penetrates the inside of the other and a case where it penetrates each other.

【図4】干渉点が十分に貫通頂点に近い場合を示す図で
ある。
FIG. 4 is a diagram showing a case where an interference point is sufficiently close to a penetration apex.

【図5】貫通している頂点の射影点が他方の三角形に載
らない場合を示す図である。
FIG. 5 is a diagram showing a case where a projection point of a penetrating apex does not fall on the other triangle.

【図6】2つの三角形の法線ベクトルの内積が正のとき
は干渉検査の対象から外すことを説明する図である。
FIG. 6 is a diagram illustrating that when the inner product of the normal vectors of two triangles is positive, it is excluded from the targets of interference inspection.

【図7】干渉点から第3の頂点へのベクトル間の内積が
正のときは干渉検査の対象外であることを説明する図で
ある。
FIG. 7 is a diagram for explaining that when the inner product between the vectors from the interference point to the third vertex is positive, it is not the target of interference inspection.

【図8】干渉点の近傍における2つの三角形の分離性検
査を説明する図である。
FIG. 8 is a diagram illustrating a separability test of two triangles in the vicinity of an interference point.

【図9】拘束法線ベクトルと干渉点から第3の頂点への
ベクトルとの角度が選ばれる場合と拘束法線ベクトルと
三角形の法線ベクトルとの角度が選ばれる場合を示す図
である。
FIG. 9 is a diagram showing a case where an angle between a constraint normal vector and a vector from an interference point to a third vertex is selected and a case where an angle between a constraint normal vector and a triangle normal vector is selected.

【図10】人間型ロボットが床面上のプレートを踏んで
いる例を示す図である。
FIG. 10 is a diagram showing an example in which a humanoid robot steps on a plate on the floor.

【図11】2つの箱がめり込んでいる例を示す図であ
る。
FIG. 11 is a diagram showing an example in which two boxes are embedded.

【図12】三角形の集合で表された2つの箱の例を示す
図である。
FIG. 12 is a diagram showing an example of two boxes represented by a set of triangles.

【図13】ダンパ力を発生させる方向の説明図である。FIG. 13 is an explanatory diagram of a direction in which a damper force is generated.

【図14】シミュレーションと実験結果の例を示す図で
ある。
FIG. 14 is a diagram showing an example of simulation and experimental results.

【図15】2次元の模式図を示す。FIG. 15 shows a two-dimensional schematic diagram.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金子 健二 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内 (72)発明者 藤原 清司 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内 (72)発明者 金広 文男 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内 Fターム(参考) 3C007 AS36 CS08 WA03 WA13 WA24 WB01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Kenji Kaneko             1-1-1 Higashi 1-1-1 Tsukuba City, Ibaraki Prefecture             Inside the Tsukuba Center, National Institute of Advanced Industrial Science and Technology (72) Inventor Kiyoshi Fujiwara             1-1-1 Higashi 1-1-1 Tsukuba City, Ibaraki Prefecture             Inside the Tsukuba Center, National Institute of Advanced Industrial Science and Technology (72) Inventor Fumio Kanehiro             1-1-1 Higashi 1-1-1 Tsukuba City, Ibaraki Prefecture             Inside the Tsukuba Center, National Institute of Advanced Industrial Science and Technology F-term (reference) 3C007 AS36 CS08 WA03 WA13 WA24                       WB01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 多角形の集合あるいは多面体の集合で表
現された物体の幾何モデル間の形状処理により干渉情報
を求め、力学モデルに基づいて干渉情報から物体間に働
く拘束力を検出する方法。
1. A method for obtaining interference information by shape processing between geometric models of an object represented by a set of polygons or a set of polyhedra, and detecting a binding force acting between the objects from the interference information based on a dynamic model.
【請求項2】 前記物体間に働く拘束力は、歩行ロボッ
トが不整地上を移動する場合の足裏の内点と不整地上の
頂点が干渉する際に働く拘束力である請求項1に記載の
物体間に働く拘束力を検出する方法。
2. The restraining force acting between the objects is a restraining force acting when an inner point of the foot and an apex on the irregular ground interfere when the walking robot moves on the irregular ground. A method to detect the binding force acting between objects.
【請求項3】 多角形の集合あるいは多面体の集合で表
現された物体の幾何モデル間の形状処理により干渉情報
を求める手段と、求めた干渉情報から力学モデルに基づ
いて物体間に働く拘束力を検出するシステム。
3. A means for obtaining interference information by shape processing between geometric models of an object represented by a set of polygons or a set of polyhedra, and a constraint force acting between the objects based on the dynamic model from the obtained interference information. System to detect.
【請求項4】 前記物体間に働く拘束力は、歩行ロボッ
トが不整地上を移動する場合の足裏の内点と不整地上の
頂点が干渉する際に働く拘束力である請求項3に記載の
物体間に働く拘束力を検出するシステム。
4. The restraining force acting between the objects is a restraining force acting when an inner point of the sole of the foot and an apex on the irregular ground interfere when the walking robot moves on the irregular ground. A system that detects the binding force that acts between objects.
JP2001281755A 2001-09-17 2001-09-17 Method for detecting force of constraint acting between objects and system thereof Pending JP2003089082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001281755A JP2003089082A (en) 2001-09-17 2001-09-17 Method for detecting force of constraint acting between objects and system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001281755A JP2003089082A (en) 2001-09-17 2001-09-17 Method for detecting force of constraint acting between objects and system thereof

Publications (1)

Publication Number Publication Date
JP2003089082A true JP2003089082A (en) 2003-03-25

Family

ID=19105521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001281755A Pending JP2003089082A (en) 2001-09-17 2001-09-17 Method for detecting force of constraint acting between objects and system thereof

Country Status (1)

Country Link
JP (1) JP2003089082A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011500349A (en) * 2007-10-26 2011-01-06 本田技研工業株式会社 Real-time self-collision and obstacle avoidance
US8467904B2 (en) 2005-12-22 2013-06-18 Honda Motor Co., Ltd. Reconstruction, retargetting, tracking, and estimation of pose of articulated systems
US8924021B2 (en) 2006-04-27 2014-12-30 Honda Motor Co., Ltd. Control of robots from human motion descriptors
CN104634486A (en) * 2014-12-26 2015-05-20 清华大学 Walking robot foot strength measuring device
DE102013203381B4 (en) * 2012-03-15 2015-07-16 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) METHOD AND SYSTEM FOR TRAINING AN ROBOT USING A RESPONSIBLE DEMONSTRATION SUPPORTED BY PEOPLE

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8467904B2 (en) 2005-12-22 2013-06-18 Honda Motor Co., Ltd. Reconstruction, retargetting, tracking, and estimation of pose of articulated systems
US8924021B2 (en) 2006-04-27 2014-12-30 Honda Motor Co., Ltd. Control of robots from human motion descriptors
JP2011500349A (en) * 2007-10-26 2011-01-06 本田技研工業株式会社 Real-time self-collision and obstacle avoidance
DE102013203381B4 (en) * 2012-03-15 2015-07-16 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) METHOD AND SYSTEM FOR TRAINING AN ROBOT USING A RESPONSIBLE DEMONSTRATION SUPPORTED BY PEOPLE
CN104634486A (en) * 2014-12-26 2015-05-20 清华大学 Walking robot foot strength measuring device

Similar Documents

Publication Publication Date Title
Yu et al. More than a million ways to be pushed. a high-fidelity experimental dataset of planar pushing
Magrini et al. Estimation of contact forces using a virtual force sensor
US8386213B2 (en) Device, method and computer program for simulation of collision events between physical objects
Fabian et al. Integrating the microsoft kinect with simulink: Real-time object tracking example
Roennau et al. Evaluation of physics engines for robotic simulations with a special focus on the dynamics of walking robots
CN111716361B (en) Robot control method and device and surface-surface contact model construction method
Qin et al. Anyteleop: A general vision-based dexterous robot arm-hand teleoperation system
Desingh et al. Physically plausible scene estimation for manipulation in clutter
Gabbasov et al. Toward a human-like biped robot gait: Biomechanical analysis of human locomotion recorded by Kinect-based Motion Capture system
JP2003089082A (en) Method for detecting force of constraint acting between objects and system thereof
Conti et al. A framework for real-time multi-contact multi-body dynamic simulation
Kim et al. RealityBrush: an AR authoring system that captures and utilizes kinetic properties of everyday objects
Lu et al. Active Acoustic Sensing for Robot Manipulation
Zhang et al. Kinect-based Universal Range Sensor and its Application in Educational Laboratories.
Čepon et al. Impact-pose estimation using ArUco markers in structural dynamics
Kim et al. Multi-hand direct manipulation of complex constrained virtual objects
Jongeneel et al. Experimental Validation of Nonsmooth Dynamics Simulations for Robotic Tossing involving Friction and Impacts
Kossenko et al. How one can simulate dynamics of rolling bodies via Dymola: approach to model multibody system dynamics using Modelica
Giftsun et al. Robustness to inertial parameter errors for legged robots balancing on level ground
Greggio et al. A 3d model of a humanoid for usarsim simulator
Rabbani et al. Anticipatory balance control and dimension reduction
Kluth et al. Studying the role of location in 3D scene description using natural language
Dastangoo et al. Multi-contact Stability of Multi-legged Robots Operating in Unstructured Terrains
Bisson Development of an interface for intuitive teleoperation of COMAU manipulator robots using RGB-D sensors
WO2024085072A1 (en) Control device, control method, and control program

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050818

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050913

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051021